




TO 6f G E L E I T

For most mathematicians, dealing with geometric constructions was one of 
the most momentous mathematical experiences of their school days. For some, 
the unpredictable nature of the materials, seemingly not subject to any clear 
geometric methodology, was above all irritating, and they felt the reassurance of 
the so-called anal- ytical method as a salvation - which perhaps helped to 
determine a pronounced tendency in their later development. For other 
mathematicians, on the other hand, the joy of playing with ever new questions 
prevailed, and one may well assume that some geometric talents experienced 
their first attempts at achotistical thinking.

In this book, the Yerfaeeer expounds the whole wealth of the deeper 
questions of the theory of geometric constructions, in their interaction with 
mathematics as a whole. In the process, Boß's creative imagination has also 
come to the fore in his methodical penetration of the material. Thus the reader 
senses that this i s  a  field of our science that is in a state of constant 
development.

The book thus created is probably Brzaee- azca's most mature and at the 
same time most youthful work. In the representation one recognizes again the 
temperament of the author and feels the unbreathed urge to force contact with 
the reader through the printed letter. The subject matter of the work is rooted in 
the thought processes of the School of Alexandria. We soon come across the 
name of Nsw'ron, who devoted more space to these matters in an Arilhmetiea 
Unirerealio than is generally known. The first achievement of the young 
student EnMOND NDAQ appears, the gcharfainnig considerations on 
transcendental numbers byGziarom and SIEOEß are reflected. But we also 
encounter some unknown names here for the first time.

Thus the work opens up to the student a view of the infinite variety of 
problems and methods of truly modern geometry; it gives the teacher countless 
opportunities to enrich and enliven the lesson - and that it has much to say to 
the researcher as well, no connoisseur of modern geometry needs to be assured.

November 1951.
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§ 1. ¥Orders and declarations

The theory of geometric constructions teaches which construction tasks can 
be solved with given means of con- struction or which means of con- struction 
must be used to solve given construction tasks. A con- struction task is the task 
of f ind ing  points and lines on the drawing sheet from given points and lines 

using given aids. This involves drawings that are to be made on a sheet of paper 
with one or more pencils. It is assumed that these are ideal pencils, i.e. pencils 

that draw lines of zero thickness. The dots are also considered to have no 
extension. One of the most important ifonstruction tools is the ruler. It is used to 

draw straight lines with the pencil, which is guided along its straight edge. The 
presence o f  such a straight edge is the characteristic that defines the instrument.

defines'). First, let us assume that the ruler has 
unlimited lengths and that the sheet of paper is unlimited. The problems that 

arise on the natural boundary of ruler and paper are put aside for the moment. 
But they will be dealt with very soon. This book will deal only occasionally 
w i t h  questions connected with the width of the line, and with questions of 

accuracy in drawing in general. Constructing in a limited plane with a limited 
ruler, on the other hand, is related to fundamental, purely mathematical 

questions. For this book, points, straight lines, circles and curves in general are 
the relevant entities of analytical geometry and ifon constructions are only 

means of expressing mathematical relationships. The task to be solved now 
consists of finding further points and lines from some given points and lines. A 

straight line is given by plotting. A point is given as the intersection of two lines 
(or any two parts of a line). The ruler is only to be used so that a straight edge is 

placed on two already existing, i.e .  given or already constructed points and that 
this edge is drawn along with the pencil. New straight lines are created in the 

course of the construction

') Curved rulers are also known; these are rulers with curved accounts that can be 
used to draw curved lines on paper. Such instruments are not actually used for 
constructing. Rather, they are a drawing aid that makes it easier,
to draw curved lines smoothly after some of their points - whether by construction or by 
avoidance - are already in place.

1 Bleberbach



§ 2 Constructions in an unlimited drawing plane

only in this way by applying the ruler to existing points. Likewise, new points 
are only created by intersecting existing lines. These are either given or newly 

constructed straight lines. We understand a combination with detn bittest 
(alone) to be the construction of points and lines according to this rule. Later 

we will look at other instruments that are closely related to the ruler,
z. For example, the parallel ruler, which has two parallel straight edges, both of 
which can be used to draw straight lines, e.g. in such a way that one edge is 
placed at two existing points, while the other edge is drawn along with the J3lei. 
Such a construction i s  then called a construction with the parallel ruler and not 
a construction with the ruler. It is important from the outset to clearly 
understand and record these definitions regarding the use of the instruments. For 
much misunderstanding and non-understanding, especially on the part of 
insufficiently educated mathematicians, who, as experience has shown, are 
noticeably interested in questions from the field of geometric constructions, is 
based precisely on the failure to understand the clear definitions and the 
resulting ambiguities and confusion. I repeat once again that a construction with 
the ruler is to be understood as the creation of new straight lines by applying the 
ruler to already existing points and drawing along this applied edge as well as 
the creation of new points as the intersection of such straight lines. Of course, 
we are only talking about the finite number of times the ruler is applied, i.e. 
constructions that end after a finite number of steps, and not about any boundary 
crossings from constructions that are thought to continue into infinity. But 
perhaps it is useful to mention this in particular.

How the points and straight lines that we think of as given at the beginning 
of the construction got onto the paper is a question that remains completely out 
of consideration.

§ 2 Constructions with the ruler alone in unlimited length As already 

mentioned, we leave out all complications in this paragraph,
which can result from the limitations of ruler and paper, except
In other words, we assume that all the points and lines we are talking about fall 
on the paper and can be recorded with the ruler in a single line.

The assumptions made can also be formulated in such a way that the 
drawing sheet is the projective plane, the ruler is the projective straight line and 
that the points and straight lines are the objects of these names in projective 
geometry. Construction of a straight line then means the determination of a 
straight line through two points, and construction of a point
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means defining this point as the intersection of two straight lines. The purely 
mathematical questions of the theory of constructions are thus neatly separated 
from the questions of drawing technique. The same applies if the drawing sheet 
is defined as an affine plane, etc.

If only one point or only one straight line is g i v e n , no further point or no 
further straight line can be found constructively, as there are no pairs of points 
to which the ruler could be applied. If two points are given, the only thing that 
can be constructed is their connecting line.

Flg. 1 Flg. 2

if it is not also given. If two straight lines are given, then
If three points are given, their intersection can be constructed if it does not already 
belong to the given pieces. If three points are given, their triangle - or the line 
on which they all lie - can be constructed. Think analogously if three straight 
lines are given.

If four points are given, there are already more meaningful construction tasks. 
Let us take 4 points of general position'), A, B, O, D in Fig. 1, as given. Then, for 
example, E can be constructed as the8 intersection of the lines AB and OD. You 
then have three points A, E, B on a straight line y and two points U, D outside it. 
Now you can use the ruler alone to solve the do/paöe to find the harmonic point for 
E on g with respect to A, B. This is done, as is familiar from projective geometry, by 
drawing the straight lines numbered in Fig. 2 in the order of these numbers. N is 
then the fourth harmonic. This follows from the harmonic properties of the 
complete quadrilateral ABCD, in which 3 is a side and 6 is a diagonal. This cuts out 
the fourth harmonic to E on side AB.  This is based on the theorem: On each side

') This does not mean that three of the four points should be located higher up (Fig. 1)



§ 2 Constructions in an unlimited drawing plane

AB aB complete quadrilateral ABCID the two corners A, B al8 belonging to this 
side form a pair, the diagonal point E belonging to this side and the intersection 
with the opposite side of the diagonal triangleB £Gff as the other pair form a 
harmonicB quadruple').

Dual to the task just discussed - in the sense of projective geometry - is the task 
of constructing aa tuftg for three straight lines a, b, e,  the fourth harmonic / for e in 
relation to e, ö. In order to be able to draw, two further lines c and d, which do not 
belong to the bundle, must be given a. Of course, the task can also be traced back to 
the intersection of deB bundlea with c.

I conclude the paragraph with the proof of the theoremB: The points and lines 
constructible with the graph offin etie given points and
€feroden eind exactly theyenipen whose coordinates in any given projecti "ng 
coordinatey8tRm cannot be expressed ratiTZHZl by the coordinates of the given 
strokes.

I first prove that the coordinates of the points and lines that can be con- trued 
with the ruler alone can be expressed rationally by the coordinates of the given 
pieces. This follows from the fact that the coordinates of the lines connecting 
two points are expressed on the coordinates of 
two points defining the line. For the equation of these lines is obtained by 
setting the determinant to zero, which can be formed from the coordinates of the 
two given points and the coordinates of the current points as their three lines. 
Dual to this is EntBprechen- dea via the coordinates of the intersection pointsa 
of two straight lines°). Conversely, it can also be shown that all points and lines 
whose coordinates can be rationally expressed by the coordinates of the given 
pieces are intersectable with the one. A coordinate system is to be suprutide', in 
which the vertices of the coordinate triangle and the unit finct str belong to the 
qepebeneti or Bereite £onetruierfea points. In the algebraic version, these are 
problems that only require the solution of linear equations. The constructions 
with the ruler alone are therefore also called linear Aonetru£tiotieti or A 
truHioaen erefen 6frndes. The point calculation°) must be used to prove this. 
There it is shown that the four basic types of arithmetic can be carried out by 
drawing with the ruler alone
This reference may suffice for the moment.  After discussing the
Drawing parallelsa will shed further light on this question -). For the moment, 
nothing more can be said than can be deduced from the reference to the above-
mentioned passage°).

') Cf. E.g. L. Brzaznaaca: Projektive Geometrie, p. 78, Leipzig 1931.
• ) Cf. B iaznzaca: Projective Geometry, p. 10 and ll. Leipzig 1931.
• ) Cf. BißBERBACH: Introduction to Higher Geometry, p. 16, Leipzig 1933.
*) Cf. § 4, where I will prove the assertion just made.
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§ 3 Ifongtruktionen in begrenxter Ebene mit begrenztem Iäneal 

Konstruktion von Parallelen

I take up the construction of the fourth harmonic point just discussed with 
the help of the complete quadrilateral. If the four given points are located as A, 
B, O, D in Fig. 3, it is not possible to construct another point apart from point E 
if the ruler is used correctly, because the two other diagonal points of the 
complete quadrilateral ABOD fall out on the drawing sheet if they are 
interpreted as an affine plane or as part of it. J¥fan must then take at least one 
other point as given. From a mathematical point of view, it does not matter,
which, since the harmonic to be found in 
relation to A, B is independent of which 
arbitrary auxiliary points or reed lines are 
used to find it. The choice of arbitrary 
auxiliary points can therefore be made 
entirely according to the needs of the 
draughtsman. Perhaps, as in Fig. 3, the 
added harmonic
point does not fall on the drawing sheet. But then it can be required to connect 
a point falling on the drawing sheet with this point not falling on it, i.e. to draw 
this connecting line at least as far as it falls on the sheet, in order to define the 
inaccessible fourth harmonic - as is already the c a s e  with the two inaccessible 
diagonal points - by two straight line segments falling on the sheet. We are 
therefore faced with the following three basic tasks, which are posed by 
constructing in a limited plane:

1. To connect an accessible point, i.e. a point on the drawing sheet, with an 
inaccessible point, i.e. a point outside the sheet but defined by two accessible 
straight lines, i.e. to draw the accessible part of the straight line connecting the 
two points.

2. To intersect an inaccessible straight line, i.e. defined by two inaccessible 
points, with an accessible straight line, i.e. to specify a further accessible 
straight line section passing through the intersection point.

3. To intersect two inaccessible straight lines, i.e. to specify two accessible 
straight line segments by their point of intersection.

I emphasize some special cases, which result from the fact that the 
inauthentic (wrongly called infinitely remote) elements of the plane belong to 
the inaccessible ones in all cases.
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a. two parallel (accessible) straight line segments. Draw a parallel to the two 
given parallels through an (access ib le ) point.

b. , c. Given a parallelogram (and thus the two improper points a of one side and 
thus the improper straight line, defined by two improper points). A parallel (through 
a suggestible point) is to be drawn to any (b. suggestible or c. inaccessible) straight 
line g.

A

Ug. 4 Flg. 6

can be drawn. This last task is a special case of the second one above, if q is 
accessible, and a special case of the third one above, if p is inaccessible.

I turn to the solution of the tasks set.
1. q tik £ define an inaccessible point U. The accessible point A can be certified 

with II. I make use of the freedom to use arbitrary auxiliary points. I give three 
solutions to the problem.

The first G"'ttnp is based on the Desargue triangle theorem. Diesel states') : 
If two triangles are assigned to each other and lie in such a way that their sides 
intersect in three points of a straight line d, then the connecting lines of assigned 
vertices pass through a point D and vice versa. We choose the two triangles so 
that U is the point through which the connecting lines of associated corners 
p a s s . We assume in Fig. 4: A, learning B on p and C on £ arbitrarily. We also 
assume B' on q and C' on h arbitrarily. e and o' then intersect at a point of d. If 
we now assume b' arbitrarily, we have a second point of d at the intersection of 
b and ö' and thus the straight line d. If we intersect d with c, we still have a 
point of c' apart from B' and can draw c'. c' and b' intersect in A'. The straight 
line AA' goes through U, which solves the problem. (Fig. 4.)

') Cf. E.g. L. BIEBERBaca: Projektire Geometrie, p. 43, Leipzig 1931.
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A second dsutip of the task results from the Zaeofittiomaaiz about 
voifstöWiife quadrilaterals*j. It reads: The pairs of opposite sides of a complete 
quadrilateral intersect any straight line in three pairs of points of an invul- 
lution. If five of these six points are known, the sixth is fixed. Fig. 5 shows how 
this can be used to solve our problem by constructing two complete 
quadrilaterals, in which the corresponding sides of both quadrilaterals have the 
same numbers, which also indicate the order in which the quadrilateral to which 
point A belongs as a corner,

is to be drawn. A brief explanation is added to Fig. 5. Two points are known on 
A, which may be labeled A' and fi'. Connect A' with a point given on q by the 
straight line 1' and draw the corresponding straight line 1 through A so that 1 
and 1' meet on y. Similarly, draw 2 and 2'. Then t a k e  B' and C' arbitrarily on 
these lines, draw 3' and place any line generating B and U through its 
intersection with y. Then draw 4' and 5'. Then draw 4' and 5' by connecting D' 
with B' and C', intersect these lines with g and connect the intersection points 
with & and C by the lines 4 and 5, which intersect in D. This gives you 6 as 
straight line AD and 6' as straight line A'D', the latter as a given straight line. 
Both meet at q and are parallel if q and £ are assumed to be parallel.

A third fermentation of the same problem is obtained from the harmonic 
properties of the complete quadrilateral. First obtain a harmonic quadruple on y in 
which U is involved. PQ old a pair, U, U' as the second pair in Fig. 6 is such a 
quadruple.

Now try to construct the fourth harmonic point V in relation to P, Q using A in 
relation to U'. To do this, draw the straight lines I, 2, 3, 4, Ii, 6 of sig. 7 in the order 

of this numbering. If U is the improper point, i. e. if p and h are parallel, then U' is 
the midpoint of the line PQ on p. We have then s o l v e d  the problem:

') Cf. s. B. L. BiEazRBzcif: Projektive Geometrie, p. 81 and 97. Leipzig 1931.
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"Given a line PQ on q with its equidistant point ff. Draw a parallel to q through a 
point A". Since we previously solved the problem: "Given q and a parallel to it: Ä. 
Construct a line with m i d p o i n t  on q", it does not matter whether a parallel to g 
or a line with midpoint on 9 is given.

The following remark is added to this: Only if there is any rationally divided 
line on g can parallels be drawn zv g with the ruler alone. Let the line AB on g be 
divided by the point U on it in the ratio m: n (m, tt integer, m > ii). In addition, two 
points P, Q outside q are given so that you can continue constructing. Now first 
determine the point D on q co with the help of P and Q so that AB as one pair and 
CAD as the other pair form a harmonic quadruple. This can be done with the help of 
a quadrilateral. If, as we may assume, B lies to the right of A, then D lies to the right 
of B. Let us see in what ratio the distance AD is divided by B. To do this, we 
introduce Cartesian coordinates on g. We may choose them so that üaD A has the 
coordinate 0, C! the coordinate m, B the coordinate m -}- n. Let z be the coordinate of 
D. Then, according to the definition of D, the double ratio is [A, B,- C, D) -- - l, i.e.

s - in n j n

By subtracting 1 on both sides, the required partial ratio follows from this

m a  _ m - n z - 
tm -j- n n

From a distance divided in the ratio m: a, a distance divided in the ratio (m - a) : 
a was constructed. If m - n > n, we proceed analogously to (m - 2 n): tt, then to (m - 
3 n) : n and so on, bi8 we find a number m - £n

n has been obtained. If m - k n < n, co the same procedure is applied to the 
inversely directed distance divided in the ratio a : (m - £a). In this way, you can 
obviously move on to smaller and smaller positive numbers that express the 
division ratio, until you finally obtain a divided in the ra t io  1: I,
i.e. halved distance. This ensures that the passages are drawn to p.

2. I now turn to the second task. Consider an unconstrained line u. A point U of 
this line, defined by an accessible straight line g, is to be connected to an accessible 
point A. We obtain a harmonic quadruple on g in which U is involved. In Fig. 8, 
two straight lines define two inaccessible points f/ and f/" which in turn determine 
'ti. g determines the point II on tt. Plan connects ff of Fig. 8 with U . The
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defines a point U' on q. Then P, Q as one pair and U, U' of Fig. 8 as the other pair 
form a harmonic quadruple.

Once you have a harmonic quadruple on q, you can continue as in the third 
solution of problem I. Because even then8 a harmonic quadruple was 
constructed on p first and the (this time inapplicable) straight line fi was no 
longer used from then on.

Although problem 2 is fundamentally solved in this way, it is (graphically) 
easier to base the design on a consideration using Deaarguess' theorem.  Let us 
assume that the shapes shown in Fig. 9 are strongly

The straight lines defining Hl  llnd U and the straight line g defining U.
This also gives the points labeled A, B, C!, A', C'. We are looking for a suitable 
other triangle in Desargues' position for the triangle ABC in Fig. 9. To do this, we 
draw the straight lines CG' and EFA, which intersect at a point 'S'. Connect this with 
B and intersect the line ISB with C!'E$ in a point B'. The triangle E B'C!' (E = d') is 
then in perspective from S in this designation of the corners to ABC! Therefore, 
assigned sides intersect on a straight line, which can only be U U$. Thus A'B' 
intersects the straight line q in U. I t  i s  possible that individual points 
mentioned here, such as S or B', are inaccessible. However, since we already know 
how to connect accessible points with inaccessible ones, this does not change the 
feasibility of the construction described in Fig. 9.

3. Finally, the 3rd problem remains. To solve it, it is necessary to connect 
the intersection point of two inaccessible lines twice with accessible points in 
order to obtain two accessible lines through the intersection point of the two 
inaccessible lines. This does not require a new
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Consideration necessary. One only has to assume that the straight line p of Fig. 9 is 
itself inaccessible.

We are now also in a position to deal more precisely with the question 
settled by a hint at the end of § 2, namely to prove that it is possible to construct 
points and straight lines whose coordinates can be expressed rationally by the 
coordinates of the given pieces. A projective coordinate system, which was in 
mind at that time, is determined by four given or already constructed points of 
general position, namely the three corners of the coordinate triangle and the unit 
point. These four points can be converted by projective mapping into the four 
points of determination of a

Flg. 10

any Cartesian coordinate system. If we think of the abscissas of all given points 
marked on the z-axis and their ordinates marked on the y-axis, we can transfer the 
distances of one coordinate axis congruently to the other by drawing parallels 
and thus determine that the abscissas and the ordinates of all congruent points 
form two congruent sets of points. It is now easy to see that all points whose 
coordinates can be expressed rationally from the abscissas and ordinates of the 
given points can be constructed with the ruler. One only has to remember the 
usual methods of graphical arithmetic (the projective generalization of which is 
the point calculation mentioned in § 2)*). Figs. 10 and 11 illustrate this.

We now assume again unlimited plane and unlimited ruler. The discussion 
in this paragraph gives us the right to do so.

§ 4. constructions with the ruler alone according to specifications
of a completely drawn regular polygon

New peculiarities arise if one not only assumes that the two pointsp and U$ are 
not real, but if one further assumes that the parassel formed by the pairs of straight lines 
through iul find 17 is not real.

') Vg1. e.g. Bizazszxca: Einleitung in die höhere Geometrie, s. isff. Leipzig 1933, 
where the proofs are also carried out independently of the parallel axiom - purely 
projectively - as is emphasized with regard to an application to be made in § 5.
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gram is a square. Then the tasks of falling a perpendicular, erecting a 
perpendicular, bisecting a right angle, rotating a line by u/2 etc. can be solved 
with the ruler alone.

Since you can draw parallels to any straight line with the ruler alone when 
given a parasselogram, it is only necessary to construct a perpendicular line 
through the center of the square to a straight line through the center of the 
square to solve the tasks of plumb line felling and plumb line erection. This 
is shown in Pig. l2. You can find a perpendicular to the line p by drawing AB 
parallel to the side of the square E$Eq. Then draw BC!

Flg. l2 E'lg. 13

parallel to the diagonal E fIi! . Then Uöf is perpendicular to p. This follows from 
the fact that the triangles ABM and BC!M are isosceles, both with the apex df. If 
the base angle at fi &3f is equal to et, then the base angle at BOM is equal to u/4 
- e. The angle at the apex of this triangle is therefore uJ2 -l- 2 e. Since, according 
to Fig. 12, the exterior angle at the apex ff of triangle ABM is equal to 2 ot, g and 

U3f are perpendicular to each other. In addition, MA and 3fC are the same 
length, which also so lves  the problem of rotating a line by u/2. In Fig. 13, the 

right angle fi3fC is halved by placing a parallel MC!' to dC through ff and 
drawing C!'B' parallel to fi,fi and BB' parallel to fi S. BM is then perpendicular to 

AC and bisects the right angle Aufl. This is because triangle AIIIC is isosceles 
and 6 "M is perpendicular to B f,

as we discovered when looking at Fig. 12.
Fig. 14 finally shows how to double the angle e of the two half-lines a and 6. 

Draw c perpendicular to e and construct the fourth harmonic d to b in relation to 
the pair n, c. The straight lines a and c are then the two bisectors of the angle 
formed by the straight lines b and d. The construction of the fourth harmonic 
straight line in the bundle of straight lines a, b, c, d is dual to the construction of 
the fourth harmonic point on the row of points shown in Fig. 2. For ease of 
comparison,  the points to be used in Fig. 14 are numbered in the same way as 
the straight lines used in Fig. 2.
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The assumption that a square is given not only has the effect that you can 
construct the perpendiculars to every straight line, but also that you c a n  
transfer a distance congruently to the perpendicular line, or in other words, that 
you can transfer every distance by uJ2

can rotate. The same effect o f  constructing the 
perpendiculars to each straight line would obviously 
also be achieved if two pairs of perpendicular 
straight lines were taken as given. For this defines 
the perpendicularity, and on the basis of this the 
perpendiculars to each line can then be constructed 
with the ruler alone. However, this does not yet 
enable you to construct a square.  To make this 
clear, let us assume that, for e x a m p l e ,  a

Rhombua with an angle of 60° is given. This gives you a parallelogram with 
two diagonals perpendicular to each other. By drawing parallel lines, you can 
construct a regular rectangle from it (Fig. l6).  You can immediately recognize 
further rhombuses and

thus further vertical pairs of straight 
lines. Nevertheless, it is not possible to 
construct a square. To see this, we first 
get an overview of all the points that 
can be constructed with the ruler 
according to a rhombus. Ala coordinate 
system, we define the (oblique-angled) 
Cartesian circle determined by the 
rhombus. Its

both unit vectors are the ones originating from an eoke and falling on the 
rhombua- aeiten(Fig.16).The constructible points then have as location vectors

se,+ye, ( s,yrationzl 1)

If you introduce a rectangular coordinate system with the equi-oriented unit 
vectors Bl  = el  and R, then

(2)

(*)
the position vectors of the constructible points. If a square is now con-

would be atruable, then aa and its diagonal zo-ei under u/4
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correspond to position vectors inclined to each other, the length ratios
is. If (z, y) = (a, b j, [z, y) - (c, d) are these two location vectors, the squares of their 
lengths are therefore given by (3).

c* -I- c d -I- d* -- 2 (a' -|- a b -j- b'j, (a,b) -t-- (0,0), (c, d) -j- (0,0) . (4)

Here e, b, c, d are rational numbers. If we reduce to common denominators and 
multiply by theaem, we see that a relationship (4) should also exist for rational 
integers a, b, c, d. However, theB is impossible. Otherwise, because of (4), we 
would have to be able to choose the integers z, y BO in any case, so that the 
highest pole of 2, by which

divisible, would be an odd power. But if (5) is to be an even number a, ao 
obviously z and y both have to be even a. Then 2' is the highest power of 2, 
which is the greatest common divisor of z and y, and iet

this is how

(6)

(7)

But since z" y, cannot both b e  even a, then

is an odd number, and therefore 2'' is the highest power of 2, which goes into (5). 
Therefore, the highest power of 2, which is included in (5), can never have an odd 
exponent. Therefore, tel with the Nneal alone when given an 8eGhziggradige 
Rhombus or, what comes out ati| the same, a re- gular lSecUecko keizt square 
constructible*).

For greater clarity, I would like to add the remark that the angles of the 
simultaneous triangles around ff in Fig. 15 can all be halved at ff with the ruler, 
since the perpendiculars can be erected on the diagonals of the hexagon of Fig. 
15. Nevertheless, it was not possible to construct the regular dodecagon because 
otherwise it would obviously be possible to construct the square, which has four 
corners in common with the dodecagon.

We have thus recognized that the form of a square g o e s  further than the 
specification of two pairs of crerades that are perpendicular to each other. In 
passing, we can also note that the use of aa fiec£tii'izi£eliiaeele instead of

') By the way, you can also prove in the same way that you cannot construct a 
regular hexagon with a ruler given a square.
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of a ruler does not go further than the specification of two pairs of perpendicular 
straight lines next to the ruler. A perpendicular ruler is understood to be an 
instrument consisting of two mutually perpendicular ordinary rulers in rigid 
connection. It is used in such a way that o n e  edge is applied to two existing 
points, while the perpendicular edge passes through an existing point. Drawing 
can be carried out along both edges. This instrument only abbreviates the 
construction of the line perpendicular to a given line. For its range in extended 
use, see § 9.

In Fig. 15, dotted lines indicate how the distance MA (and thus any distance) 
can be rotated by u/3 in MA' by drawing bIoßea parallel to the sides and 
diagonals of the rhombuses.

The considerations that we have made here for the regular hexagon and the 
regular quadrilateral ( square) suggest the question of whether Analoger also applies 
to any "reifufor" tt-itself. This is indeed the case. If the remaining connecting lines 
of the corners are drawn in such a regular polygon, you will find enough parallels to 
the sides to be able to draw lines to any straight line with the ruler alone according 
to § 3. According to §  3, the sides can also be bisected with the ruler alone. If you 
then draw the lines connecting the side midpoints with the side midpoints or 
corners, you will also find e n o u g h  perpendiculars on the sides to be a b l e  to 
construct the perpendiculars to any straight line with the r u l e r  alone, in 
accordance with a statement made in this diagram following the square. Plan can 
thus also construct the center of the regular tt-corner. If, in the case of an odd n, you 
connect thea center point 3f with a corner of the tt-cornera , ao you can extend this 
distance beyond ff according to § 3.  This gives a corner of the regular 2 n-corner. In 
the same way, you can find the other corners of the n-corner in addition to the 
existing ones. Bank If aIso, in the case of an odd n, construct the 2 n-Ii!ck from the 
ii-Tel using the ruler. In the c a s e  o f  an even tt you can rotate any distance by 2 
a/a in the same way as in the case of the hexagon (Fig. 15) by drawing parallel lines 
several times. This is therefore also possible in the case of an odd n. First go to the 
regular polygon with twice the number of corners 2 n and then rotate twice by 2 
a/(2ti). Now let us answer the question suggested by the result highlighted above as 
to whether, in the case of an even n, it is also possible to construct a regular 2 n-
corner with the ruler alone a f t e r  entering a regular n-corner.

*) On a first reading, the reader can skip the rest of this paragraph.
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can atrude. It will be proven that this is impossible. In the case of an even n Bonn 
with 'le ruler alone from the regular n-fiick the regular 2 n-corner cannot be 
constructed.

In order to prove this, we first obtain an overview of all the points that can 
be congruent with the ruler alone according to the specification of a regular (tt 2 
m) corner. For this purpose we choose a Cartesian coordinate system whose 
axes include the angle 2 a/a and whose unit distances are equal to the radii of the 
regular n-corner (sig. 17). Constructible are then 9enav those points whose 
coordinates are rational functions of coa a/m with rafionnfeti numerical 
coefficients. This is shown in Fig. 17, from which the y-coordinates of the 
corners of the regular tt-corner are taken. (The z-koozdi

nates obviously make up the same quantity in their entirety as the y-coordinates 
in their entirety). From the triangle MA y$ you have

On the triangle measure yq follows

ain 3 -ain 2 - coan  eoa 2ain "
m  mm ' m t u  

2 oos^ -m  -|- cos 2 -ot  t cos*m  - I

ain k
etc. You can see that the y-coordinates of the corners are given by the g

i

with integer k are given. Since these are rational with rational

n
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'

n n

If we express the numerical coefficients by cot u/m, we see that, given the 
rhombus shown in Fig. 17 and the points z = 0, y = cot u/in, we can construct 
the regular (n = 2 m)-vertex with the ruler alone. The specification of the 
regular ( a - 2 in) corner is therefore synonymous with the specification of this 
rhombus and these points. This also proves our assertion that the points that can 
be congruent with the ruler alone after specifying the regular (n = 2 m) corner 
are precisely those whose coordinates can be expressed rationally with rational 
number coefficients by cos a/m. Fig. 17 also shows a corner P of a regular 2 w-
vertex to which the corners of the given regular n-vertex also belong. From the 
triangle MPI it can be seen that its coordinates

*' 9 '
ain 2 - 2 coa - S n

aind. If it is possible to construct a regular 2 'i-corner with the ruler alone, ao 
also the one with the center ff to which this corner P belongs. For if the 2 n-
corner is constructible, then one can ro ta t e  any distance, thus also measure, by 
2 a/(2 a), and thus one obtains P. If now the 2 a-corner were con- atruable, then 
cos a/(2 m) would have to be rationally expressible by cos a/m with rational 
number coefficients. I will prove that this is not possible. To do so, we must 
first remember certain facts on the doctrine of the division of circles°)

must be remembered. The 2 m-th root of unity e '^ satisfies an irreducible 
equation of degree Q(2 m) in the body of rational numbers (circular division 
equation).  Here ' p(2 m) is the Euler 'p-function, i.e. Q(2 m)

) - QI -  , if 2 m = 2'p1' p°- the prime factor-

') Stan proves daa by complete induction from the formulas

n
coa - - ain (r - 1) ain -

°) ¥g1. e.g.: L. Brzazsazca-Bzrzs: Lectures on Algebra, 5th ed. Leipzig 1933.

$1
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of 2 m ifl. Accordingly, ifl g(2 m) (megen m> 1) sets even and for even m in 
particular g(2m) = 2 g(m) The Kreifleülgs

equation has, in addition to e '^, certain other unit roots e - -  (£ integer) as 
solutions, and with each root also its conjugate imaginary, or what is the same 
iat, its reciprocal value. Therefore, the equation of the division of the circle is a 
so-called reciprocal equation. So if

tZ0 Z " " -[- O Z "" ' -[- - - - - --[- O (g q == 0

is the Kreia division equation, then a - ag tp, _ . If we now divide by

z and then i n t r o d u c e s  $z -J- as a new unknown, we get

an equation of degree 'p (2 m)/2 whose roots are cot u/m and certain coa k u/m 
(k integers). (The same £ as before for the roots of the Kreig division equation.) 
Therefore, this equation is also irreducible in the body of rational numbers. For 
from a divisor of its left-hand side provided with rational coefficients, one 
would obtain an equation of lower ala g (a)-th degreea with rational coefficients 
by the specified substitution

for e - . coa u/(2 In), i.e. the quantity to be constructed from an irreducible 
equation of degree 'p(4 m)/2 g(2 m) with rational coefficients, is sufficient. 
However, if cos a/(2 m) could be expressed rationally by coa u/m with rational 
coefficients, then, for example

this rational function, e n t e r  here for cos u/m the remaining roots cot £ a/tu of 
the irreducible equation, which satisfies cos a/m, and form

s-r - 0 .

Then, according to the theorem that symmetric functions') can be expressed 
rationally with rational number coefficients by the elementary symmetric 
functions, this is an entire rational function of z of degree Q(2m)/2 with rational 
coefficients, one of whose zeros is cos a/(2 In). However, this contradicts the 
fact that cos a/(2 m) satisfies an irreducible equation of degree g (2 tu) with 
rational coefficients. Therefore coa a/(2 m) cannot be expressed rationally with 
rational number coefficients by cot a/m. Therefore, the regular 2 n-square 
cannot be constructed with the ruler from the regular (n - 2 m)-square alone.

') Cf. B.: Bxzazsazca Bzrzs: Lectures on Algebra, 5th ed. Leipzig 1933.
2 Bieberbach
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§ 6 Constructions with the ruler alone according to a firmly drawn circle with a 
given center. Poncelet stone constructions

If a circle periphery K is presented as a fixed line and the center point ff of 
the circle is marked, a straight line can only be drawn according to the rules 
given in § 1 and the considerations made in § 2 if another point P is given. The 
intersection of a straight line with the fixed circle is now regarded as a new 
process for constructing new points. The straight line M P intersects the circle K 
at two points. If you want to construct further lines and points, at least one point 
Q not located on the line MP must be given. According to § 3, you can then 
draw a parallel to MP through this point Q. This is because a line with center ff 
i s  known on the diameter that MP cuts out of K (§ 3). If the parallel to M P 
passes through Q at the circle K, connect 3f with Q and draw a parallel to MP 
through one of the intersection points of 3fQ with K. You can therefore 
construct a chord of the circle K parallel to MP. If we bisect this c h o r d  
according to § 3 and connect its center with ff, we obtain the diameter of the 
circle perpendicular to M P . The case where 0fQ is already p e r p e n d i c u l a r  
to M P appears to be a limiting case in this construction, but it can easily be 
avoided by modifying the method. These two mutually perpendicular diameters 
determine the corners of a square whose sides are equal to the radius of the 
circle. According to § 4, all points can be constructed whose coordinates can be 
expressed rationally from the coordinates of the given points in a rectangular 
coordinate system whose axes fall on the two mutually perpendicular diameters 
of the circle and whose unit distances are equal to the radius of the circle A. Let 
1 be the dimension of the radius of K. Let a be the dimension of the abscissa of 
any given or already constructed point. Divide a diameter of K in the ratio a : 1. 
This can be done in the usual way if the points on the abscissa axis are marked 
with the measures a and a -}- 1 (Fig. 18). It may be assumed that the diameter 
AB falling on the abscissa axis has been divided in the ratio a : 1. Now let the 
diameter A B of K at point N be divided in the r a t i o  a : I. Set up the 
perpendicular to AB in C. This is possible according to § 4, since, as we have 
just seen, a square inscribed on the circle K is known. An intersection of this

perpendicular with K at D. Then, according to the height theorem, 2 JÄ/ (a + I) is 
the measure of the distance CD. Draw a triangle ff, a -}- 1, D', ao 'similar to ABD' 
by drawing parallel lines over the points ff, a, a -j- 1 of the abscissa axis.
its height a D' established at point a has the dimension ( Fig. 19). Transfer it to 
the y-axis through a parallel to the z-axis and rotate aie
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according to § 4 by u/2 into those. Then you can see t h a t  the points whose 
coordinates can be rationally derived from the coordinates of the
given points and from ]/Ä. However, since a was arbitrarily chosen from the 
coordinates of known and constructed points', the following result was 
obtained:

If a circle K is drawn with a center point, all the points
wiil dern Direai 'iifeia constructible, whose coordinates in a given

Fig. 18 Plg. 18

The equation of aoordinofeneysfeml) e i c h  are the coordinates of the given points by a 
quadrature root expression, i.e. by finally o/mutual application of the four 
orundreohnunqsarlen addition, lsublraklion, 3fultiplikalion, division and dee 
process of quadralunsrzelziehen. It is assumed that the given points tiicAt all lie on 
theefheti through- mieser deo /eefen circle. Should this be the case, eo no treifer 
point can be constructed with the ruler alone.

Such constructions with the ruler alone according to the specification of a 
firmly drawn circle with a given center are called Poncetel's constructions.

The words "endlich oftmalig" occurring here correspond to the porde-
( §1) that every construction comes to an end after a finite number of applications 

of the ruler, i.e. that it consists of a finite number of straight lines and a finite 
number of intersections of these with each other and with the circle A. It is 

worth mentioning that the specification of an arbitrary arc of the circle K is 
sufficient. It therefore does not have to be completely drawn in order to 

construct its intersection points with any straight line q with the ruler alone.

') In the proof, it was assumed that the unit distances of the coordinate eyetems were equal 
to the radians of A. However, the sats is obviously valid for any given or conatrued 
rectangular coordinate system, since the tran8formation from one such system to another 
is done by linear transformation with given or constructed coefficients.
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to be able to. The following simple proof was found b y  P. KÜTTs msu. If an 
arc of a circle ö is given, ao it is possible, as first noted aei, to find the tangent in 
each aone of the points on the  basis of Pascal's
C o n i c  section theorema with the ruler alone. This is shown in Fig. 20. 
Assume 5 points on the arc b. The tangent is to be found at point 1, which also 
has the number 2. The intersection points of the hexagon
sides 23 with 56 and 34 with 61 determine the Pascal's straight line of the 
hexagon. Connect its intersection w i t h  hexagon 45 with 1. According to 
PzSGzc, this is the tangent in 1.

Fig. 20

You may assume that the arc b is not larger than a semicircle. Otherwise, 
connect a an end point with the center point. The intersections of these two lines 
with b determine a partial arc of h that is smaller than a semicircle.

If the points of intersection of g with the circle K (of which b is a partial arc) are 
to be determined, intersect the straight line d connecting the two end points A and B 
of b with q at a point D (Fig. 21). The tangents to b in A and B may intersect at a 
point D - the pole of the straight line d. The lines AD and BD may, as we want to 
assume, not meet q. Otherwise, as a glance at Fig. 21 shows, the question of the 
intersection points of K and g would not need to be discussed, as they would either - 
in part') - fall on t' or p would not meet the circle K. We now take the lines d and 
CAD as a pair of aa harmonic quadruple and construct the fourth harmonic line 1 
through U. If A is one of its intersection points with ö, then the line DE

') If only one of the intersection points of p with the circle falls on tt, the other 
intersection point of p with the circle i s  determined in the usual way on the basis of the 
Pa8cal theorema with the ruler alone.
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the straight line p in a point 6 of K. For if F is still the intersection of DE with d, 
then (D, II',- IS, fi) form a harmonic quadruple. If f does not meet the arc b, then g 
also passes K.

The fact that the center point is not used to find the intersection points of a 
straight line with the circle, even if only one arc of the circle is drawn, could 
lead to the assumption that one can do without the indication of the center point, 
that one can rather construct it from other given points. This is, of course, 
correct if there is sufficient information other than the periphery of the circle. If, 
for example, a parallelogram is given in addition to the periphery of the circle, 
then the center can of course be constructed. If, however, apart from the 
periphery of the circle, there are only points about which no affine or metric 
information is given, or, in other words, about which no relationship to the 
improper straight line is given - we will call them arbitrary points - then the 
center point cannot be constructed, i.e. distances (of more than one direction) 
cannot be bisected, since the center point could also be constructed. As soon as 
this has been proven, it is clear that in the above-mentioned case one cannot 
dispense with the assumption that the center point of K is also given. Let us 
therefore assume that apart from the periphery of K there are only a number of 
arbitrary points and that there is a construction of straight lines which leads to 
the center point of K. Then any construction that can be obtained from this 
construction by a projective mapping that sweeps K should also lead to the 
center. Let us assume a rectangular coordinate system such that the equation of 
K

becomes. The projective mapping

m e r g e s  K into itself, but does not leave the center point alone, but m e rg e s  

it, i.e. the point (z, y) = (a, 0), into (z', y') = , 0$').

With D. CA fER we want to pursue these questions a little further. Let us 
assume that there are zicei that are not (in the real sense of the word) so-so, not 
concen-

*) It is very well known in projective geometry that there are collineations which 
featlaßa E, but which change the center of K. Think of the alternating intersections of a 
ßo-deep circle or of Klein's model of hyperbolic non-euclidean geometry. The proof of 
the test was handed down by D. Cxx:fin in an Ililbert lecture.
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Ifreiee x2  and K$ are given. Even then you can tiic£t construct the centers of 
these circles from other arbitrary points, i.e., as already mentioned, without any 
relation to the improper straight line. For be
in a suitable coordinate system

(z - b)^ -j- y^ -j- 1 - b* -- 0 b > I

the equations of the two circles intersecting at z = 0, y -  i, then again the 
projective mapping(1) merges both circles, but leaves neither center point alone.

Astrid but given to'ei concentric circles, the 3fiuel 
point can be con8truedf2. Since the polars of a given 
point are parallel with respect to two concentric 
circles, parallels can be drawn with the ruler alone, 
and therefore distances can be halved according to § 
3. Since the tangents are the polars of the peri- pherie 
points, Fig. 22 shows another way

which only fails if the two circles are the inscribed 
circle and the inscribed circle of the same 
equilateral triangle.

If two' circles are bounded by real 
intersection points, their center points can also be 
constructed with the ruler alone.

Fig. 23 shows how a parallel g' can be constructed to a straight line g. Fig. 24 shows 
a parallel construction for the case of two circles touching each other.

In the last two cases, eB does not c o n t a i n  any real collineations of the 
two circles apart from reflections (or rotations) that fix the center points. This is 
because an ifollineation of this kind has to deform the four intersection points of 
the two circles. The collineation used in the case of four non-concentric circles 
with only imaginary intersection points exchanges the two non-real circle points 
with the two real intersection points of the two circles.

The proof that parallels can be drawn to many straight lines by the given 
specification of drawn circles teaches that the centers of the Ifreise are 
determined. I add the remark that it is sufficient if any arc of one circle is drawn 
and three other points are given above the two real 5ohnill points (or the point 
of contact and its tangent). This is because then the
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The other intersection points required for the specified construction can be found 
on the basis of Pascal's theorem using the ruler alone. However, you do not yet 

need the arc of one circle. But this must be t a k e n  as given in order t o  be sure 
that all the constructions corresponding to the proof given at the beginning of the 

paragraph are feasible. I turn to the case where three of mine are given without 
real intersection points. In addition, we have to assume that the three circles

are linearly independent, i.e. do not belong to the same tuft. For otherwise the 
collineation indicated on p. 21, which transforms two of the circles individually 
into 8itself, but changes their centers, would also featlaase the third circle by 
changing a center point. It is also sufficient to assume that there is an arc of one 
circle, but that there a r e  5 points of each of the other two circles. In this case, 5 
points of this circle are also given, since, as has already been explained, the 
intersection points of the same circle with any given or achon constructed 
straight line can be found without using the center pointsa. Then the equations 
of the three circles are known in the projective coordinate system determined by 
four linearly independent points, since only linear equations have to be solved to 
determine their coefficients. It will also have to be assumed that all three 
equations have two conjugate imaginary solutions in common (as this 
corresponds to the assumption that they are circles). Algthen determine in the 
bundle of two of the three circles that circle which p a s s e s  through an 
arbitrarily assumed point A of the third circle. Let K$, Kg be the three given 
circles, assume A on K and place the circle Kg3 of the bundles K$, Kg through it. 
Then K and K q have, in addition to A, a real intersection point B, the 
determination of which again only requires the solution of linear equations. 
Because of the intersection points of both circles known here
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the two conjugate imaginary circles common to all three circles and the point A. 
For example, K is also the circle from which an arc is drawn. From Kg, " which 
meets K at two now known points A and B, you only know these two points of 
intersection with R and its equation. However, you can immediately obtain further 
points of Rq,3 by placing any straight line not meeting B through A and 
determining its second point of intersection 6 with Kg. This again only requires 
solving linear equations. This brings the question back to one that has already 
been solved. Also in 1i'all three linearly independent circles without real 
lintersection points 8J CO dkP fitting points |eotgele9I and by purely linear 
construction

In one of his last works, E.A. WExsg dealt with the question of the extent to 
which the use of the ruler can be restricted if a creia with a center point is given. 
His result is this: It is sufficient to specify four points in the plane, three of 
which lie in a straight line, and to mark with the ruler only those straight lines 
that pass through at least one of these four points. Then you can use the fixed 
ifreig with center point and the use of the ruler described in this way to s o l v e  
all tasks that can be solved with unlimited use of the ruler. ("Föttpende"

§ 6 Constructions with compass and ruler

The addition of a fixed circle as a means of construction has extended the 
range of points that can be constructed with the ruler. Whereas without this 
circle you can only construct those points whose coordinates can be 
expressed rationally by the coordinates of the given points, after specifying a 
fixed circle all points whose coordinates can be represented by a square root 
expression of the coordinates of the given points can be constructed. The 
addition of a fixed circle to the ruler means that the compass is used only 
once to draw this circle. The compass is then no longer used for constructing. 
This raises the question of the extent to which the range of points that can 
be constructed is extended if the compass can be used as often as required. 
Constructions with compass and ruler are understood to be the finding of 
new points on given ones by the following processes:

I. Positioning the ruler at given or already con tructed points for the purpose 
of distorting the straight line determined by the 8e points.

2. Insert the two compass points into two given or already con- structed 
points, distortion of a circle around a given or already con- structed point.
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constructed point as the center point with the radius taken into the compass 
opening (determined by two existing points).

3. Creation of new points by intersecting straight lines and circles 
o b t a i n e d  in the way just described.

4. Straight lines and creiae occur in finite numbers.
The constructions in the way just described are called constructions with 

compass and ruler. It is clear that compasses and rulers can also be used in 
other ways. If, for example, you determine the corners of a regular heptagon on 
a circle periphery by probing with the compass, you make a different use of the 
compass than the one just described. This is not called construction with a 
compass (and ruler). If, by tracing with the compass on a given circle, you 
determine points that are equidistant from the directrix and the focal point of a 
parabola, you are again making a different use of the compass. This will be 
discussed later. (§ 21 ff.)

In this paragraph, however, we are talking about constructions with 
compasses and rulers in the sense of the definition just discussed in detail. It 
will be shown that the range of points that can be congruent by a single use of 
the compass is not extended by repeated use of the compass. This is taught by 
the theorem:

All and only those points whose coordinates in a given or constructed 
rectangular coordinate system c a n  be represented by taking the square root of the 
coordinates of the given points, i . e. can be obtained from them by the four basic 
types of calculation and the process of taking the square root when these operations 
are finally oJtmalized.

The proof is based on the fact that, according to the rules of analytical 
geometry, only linear and quadratic equations can be solved to determine the 
intersection points of circles and lines, and that the coefficients of the equations 
of the lines and circles occurring can be expressed rationally by the coordinates 
of the given or already constructed points. This does not leave the realm of the 
real; in8be ondere all square roots are real. Conversely, according to the
§§ 2 and 3 can be used to construct all rational expressions in given real 
numbers, but also any real square root using a compass and ruler according to 
the height theorem. Therefore, theae instruments also allow the construction of 
any real points whose coordinates arise on those of the given points by means 
of ratio operations and any (complex) square roots. This is because complex 
numbers aare given by their real part and their imaginary part. Rational 
operations a r e  also expressed rationally in these, and the extraction of square 
roots on complex numbers means, according to
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whose known theory is the augmentation of the square root of the absolute 
value and the bisection of the argument of the complex ZaM :

a -}- i ö - r -oe ':f -]- i r am ipr e'*,

yes -|- i ö ]/Ücos  -}- i sin - each' *

or - - = )/r cos

in any case, two operations that can be performed with a compass and ruler.
Constructions using a compass and ruler are therefore also called quadratic 

constructions. In some of the following paragraphs, we will deal in detail with 
the problems that fall into the area of quadratic constructions and will define the 
limits of the problems that can be solved with compasses and rulers by 
specifying problems that do not fall into this area.

Before I go on to this, I shall speak of other means of construction which 
replace the compass and ruler, and also show that the ruler can be dispensed
with altogether if it is only a question of constructing points.

However, it should also be emphasized that in this paragraph, just as in 
Poncelet Steiner's constructions, it is always a matter of constructing in the 
oriierial at'ene. For each given and for each constructed point it should be clear 
which are the precursors of its coordinates. Otherwise it is only certain that the 
point being searched for is among the constructed ones. See also the "Notes and 
additions" at the end of this book.

To conclude this paragraph, a few words should be said about the structure 
of square root expressions, which can be used to represent the coordinates of the 
points that can be constructed with a compass and ruler from the coordinates of 
the given points in accordance with the theorem proved. A square root 
expression Q is constructed by using the four basic arithmetic operations and the 
square root operation a finite number of times, starting from given numbers. The 
totality of numbers that can be obtained from a set of given (or already 
calculated) numbers by the four basic arithmetic operations is called a 
rationality domain or body. The simplest rationality domain is obtained from 
ZaM 1. Ea is the body of rational numbers. We now take the square root of a 
number from the output body K and add it to the output body, i.e. we add the 
numbers of the output area to the numbers of the output area and form ate 
numbers again, which can be obtained from the numbers of the output areaeg 
and these
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square root can be obtained by the four basic arithmetic operations. This is a 
new body K . We again adjoin the square root to one of the numbers. By 
repeating such adjunctions a finite number of times, a solid Kq is obtained to 
which the desired square root expression Q belongs.

What does such a square root expression look like 1 Let's start with one that 
contains only one square root, i.e. one that belongs to the body fi. Let us denote 
by a, h, c, d, r numbers of K and obtain K from K
by adjunction of - whereby we always assume that is not drawable, i.e. that j/r is 
not equal to a number of R -, then all numbers are
of K are rational functions of )/rwith coefficients aua K. However, since 
every rational function can be written as a quotient of two whole rational 
functions and since the even powers of r from powers of r
silver belong to K, every number of xl  is a (fractional) linear function of Jr, i.e. 
of the form

If you extend this fraction with c - d, it becomes

(o -|- b ) (c
- ' -- A -t- B ,

where A, B are again numbers aua K. You can write ao every number from K as 
an integer linear function of Jr with coefficients aua K. The same reasoning 
shows that every number from K$ can be written as an integer linear function of

with coefficients from FBl  can be written. Here,l i s  the square root of a 
number r from K, whose adjunction to JJ provides the ra- tionality range K$. 
Similarly, every number on Kg
of the form A + B R, where A, B, R are numbers aua x. —  • ind.

A more detailed 5'ragesIellation is touched on at the end of this paragraph. 
Straight lines and circles that intersect with straight lines and circles at quite 
acute angles provide in praxi a quite exact determination of the intersection 
points. This fact raises the question of whether the construction process can be 
set up in such a way that only intersections of intersecting lines and circles are 
used to define new (constructed6r) points. This question is not yet settled. 
However, there are individual partial results to be mentioned in §§ 9 and 12, 
which suggest a negative answer to this question.
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$ 7. hongtruhtions with I-tiIfe of the Zir1ieIg alone 

3Iohr-Mageheronisehe Jfongtruhtions

From the point of view of §6, the result of §5 (Poncelet-Steiner 
constructions) can be understood to mean that the rules for using the ruler and 
compass given in §6 can be restricted. You only need to use the compass once to 
draw a circle whose center point you have to mark. Then you can use the ruler 
alone to find all the points that can be found with the compass and ruler 
(provided there are enough points). Of course, you cannot draw circles in this 
way. Conversely, this paragraph shows that you can d o  without the ruler and 
construct with the compass alone. It will be proven that all tasks that can be 
solved with the aid of a compass and ruler can also be solved with the compass 
alone. These are, of course, tasks which require you to construct other points on 
given points and which are content with defining the straight lines you are 
looking for through two points. In addition, the compass must be used in an 
extended way compared to the compass and ruler constructions. The compass 
serves
j The concentric circle calculatoris not only used to draw circles and 
determine their points of intersection, but also to determine which of two 
concentric circles has the larger radius, or, whichever comes out the same, to 
determine whether two circles intersect or do not intersect. (You only need i- 
over a radius of one of the two concentric circles as a through- line.
knife to draw another Kreia and determine whether the other one is the
The point where the two concentric circles intersect or do not intersect). While 
such a use of the compass in the field of circular and linear constructions, apart 
from special tasks, is only necessary in order to s e l e c t  the correct point from 
among those resulting from the construction, here such an examination of 
relationships of arrangement with the aid of the compass is necessary in order to 
determine the course of the construction, as we shall see. (Cf. notes to § 6.)

It will be important to show how to find the intersections of lines given by 
two points with other lines and circles using only the compassa. To do this, we 
will first deal with some simple tasks.

1. If AB is the given distance, draw the circle A (AB j, i.e. the circle around A as 
the center point with the distance AB as the radius. Trace the radius AB on the 
periphery three times starting at B according to Fig. 25. This gives the points O, D, 
E, the last of which is again on the straight line AB in such a way t h a t  the line BE -
- 2 is AB. If the roles of A and B are reversed, the
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Double the distance AB beyond B instead of beyond A. It is clear how a distance 
can b e  multiplied by repeating the procedure.

2. If a line B'E' is given and another line AB VOII of half the length is known, 
the 3depth point A' of the line B'E' can b e  found using Fig. 25. To do this, starting 
from the line AB, draw as in Fig. 25 and, starting from the points B'E', try to find the 
points O', Ö', A' of a figure congruent to Fig. 25. To do this, determine U' as an 
intersection of the circles B' [BC! j and A' [EC!). It does not matter which of the two 
intersection points of these two circles is taken as 6'. Then

• G

I'1g. 25 I'tg. 36

A' is the one intersection point of the two circles B' (BC!) and U' BCD). To decide 
which of the two intersection points t o  take as A', note that of the concentric 
circles around A' through the two intersection points, the one going through A' has 
the smaller radius.

3. You are to construct a courtyard on a line AB at point A (i.e. construct 
any point on this line). This can be done using Fig. 25 by intersecting the 
creiae B (BD) and E [BD j]. This gives two points of the lotea, one of whichF 
c a n  be seen in Fig. 25.

4. Since AG is 2AB, the circle B SAF) meets the circle A (AB) at the two 
intersection p o i n t s  D and Zf of the perpendiculars constructed in A on AB 
with A [AB). B, O, III, II aare the corners of a guo//rofea (f'ig. 25) inscribed in the 
circle A (AB j).

5. The center of a line AB is to be found. Plan double the line AB beyond A and B to 
the points U and D. An intersection of the circles U [CSB) and D (AD) is E. II' and Cr are 
the midpoints of the lines €!E and DE calculated according to 2.  The circles F [AB j and
G [AB) intersect (except in fi) at the center ff of the line AB (Fig. 26).
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6. J¥fan is to construct a yard from a point C outside the straight line defined by 
the line AB and the perpendicular base point. The circles A (A€! j and B (BC!) 
intersect not only in U but also in the mirror image D of C on the straight line AB. 
The circles U [C!A j and D [DA) intersect at a further point A on the straight line AB. 
The center point of the line AE is the desired perpendicular base point. It can also 
be determined as the center point of €!D. These center points are constructed 
according to 5. (Fig. ß 7 ).

7. From a point C outside the circle A (AB),  the two tan9entets are to be 
con9rtructed and their points of contact determined. Let p let D be the 

center of the line AC! The circle D'(AD)
' intersects the circle A (AB) at the two points of contact A and 

A'.
. . 8. construct a point C -f- A of the inoereen with respect to a 

circle A [A B j . Let r be the radius of the circle A (AB).  Let U be 
the inverse of C with respect to

p  A (AB), if firstly U lies on the half-line AC! and zg. az if, 
secondly, the product of the distances A C! - A C! -- r* is. If initially C lies 

outside the circle A (AB j, then place
from U to 7. the tangents to the circle A (AB j, from one of the points of contact E to 
6. the perpendicular to the straight line A C! The perpendicular base point is the 
inverse Ü to U. It i s  also said to emerge from U by transformation according to 
reciprocal radii. However, if N lies inside A (AB), double the distance A C! several 
times in succession and choose the multiple 2' so that 2 A C! > r o-ird. This gives 
you a point C" on the straight line A CO. Its inverse is C'. If we then form the 2' 
multiple of the line A C!', we obtain the point C inverse to U. This is because

r° - A C!-' A €!' 2* A C-!'
A

'°' -- A C-! A C! .

9. The !I'ransJormation by reciprocal radii int a circular edge sohafl ,
i.e. this mapping turns every circle into a circle or a straight line and every straight 
line into a circle or a straight line. If you introduce right-angled coordinates z, y 
whose starting point is the center point A of the circle A (AB j of radius r, then

resp. y r•

is the algebraic expression of the transformation by reciprocal radii. A (ABS is 
called the inversion circle. It remains point by point during the inversion
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fixed. Since straight lines and circles in the equation form

(2)

are summarized, it can be seen that in figure (1) from (2) the equation

(3)

which proves the assertion. In particular, a straight line (2), i.e. (2) with a - 0, 
t u r n s  into a circle (3) or a straight line through the JY center A of the inverted 
circle, and vice versa, a circle or a straight line (2) through A, i.e. (2) with n = 0, 

turns into a straight line (3).
I also emphasize that each diameter of the inversion circle merges into itself 

during the inversion and that, according to the secant tangent theorem, each 
circle perpendicular to the inversion circle merges into itself. This is because it 
is intersected by each diameter of the inversion circle in a pair of inverse points.

10. If you apply the trangformation by reciprocal radii to zthree straight lines 
whose intersection point you are looking for, you get two circles through A, whose 
other intersection point leads to the desired intersection point of the two straight 
lines by another inversion at the same circle. How to carry out this construction i If 
the two straight lines are each given by two points BC! and DEi (B -|- D), choose the 
center ff of the line BD as the center of the inversion circlea . It does not lie on 
either of the two straight lines BC! and DE, e8 unless one of them is identical to the 
straight line BD ; in this case, however, B or D is already the intersection point you 
are looking for. As the inversion circle, choose any circle around the point ff as the 
center of the line, e.g. the circle ff (MBJ2 j. To make the inversion of the two lines 
convenient, fill in the perpendiculars from ff to the two lines and determine the 
inverses J, O of the perpendicular bases F and Cr. Then draw the cir8es over the 
permeaaers 3fJ and äf9. They intersect at the inverse N of the booked intersection 
point 6 of the two lines (Fig. 28).

11. To finally determine the step of a straight line CAD with a circle A (AB), a 
perpendicular to the straight line CAD is drawn from A to 6. The base of the 
perpendicular is fi. After I., Stan doubles the distance AE over fi. This gives you a 
point J.  The circles F (AB) and A [AB j i n t e r s e c t  at the two intersections of 
CAD with the circle A (AB). This construction fails if the two circles just b r o u g h t  
to the intersection coincide, i.e .  if the straight line CAD i s  a diameter of the circle 
A (AB j). In this case, first determine any point that is not on the diameter CAD but 
outside the circle A ( AB j). This can be done, for example, by joining the two circles 
U (CAD j and D [DC!)
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in two points E and to the intersection and then double the distance AJ a 
sufficient number of times. From a small point P located outside the circle A 
(AB j and not on CAD, place the tangents to the circle A AB) and determine the 
two points of contact Q and B. The circle P (PQ) passes through Q and A and is 
perpendicular to A AB j. Choose P (PQ) as the inversion circle and determine 
the in version of the straight line CAD

Qp as in 10. Intersect the circle thus obtained inverse 
to CAD with the circle A (AB j) which remained 
fixed during the inversion, and calculate
agree the invergences of the two intersection 
points. This is the intersection of CD with the 
circle A (AB).

With regard to the proof of the theorem of 
MOaR-MsCBERO "i thus concluded, it should 
also be noted that in order to carry out

O#

according to the wording of the 
sentence also applies to 11.

of the construction given in 8. must decide 
whether the point C is on the inside, outside or 
on the circle A (AB). To do this, u s e  the 
compass as described above. Similar

§ 8 The ruler

This is a ruler with two parallel edges. Either of them may b e  used to draw 
straight lines. The instrument must be placed on the paper so that two given or 
"choti conelruierle points (in short, two existing points) are either on the 
qfeicJtea edge or distributed over both edges. It is clear that you cannot solve 
problems with this instrument that cannot also be solved with a compass and 
ruler'). I will xeigen that, conversely, all points that can be c'msiruated with the 
compass and ruler can also be constructed with the parallel linml 'iffetti
£ötiaen. Ea therefore completely replaces the compass and ruler, apart from the 
fact that you cannot use it to draw circle peripheries. It is obvious that you can 
construct a parallelogram with the parallel ruler. You can therefore, as with the 
ruler, construct all points whose coordinates can be *rationally derived from the 
coordinates of the already existing parallelogram.

') The requirement to place a parallel ruler of width b co such that the two edges 
pass through two points at a distance d requires the construction of a right-angled 
triangle with the hypotenuse dand a cathetus ö, with which the determination 

o
fÖ is connected.
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of existing points with respect to a Cartesian coordinate system whose unit 
distances are two sides of such a parallel ruler. The proof of the above theorem is 
based on the fact that the parallel ruler can be used to draw tangents through an 
existing point to a circle with an existing center whose radius i s  equal to the 
distance between the two edges of the parallel ruler. In fact, you only have to place 
one edge of the parallel ruler at the center and the other at the point through which 
you want to construct the tangents. Since there are two possibilities (or none if the 
two points a r e  too close to each other), you get the two tangentsl). If we can now 
show how t o  intersect a  given straight line q with such a circle K (radius equal to 
ruler width), our previous findings on constructing with the ruler using only a circle 
with a center point have proved una theorem. The construction of these intersection 
points is based on the remark that the tangents to K in the intersection points of g 
and A p a s s  through the pole G of q with respect to K. As soon as you have 
constructed 9, you have the intersection points o f  q and Jf as intersection points of 
the tangents to K from Cr with the straight line q. The pole Cr of q in relation to K 
can be found as follows: Construct or choose two points on q that are more than the 
radius away from the center of K. Place the two tangents to A through each of these 
two points P and P$ and construct the fourth harmonic to p with respect to each of 
these pairs of tangents. These two fourth harmonics intersect at Cr, the pole of q. 
(Because on every straight line through G, the points of intersection with the two 
tangents are har- monically separated by P from 9 and the point of intersection with 
q). In a more algebraic way of speaking, one can also expose the nerve of the proof 
by featu- ring that the two operations of drawing a tangent to the circle and 
intersecting the circle with a straight line, which are dual to each other in the sense 
of geometry, are rationally dependent, i.e. can be traced back to each other with the 
ruler alone (in the presence of a parallelogram).

§ 9 The honing ruler with a winch ruler

The instrument is a generalization of the parallel ruler. Ea consists of two 
lines intersecting at a point at a fixed angle e. This instrument should not be 
confused with the right-angle ruler already mentioned in § 4. At that time, ea 
consisted of two rulers

*) They coincide if the distance between the two points is equal to the ruler width
matches.

3 Bleberbach
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aenchtechte rulers, each of which could be used to draw straight lines. It was 
laid down so that one edge passed through two existing points, the other 
through one existing point. We discovered at the time (§ 4) that the use of these 
instruments meant no more than the specification of two pairs of mutually 
perpendicular straight lines next to the ruler. Now, when constructing with the 
angle, the vertex of the angle also plays a role. The instrument is no longer 
placed on the paper, dap
the two Runteti go through rorltandene points and there) the lscheitel on eitter
existing straight line'). You can then draw along both edges to obtain straight 
lines that pass through existing points and intersect an existing straight line at 
the angle ot. The divider

of the angle is then the newly congruent point. It is 
initially clear that this instrument can only be used 
to solve problems that can also be solved with a 
compass and ruler. This is because, according to the 
Periphery Angle Theorem, the geometric location 
of the vertex is the angle 'x whose legs p a s s  
through two fixed points,

a circle through the two points, which you can of course construct using a 
compass and ruler. You only have to draw the legs of a given angle z through 
the two fixed points and then construct the circle through the two fixed points 
and this vertex. I will now show, however, that every point that cannot be 
constructed from a given point with compass and diiecf can also be constructed 
with the help of angles a. offeia (without further use of ruler and compass). This 
is in itself probable, since the required position of the instruments (vertex on q, 
legs through P and Q) can be realized in two ways, i.e. the instrument appears to 
be suitable for solving quadratic tasks. In fact, I will show how t o  construct the 
intersection points of an existing straight line q with a circle K with an existing 
center ff and an existing radius fA.

Fig. 29 first shows how parallels are drawn. The points P, Q, A are present. A 
parallel to the line PQ is constructed through fi b y  drawing the three lines of Fig. 
29 in the order of the numbers shown in Fig. 29. The angle e is first placed so that 
aone leg passes through T*, the other leg through fi and the intersection lies on the 
straight line PQ. Straight lines 1 and 2 are drawn to construct the point 'S. Then 
place the angle so t h a t  one of its legs passes through ' S, the other through fi and 
the vertex l i e s  on the straight line fi6, and now draw straight line 3. This is the

') Both legs are assumed to be unbounded straight lines.
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is sought, provided that the angle z is applied to t h e  other side of the straight 
line 2 at the second äfale.

Secondly, it is shown how t o  query a given distance AB from a given point 0 
aua on a given straight line q through 0. Uan read off the aua Fig. 30. Draw a 
parallel to AB through 0 and then a parallel to OA through B. In this way you obtain 
the point C and it is élU = AB.  Then construct the point D by placing the angle e 
four times in the order of the numbers e" z" z3 , z. Then you finally create  the 
angle e ao so that its two legs pass through U and D and that its segment lies on q. If 
lat ais a segment P, then iat OP -- AB.

Flg. 30 E'1g. 31

First of all, because of a congruence theorem of the triangle élN = OD. Then, according 
to the centriperipheral angle theorem8, the pointb P lies on the circle with the center 0 
and the radius OCl. This is because the angle 2 e lies at éI and the angle e at P. 
Therefore OP -- OC!  AB.

Finally, it is shown how the straight line p is intersected by the circle K 
around ff with the radius MA. This is shown in Fig. 31. First, the angle e is 
created twice in ff and the point 6' is determined on the leg 3fU by subtracting 
distances so t h a t  ff 6' = 3fA. Then create the angle z in such a way that aa 
leg passes through A and N and that the vertex lies on q. According to the 
centriperipheral angle theorem, the position of the vertex on g gives the 
intersection points of q and K. Again, the nerve of the proof is the illuminating 
algebraic fact that the tasks of intersecting a circle with a straight line and 
placing the apex of the angle on q zo, that the legs of the angle pass through 
given points, are rationally dependent on each other, i.e. can be traced back to 
each other with the ruler alone.

At the end of this paragraph I will make a contribution to the question 
mentioned at the end of § 6. It was the demand to use only the intersection of 
mutually perpendicular lines and circles to define new (constructed) points 
when constructing with compass and ruler (because acute intersections result in 
bad intersection points). In the direction of this question
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The following result from F. BAG ANN. Use a ruler and a 
perpendicular hook to construct according to the following rules: I. The ruler is only 

used to draw straight lines through existing points. 2. the perpendicular hook is 
u s e d  to construct {and draw) the perpendicular line through an existing point to 

an existing straight line. 3. new points are only created by the intersection of 
mutually perpendicular straight lines. F. BAGiiMANN has found, a m o n g  o t h e r  

things, that if three elements of a square are given and the three points are used as 
zero and entry points of a rectangular coordinate system, only those points can be 
constructed whose coordinates in this coordinate system belong to a driven ring 

C{P). In algebra, a ring of numbers is understood to be a set of numbers that a r e  
not subject to addition, subtraction and multiplication in such a way that the 

application of these three types of calculation to numbers of the ring leads back to 
numbers of the ring. (A body is also abachloaaed to division). The ring G{P) 

mentioned here consists of the integers and those fractional rational numbers whose 
truncated denominator contains only prime numbers of the form 2, 4 J -t- 1, 2 

integers. You can also say that the ring is generated by the numbers I/(l -j- r*j, r ra- 
tional dea body P of rational numbers. For example, the point ('/" 0) cannot be 

constructed from the three given corners of the square.
(Cf. also § 12.)

That the given condition is necessary is proved as follows: The coordinates of 
the given points (O, 0), (I, 0), (O, 1) belong to the ring ß {P). If ( , a ), [bd, öt), (q, c 
) are three points with coordinates from the ring 5 (P), ao the equation of the line 
connecting t h e  two points has coefficients that also belong to the ring ((P). The 
equation of the same may therefore be expressed in the form

"a+ y+w=O (1)

with non-divisor integer rationals ii, v and u' C R{P). For it is certainly possible to 
choose u, v, u' in R (P) (e.g. u = e - 6" r b - p, u --

- ö - eg tig), where u and r are also integers (since you can multiply by the main 
denominator). In this case, tt and v can even be chosen with different divisors. For 
if they have a prime divisor p in common, ao p aua tt, v, tr can be divided away; this 
is self-evident in the case of p 3 (mod 4) and follows for p 3 (mod 4) from the fact 
that p is also in the numerator of - u e, - v a
= tr rises.

vs-"y- +"q=0 (2)

is the equation of the perpendicular of {I) by (q, c ). The coordinates of the 
perpendicular base point are therefore rational numbers whose denominator is 
in the product of u° + c-



Bachmannache constructions 37

with the denominators of u', q, c. Here u and tt are non-divisible rational integers.  If p 
i s  then an odd prime divisor of tfi -j- v-, then (ti, p) = 1 and (v, p) 1 , and there is an 
integer rational z with (z, p) I  such that u z =- tt mod p. Therefore

0 tt° -{- c° u° (z° -|- 1) mod p .

Therefore iat z° - I mod p. Therefore, according to Fermnt's theorem
p - 1 p - 1

(- I) *1 oiod p , (- I) *- I .

Therefor
e

f 1 0 mod 2, as should be proven.

The fact that the stated condition is also sufficient will not be discussed 
here.

§ 10 Constructing with a ruler and empty compass and with fixed
Compass opening without ruler

tt) The ruler is used in the usual way to draw straight lines through two 
existing points. The compass with a fixed opening is used to draw circles with 
this opening as the radius around existing center points. The compass opening 
or, in other words, two points separated by the compass opening naturally 
belong to the given pieces. New points are created as intersections of straight 
lines and such circles with the fine circle opening as radius. The result of § 5 
(ruler and fixed circle with center) allows the statement without further 
discussion that ao all constructions are feasible that can be solved with the ruler 
and a fixed circle with center. The result of § 6 (ruler and compass) teaches that 
these constructions are none other than those which can be treated with ruler 
and compass, i.e. all quadratic constructions and no others.

b) J. HJEL6fSLEV has tackled the question of the constructions of fair fixed 
circle ö||nunq without fiitienf. First of all, it is clear that by leaving out the ruler, the 
range of points that can be constructed from given points is narrowed. While you 
can, for example, construct the center of the distance determined by a given pair of 
points with a compass and ruler and therefore also with a fixed compass opening 
and ruler, this center cannot be found with a fixed compass opening without a ruler. 
If a is the fixed circle opening, i.e. only circles of radius a can be drawn around 
existing points and made to intersect, it is obvious that the center of PQ cannot b e  
constructed from two points P and Q whose distance is greater than 2s. Since the 
two circles P(a) and Q(a) do not intersect , the center of PQ cannot be constructed 
at all.
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no further point can be constructed from P and Q. But even i f  the distance PQ < 
2e, the center point of f*Q with a fixed circular opening cannot always be found. lat 
s. B. the distance PQ -- a,  only the vertices of a network of equilateral triangles 
with side o are congruent. Pig. 32 clearly s h o w s  this. Furthermore, it is assumed 
that there are at least two points with a distance < 2e. Even if the exact range of 
points that can be obtained from given points with a fixed compass opening without 
a ruler is not yet known, dOCh MJELJYtSLEv has shown in an intereaaant work 
that it is not only possible to obtain two points with a distance of < 2e.

with a distance smaller than the given 
straight line two points of a 
perpendicular straight line can be 
constructed in a known way, but he 
has also shown as an essential result 
that any two given vectors can be 
added. Since you can cover the plane 
with a network of simultaneous 
triangles of edge lengtho , it is clear 
that you can construct any vector as 
the sum of vectors of the same length.

therefore only has to show that two vectors of limited length ao can be added. 
Since each point is represented or obtained as the intersection of two circles of 
radius a, it suffices to show that any circle of radius o can be moved in parallel 
by a given vector of length less than 2e'). Thea is shown in Fig. 33, where the 
circle e is moved by

a vector AAE , of length less than a1g 2o, is shifted. The shifted
Kreia is ot'. In Fig. 33 there are two circles Q and y, like all the others of the radius 
o, passing through the points A and Bl , while et passes through A and B, z' through 
dv andB. EB It is shown that the three circles e, z' and y intersect at a point N . 
Here z is arbitrarily given by A
and the point B is defined as the vertex of e and Q. et' is determined by A and B. 
To understand the assertion,  note that Q is inscribed around the triangle AA B 
and that e, y and z' can be obtained from Q by reflecting on the sides of this 
triangle. They therefore intersect at the vertex U of the triangles AAi  B. Read 
the correctness

l) If you want to move a point D by a vector AG z, ao place two circles of radius n 
through A and D - i.e. assume | AD | < 2 n, which is permissible - and then move both circles 
by AAE. The raised ciriae then intersect
in Az and Dz, so that DDR -- AAE iat.
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the last assertion i n  Fig. 34. Because of the equality of angles indicated there, 
the arc through BMW is congruent to the arc through BAC! and is therefore 

connected to it by reflection at BC. The angle of triangle ABC at A completes the 
angle at A to 180° (chordal quadrilateral in the circle). Similarly, the a n g l e  

o f  the two heights at ff completes the angle of the corresponding sides at A to 
180°. Based on these considerations, 'x' can be obtained from z by the product of the 

following four reflections. Reflection IS : Mirror z at A B

in Q. A remains fixed. Mirroring 'S : Mirror Q at the center perpendicular of AA1 in Q. 
A changes to dl  . Reflection 6 : A is mirrored from Q to AA in y. A remains fixed. 
Reflection 6t: Reflect y on APO in e'. This leaves
A is fixed. The product of the four reflections SU   6 6 = S is therefore a
"' and A i n t o  A. However, the movement iS is now a parallel displacement. Since the 
reflections 6 and 'S3 occur on mutually perpendicular lines, their product is a rotation of 
180°. Similarly, Bl   and St are mirror images.
succeeded on mutually perpendicular straight lines. Therefore your product
a rotation of 180°. Therefore, SMS S St = 6tS'St is a parallel displacement. 
However, if the movement S left a point P fixed, ao the movement 'St66t would 
leave its image P fixed by 6, so it would not be a parallel displacement. Therefore, 
6 is a parallel displacement, and therefore z' goes from et through ver-

shift around the vector AA.

§ 11 The standardized ruler

A standardized ruler is a ruler on the edge of which two points A and Zl are 
marked and which can be used as follows: I. as a ruler for drawing straight lines 
through two existing points; 2. for tracing the distance AB on an existing 
straight line from an existing point on it in each of the two possible directions; 
3. for cutting a
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existing straight line g with a circle of radius A B around an existing point P as 
center. (For this purpose place the mark A (or B) on P, the mark B (or fi) on q.) 
The results of § 6 (ruler and compass) teach that with the normalized ruler aße 
quadratic constructions (pnd no further) can be carried out. For the processes
2. and 3. only mean intersections of circles and straight lines. There is of course 
a certain relationship to the constructions of § 10, a), with the only difference 
that now the drawing of the circle peripheries is avoided. Incidentally, it is also 
possible to dispense with drawing the peripheries in § 10 and restrict oneself to 
marking the points of intersection of the circles with the straight lines.

I will return to a generalization of the standardized ruler in § 16, which deals 
with the single-axis ruler.

§ lS. Ruler and gauge. Pilbert-like constructions. Baehmann constructions. 
Paper folding

The ruler is the usual one and is used to draw straight lines through two 
existing points. The ruler is understood to be an instrument with which 
operation 2. of § 11 can b e  carried out, i.e. an instrument with which a 
straight line can be traced from a point on it to both possible sides. You can use 
either a fixed compass opening or the standardized ruler of § 1 I , i.e. two points 
AB firmly marked on the edge of the ruler, only now with the difference that 
operation 3. of § 11 should not be permissible. The two marks AB should 
therefore always remain on the same existing straight line, or to put it another 
way, straight lines q may now only be intersected by circles whose center lies 
on p. It is to be expected from the outset that only some of the quadratic 
constructions can now b e  solved. This will indeed be the result, and it will be 
possible to construct from existing points those whose existence can be deduced 
from the first four axiom groups of Euclidean geometry (axioms of connection, 
arrangement, congruence and parallels in the formulation of HILBERT's 
foundations of geometry, but not axioms of continuity). On the basis of the 
aforementioned axiom groups, 1. the straight lines through existing points and 
the intersections of existing non-parallel straight lines exist, 2. an existing line 
on an existing straight line can be traced from an existing point on it in either of 
the two possible directions, and 3. the two straight lines exist which connect an 
existing straight line in an existing point under an existing point.
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Intersect angle B. 4. a parallel to 9 exists to every existing straight line y 
through every existing point P not located on it. 6. a perpendicular to q exists to 
every existing straight line y through every existing point P. These are the 
existence statements of the first four axiom groups. (Erat from the continuity 
axioms results the gap logic of the lines and also, as we will see, only the 
existence of arbitrary quadratic irrationalities. Only the existence of certain 
quadratic irrationalities follows from the first four axiom groups, as our 
considerations will show).

I will first show how the points that exist according to these five existential 
outputs can be constructed using a ruler and a gauge. To I. is

Flg. ßS Fig. ßti

There is nothing further to note; 2. and 3. will emerge when we have discussed 
4. and 5. First, then, the drawing of parallels. This is taught in Fig. 35 (here and 
in the following we indicate the distance to be drawn by the gauge by a written 
e). The auxiliary lines are to be marked in the sequence of the written numbers. 
The point D designated as arbitrary in sig. 35 is obtained by plotting an 
arbitrary number of parallels e on the straight line A P from A. The construction 
of the parallels is of course based on the harmonic properties of the complete 
quadrilateral, as we know from § 3.

Next, we construct a perpendicular to a given straight line p, as the 5th requires. 
(The perpendicular through a given point is then obtained by drawing paral1elines 
if we first have any perpendicular). This teaches Pig. 36. With regard to the 
existence of the two straight lines described as arbitrary in Fig. 36, it should be 
noted that it must be assumed that there i s  at least one point outside the straight 
line p, if it is to be possible to construct further points outside q and different 
straight lines from y using a ruler and gauge. You then only have to connect e.g. B 
of Fig. 36 with such a point outside of p, then plot on this line twice in succession 
from B to e and the resulting
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points with A. Then you have found two straight lines through A that are 
marked as arbitrary in Fig. 36. ff in Fig. 36 is the altitude point in the triangle 
BOC. This is because the angles BDCI and BIi!€l are right angles according to 
Tez's theorem. ff is defined as the intersection of BE and D€l. Therefore, ZfJ 
is a perpendicular to q.

Now we will deal with the application of an existing angle e to an existing 
straight line g at a given point A (Fig. 37) as required by 3.
'x can be brought into the position of @ BGG' by drawing pores. On one leg of 
e, take a point B at random (by removing the gauge once or several times) and 
fill in from it

Flg. ß8

the perpendicular BO to the other leg. Similarly, fill the perpendicular BD from B 
onto q. Then draw OD and drop the perpendicular AG from A aua onto it. Then f 
DAS -- p BAC = z. The four points A, B, O, D lie on a circle according to the 
theorem of T Es. Therefore the angles ABO and ADO are equal as peripheral angles 
and therefore the angles DAS and BAO are equal as their complement angles. If 
you choose & on the other leg of z, ao, the same construction leads to the ablation 
of e on the other side of p.

Now we will carry out the removal of an arbitrary distance s (not the calibration 
distance) as required by 2. A distance s is to be drawn from A aua on an existing 
straight line through A. Since we have already dealt with the drawing of parallels, 
we can assume that the distance s to be drawn on p is the distance AB in Fig. 38. 
\We plot AO -- AD -- e in Fig. 38 and draw the parallel BE to CD. Then AE is the 
distance s subtracted from q. This tlberlegung teaches ba0 the generalization of the 
calibration map to the line tracer does not lead to any constructions that could not 
also be carried out with Nneal and Eichinap. lslreckenabtraqer is an instrument 
with which any distance can be traced on an existing straight line from a point on it.
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I +

We ask how irrationalities can be conaŁrued by the ruler and the yardstick. 
W e  need only note that constructing with the ruler and the standard contains the 
only element that goes beyond the conaŁruing with the ruler, namely the 
rotation of an existing distance by an existing angle at an existing point. This 
was mentioned last. However, it can be seen from Figs. 36 and 37 that both the 
setting of plumb bobs and the removal of angles can be done with the ruler alone: 
The ruler is an instrument for turning distances. According to the rules of 
analytical geometry, the point around which the rotation is to be made is chosen 
as the coordinate origin. Then, to carry out the rotation of a given distance e by 
a given angle œ, you have tg œ = eJò iat,
to intersect the straight line y= - z with the circle z* + y* = e°, i.e. ò e  

- -}- b-
can be determined. The quadratic operation made possible by the square 
measure is therefore the square root of the sum of squares of already existing 
numbers, because o and b are known from the already existing points. Since, as 
we know, rational arithmetic operations can be performed with the ruler, we 
have the result: 3fit ducal "ndlllichmap eind aus gegebenen Punkten alle und 
nur die Punkte konelruierbar, deren Koordinalen in bezuą auf ein øor- 
handenee reohluńnkłiges Koordinalensyetem etch aus den Koordinălen der 
gegebenen Punkle duroh endlich oftmalige Anwendvną der uier 
Orundrechnunąø- arteti nut dee lichens non Quadralunirzeln aus 
Quadratsvmmen ergeben. If, starting from given real numbers, one now forms 
the range of all congruent numbers according to this, then this has the special 
characteristic of being totally real, i.e. the conjugates of all numbers of the 
range, which are obtained by changing the signs of the square roots, are also 
real and belong to the range. (After all, only square roots are taken from square 
sums.) Therefore, it is not possible to calculate a real square root with a ruler 
and a ruler.
angleda triangle with the hypotenuse 1 and the one cathetus ) /2 - l

congruent. Because then the other cathetus would also be 2 
would be con- structiveŁ, and this number would therefore also belong to the 
range of conatruable

numbers. However, their conjugate J- 2 )/2 - 2 is imaginary.

I would like to a d d  a  few remarks. 1. + e* -- a '

is, øo is sufficient as an operation in addition to the four types of calculation

to accept the -l-. Since -l- -l- = y( + ò°J- + -, the square roots of 
arbitrary sums of squares are therefore also in the range of constructible numbers. 
With HILBERz we now denote mil f) the body of algebraic numbers that øich can 
be constructed from 0 and 1 using

') And daixtit also the parallel drawing (by repeated soldering).
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of the four basic arithmetic operations and the operation -{-. Here "i is a number 
that has already been obtained. We further denote MiG f2(i) by . HiLBEnz the 
body of those a1gebraic functions of variable 1 that can be obtained from 0 and l 
using the four basic arithmetic operations and the

Operation l -}- gain laaaen. 2 Hezzez noted in his Fundamentals of Geometry 
t h a t  the same regular polygons can be constructed with a ruler and a yardstick 
as with a straightedge and a compass. The center of the circle and a peripheral 
point A are t a k e n  as given. These are assumed to be the zero point and the 
one entry point of a right-angled coordinate system. The assertion') about the 
regular polygons then means that the real and imaginary parts of the coordinates 
of the corners of those regular polygons which are congruent with compass and 
ruler belong to the solid f). A corner should always be A. According to 
RILBER'P, however, the A pollonioch touching problem, i.e. the task of finding 
the eight circles that touch three given circles, cannot be solved with a ruler and 
compass. Furthermore, HILBERT has noted that the fef/ofttsc£e touching 
problem can be solved with a ruler and a yardstick. He did the task of inscribing 
three circles on a given triangle in such a way that each of the circles touches 
two triangle sides and the other two circles. 3. the necessary and sufficient 
conditions for the constructability with ruler and aicfimo§ are also known. As 
in § 6, we imagine a sequence of gauge blocks built up from the solid K by 
successive additions of square roots of sums of squares, starting from the solid 
K, and ask how these gauge blocks differ from general square root blocks. The 
concept of conjugate solids is useful for this. Plan obtains conjugate solids from 
a square root solid if you change the sign in one or more of the square roots that 
are adjoint in the construction, or in other words, if you prevent the sign in some 
of the adjoint square roots in the sequence of adjunctions. For example, if you 
change alao from K to

Jf, + by adjunction of + B r" , the result is

conjugate body, if instead of dealen JA - B or a number 
which is obtained by changing the sign of one or more of the roots occurring in A" 
B and r uaw. It is necessary and sufficient for a square root body to be a gauge 
body if it is simultaneously reeff with all £onyugated numbers, i.e. L calls aliens its 
£oayupierteti are ordered by the last real numbers. The one from E. Amin

1) It simply follows from the fact that the Gaussian three-partition periods satisfy 
equations with all real roots.
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which is based on an approach by D. Hnasnz, will not be presented here.
4. I turn to the question of whether the constructions with compass and 

ruler can be defined axiomatically in the same way as those with standard and 
ruler. In fact, only one axiom has to be added to the axiom groups I, II, III, IV, 
which characterize the constructions with ruler and rule, in order to characterize 
the constructions with compass and ruler. It is the one designated by F. Senen 
ab A from the circular conslruction. It reads: Ii¡s exists pettnu eiti right-angled 
triangle mtl given cathetus a and given hypotenuse c > a.
Since the other cathetus of these triangles is the addition of the 
construction of a right-angled triangle on the cathetus and hypotenuse means the 
assumption of taking the square root on a difference of two squares. The 
constructions with ruler and standard ruler yielded the square root from a sum 
of two squares, i n  other words the construction of a right-angled triangle on 
two cathets. It can now be seen that both processes together can solve any 
quadratic equation with existing coefficients,
i.e. the square root of any existing number can be calculated. For if et z° -l- z -l- o = 
0 is the quadratic equation to be 1öed with coefficients e0 , , o on a body K, co the 
expression e2 - 4 e0 at appears in the resolution form 1 under the square root.
But now 4 e e = (e -J- at)° - (e - et)°. Therefore

a} - 4 et e = a* -[- (ab - o )° - (o -}- e )° = ()/e{ -}- (o - a )° J° - (co -j- o )° .

In fact, the resolution of the quadratic equation is based on the extraction of 
square roots from the sum and the difference of squares.

If we add to the first four Ililbert axiom groups the axiooi of circular 
congruction, we define the geometries in which, from given points, exactly 
those points can be constructed with compass and ruler whose existence is 
required by the axioms.

5. Finally, I would like to mention a contribution to the discussion at the end of § 6 and
§ 9 touched on this question. F. Browser has investigated how the range of 
points that can be congruent with the ruler and standard gauge changes if new 
points are only added at a perpendicular angle to each other. Plan then adds the 
right angle hook to the ruler and the new gauge. In addition to the three 
construction steps mentioned at the end of § 9, there are now 4. the removal of a 
fixed distance on an existing straight line from a point on it in each of the two 
directions possible on it. Then exactly those points are congruent whose 
coordinates in an existing rectangular coordinate system are also congruent.
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from the coordinates of the given by the operations e- b and -
1'°' +

can be represented. As Boone has noted, this includes in particular the operations 

e -{- h= o-((ö- b j- bJ and

but not e- tt and ach. However, you can use 0 and 1 with the operations

a — b und alle die Zahlen gewinnen, die man daraus mit Hilfe der

four basic arithmetic operations and extracting the square root from a sum of 
squares. Accordingly, you can construct all those from two given points using 
the ruler, right angle and standard measure in Bachmann's new sense that you 
can construct from them using the ruler and standard measure in Hilbert's sense. 
It is still an open question whether it is also possible to construct from a finite 
number of given points with ruler, rectangular measure and standard measure 
according to BxcaaAxx all the points that can be obtained from them with ruler 
and standard measure according to HILBEST. However, there is a difference 
between the scope of Milbert's and Bachmann's constructions when it comes to 
general constructions, i.e. when there are eeriabfe among the given points and 
you want constructions that can be used for all values of the variables. In 
particular, not all p o i n t s  belonging to the body N(t) can be constructed from 
0, I and f in the Bachmannian manner,
i.e. which can be constructed from 0, 1 and f in Hilbert's masonry, but rather at 
most those elements of the body N(f) which 8are in the form
/(t) -t- t p(t) with functions f[t) and g(I), which are limited together with all their 
conjugates. Thus, as BzcBAlANn has noted, there is no general construction for the 
intersection point of an isosceles triangle, for example.

The following observations serve to prove all these statements. As 
Boone has remarked, the tracing of any existing {line on an existing 
straight line from a point on it in either of the two possible directions can be 
accomplished in Bachmannian masonry with a ruler, right-angle hook and 
standard. For the sake of brevity and in order to better emphasize the essence 
of the thought processes, it will be further assumed that a distance subtractor 
is used instead of the standard. Then we first note that the

both operations a - ö and + $ c correspond to the following Bachmann

I. Plan the midpoint 3f of the points (0, 0) and (o, 0) by drawing a square with 
these two points as corners and plumbing the intersection of its diagonals down 
to the line joining the two given points. Then draw the point
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(6, 0) with the line segment at ff. This gives you the point (e - b, O).
2. construct the point (e, b) = A and the point (c, 0) = U. subtract the line OR from 
O to 6IA and fill a perpendicular from the resulting point U' onto the z-axis, i.e. the 
line OR. The base point of this perpendiculara

with respect to 0 has the coordinate -- c . We now further show that
{a- -j- 6-

can construct all numbers of the body f2 from 0 and 1 in Bachmann's manner. As 
we have already seen above, the two ope-

rations e - b andJ/p+ $ c auoh the operations e -}- t' and -{- - ge-

win. If '" is then an element of f), then there is a chain of bodies A , x1 , ..., 
Kg such that xy is the ifbody of the rational numbers and n' is an element of fig, 
so that every body x + i from K", by adjunction

of a number " , -t- b, where ep and h" belong to the body Ap. However, since all 
numbers of the body K",+ can be represented in the form cp -j- d", " , -j- b", aua 
numbers ap, h"" cp, dg of the body K ", and since furthermore

d", )/o", + b", -- (df a",j*+ (df b",)*, i.e. all numbers of Kg + can b e  represented in 

the form cp -l- )/ep + /p with numbers cp, ep, /p aua Kg, then all numbers of K +1 
can be obtained in Bachmannian masonry if this is the case with the numbers of Kg. 
For the square root of a square sum and the sum of two numbers can, as we have 
just seen, be constructed in Bachmann's manner. It therefore only remains to show 
t h a t  from 0 and 1 we can construct all rational numbers in the Bachmannian 
manner. If then m is any positive
i n t e g e r , then because of + 1 = J( )° -l- I the )/m -l- l can be 
constructed in Bachmannian masonry, if one can construct can be constructed 
in the Bachmannian manner. But since 2= )/1° + 1°, you can construct all
for m > 0, completely, in the Bachmannian manner$.  Therefore

one can also construct l/tn = J$+ ( $ )g can be constructed. Since one

but every rational number can be represented as the sum and difference of such 
root fractions Um, all rational numbers can be obtained from 0 and 1 in 
Bachmannian 6fans. This result, that one can construct all numbers of the body f2 
from 0 and 1 in Bachmannian manner, means that one can construct from any 
two given points A and B in Bachmannian manner all the points that one can 
construct from A and & in Hilbertian manner. For if we take A and B as the zero 
and one point of the z-axis, we can construct from A and B in Hilbert's masonry 
just those points whose coordinates are numbers from f), as already 
m e n t i o n e d  on p. 43.
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As I said, it i s  an open question whether Hilbert's constructions do not go 
further than Bachmann's even for a finite number of given points. A difference 
arises, however,i edenJalts with the general constructions, i.e. if among the given 
points t h e r e  are variables and one asks whether there are constructions which are 
the same for all values of the variables (cf. also § 13 on this concept of general 
constructions). Here it is assumed that the given points are 0, 1, t, where t is a 
variable. Then according to §12. 3. the body of congruent elements in Ililbert's 
sense is denoted by the body f2(t). We arrange it according to n "EBZ first by 
establishing that for any two different elements e, b of J(t) e > b should hold if e - 
b > 0 for large positive f. (Since a - b nla algebraic function of t has only a finite 
number of zero atoms or vanishes identically, for different o and b the difference a - 
b for large positive t is of the same sign). Then, according to BzckN aua f)(1), 
pick out those elements z to which a natural number m(a) belongs in such a way 
that -m t < z < m- t. The range of these elements z did against the two

Bachmann's basic operations o - b and
{a- -}- b-

c completed, contains

However, the elements o ö and eJh are always added to two of its elements a 
and b. For example, the elements I, t and UK° belong to the elements z, but not 
the element t°. And thea is both -l f and the quotient of l and UK°. The fact that 
the set of elements z of f2(t) is closed against Bachmann's basic operations can 
easily be deduced from the fact that with e, b, c the elements of highest order in t 
obtained by Bachmann's two operations also become infinite.

Bzciiaiznn has further noted that in a mason one can obtain at most those 
numbers From f)(t) on 0, l and t which are in the form
/(1) -j- t y(1), where /(t) and p(t) together with all their conjugates are bounded 
functions. This simply follows from the fact that 0, l and l can be represented in this 
form and that the application of Bachmann's operations to such numbers again 
leads to numbers that can be represented in this way. The liver will easily realize 
this. I t  follows, however, that there can be no general Bachmannian constructions 
for the altitude intersection of an equiaxed triangle. If you take the two end points 
of the Baais as the zero point and the entry point of the z-axis and assume the apex 
at (IJ2, t), then the height intersection point is at (US, l/4 t). But 1/4 l cannot be one 
of the numbers /(t) -)- f p(1), since none of them can grow beyond all limits for t -+ 
0.

6. This paragraph should be discussed in more detail. Completely iiquivalent to 
the standard ruler is a ruler to be
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I will show you how to use an angle bisector, i.e. an instrument with which you 
can bisect any angle. I will show that: 1. the bisection of any angle is one of the 
constructions that can be carried out with a ruler and a rule. 2. an existing line 
on an existing straight line can be bisected from an existing point on either side 
using a ruler and an angle bisector. For I. think of the calibration distance from 
the bisector of the angle to be bisected on both sides of the angle. Draw the 
parallels to the angle legs through the end points of these two gauge lines. They 
intersect at one point of the angle bisector, and obviously you can get both angle 
bisectors (the inner and the perpendicular outer one). Quote 2. First consider 
how you can draw parallels with the angle bisector and the ruler. To do this, 
make sure that you have the right angle involution available at every point. This 
is because you place any angle at the point in question and draw the two 
bisecting angles. These are two mutually perpendicular straight lines in the 
angle bisector. The two bisectors of this right angle form a second pair of 
perpendicular lines in the angle axis. The two pairs of perpendicular straight 
lines define the right angle involution, and therefore you can now find the 
perpendicular to each straight line at this point using the ruler alone. Since this 
is possible at every point, you can now calculate the perpendiculars at the two 
end points of a line A, B and draw the bisectors of the right angles obtained in A 
and B. This gives you the corners of a square. This gives you the corners of a 
square with edge length AB. Since you now have two pairs of 
p e r p e n d i c u l a r s  in the sides, you can use the ruler alone to find 
perpendiculars to each straight line (§ 3). If you now want to transfer a line 
given on the leg of an angle to the other leg, construct an angle bisector and 
draw the parallels to the angle bisector through the end points of the line. If you 
intersect this with the other leg of the angle, you will have a line of the same 
length. The only thing left to do is to move this line on a straight line in such a 
way that any one of its end]3points has a given position. This can obviously be 
done by repeatedly drawing parallel lines.

Even if our theory only depends on the assumed feasibility of bisecting the 
angle, the reader is nevertheless entitled to ask how one should think of such a 
bisector. It should be noted that the angle bisector can be realized, for example, 
on transparent paper by means of pepier ballet. Plan fold the paper so that the 
two sides of the angle are congruent. If you also note that you can also produce 
the straight line connecting two existing points by folding the paper, you still 
have the result that these two operations

4 Bleberbach
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dea Papierfaltcns represent a complete equivalent of the constructions with 
ruler and calibration measure.

I also mention a third operation by folding paper. Let there be a straight line 
9 and a pair of points A, B on a transparent sheet of paper. You are to intersect 

the straight line y with the circle A[AB j. This is achieved by folding the paper in 
such a way that A remains lying, but the point & is on p. These three operations 

of the T*epier/eftem aare thus a complete substitute for compass and ruler. If 
we also note that the constructions of the third degree to be discussed in § 16 

can also be accomplished by folding paper in one direction, we have an 
impression of the scope of this simple means of construction. It should be noted 

in passing that a regular fiia}ec£, for example, can be produced by inserting a 
parallel-cut

strip of paper and carefully tighten it.

§ 13. the triplication of the Winliel8 and the doubling of the dice
as examples of non-square constructions

Both problems lead to equations of the third degree that cannot be solved by 
square root expressions. The doubling of the cube, also known as the Delian 
problem, is the task of finding the cube from the edge a of a cube.
to find the edge a z = 'J/2a of the cube of twice the volume 2 a°. The equation of 
the third degreea therefore applies to z

or, what daselbo is,
z° - 2 = 0.

(I)

If an angle e is given, the two points (I, 0) and (cos et, 8in 'x) are known on the 
periphery of the unit circle z' -J- y° - I = 0. Wanted
becomes the point (coa zJ3, sin 'x/3). Since sin otJ3 = )/I - cost 'x/3, it is a quadratic 
task to find the 8in ot/3 from cos "J3. For z = 2 cot otJ3 the equation of the third 
degree applies

H - 3 z - 2 cos 'x = 0 . (2)

Because cos 3Q - 4 cos°Q - 3 cost, cos et = 4 cos- z/3 - 3 cos ot/3, i.e. 2 cos'x = (2 

cos z/S)° - 3 (2 cos ot/3). By the way, 2cos  « -|- 2

and 2 cos -3  of the equation (2). In 
particular, for et =/3 - 60° due to coa u/3 - 1/2

s3-3s-I-O.

This equation therefore satisfies 2 cos n/9 - 2 cos 20°.

(3)

It is easy to see that both equations (l) and (3) have no rational root. If you set z 
= mJn in (l) and (3) with ( m, tt) = 1,
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i.e. with non-divisor integer rational numbers m and n, y o u  have ei° - 2a° = 0 or 
m° - 3ma° - n° = 0 .

In the second case, every prime factor of si would have to merge into tt and 
every prime factor of n would have to merge into m. But since m and tt are 
divisors, z = 1 or z = - I. Both numbers are not sufficient (3). In the first case, 
every prime factor of n would have to merge into m. So tt = l or n = -1. It is 
sufficient to consider n - 1 further. For in, m^ - 2 = 0. But there is no integer m 
whose third power is 2.

Third-degree equations with rational coefficients without rational roots are 
irreducible). Now the 'Solz applies: An irreducible equation of the third degreec (with 
rafionnfen Aoe//iziealenj Änl no dumh a square root expression representable 
zero8tell8.

Since, according to § 6, all points which can be constructed with compass 
and ruler have coordinates which c a n  be obtained by square root expressions 
from the coordinates of the given points, it follows from this theorem, that the 
edge of the double cube cannot be constructed on the edge of the single cube 
with compass and ruler and that 2 coa 20° cannot be  cons t ruc ted  on 2 cot 
60° with compass and ruler, that alao the angle of 60° cannot b e  divided into 
three equal parts by constructing with compass and ruler. This theorem meets 

with as much interest in non-mathematical circles as it does among economists. 
It says that the problem cannot be solved by using the compass and ruler in the 

way described and precisely defined in § 6. It does not mean that the problem 
cannot b e  solved by using these instruments in a different way, e.g. by trial 

and error. The very fact that a given task is impossible to solve in a given way is 
a source of astonishment in lay circles. Obviously, understanding these things 

requires a certain familiarity with mathematical thinking, and yet nobody is 
surprised that you can't draw a circle with a ruler alone. This is also an 

impossibility. It is true that
primitive, but fundamentally similar to the difficult to understand one.

The following proof is based on a method discovered by your LNDAtf 
in 1897. It aei

(4)

an irreducible integer rational function of the third degree in a body A.

') Algebra generally calls an equation and the polynomial on its left-hand side 
irredusible in the body of rational numbers if the polynomial has rational coefficients 
and cannot be decomposed into factors of at least the first degree8 with rational 
coefficients. A rational root gives rise to a linear factor with rational coefficients, and a 
redusiblea (i.e. not irredusiblea) polynomial of the third degreea with rational 
coefficients has at least one linear factor with ratio- nal coefficients, alao also a rational 
zero.

4-
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The coefficients of (4) belong to K. By definition, however, (4) cannot be 
decomposed into rational factors of at least the first degree with coefficients 
aaout K, or what is known to be the same: (4) has no zero that belongs to K. I 
now take up the explanation of the structure of square root expressions already 
given in § 6, in particular what was said there about square root bodies. Let us 
assume that a square root expression belonging to Kg but not yet to K

(5)

aei zero of (4). You will immediately notice that

(6)

zero of (4) iat. If you insert (5) into (4), you get a square root expression

A + B JR

with coefficients aua Kg z . Substituting (6), we obtain

A - B JÄ.

If (7) is to disappear, then A -- B -- 0 must abe, because aonst

(7)

(8)

would be a number from N ml  . But this is not the case, b e c a u s e  then K -- Kg , 
would be, while z is not yet in K" _ ;. So if (7) is zero, ao also (8). The zero z iat 
different from z, since sonat z, = a would be, therefore z, in Aq _ 1
would have been. Now

if zt is the third zero of (4). a is the coefficient of z° in (4). Because of (5) and 
(6) iat therefore

s,- -o,-2 .

z3 is therefore a number from in  , dv belonging to this body a and at. 
According to the definition of a body, the application of the four basic types of 
arithmetic to numbers of a body leads to numbers of the same body. As a first 
result we can note awith : If an integer rational function (4) with coefficients 
from K has a zero that belongs to a body Kg, ao it also has a zero that belongs to 
N. If one repeats
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this conclusion n times, one recognizes that (4) must have a zero that belongs to 
K itself. But since (4) is assumed to be irreducible in K, this is impossible. This 
proves the theorem that an irreducible equation of the third degreea cannot be 
satisfied by any square root expression over the body of its coefficients. This 
also proves that the multiplication of the cube and the trisection of the angle of 
60° cannot b e  accomplished with compass and ruler.

There are, of course, angles that can be divided into thirds by constructing them 
with a compass and ruler, e.g. the right angle, as the angle of 30° can be constructed 

with a compass and ruler from the unit of the line drawn on its one leg. However, 
since the angle of 60° cannot b e  divided into thirds in this way, there can b e  no 

standardized construction method that would result in a tripartite division when 
applied to any angle. The impossibility of a general tripartite construction can also 
be seen directly as follows: Set 2 cos z = a in (2) and then enter z - Z(a)|N(a) with 

polynomials £(a) and N[a) that are not related to divisors. This leads to fi°(a) - 
3Z(a) N*(a) - a N°(a) -- 0. According to this, N[a) -- const a must first be, because 

aonat fi(o) and N[a) would not be divisors. There would therefore have to be a 
polynomial

fi(a), for which

1^(o) - 3 Z(o) - o - 0

holds, with variable a. Therefore, a is divisible by fi(a), i.e. there is a number c 
such that fi(a) = a c. Then the equation applies for variable o and fixed c

c° a° - 3 c - I = 0 ,

and that is obviously nonsense.
This also touches on a more far-reaching question that has not yet been 

touched upon. A leading algebraist of modern times, Mr. vN nER WzzRDEN, 
instructs us geometers "that in a geometrical problem it is not a question of 
finding a construction for every special choice of given points, but that a 
general construction is required which (within certain limits) always gives the 
solution. Algebraically, this comes down to the fact that one and the same 
formula (it may contain square roots) for all fourths of a, b, ... within certain 
bounds gives a reasonable solution z which satisfies the equations of the 
geometric problem. Or, as we can also say, the equations by which z is 
determined, and the square roots etc. by which we solve the equations, must 
remain meaningful if the given elements o, b, ... are replaced by indeterminates. 
For example, if we ask whether the tripartite division
'les angles with a  ruler and compass" [a problem that can be applied to the
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solution of equation (2) c a n  be traced back] "t h e  question i s  not whether a 
solution of equation (2) can be found for each specific value of z with the help of 
square roots; rather, t h e  question is whether a general solution formula of 
equation (2) exists; in other words, a solution formula that remains meaningful for 
indeterminate z." So much for VAN DER AEItDEx. Elsewhere, the following 
definition is given: "An indeterminate is nothing but an arithmetic symbol."

This book t a k e s  a fundamentally different standpoint, which can be easily 
compared with van der Waerden's using the example of the trisection of the angle. 
VAG DER WAERDEu proves that z° - 3 z - 2 cos z at rariah/em z is an irreducible 
polynomial in z, i.e. that there is no square root expression over the body of 
coefficients K[I , cot a.j satisfying equation (2). This result would just indicate that 
t h e r e  i s  no uniform construction method with compass and ruler for the 
trisection of the angle, i.e .  a method that leads to the goal when applied to every 
angle. However, this fact does not exclude the possibility t h a t  for individual 
values of ", such as the angles a/2'^ u/2 (a, m whole), trisection with compass and 
ruler is possible. Even more: From the van der
\Vaorden's statement does not automatically follow that a three-part method 
with compass and ruler does not exist for every specially given angle. 
WERNER \VzBER, who has dealt with these questions of a uniform 
construction in two works, gives the following example, among others: The 
arbitrary numbers zl , z are assigned a number y, so that the following applies: 
For zl /z = a/2"',
c, m is completely rational, let y = tu z, with the smallest useful m. Other-
if y - z,. This problem can be solved in any particular case with a ruler and a 
compass, and yet there is no uniform construction method with compass and 
ruler, because the number of construction steps required to solve it depends on 
m. So while it follows from the proof of this book for the impossibility of the 
trisection of the angle of 60° with compass and ruler that there can be no 
uniform construction method with compass and ruler for the trisection of the 
angle, it does not follow from van der Waerden's result that there is even one 
angle for which the trisection of the angle with compass and ruler is impossible. 
Moreover, the difficult algebraic questions connected with the question of the 
uniform construction have not yet been completely clarified.

The following should be added for the tripartite division of the angle. The van der
Waerden's point of view implicitly describes it as mathematically irrelevant that 
one can trisect the angle n/2 and that one can trisect all angles n/2" (n 
completely rationally) with a ruler and an equation. For not only does the 
theorem of the impossibility of a general, i.e. for a continuously variable angle, 
three-division construct apply, which has been proved in two ways, but it is also 
true that the angle n/2 can be trisected with a ruler and a square.
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tion, but as a generalization even the theorem applies: There is a divided construction 
znif Dire'if and Ziirkel, which lie/teifficA the yrisellion for an infinite number of 
angles. According to vAN DER WAERDEN, however, the fact that all the angles a/2^ 
can be trisected would only be of mathematical interest if this were possible according 
to a uniform procedure. I prove the theorem that there is no uniform trisection method 
for an i n f i n i t e  number of angles using a new method of function theory in this 
problem area. It is assumed that for an infinite number of angles ng, tt - 1, 2, ... from 
[0,2 a] there is a uniform tripartite construction. Then, as one w o u l d  draw in 
exactly according to Landau's method from p. 51/52, the equation

4 z3 - 3 z - cos z, - 0

not only for each n a root from the body fi (cos eq), which results from the 
adjunction of cos "" to the body of the national numbers, but this root could also 
be obtained in a uniform way from the rational numbers and cos eq by means of 
the four basic arithmetic operations. However, the three roots of this equation 
are

cos ( /3) , cos ((o -I- 2 n)/3) , cos ((o -|- 4 n)/3) .

For infinitely many n, one of these would then have to be a rational function

with rational coefficients independent of n. However, according to the 
identity theorem of function theory, this means that one of the three 
equations

cos (z/3) r (cos z) , cos ((z -]- 2 n)/3) - r (cos z) , cos ((z -I- 4 a)/3} r (cos z)

must apply to all values of the complex variable z. However, this is not possible 
because the right-hand side has the period 2 a, which the left-hand side does not 
have.

This simple tlberlegung shows how misleading authoritative statements or 
assertions are, even if they emanate from an authority such as the leading algebraist 
mentioned above. With the same right with which von DER WAERDEN rejects 
the question of special tripartite constructions and thus also the angles that can be 
trisected with compass and ruler, one could also reject the question of the regular n-
corners that can be constructed with compass and ruler, since there are no uniform, 
i.e. for all n
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valid construction. This book, on the other hand, adheres to the tried and tested 
position that every question and opinion is permitted. Whether one finds the 

question or the results interesting and thus reasonable is, of course, a matter of 
taste refined by experience. Van der Waerden's point of view can, of course, be 

saved in this question if one wants to interpret his passage "within certain 
limits"') to mean that the construction in question should apply not only to one, 

but to a finite number of special cases. For the remark applies that one can 
trisect eM/icfi eiefe tnith ruler and compass trisectable angles by a petneimatne 

construction. Let there be z ,
k =1, 2, ..., n infinitely many angles for which the equation

4 z° - 3 z - cos zt = 0 (2t)

is solvable by a square root expression, so that cos ('xt/3) can b e  represented 
by a square root expression built over the body of rational numbers°). Add to 
the body of rational numbers all the square roots required for these finitely 
many angles. This gives you a square root body K in which the solutions cos 
(zt/3) of all n equations (2t) lie. Plan then construct a rational function P(z) with 
coefficients from K using any of the usual interpolation methods, such that 
P[Zoe a.;) - cos (zt}3), (£ = 1, 2, ..., n), i.e. equal to a given element of the 
body K. Thus, we have found a tripartite construction common to all n angles. 
This is because in P[z) we have a rational function of z common to all a angles, 
in which we only have to insert the cosine of the angle to be trisected for z, and 
the coefficients of this rational I'unction are square root expressions over the 
body of rational numbers.

Finally, I do not want to conceal the fact that, despite all the aversion I 
instinctively feel towards it, Mr. WEaER's attitude also has its good points. For it 
spurred me - in addition to Mr. WEaER's thorough work on this question - to think 
about things.

Finally, the question of whether the three-part angles formed with compass and 
ruler are the exception or the rule should be addressed. First of all, it should be 
noted that if m and a are natural numbers, then no angle u 2"/3m = z can be divided 
into thirds with c o m p a s s  and ruler; otherwise a/3 - z m/2^ could also be divided 
into thirds. On the other hand, all angles a tn/2^ can be divided into three using a 
compass and ruler.

') But what are "limits" for indeterminates?
• ) This contains the presupposition that the given cos 'xy square root expressions 

should also be over the body of the rational numbers.
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each of the two angular locations is densely distributed everywhere'). This 
already shows that there can be no general tripartite conatruction. But now the 
following is added: If you put 2 cot e - o in (2) and if o has a transcendental 
value, then a cannot be divided with a compass and a ruler. To prove this 
assertion, according to the method of proof developed in this paragraph, it is 
only necessary to show that

H - 3 z - o = 0 (2')

does not have a solution that can be represented as a rational function of the 
trangent number o with rational ifo coefficients. This i s  shown as follows: If 
one in se r t s  such a rational function of o into (2'), ao results in an algebraic 
equation with rational coefficients for a, which cannot exist because of the 
tranacency of o, or else the resulting equation is identical, i.e. satisfied for 
variable o. However, this contradicts the impossibility of a general tripartite 
conatruction.

Daa result: The set of angles that cannot be divided into three parts has the 
power dee Jf'mtititiiime, those that can be divided into three parts are 
countable. (They are to be counted among the angles with algebraic e = 2 cos 
z.) Among these, those for which coa e itself is a square root expression over 
the body of rational numbers should be of particular interest.

For angles with rational coainua, L. E. Dlcxsox has settled the question. His 
solution to the problem is: If p and g are natural numbers, (p, g) = 1 and g > I. I t  
i s  impossible to trisect an angle z, deaaen Coainua p/g iat, with circle 1 and 
ruler, if one of the following three cases exists: 1. g iat not divisible by a third 
power of a natural number > 1. 2. g = c° d, c > 1, d > 2, d not divisible by a third 
power of a natural number > 1.
3. q = c- d, c > 1, d 1 or d 2 , if the equation r*- 3 r o* 2 p|d has no natural number

but if g = c-d, c > 1, d = 1 or d = 2 and the equation 
mentioned under 3. has a natural number r < 2 c as a solution, then the angle ot can 
be trisected using a compass and ruler.

L.E. Dioxson also emphasizes that among the 71100 angles whose coainua 
p/g has a denominator g < 343, there are only 38 angles that can be trisected 
with compass and ruler.

*) The fact that the angles n 2"/3 m are densely distributed everywhere can be seen 
as follows: Ea suffices to show that the numbers 2"/m on > 0 are densely distributed 
everywhere. lat then 0 is an arbitrary number, ao let s aua 0 s < 1 be arbitrary and 
determine tt ßo that
(a) z/2^ < s is. Then determine m ao that (b) l/(m -J- 1) < s/2^ N l/m. Then (c) l/(tti -{- I) 
< s and (d) 2"/(m -j- 1) < z 2^/m . For the length of the inter- valle, in which s i s  thus 
inachloaaed according to (d), (e) still applies after (c) and (d)
z-/=( + H < - a-/ < '=( + i)J - ' Ju - Ug +i)J < ' J(i - 3'j," "ii the
The assertion proves that s can be arbitrarily specified with 0 < s < '/.
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It can therefore be said that angles that cannot be divided into three parts 
form the rule, while those that can be divided into three parts form the 
receptacle (always in the area of the compass and ruler).

Sometimes the choice is also made among the means of construction
u'illkiirlioher auxiliary points, e.g. in a known method for bisecting a distance. 
Here, too, the book takes the view that such arbitrary auxiliary points should 
always be taken from the range of the given points or the points already 
constructed from them in the manner always described, or that precisely defined 
points should be added to the given points as necessary. This explains exactly 
the conditions of solvability and the means required for this, including any 
necessary auxiliary points. In addition, the view of arbitrary auxiliary points as 
variables or indeterminates is of course justified and interesting.

§ 14 Regular polygons

The impossibility of constructing angles of 20° with a compass and ruler 
from the unit of length marked on one leg of the angle, as demonstrated in the 

previous paragraph, means in other words that it is impossible to construct a 
regular neuneok described on a periphery from a given circle radius. For this 

would mean the construction of angles of 40° from the given pieces. This 
formulation raises the question of the congruence of the regular siehetiecR 

with compass and ruler. The algebraic equation, which has no construction, is a 
circle division equation. lat the heptagon is inscribed in a hreia of radius 1 and 

complex
numbers, its corners in the points

s =l, s =exp i , i-1,2,...,6

can be assumed. However, these are the seven roots of the equation z'- 1 = 0. If 
the zero z = 1 is split off, the remaining roots of the circular division equation 
are sufficient

(9)

Algebra teaches that this equation is irreducible in the body of rational numbersl). 
We derive from it an equation for the digits of the vertices of the regular heptagon. 
These digits are

2 n
COB 6 2 n

7 7 '
eos 2  

7
2 n 2s

COB 7 ’
We obtain from (9) an equation for theae double coginus, each of which is an 

abacus of two vertices of the heptagon, by inserting in (8) as new

') See footnote -) on p. 85.
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Introduce the unknown z -l- 1/z = fi. (9) is a drawn reciprocal equation.
We divide by H, which gives us

(10)

and note

Then (10)

Just as above with the equation for the thirding of the angle of 60°, you can see 
that this equation is irreducible in the body of rational numbers. Therefore, 
according to the general theorem proved above, the regular heptagon on the radius 
of the circumscribed circle cannot be constructed with compass and ruler.

If we ask about the constrictability of the regular eleven-corner or the 
regular three-corner with compass and ruler, ao similar considerations would 
lead to equations of the fifth or sixth degree8 for the coordinates aof a corner. 
Because of the irreducibility of the circle division equation, these equations also 
t u r n  out to be irreducible. The proof that they cannot be solved by square root 
expressions, that alao regular pentagon and regular tridiagon cannot be 
constructed with compass and ruler, must be based on a general theorem. It 
reads:

Ii'aIlo an equation irreducible in a body K can be expressed by a square root 
expression built over K, its €lrad must be a T oietis ron 2.

The equation to be solved aei /(z) = 0 and /(z) - z^ -i- z " 1 -l- - -l- ag a 
polynomial irreducible in the body K a- th degreeai i.e. the coefficients of /(z) 
belong to the body K and /(z) i8t not decomposable into factors (at least first 
degreea) with coefficients from K. } aei one of its V*roots. By adjunction of } 
to A, the body K(5) arises. It consists of all rational functions of } with 
coefficients aua K. Furthermore, we are dealing with a sequence of bodies R0 = 
K, K , K$, ...  , K such that
always K,1 on K is obtained by adding to K the )/r, where r is a number aua K . 
The body K + t then consists of all rational functions of ]/r, with coefficients 
from K . Falla } by a square
root pressure, it must necessarily b e  possible to represent such a
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square root solid A",. Then all numbers of K( ) also belong to K",. We express this 
by saying that R.(}) is a lower body of Jfp or Kg is an upper body of K((\.

To prove the proposition stated above'), one introduces the notion of the
fiefotiupradee aa body in relation to a lower body. This is understood to be the 
maximum number of linearly independent numbers of the upper body in 
relation to the lower body. This is known as the
£ numbers q, o" ... whether the upper bodya 0 is linear with respect to the lower body U
tino6Äöngip, if aua the existence of the relation

(11)

for £ numbers o" u" ... , u dea lower bodyg follows uy = u =- - = u = 0. If, on the 
other hand, there are numbers y, u" ... , u" which do not vanish and with which (II) 
applies, the o" ot, ... whether linearly dependent with respect to the lower body U. 
If in 0 there are now n numbers o" o" ... , oq which I. are linearly independent with 
respect to Cf and 2. every number o of 0 is of the form

with coefficients ig, ii" ... , oq sus U, then ii is called the aefniirqrod of 0 with 
respect to V, and the numbers o" ot, ... , oq are called a series of 0 with respect 
to i7. So if, for example, from K by adjunction
of0 , rg E K, wins an upper body K of A, so aare 1 and
as numbers of K linearly independent with respect to K, falla does not 
happen to belong to the body K. For from the existence of A -}- B Qry -- 0 for two 
numbers A and B on Zf it would follow, if B -f- 0, that t = -A/B
belongs to the body K. But furthermore, as we have already seen in § 6
any number fi of K in the porm A -{- B Qry -- fi with coeffi
sients A, B aua K. It is alao 1, )/r a basis of xl  with respect to fi and 2 the 
relative degree of At with respect to If. Similarly, 2 is also the relative degree of 
K$ with respect to K etc.

The proof of our theorem is now based on the following 's'ils about the relati 
"on degree: Int M an upper body of A of relati "on degree g vnd A an upper body of 

K before relati "on degree Ä, no ff is an upper body of K of relati "on degree fi I.
That ff an upper body of K i8t is obvious without further ado. Is then further fi2 , 

.. . , E p a Baaig of ff with respect to undet, ... , e, a base of the
with respect to K, ao make the y J numbers fi-; et a basis of ff with respect to

') A second, shorter proof can be found towards the end of this paragraph.
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on K. Because 1. athese y 2 numbers are linearly independent of ff with respect 
to K. From a relation

with coefficients ibid from K follows toerat

( l3)

14)

because the numbers on the left-hand side of (14) belong t o  d and because the E! 
are linearly independent with respect to A. From (14), however, further follows c; = 
0 for all i, k, because the c" belong to K and the e are linearly independent with 
respect to N. And 2. every number E can be derived from ff in the form

I5)

with coefficients from K. First of all, E can be represented by the
Baais A2 , ...  , fig of II in relation to A in the form

(16)

with coefficients C; from A. Then, however, theae y numbers U; from d can be 
represented by the basis et, ... , e, from d in the form

(17)

with coefficients c;$ from K. If mttn (17) is inserted into (16), ao the desired 
representation (15) is obtained. This proves the relative degree theorem.

The relative degree theorem first teaches that the relative degree of the square-
Amin with respect to K is exactly 2'^ i8t, if the bodies occurring in the chain K, Nt, 
. . . , A", are all different, i.e.  if the number )/r, whose adjunction produces K + 
from K, does not itself belong to K. For then
as we have already seen, the relative degree of K + i with respect to K is exactly 2,
and therefore, according to the law of relative degree, that of K with respect to 
K is 4, but that of x with respect to K is 8, etc.

The theorem, the proof of which is the aim of these algebraic considerations, 
namely that an irreducible equation which satisfies a square root equation must 
have a power of 2 as degree, also follows from this theorem of relative degree. For 
K[ ) is, as we have seen, a lower body of a K". So if we succeed i n  showing that 
the relative degree of K[ ) with respect to K is just tt, i.e. equal to the degree of the 
polynomial /(z), ao it follows from the theorem of relative degree that a is a divisor 
of 2"', i.e. itself a power of 2.
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To do this precisely, I will first determine the relative degree of N(}) with 
respect to K. To do this, I must first show that K(() has a base with respect to K. 
It will turn o u t  that not only the numbers 1, $, ... , }^ ' are linearly 
independent with respect to K, but that each number X of K(() is also linearly 
independent with respect to 1, }, ... , }^ ' in the form

18)

with coefficients zy from K can be represented completely and linearly. The linear 
independence of 1, $, ... , }^ ' follows from the fact that /(z) is irreducible. If 1, }, ...  
, }" ' were linearly dependent, there would be a relation

(19)

with non-vanishing coefficients from K. In addition to the equation of n-th 
degree /(}) 0, another equation of lower degree (19) would 

suffice. However, this contradicts the irreducibility of /(z), because the 
irreducible equation is also the equation of lowest degree with coefficients from 

K, which is sufficient. However, it follows that every 
number X from K(() can be represented in the form (18) with coefficients from 

K: We know that every number from II(() can be represented rationally with 
coefficients from K by 3. Such a rational function of } is the quotient of two 

whole rational functions of }. It may be assumed that both are at most of degree 
tt - 1, because d" and thus also the higher powers of can be replaced by the 

lower powers of } using the equation /(}) - 0.
can be represented completely and linearly with coefficients from K. Is then

Q0)

such a representation of A, a n d  i f  fi(}), N( 1 are polynomials of degree at most (tt 
- l)-, then a representation

(?1)

with coefficients z from K, or in other words: it is asserted that every integer 
rational function of at most (n - l)th degree Z(}) can also be written in the form

(22)

with suitable coefficients " from K, no matter what an entire rational function of 
at most (n - 1) -th degree with coefficients from K is also N((). To prove this, 
we first reduce the products 'N ) mod /(}),
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i.e. we express the higher powers of } resulting from the auamultiplication of ('N[ ) 
by means of J(}) = 0 by the lower powers of
}, 8o that a representation

0

with coefficients from K. Then one further shows that the polynomials G (z) of 
the indeterminates z are linearly independent with respect to II as polynomials 
of these indeterminates. For if there were a relation

24)
0

with non-vanishing coefficients G¿ from A, then also

0

This follows because of (23)

0

(25)

(26)

Here N[$) 0, because /(}) - 0 i s  the equation of lowest degree with 
coefficients from N, which satisfies }. Therefore

(27)
0

But then all H - 0 for the same reason just mentioned. Since the C;(z) a r e  
linearly independent with respect to K, the powers z°, z', ... , z^ ' by these a 
polynomials H (z) and thus also all polynomials (a - 1)-th degree of z from K by 
the 9 (z) in the form

Cy(z) (28)

completely and linearly with coefficients from K. This applies in particular to 
the polynomial fi(z), with which the numerator in (20) is formed. Therefore

with suitable coefficients zy from K . Because of (23) it follows from (29)

0

(29)

(30)

This is the representation we are looking for, from which i t  follows, as already 
stated, that the tt numbers 1, }, ...  , }" ' form a basis of K[$) with respect to K. tt is
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e

t

therefore the relative degree of K[5 j iti heztiy an/ K. Now all that remains is to 
show that K", has a relative degree with respect to its lower body K($ j. Then it 
follows from the relative degree theorem that n is a divisor of 2"-, alao aelbat a 
power of 2. In any case, Kg is an upper body of K[$) and of K. The theorem of 
relative degree teaches in its proof') that K", a basia e" ... , e , p = 2-', with 
respect to ß. On this basis of K", with respect to K, however, a basis of Kg with 
respect to K( ) can be selected. To do this, take the maximum number 2 of 
linearly independent with respect to A(}) among the 2" numbers g, ... , e . The 
unknown number 2 is then the relative degree of A" with respect to K($ j. The 
fact that this relative degree remains unknown, however, does not alter the fact 
that n is a power of 2, as already mentioned.

The condition found for the solvability of an equation by square-root 
expressions is a nntirendiye condition for the irreducible equation in K to have 
at least one root that can be represented as a square-root expression. 
Incidentally, the consideration made in the previous paragraph concerning 
equations of the third degree teaches that an irreducible equation of the third 
degree in which a root can be represented by a square root expression has at 
least a second root with the same property.

The fact that the condition found is not also fiinreicfietid for the solvability 
of an equation by a square root expression is illustrated by the example of the 
fourth degree irreducible equation in the body of rational numbers

@ -j- 2 9° -l- 8-j- I = 0 (31)

One immediately overlooks the fact that this equation has no rational root, 
because only the numbers -{- 1 and - l come into question. Therefore, the 
polynomial on the left-hand side of (31) cannot be decomposed into a linear and a 
cubic factor. However, it cannot be decomposed into two second-degree factors 
either. Because if there were a decomposition°)

W+#2+*v+*=(/+-v+bO'+ v+M (32)

with whole rational coefficients a, ö, c, d, multiplication and comparison of 
coefficients initially teaches us that b d = 1. Only the two fits 6 = d = + 1 and h d = -
1 are possible. However, if you determine the

') Cf. p. 80.
• ) First of all, the decomposition (32) has to be applied with rational coefficients, but 

in the present case it is easy to recognize the fact known from algebra that the 
coefficients o, b, c, d are then necessarily integers. See also BIzazaezce- Bzrzs, 
Vorlesungen über Algebra, 5th ed. p. 229 Gauaaaches Lemma.
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multiplying out the coefficients of and y, w e  find e + c = 0 and 8 = ed -J- bc = b (a -l- 
c). However, this is not compatible with each other. So (32) is irreducible. The cubic 
resolvent of this equation to be explained on p. 72 is

Z' + Z' - 1 0. (33)

It is also irreducible, as it has no rational root. Now if
(31) has a square root expression for the solution, it would, as already noted, 
have a second square root expression for the solution. But then, according to
P. 73 ouch a square-root expression exists that satisfies the cubic reaolvent. For 
according to the connection to be described o n  p .  73, the sum of two roots of 
the fourth degree equation (31) divided by 2 and then squared gives a root of 
the cubic reaolvent. There is therefore a contradiction to the theorem from § 13.

In Galoigg's theory of equations') the sufficient condition for the solvability 
of an equation by a square root expression is also given. It states that the Galois 
group of the equation must have an index series consisting of all numbers 2. 
However, the condition can also be expressed using the term relative degree 
developed here. It then reads as follows: Plan adjoin to the body A all the roots 
}, }" ... , }q t of the irreducible equation of the nth degree /(z) = 0. The body 
thus obtained at A(}, }" ... , }q t). The necessary and sufficient condition for 
there to be a square root expression that is
/(z) = 0 is that the relative degree of the body K( , }t, . - 1" - i) with respect to K is a 
power of 2.

This theorem once again shows the impossibility of doubling the cube, the 
tripartition of the angle, the construction of the regular 7-corner and 9-corner, 
but now also the new impossibility of constructing the regular 1I-corner and the 
regular 13-corner with compass and ruler.

Now we can also answer the question of which regular polygons can be 
constructed with a compass and ruler. In algebra°) it is shown that the nth root 
of unity exp (2 ia/a), on which the construction of the regular n-vertices depends, 
satisfies an equation of degree q(n) that is irreducible in the field of rational 
numbers°).  Here q (n) is Euler'se function.  Is
n = p°' p{-... p)* the decomposition of n into pairs of prime numbers with different parts

') See e.g. BniazRBAGZf-BzTfEB, Vorlesungen über Algebra, 6th ed. p. 312.
• ) Plan compare e.g. L. BizBzRBzca, Vorlesungen über Algebra, fi. ed. Leipzig 

1933.
°) To prove a necessary condition for the number of vertices of regular polygons 

which are conatruable with compass and ruler, it is sufficient to consider ea, n = p and a 
- p-, p Primaobl, su. Because, iat the regular m-corner with compass and ruler constant-

6 Bleberbach
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potencies, ao is known to be

Now use a compass and ruler to create the regular n-square from the radius of the circle.

can be congruent, then cos "  , a ' and thus also e " square-

root expressions over the body of rational numbers a. According to the theorem 
on p. 59, the degree g(a) of the irreducible equation, which is

e - suffices to be a power of 2. Then the odd primes merging into n must appear 
as factors in the first potens and must all be of the form 2- -J- l. It is unknown 
whether there are infinitely or finitely many such primes. The ones known to 
date') are 3, 5, 17,

bar and is n divisors of si, ao is also the regular a-square to be found with compass and ruler. 
Now the primitive p-th or p-th roots of unity of the equation of the circle are sufficient

resp.

The shortest proof of the irreducibility of the circle division equation for the case of 
prime dilpotents is probably the following one found by Pnzuzm. In both cases,  F(1) = p. 
If J(s) were not irreducible in the body of rational numbers, ao there would be a 
decomposition according to the Gaussian Lensma

with integer polynomials /(s), g(s). Where /(z) i s  the irreducible integer divisor of J(z) 
for which /(1) = -{- p. If you think of J(s) as being decomposed into a Pmduct of 
irreducible integer divisors, ao is the same for exactly one of them because J(1) = p.
/(1) = -j- p. Now note that the primitive a-th roots of unity are given by

are given, and that each of them, e.g. eap ' p £,) power of any other

of exp 'f ß ) iat, because the product i k with 1 contains all to n divisors.

runs through foreign residue classes. If /(f) = 0, then g(}*) = 0 for pasaendea y. The 
polynomials /(s) and g(s*) aare therefore not irreducible. However, since /(s) is 
irreducible, it follows that

is with integer polynomial Ä(s). Fors = 1, then, because p(1) = 1

1 p li(I j,
which is obviously nonsense.

') If 2" -|- l is to be prime no, ao must obviously aelbßt be a potens of 2. The fact that 2® - 
-]- l is not a prime number can be seen very quickly: Ea iat 6415 - 2* -]- 
l m
= 6' -[- 2'. Aua 5- 2' - 1 mod 641 follows 5- - 2-- --1 mod 641. Alao - 2,-- = 1 mod G4l ;
i.e. 2-- -}- 1 iat divisible by 641. (loose. E. Homers.)



Reohtwinkelrerfahren

l

257, 86537. Let us also write the corner numbers under 100 of such regular 
polygons, which can then be congruent with compass and ruler alone. They are 
3, 4, 5, 6, 8, 10, l2, 15, 16, l7, 20, 24, 30, 32, 34, 40, 48, til, 60, 64, 68, 80,
85, 96.

Polygons with the corner numbers permitted here can now actually be 
constructed using a compass and ruler. If you proceed from the tt-corner to the 
2ti-corner by bisecting angles, the proof only needs to be carried out for odd corner 
numbers. Such corner numbers are products of all the different primes mentioned 
above of the form 2° -I- 1.
the wiakel and the angle with divisor-foreign denominators and p$ con-

structed, the angle p is also congruent. Since pl  lllld p are divisors, it is known 
(Euclidean divisor method!) that there are two integers (positive or negative) o 
and b, zo that ep, + öP = 1. Then
is tt -l- o = . The proof of conatruence requires aomit
"only" for eocene numbers that are prime numbers. It will be shown in the algebra 
that the division by square roots can then be solved by square root expressions. 
Here the proof will only be given for n = 3, n = 5, n = 17 and the corresponding 
constructions will be given. For a = 3, the circle division z° -J- z -J- l - 0 is always 
quadratic. For n = 5 the

(34)

The reciprocal equation is obtained by substituting z + Um = fi into the 
quadratic equation

is converted. The resolution of (34) is therefore reduced to the resolution of the 
two quadratic equations

Z' -j- Z - I = 0, (35)

Only (35) is important for the geometric construction. Its two roots aare niimlioh B
   -I-jfi   . Here fi > O, S <  0. In the constructive resolution of 

equation (35) to find the
A n g l e s  
2 n

6

the positive of the two roots of the two tracks

equation, i.e. 2 coa. To solve the equation (36) and thus
5*
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To construct the regular pentagon, you use the arithmetic angle method, which 
i s  explained here for any equation of the second degree. Plan first applies the 
ifo coefficient of the equation. Let it be:

(37)

First, the coefficient e0 is plotted in the selected unit of length. If it then has the 
same sign as ab, ny is calculated at the end point of et

theu is deducted at right angles to the right. 
That has a different sign ala e0 , aO is 
deducted to the lefta . Similarly, o at the end 
point of to the right

I"ig.39  'a'. 40 or to the left at right angles to an-
depending on whether a has the same or the 

opposite sign of . Fig. 39 shows the coefficient train of Z-° -l- fi - 1 = 0 and Fig. 40 
shows the coefficient train of fi- - fi -l- 1 = 0. If you now want to determine the 
value of the polynomial (37) for a given value of z, ao mark a point on the line 
representing ob at a distance of 1 from the starting point a n d ,  starting from it 
perpendicular to thea line, enter the given value of

of z, and swar to the left if z is positive, to the right8 if z is negative. Then 
connect the starting point of the coefficient t r a i n  with the end point of z, 
intersect this straight line with the straight line on which a i s  plotted, establish 
a perpendicular at this intersection point and intersect it with the straight line on 
which a is plotted. The distance between the end point of the coefficient train 
and the intersection point just obtained represents the value of the polynomialg 
(37) for the selected z value. So if you want to determine x ao that equation (37) 
is solved, the end point of the coefficient train and the end point of the second 
line train, which is therefore called the solution train, must coincide. The 
correctness of these statements can be verified by means of Fig. 41, if one 
observes the similarity of the triangles that appear in this figure.
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1

You can find the solution line by drawing the Thales circle as the diameter 
above the junction of the beginning and end of the coefficient line. You can also 
carry out the construction with a right angle if you let aleg pass through the 
beginning and end of the coefficient traina but place its divide on the et straight 
line. In particular, this results in the construction of Fig. 42 for equation (35).

The algebraic solution of equation (35) results in

-j-
2 C O

ß  6

-- 2 sin  n 

In addition to the original geometric meaning, there is another meaning 
resulting from this. Here, r0 denotes the length of the side of the regular decagon 
inscribed in the circle of radius l. However, the side of the regular pentagon can 
also be seen directly in figure 42.
In a right-angled triangle fi, - * is one cathetus. The other cathetus is 1. The 
hypotenuse is s" the side of the regular pentagon, according to
of the known relationship s, = 1 + s,', , which can be easily verified.

I now turn to the construction of the reqtiföreti sievefinecR. To do this, we 
need to specify how the circular division equation

S"—1 =fZ*-0 (38)

can be solved by square root expressions, i.e. can be traced back to a chain of 
quadratic equations. One nets

2 coa et + 2 cot 2 n + 2 cos 4 z -l- 2 cos 8 z = ,

2 cos 3 " -|- 2 cos 5 x -I- 2 cos 6 x -I- 2 cos '7x - u2 .

Then tt -}- u = - 1, tq tt = -4. This can be recognized by expressing the members of 
u , tig by e and its powers. Then lg + o = - 1, because a zero of (38) iat. If we 
multiply ig ot, we see that every positive and every negative power of e with 
exponents
1 bia 8 occurs four times each. Therefore uy is u = -4. Further, we immediately 
consider that tq > 0, ti < 0. Ea therefore satisfies ii" tt of the equation

u* -j- u - 4 0, (39)

and it is u, =  2 ’
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Now set

Then

2 cos 'x -}- 2 cos 4z = v, , 

2 cos 2ot -l- 2 cos8z - r, .

So for r, and v

Furthermore

Here too

Accordingly, for trl  and m

2 cos 3 z + 2 cos o et - ml  , 2 

cos 6 x -I- 2 cos 7 x - try .

  - j/u{ -|- 4  

(40)

(41)

Finally, set z, - 2 cos z, z, = 2 cos4 'x. Then z, + z,= rl , ztz = iv" zt > z,. 
So for z and z applies

(42)

The construction of the regular heptagon is done by solving the quadratic 
equations (39), (40), (41), (42) using the right angle method. The earliest discovery 
of Cox FRIEDRIClt Gznss, why one can proceed in the described way when 
solving the circle division equation (38), can be learned in algebra in the treatment 
of cyclic equations. The treatment of the 
other circular division equations is also taught.

It is not without interest to get to know a shorter proof for the necessary 
condition for constructibility with compass and ruler given at the beginning 
of the paragraph. I mean the theorem:
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If an irreducible equation f(x) -- 0 in a body per K can be solved by a square root 
expression built up by K (i.e. if it has only one such zero), then its degree must 
necessarily be a polynomial of 2.

The announced short proof goes like this: Add to K square-
roots and thus generate a sequence of bodies from K - -  through the re
cursion Vj - K;1 (Jr; , r; €li  1 , } - I, 2, ...  , s. In the last of these bodies K there 
is a root of /(z). In fiq, /(z) is irreducible. Let K p be the body with the 
smallest number in this sequence of bodies in which / (z) is reducible.
The number k exists, and it is k > 0, u'enn / (z) is at least of second degree. Let /,(z) 
be a divisor of the lowest possible degree (but at least first degree) of /(z) with 
coefficients from A . With / ( z) has ) + / "(*)
is also lst ) - ( ) - /"(z) a divisor of /(z) from A , namely a divisor of / (z) that is different 
from / (z). Otherwise every common
divisor of / (z) and (z) is a divisor of lower degree than / (z) of /(z), 
which also has coefficients from K. Therefore, /,(z) /,(z) is also a divisor of 
/(z). Now, however, / (z) /(z) has coefficients aua Ai -i since, according to 
the condition
/(z) is irreducible in Ai-i, then /(z) = / (z) / (z) e with constant e. Therefore
the degree of /(z) is divisible by 2 and twice as large as that of / . This is 
because /, and / have the same degree. The root of /(z) taken as the square root 
expression must now be the zero of one of the two polynomials
/ or /, be. Treat this in K irreducible') polynomial in the same way again. Its 
degree is therefore also either equal to l or divisible by 2. Repeating the 
conclusion leads to the proof of the stated theorem.

Of course, everything that was explained in the previous paragraph about 
equations of the third degree follows from it again. However, as has already 
been shown with the regular pol3-gons, this theorem can now also be used to 
prove f/nmöyability for problems higher than the third 9rodea. Another example 
will be given. The pentagonal division of an angle leads to the equation

16 coss d' - 20 cos* 0 -I- 5 cos4cos 5 # .

now zaon Taurus 2 cos ü z, then otan becomes the equation of the fifth degree

z' - 5 z* -|- o z - 2 cos5g - 0

led. If you take cos 5ß = 1/3, for example, you get the equation

3 z 15+ 15 z - 2 - 0.

')  \If /,(z) were reducible in Kz, then every divisor of /t(z) with iioefficients from fi¿ would be 
a divisor of lower degree than /t(z) of /(z), while /,(z) should be a divisor of lowest 
degree of /(z) in K p.
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The fact that this equation is irreducible in the body of rational numbers is 
proved by the conclusion given occasionally in equation (31) of this paragraph. 
The given angle can therefore not be fifthed with compass and ruler.

§ 16. third and fourth degree honorsa

This refers to tasks that lead to algebraic equations of the third and fourth 
degreea and beds of such equations. More precisely, we always understand a 
conatruction task to be the task of determining the coordinates of the points 
sought from the coordinates of given points. If the algebraic solution of such a 
task only requires the solution of third and fourth degree equations in addition 
to rational operations and quadratic equations, we call the conatruction task a 
third or fourth degree task. We call these t a s k s , which are also referred to as 
cubic and biquadratic tasks, in the same breath, because in the theory of 
algebraic equations it is shown that every fourth degree equation can be 
reduced to a third degree equation, the so-called cubic resolvent, by rational and 
quadratic operations. It is known that the equation

:r' -J- a z° -J- a z + a = 0 by 

the transformation

(1)

to an equation
-1- by y* + b$ y -J- b -- 0 {3)

(without member with third power). The cubic resolvent of the same is called 
the equation

bz +  b, - 4
16

If q, z" are their three roots, then

(4)

the four solutions of (3), if the signs of the three square roots are chosen such 
that

b, (6)
8

i8t. Ea therefore only rational and quadratic operations are necessary t o
determine the solutions of the biquadratic equation (1) from the solutions of the 
cubic equation (4). Therefore, if the cubic equation (4) can be solved by square 
root expressions, the biquadratic equation (3) can also be solved by square root 
expressions. But also vice versa:
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If the biquadratic equation (1) satisfies a square r o o t  e x p r e s s i o n , ao iat 
the cubic resolvents (4) can be solved by square root expressions. As already
noted on p. 64, the existence of a square root expression satisfying (3) 
immediately implies the existence of another square root expression satisfying 
(3). But then the last two roots of (3) are obviously also square root expressions. 
On the other hand, according to (5) and (6), the four roots of (3) are

Therefore did

öfit the four p-values, the three z-values are therefore also square root 
expressions.

The fact that in (5) square roots can occur on negative or complex zaMs is 
irrelevant for the execution of the corresponding constructions with the means 
discussed in the previous paragraphs dieaeg Buchea. If z = r(cot Q + i 8in 'p) is a 
negative or complex number and r > 0 is the absolute value, g is the argument, ao is

= ( cot 'p/2 -J- i a Q/2). Theae number is therefore determined b y  halving the 
angle 'p and taking the square root of the positive number r, tasks that are solved 
geometrically using the means discussed earlier.

Is now further

is an equation of the third degree, the substitution

(8)

is known to be an equation of the third degree

without a square element. If you then set

(9)

A -- - 2 + B --
'

3 A B -- - bz (10)

and is p = a third unit root, so are

A -j- B, q A -t- p* B, p* A -J- p B (11)

the three roots of (9). Apart from rational and quadratic operations, ea alao is 
only necessary to solve equation (7) from two

4 27 2 
b' +

7
,
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real or complex numbers to take the third roots. lat again s = r (coa Q -{- i sin g), r> 0, 
any number, so are

-l- i sin  e+s  

n  -J- i ain

-|- 2
3

their third roots. Solving the third and fourth roots with real or complete coe|Jcients 
only requires the solution of the tasks of dividing an arbitrary iPin£ef into three 
peiicire 'pearls and taking the third root from a pooili en number, in addition to 
rational and quadratic operations. These are the tasks of the 'triaeldion dee iPsa£efe 
and the vert'iel- faohung dee cubes. The latter name is explained as follows: By 
taking the third root of r, you are to determine the edge of those cubes whose 
volume is the r-faoh0 VOm volume of the cube with the edge 1. In the case of r -- 2, 
the Ferdoppfiing dea JPür/efe, this problem, known in  ancient times, is called daa 
problem (of the oraclea) of Delos or the Deliacke problem (cf. § 13).

The explanations in these paragraphs, which can be found in any algebra 
textbook, show that in order to solve cubic and biquadratic problems, one only 
has to deal with the problems of multiplication of cubes and trisection of angles. 
This statement will be useful for the basic question of the tools that can be used 
to solve third and fourth degree problems. Of course, there are also direct ways 
of solving certain third and fourth degree problems that do not have to involve 
tripartition and multiplication.

§ 16. D* mäD#G61 b# #*I

A slide-in ruler is a ruler on the edge of which two points A and B are 
marked and which is to be used as follows: 1. as a ruler for drawing straight 
lines through two existing points. 2. to query the marked distance AB on an 
existing straight line from an existing point A to either direction. 3. to intersect 
an existing straight line y with a circle of radius AB around an existing point P 
from the center of the circle. 4. to insert the marked line AB between two 
existing straight lines p and h on a straight line through an existing point P. Or 
in other words: Plan the ruler through P and place the marker A (or B) on p, the 
marker B (or A)

3



Removing the third wumel 75

on fi. The slide-in ruler') therefore differs from the standardized ruler discussed 
in § 11 by the addition of the 4th use rule; as will be shown, this allows all 
third and fourth degree problems to be solved by sliding in. You do not need 
any other aid than the slide-in ruler, nor a compass. To understand this, you 
only have to solve the trisection of the angle and the subtraction of the cube root 
by means of insertion according to the results of the previous paragraphs. 
Before we move on to this, it should first be shown that the inset ruler opens up 
access to problems of the third and fourth degree. This is due to the fact that 
the mark B describes a fourth-order curve if A is on the
line g moves in the same direction and the 
lineal curve passes atiindently through the 
fi8th point 0. This fourth-order curve is the 
conchoid of the basic straight line g with the

pole €I and the interval AB. To 
find the equation of this curve, choose 0 as 
the origin of a right-angled coordinate 
system. Choose the y-axis pttrallel to the 
line q.  The
Equation of p aei :c = p, and s is the distance between the marks A and B.
Then, according to Fig. 43

(1)

a parameter representation of the conchoid. Elimination of the parameters leads to
to the equation

(2)

of the conchoid. The intersection of the conchoid with a straight line h 
therefore leads to an equation of the fourth degree. If you pass h through an 

already known point of the conchoid, ao this reduces to an equation of the third 
degree. For the construction of the third root of a number tu > 0, choose a 

point Q of the conchoid as such a known point
') For the practical execution of the insertion, it is oa useful to separate the drawing of 

the straight lines from the actual process of insertion. For the latter, either a strip of paper 
is used, on the straight edge of which the <9distance to be inserted has been marked, or a 
transparent sheet of paper8 on which a straight line with the two marks has been drawn. 
In both cases, the sheet of paper is brought into the correct position by moving it over the 
drawing sheet and then the position found is marked on the drawing sheet by piercing it, 
only to draw the straight line found with the ruler after removing the cover sheet
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at a distance of 2s from the pole fi. The straight line is is to be laid through such a 
point Q. The straight line 0 Q then meets the Baaia straight line q of the conchoid at 
a distance " from the pole. Choose p and Ä so that there is a distance of length 2zris 
between the straight line 0 Q and h on p and the intersection of p and h is also at a 
distance a from fi. To do this, you can proceed as shown in Fig. 44 by placing a 
circle of radius s around 0, assuming a point A on it and then placing a chord of the 
circle o f  length 2nis through it. The straight line on which this chord falls is aei q. 
The point Q is called

then on the line OA ao assume that A is the 
center of the line OQ i8b. lat B is the other 
point of intersection of the chord of the line 
2nie with the circle, ao iat QB is the line fi. 
The parameter of the conchoid is therefore

It should also be noted that theae rules 
require that m < 1 i8t. However, this is 
sufficient for extracting the third root from 
any number, since every other case can be 
reduced to m < 1 by

multiplication by the third power of a suitable known number. Now insert the 
distance s on a straight line through 0 between q and h. This gives you another 
conchoidal point A on h and a point U on q. The length of the line BO is }, the 
length of the line ftO is p. Then, as will be shown aoll,

(4)

For Bewcia, apply the MENEMoS theorem to the triangle AOO. Then you have

or, was the same iat,

Daraua follows

(6)

m, 2$ _ 6—‹ _ (. +m 2a „*2.’)
Consider further the power of the point C in relation to the circle,



so you have 

From this 

follows
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(8)

(9)

That is why we now have

From this 

follows and 

further

(10)

The description of the procedure for carrying out the construction is clear from 
the above. It should also be noted that the use of the circlea can be avoided. This is 
because it s e r v e s  t o  traverse the distance s on the straight line OQ from 0 twice 
in succession, and furthermore to construct an equiaxed triangle with the side 
lengths s - twice - and 2 ms. Both constructions can be carried out with the slide-in 
ruler if it is used as a standardized ruler in the sense of § 11.

Perhaps even simpler is the construction for the trisection of the angle by illin 
shifting. If AOB in sig. 45 is the angle to be divided into thirds, set e = 2 r and 
s u b t r a c t  the distance r from R 0 on the leg OB and fill in a perpendicular from 
the resulting point 6' to the other leg OR. Call this perpendicular p. In addition, 
draw a parallel to the leg OA through U and call this straight line fi. Then insert the 
distance s on a straight line through 0 between these two straight lines q and h. As 
will be discussed later, there are four ways to do this. The one of the insertion lines 
that falls within the angle AOB performs the trisection of the same. The angle ISOA 
of Sig. 45 is namely '/ @ AOB. This is easy to understand elementary geometrically. 
At the point ff of Fig. 45, we halve the inserted distance Sf' = s = 2 r. Then C3f = r, 
because U, 'S, 2' lie on the periphery of a circle. The \Vinke1 6Uf' is a right angle. 
Furthermore, @ C!OS q C3fO -- @ MMS -t- q df S9 = 2 @ öf'SC= 2 q SOA. 
Therefore @ 'SOA = '/ @ BOA.

Let us now consider the conchoid with the pole fi, the base g and the interval 2 
r. Its equation according to (2) is

(s*+ y)(s-zcosg)*-s'#r'=0. (M)

Here @ AOB 'p was set, so that p = r cos g must be entered in (1).
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The straight line li of Fig. 45 then has the equation

y = r sin g . (12)

If we intersect (I 1) with (12), ao w e  obtain the equation for the abscissa of the 
intersection points

H - 2 H r cot 'p - 3 x*r* - 2 zH cos g ain°'p -}- r* ain° g cos°g = 0. (13)

According to p. 50, } = 2 cos gJ3 satisfies 
the equation

XS - 3} - 2 cos g0 .

Therefore, p = r( satisfies the equation

g'- 3gf'- 2Wcogg- O. (14)

The absciaae of 6 in Fig. 45 is

cr non ip + 2 r coa 'p/3 = r coa g -1- p .

If we e n t e r  p = z - r cot g in (14), we obtain

If you compare (15) with (13), ao you have

(15)

This means that the three other single-axis divisions of 2r between q and h 
provide two straight lines through 6, which form the angles 120° and 240° with 
the trisection line, and a last straight line, which forms the \angle 180° - 'p with 
OA. This can of course also be confirmed elementary geometrically. The last-
mentioned point is the conchoidal point known from the outset, through which 
the straight line ß  t o  be intersected with the conchoid is laid.

§ 17 General use of the single-use linea
The first generalization is that the distance AB marked on the single-axis 

ruler of § 16 is not inserted between two straight lines, but between a circle and 
a straight line or between two circles. In this case, the ruler (single-axis ruler) is 
not the only means of construction, but the compass must also be used or, at 
least to a lesser extent, circles must b e  drawn.
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There is a famous conelruklion in this area, originating from AnciriMEDEs  
for the trisection of the angle, which is given first. Auf dem The distance s is 
again marked as the insertion ruler. Around the vertex 0 des  of the angle 'p = -f 
AOB 8to be divided into thirds, xvie in Fig. 46,

a circle of radius s and then insert the 
distance s on a straight line through B 
between the decade OA and the circle of 
radius s around 0. You meet the straight 
l i n e  in 9, the IReis in A. Dunn is œ  = 
pOGB -- 'p}3. This looks like

Fg. 40 can be determined on the basis of Fig. 46 elementnr-
geometriach like this : The triangle ØKO is

is isosceles. Therefore, 2 œ is the exterior angle at øone vertex K. Since the triangle 
KOB is also isosceles, the exterior angle g = 3 z is located at Weiner's vertex.

E'lg. t7 Flg. 48

Fig. 47 shows a second arrangement of the trisectionøconatruction by 
inserting the distance e between a circle of radius ø and one leg of the anglea to 
be trisected.

M. D'OCAOnE has given a further construction by displacing a distance e x 
between a straight line and a circle. It can be seen in Fig. 48. The angle 'p = BOA to 
be divided into three is the center angle in a circle of radius e. In addition, a circle 
of radius s is placed around A. The distance s is inserted on a straight line through 
0 between the chord N B and the circle of radius s around d. At A there are three 
angles 2 œ, a/2 - 'p/2 and 7r/2 - œ/2, which together form an elongated t 'inkel. It is 
therefore 2 œ + (n|2 - ø/2) -j- (u/2 - œ/2) = a, i.e .  3 " - 'p.

All these generalized constructions by displacement, as already indicated, 
amount to intersecting the conchoid of the straight line of § 16 with a circle 
(displacement between circle and straight line) or to intersecting the conchoid 
of the circle with a straight line or circle, depending on whether one wants to 
displace e between circle and straight line or between two circles. A conchoid 
is a circle of radius r with pole P

za
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and the interval s is the geometric location of those points which are found on 
the lines q through P at a distance s from the intersection points of these lines 
with the circle. The equation of such a curve is obtained as follows: The starting 
point of a rectangular Cartesian coordinate system is placed at the pole P.  Let

the equation of the circle K. By

z -- p cos ß, y = p ßinJ

polar coordinates are introduced. Then the circle A

g=pcos#+ r°-p*in*#,
and

is a parameterization of the conchoids of the circle. A small calculation can be 
made in

(*+2-* -+ '+--*EO'+vfl-4*(*+/- -f (U

recognize the equation of the conchoids. The conchoids of the circle are 
therefore sixth-order curves. They merge into fourth-order curves, aog. 
Pae'xileche <9snails, when the pole P lies on the circle K. Then p = r can be 
assumed. The circle of radius s aroundP then belongs to the conchoid. This 
decomposes into this circle and the Paacal snail. If we set p = r in (I), we obtain 
by a short calculation

( '+ -2-sfl= (s-FQ) (2)

as the equation of Pascal's snail. Of course, you can also derive this directly by 
repeating the calculation made for the conchoids for p - r, which involves 
considerable simplification.

IIn the construction of the AncaII¥tEDE mentioned above for the trisection 
of the angle, the point B on the circle K is in fact the pole of a helix with s =- r, 
which is intersected by the straight line OA. It passes through point 9 of the 
snail. The fact that it belongs to the snail can be seen from equation (2). 
Therefore, a third-degree equation remains for the remaining intersection 
points of the line and the snail, namely the equation
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the tripartite division of the l¥inkels, as the le8er may calculate. In Fig. 47, P is the 
pole of the scroll, Alte is intersected by the straight line 0 Q.

In general it can be said that ingenious problems of the sixth degree can be 
solved by intersecting the conchoids of circles with straight lines or circles. At 
first it looks as if the intersection of the Jfreis conchoids with circles must lead 
to problems up to the twelfth degree, since according to a theorem of algebra a 
C (conchoid) and a C (Ifreig) have twelve intersection points. A glance at 
equation (1), however, shows that the improper Kreiapoints are triple points of 
the conchoid, so that gecha of the twelve intersection points fall into these, 
leaving only six that can be considered for a congruction problem. Up to now, 
congruction problems higher than the fourth degree have not been dealt with 
much. We therefore do not pursue this opportunity any further.

It is useful to emphasize that a = r for the helix (2) used for the trisection of 
the angle. The auger

(z* -|- '' - 2 r z)' r*(z' -|- y*)

has a particularly simple parameter display

o 0
3 3 '

(2')

(2")

which makes the relationship to the tripartite division of the angle leap to the eye.
If the origin of the coordinates is set to z = r, y - 0, ao

the equation of the worm in polar coordinates. The correctness of the plan 
depends directly on Sig. 47. There P is the pole of the snail. In Fig. 46 the pole 
is at B. In equation (2') P, in equation (2"') O is the coordinate starting point.

As a counterpart to the construction of the AnoBIbIEDEg for the trisection 
of the angle given above, I will show a modern construction - based on f-ferm 
lonisce - for the Fervie//ecfititip dee Würfeie. I choose a point D on the 
Paacalachian snail (2) at a distance r/2 from the pole. Such a point is the point 
with the coordinates

8 r  , --y 1 - ' r   . Compare Fig. 49, which indicates how such a point A is found. 
Then I cut the Paacalg screw with a

0 Beaver tree
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fitting line q through thea point III. The line at

(3)

If (3) is inserted into (2), ao the following equation of the third degree for t is 
obtained after removing the factor t:

— 2 a r s* -J- t 2 a r J -  4 
r

—21° 2 a r - } -  4. —
'•

t° - 0.
(4)

If it is to be suitable for determining the third root, ao and6
so that the members t and t° are omitted. To do 
this, a and b are taken from

to be determined. Because of a° -t- b* -- 1

crack. ac

Because of (6), (4) then becomes

(6)

i')

If the insertion ruler, i.e. a > 0, is fixed, you will have to choose r appropriately 
in order to obtain the third root of a given number.
In any case, because of the reality of the situation

(8)

can be taken. I make the approach r -- k- o and take m- e° as the number from which 
the third root is to be taken. Then I have for £ according to (7)

16 r °  

-' 16 r-

1 is r°
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2 £1 -
"

f4 k- -j- 

2 From this one finds for £

= m due to m a° =

1 -|- ß m ^  
16 (1 - -t') "

 a'  
16 r^ . (9)

(10)

Using this method, you can therefore take the third root of any positive number 
m s° with m 1. In addition to the one-hiebelinea1 with the two marks at a 
distance s from each other, Plan has to use a circle of radius £ s, where £ can be 
taken from (10). Other values of m are given by similarity strings
formation is reduced to m < 1.

The following description of the 
construction described below is useful for the 
actual implementation.  In order to
I take up the designations f 
of Fig. 50 and first determine

the angle y of the straight lines q and A (Fig. 50). 
As in Fig. 49, OA -- OE -- s/2. In addition, CEE is 

s/2. s/2. On the triangle OAB
is taken from

CO' ' 4 r ' '

cool = a and ainQ = b can be taken from (6). Furthermore, according to Fig. 60

Therefore, according to (9)

The triangle DER in Fig. 50 is therefore useful for constructing the straight line 
q if you take DCH -- m and AJ = 1. From the triangle OAB, take AB* 4r° - a°J4. If 
you consider the ansatz r -- ke and
(10), ao you get AB

3 - . Since CIA =  a, the triangle OAB
-

J/l - m-
similar to the triangle PDE '. The angles of the same at U and therefore complement

' 16 r- '
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both y to aJ2. Therefore, CSB is perpendicular to EU'. To construct the third root 
au8 In s°, proceed as follows: First choose the point 0 at random and see an 
arbitrary straight line fi through it. Then t a k e  the points A, A, U on it in such a 
way that the line ACH is divided by 0 and A into three equal parts of length 8|2. 
Then choose DE -- m and place D co so that A lies between 0 and D. With £J = 1 you 
then construct a triangle DEIN' that is right-angled at D. The straight line on which 
its hypotenuse falls is p. From N you fill a perpendicular to p. In A you construct a 
perpendicular to A. The intersection of both perpendiculars is at B. Draw a circle 
over OB -- 2 r ala diameter. On a straight line through O, insert the distance s 
between this circle and the straight line p. This gives

one has a point T on p. It is ff' i =. " .
When carrying out the construction, you will notice that the insertion leads 

to poorly defined intersections. A glance at Fig. 50 also shows this. We come 
back to the construction in § 18 at Fig. 58

A special circumstance should be pointed out: While the Archimedean 
construction always u s e s  the same s and the same r for the trisection of 
angles, no matter which angle you want to divide into thirds, the construction of 
lorisoa always requires the same s, but the radius of the circle required depends 
on m. Therefore, while you can divide the angle into three with a fixed ruler and 
a fixed ifreis, you have to use a compass to calculate the third root.

Using the Cardan formula, according to p. 74, the solution
Each task of the third degree can be reduced to the two preferred ones: 
trisection of the angle and multiplication of the cube. The questions of direct 
construction by insertion have not yet been worked through very much. As an 
example, let us use Fig. 61 to illustrate one of Mr.
J. E. Hoeuamr's pretty &'meiruDion of the regular heptagon
can be specified. The circle 0(3/4) of Fig. 51 has the equation

9
16' (ii)

In Fig. 51, the straight line z = 0 is perpendicular to a diameter AB in A. On a 
straight line through P(1, 0), the line 2 is inserted between the circle 0(3/4) and 
z = 0. This straight line meets O(3J4) at a point 6 at a distance r from P. Then S 
has the coordinates

(12)

3
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and inserting (12) into (I 1) gives for r the equation

r* -l- 2 r* - r - I -- 0 ,

which can be substituted by r = I/z into the equation

x* -I- s^ -2s - 1 - 0

(13)

(14)

whose positive root according to p. 58 i s  given 
by z = 2 cos 2 u/7. If one draws the if circle 
T*(r) in fig. 51 and erects a perpendicular toAB 
in B, ao iat for the angle # of fig. 51: # = 2s/7. 
Thus the segment CID of fig. 51 is the side of 
the regular heptagon inscribed in the circle P(r 
j). It is left to the reader to check to what extent 
the compass is needed in addition to the slide-in 
ruler to construct the regular heptagon.

The constructions given so far in this 
paragraph used the intersection of the general 
conchoid with a straight line. Finally, a very 
simple construction by Newton should be 
mentioned.
given that the lschnitt "onKreiokonchoide and Z "ig. 51

circle. The circles between the two
mark the following points one after the other: on t h e  z-axis z = -s, on the y-axis y 
= 2a , then ale auxiliaryB- point of the z-axis again z = - s 4 -l- , on the y-axis y = r 
8 -H-
and then draw the two stripes through the lines marked on the y-axis.
Points with centers on the z-axis in two arbitrary points z = o and z = 2a, e.g. the two 
circles (z - l)- + y° - I -t- 4m8' and (z - 2)° -}- y° = 4 -}- e° (8m -J- I). If you then insert 
the distance s between the two ifreiae on a straight line through the origin of the 
coordinates, the distance between the origin and the smaller of the two circles is
28 In . Plan easily verifies the correctness of the construction u s i n g  
analytical geometry (Fig. 52).

J. £tJzzugzsv g i v e s  the following generalization of the slide-in ruler: A 
slide-in ruler is placed in such a way that no two marks fall on given circles or 
straight lines and that, in addition, a given circle is enclosed by it.
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touches. This amounts to the same thing as using an insertion parallel ruler, 
both edges of which should have the radius of that circle K as the distance and 
which should be placed in such a way that the two marks attached to one of its 
edges fall on two given circles or straight lines, while the parallel edge passes 
through a point, the center of those circles8 K.

Let an example liven up these statements. A triangle is to be constructed from 
two sides a, t' and a with an incremental radius p. According to HanzuSLEv, this 
construction p r o c e e d s  as follows: If, for example, a > 6, then a - f' is, as will 
b e  shown, the length of the distance ID to be walked in p. 87, Fig. 53.  This 
distance is therefore determined by the given pieces. For the construction, a circle 
of radius• e  is therefore placed at any of its points N

Flg. 52

a tangent c and mark the point Z" on it so that 'D -- a - b did. In D,  draw the 
diameter DE of the increigeg up to point A. Insert the line o between the lines c and 
FIi¡ on a tangent of the increment to obtain the corners B and U of the triangle you 
are looking for. The empty corner A is then obtained by placing the other tangent 
from C' to the inscribed circle.

In order to prove the assertion II'D -- a - b,  note that the point of contact of the 
circle of the triangle opposite the corner U is ABC! To see this, you only have to 
enlarge the sig. 53 with U as the center of similarity so that A merges into N. Then
the increment changes to the starting circle. However, it is well known that 0 --
is the length of the tangents laid from N to this increment, v-while

 measures the tangents laid from the corners to the increment. 
Therefore, the tangent placed from A to the circle has the length e6 . Therefore, ID -- 

yp - sg - -   — b + c    — a + b   

" b -t- c
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The construction problem just discussed is a problem of the third degree. 
For z = ap, a third-degree equation is obtained as follows.
Starting from

you get because of

/(s+*)—(s+6—°)sH-s)=0.
Therefore

This equation is generally 
irreducible in the body of its 
coefficients. For example, according to
P. BoC&NE'-R for a = 2, b -- 1,e-  .*  clie 
equation

z* - 3 z* -I- 2.09 z -I- 0.09 - 0 ,

which, as can be easily verified, is 
irreducible in the body of rational 
numbers.
P. BtfCKNER has also determined the 
conditions to which the n, ö, p satisfy
so that it forms a triangle with ria. like this
these pieces.

In the construction described above, you can of course manage with a fixed 
distance n on the insertion ruler. If a - w is not a, you first construct a triangle 

similar to the one you are looking for with a = p. However, the question arises 
as to whether you can solve all third-degree problems (or even just the previous 

one) with an inset parallel ruler with a fixed distance between marks and a 
fixed ruler width. It is only posed, but not answered

answered.

§ 18. the angle hook and the parallelogram angle hook
The remark that the Pascal snails are at the same time foot-point curves of a 

circle with respect to its pole leads to another version of the constructions 
described in the previous paragraph. The base point curve of a circle K with 
respect to a point P is understood to be
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is known to be the geometric location of the base points of the perpendiculars 
filled from P to the tangents of the circle.

Let us assume a circle R. of radius fi with center ff and the pole P at a 
distance p from ff. Then a glance at Fig. 54 teaches us that the geometric 
location of the base points of the perpendiculars drawn from P to the tangents 
of A i s  a Pagcalache snail, namely a Kreia conchoid with s = fi and with the 
pole P in relation to the circle of radius r = p/2 via IP as diameter. This is 
because the point fi, at which PC is intersected by the straight line 6öf parallel 
to PC, is, according to the theorem of Taax.zs

on a circle above PCI as the diameter. 
Accordingly, the geometric location of the points 
N is also obtained by subtracting the distance 'Sf 
= fi on the straight line through P from its second 
point of intersection with this circle from Rndiua 
r.

In the construction shown in Fig. 46 for the 
tripartite division of the angles, r - s was. The 
point B was the pole of the

Fig. 54 Worm. According to the above diagram, this is 
the base point curve of a circle from the

radius r, whose center ff is the peripheral point dea Kreiaea of Fig. 46 
diametrically located to B. Q of F i g .  46 is therefore also the base of the lotea 
of & on a tangent through 2' to the aforementioned circle A around df as the 
center. This kreia R. is drawn out in Fig. 56, while the circle of Fig. 48 is only 
dotted. A construction for the trisection of the angles can therefore also be 
described as follows: Take any circle fi from the radius r with center ff and 
extend a radius MO deaaelben by r outwards over O to a point B. Place a 
straight line p through 0 at the angle 'p to be thirded against this extended radius. 
Then place a right-angle hook ao so that one of its legs p a s s e s  through B, its 
other leg touches K and a is at the vertex of p. For one of the three possible 
positions of the hook, p is then BQO -- gJ3. This can also be seen elementarily 
from t h e  following eg. if you consult the dotted auxiliary lines. At the same 
time you can see that @ 2'O f - 'p/3 iat.

The gt ttndsöfzficfie meaning of theaer version of the construction iat the: The 
plan has to allow only a slightly more necessary oebraucM preficfionnlty than at 
that time, achon all problems of the third - and thus also the fourth - GFade become 
solvable. (We will ask you about the extraction of the cube root in a moment.) At 
that time, § 9 required this,
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that the two legs of the (right) angles pass through existing points, while the 
base lies on an existing straight line. Now aoll
the one leg deviates and touches a circle.

M$. 66

The IJmfomation of the construction of Fig. 47 is shown in Fig. 57. The 
reader will understand it without further explanation and will also carry out 
the elementary proof on the basis of the dotted lines shown.

Fig. ö7 Ftß. S8

Following on from Fig. 50, a circle of radius 8 must be drawn around point 
B to extend the driyets root. The perpendicular established on OR in f' is then 
the tangent of this circle. The construction of the third r o o t  aua m- a- then 
requires the same steps as in the previous paragraph as far as the construction of 
the straight line q and the point & is concerned. However, instead of the creiaea 
drawn at that time with a half-megger dependent on 'ii over OB ala diameter, a 
creia of {eefetn Rtsdius s is now to be placed around B as the middle point. The 
right-angle hook must then be attached in such a way that a
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one leg passes through 0, its other leg touches the aforementioned circle of 
radius 4 around B as the center, while a is a vertex on that straight line q (Fig. 
58). It will be noticed that this construction can be carried out much more 
accurately than the insertion in Fig. o0.

Now, apart from the perpendicular hook, the compass is only needed to 
draw a circle with a fixed radius independent of si, or, in other words, the 
perpendicular hook and a fixed circle are sufficient. This can also be avoided if 
one leg, which is to touch the circle, is designed as a parallel ruler and requires 
that one leg does not touch a circle, but that the edge parallel to it passes 
through a fixed point, the center of that circle - of radius equal to the width of 
the ruler. This parallel right angle hook then allows the solution of all third and 
fourth degree problems without any other device. To draw the straight lines p 
and A on paper, you will of course still need the compass.

§ 19. the standardized right wing shark. NEo'zons Kissoidenziriiel.
The carpenter's hook

A standardized right-angle hook should be called a right-angle hook on one 
leg of which a point P and the center Q of the line determined by P and the 
vertex 6 of the right angle a r e  marked. The length of the line PQ is called the 
standard of the hook . The instrument should be used in such a way that the 
free leg (which bears no marks) passes continuously through a fixed point, 
while the lines P and Q lie on given straight lines. The instrument can also be 
used as a ruler and as a slide-in ruler. Then all third- and fourth-degree 
problems can be solved by the position of the 6-strong Q.

At first glance, drawing the normalized right angle hook may appear to be 
an embarras de richesse if you only want to solve third degree problems. After 
all, you have a slide-in ruler available in the standardized extended edge, with 
which you can solve all third-degree problems on your own. However, while 
you have to take the detour via the Cardan formula, extraction of the third root 
and trisection of the angle when using the slide-in ruler, every third degree 
problem is directly accessible with the standardized right angle hook, as we will 
see.

The theory of this standardized right-angle hook is based on the properties 
of the kissoid of the dioxi.ss. This is defined on the basis of Fig. 59 ao: A point 
0 is marked on a circle £ of radius r. Let the tangent t be drawn at the 
diametrically opposite point 0'. On each straight line p
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the distance that is cut off on y by k and f is deducted from 0 in both directions 
through O. In Fig. 59, OQ = Zf f'. Ifissoid is the geometric location of the points 
Q obtained in this way. We determine its equation. The z-axis is the straight line 
from 0 to 0', the y-axis in 0 is perpendicular to it. Then, according to Fig. 58, the 
polar coordinates p, ß of the point Q are

CO9#

Fig. 58 Flg.6O

wornua man
m(m+y)=2Fy° (1)

as the equation of the kiasoid.
If you intersect (l) with the straight line y = z/Z, ao you get the parameter 

display

plan easily confirms that the sections labeled } and § in Fig. 60 are
O'P and OT'

 2 r and 2 r  (3)

are. From this we can see the connection between the kisaoid and the extraction 
of the third root, just as the intersection of the kisaoid with any straight line 
leads to an equation of the third degree.

Constructively, the connection that (3) establishes between $ and p only 
appears to be Yvaluable for the extraction of the third root i f  a kisgoid is 
drawn. The nortiated reohtu'i'tkelhaken is used for the constructive form - 
without a firmly drawn kiasoid. Its theory is based on the following geometric 
property of the kiaoid:
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As illustrated in Fig. 61, extend O'O beyond O by r bia to point O and erect the 
perpendicular z = r on a diameter in the center ff of the ifirclea A. Ala radius r 
of the circle A is chosen as the norm PQ of the normalized right anglehnkena. 
Now place ao so that its mark P lies on z = r, while its free leg passes through 
Ol  . Then the mark Q of the right angle hooka describes the

Kisaoid (1). In Fig. 61, the parameterization of the geometric location of Q is 
shown:

, (4)

using the same coordinate system as in (1). öfit £ith the help of the second form 
of y it is easy to confirm that for theae z, y the Riaaoiden-

equation (I) exists. Insert the angle # through 'p = $ - 2 #.

Of course, the property of the kisaoid just described can also be seen in 
elementary geometry. This is done at Tland of Fig. 61 as follows: Place the two 
lines of a straight line PQ = USQ = r through the kisaoid point Q, also take OO, = r 
and prove that the double angle at 6 is a right one. Since OQ - ff', then QQ', which 
is perpendicular to

IP assumed iat, equal to 3f3f'. Since further PQ - fK -- r iat, ao 3fK is 
parallel to PQ. Therefore, the painted angles at A and Q are equal to each other. 
Since KM -- OM, ao the marked angle at O also has the same size. Since QTS = fK 
and QS is parallel fA, ao, SdfA9 is a parallelogram, the solid angle at 'S 
has the same size and the solid angle at df has the same size.
gI size. Therefore, the triangles iSMP and 3f6Ol  are kOngruent.  For athey agree in the 
sides f'S, which they have in common, and in POS - MO , as well as in the angles 
included by these sides. Therefore, the

COBA
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angles at ff and S are equal to each other. As the angle at ff is a right angle, 
there is also a right angle at 6.

The construction of ')/m now proceeds along the lines of Fig. 63 ao: draw 
the line O7" = tu 2 r on z = 0, draw the straight line z = r, then the straight line 
P'O' through the point 0' with the coordinates [2 r, 0) and place the right angle 
hook with the norm r co such that aa mark P lies on z = r, that its mark Q lies 
on the straight line
0'" and that its free leg p a s s e s  through the 
point 0 with the coordinates z -- r, y -- 0. 
Then the straight line 0 Q on :n 2 r intersects 
the line
0'T -- - 2 r ab.

You can also use the standardized right 
angle hook to solve any third-degree 
equations without further preparation.

solve. If you intersect the kissoid (2) with the straight line

ao you get the equation of the third degree

tr J^ -|- J (tr -I- u - 2r) -|- 2 r 0.

(8)

(7)

Comparison with (5) provides

According to (6) you have the straight line

(& o) + + @@ 2f - 0 (8)

and construct its intersection with the kiaoid using the normalized right angle 
hook in the same way as described for the extraction of the third root. The 
following method is therefore available for the trisection of the angle: Plan has 
the equation of the third degree

J^ - 3J - 2 cos x - 0 zoit 72 coso/3

to be treated. For this purpose, the straight line
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to intersect with the kissoid. Fig. 64 shows the course of the construction 
without further explanation.

Until now, we have only used the standardized right-angle hook in this way,
that aa non-normalized leg ran through a point and that the points P and Q of 
the marked leg each lay on a straight line. In addition, compasses and rulers 
were used to draw circles and straight lines and to measure distances. No use 
was made of the hooks mentioned at the beginning of the paragraphs as a ruler 
and as a single-sided ruler. If we decide to do so, we can do without compasses 
and rulers. These instruments were only used to draw circles and lines.

lines are used to determine their 
intersection points. However, it has 
already been established in § 1I that 
compasses and rulers can be replaced by 
the standardized ruler. The marks of 
Hskena were placed on drawn straight 
lines, so that the drawing of circles is 
not necessary. Go through the tasks 
dealt with in this paragraph again with 
this in mind. So we have the theorem:

All problems up to and including the 
fourth degree can be solved with the standardized right-angle hook designed as an 
insertion ruler. However, since we already know from § 16 that the slide-in 

ruler without a supplement to the standardized r i g h t - a n g l e  hook is 
sufficient for this purpose, we are faced with a double obstacle, which, however, 

has its advantages in actual construction. It should also be mentioned that the 
free leg of the hook must be thought of as a ruler extending to infinity on both 
sides, since the kissoid runs to infinity on both sides of the z-axis and only in 

this way can the hook cover all its points. However, the normalized leg need not 
be longer than 2 r as long as the hook is not to be used as an insertion ruler. The 

normalized right angle hook discussed above - Nzw- Tor's kissoidal compass - 
is a special case of the general normalized right angle hook. It consists of 

marking any two points on one leg of a right angle hook and, like the free leg 
through a point, placing the marks on two straight lines. The generalization can 
also be described as extending the use of Newton's kissoid circle in such a way 

that the free leg is not placed t h r o u g h  a point but tangentially to a circle. 
This is obviously associated with a displacement of the marks on the other leg 

of the circle.
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is equivalent. Particular attention has been paid here to the case where the two 
marks are assumed to be symmetrical to the apex of the right-angle hook. The 
instrument shown in Fig. 65 below can be u s e d  to divide the angles ROA into 
three in the way shown in the same figure. To do this, place the free leg through the 
apex of the angle, one mark o n  one leg of the angle, while the other mark lies on a 
parallel to the other leg of the angle. The distance between the two marks and the 
right angle is the same.  That in fact @ POA -- p QOP -- 9 ROQ -- I|3 9 ROA,

Fig. 80

can be seen without further ado. The drawing of a parallel to the leg OA mentioned 
above can be avoided by adding a semicircle of radius PQ around P as center to the 
instrument in the manner shown in Fig. 66 and then placing the instrument so that 
aa free leg passes through 0 and one mark lies on one leg of the angle, while the 
semicircle touches the other leg. E. VOELLMY has occasionally remarked that the 
point fi passes through a curve of the third order, the so-called triaectrix of 
MacmoBrs, when the free leg passes through 0 and the semicircle touches the 
straight line GA. If we take 0 as the origin of right-angled coordinates, OA as the z-
axis and denote the marker abatnnd fi$ by r, its equation becomes

(3r-y)(sky)-4W=0 (9)
or, which is the same thing,

(10)

if the polar coordinates of the points ff are labeled p and #.
(10) can be read off Fig. 65 without further ado, and (9) follows from this by virtue 
of the relationships

= ain ß = - 4 on° 3 - ]- 3 on $ .
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Without the Ifalb circle, the instrument is also known as a carpenter's hook.
has been labeled.

Solutions of other third-degree problems, such as the multiplication of the 
cube with the carpenter's hook, do not seem to have been worked out. A general 
theorem by F. Lonnon (1894) teaches that such solutions exist. According to 
this, any third-degree problem can be solved with the ruler alone if any rational 
(non-decomposing) curve of the third order is drawn. The question of whether 
curves of gender one also perform this service is still unanswered.

$ CO. Two right angle hats

Two right-angle hooks that can be moved relative to each other as shown in 
Figs. 67 and 68 can be used to solve any third-degree problem.

E'lg. 07 Flg. 08

The two legs fit and 6 should p a s s  through given points A and ü, while the 
legs fi of both hooks can be moved against each other. The vertices 'S and

St of both hooks should lie on given straight lines 
gz and q. If we t a k e  A as the focal point and p as the secant tangent of a parabola, 
then fi is a tangent of this parabola. This is because the geometric location of the 
base points of the perpendiculars filled from the focal point to the tangents is the 
vertex tangent. Similarly, ß can be regarded as the focal point and q as the vertex 
tangent of a second parabola. Then fi is the tangent of this parabola. The described 
use of both right angle hooks thus amounts to the determination of common 
tangents of two parabolas. Since t h e r e  are three common tangents of two 
parabolas, apart from the improper straight line, it is clear that the solution of third 
degree problems is possible in this way.

It is practical to use two ordinary right-angle hooks, the two legs of which 
a r e  designed as parallel rulers, so that both the
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The outer and inner edges each form a right angle right into the parting. These 
are then placed together along a matching edge. However, you can also use two 
right angles drawn on transparent paper instead, which you place on top of each 
other over the drawing sheet, or you can use such a transparent sheet instead of 
at least one hook.

If, for example, the vertex tangents qi  ulld qd are assumed to be 
perpendicular to each other and the perpendiculars from the focal points A and 
fi to these two straight lines are plotted, the result is Fig. 69 below. 2fan can 
deduce from this
directly, without reference to the parables, the connection with Öer

E'lg. 69 Flg. 70

resolution of a third-degree equation. This is illustrated in Fig. 70. There, the 
coefficients of the equation

and the unit distance are entered. Here e 0, ei  < 0, e, < 0, a, < 0 and z < 0 are 
assumed. From the similar lines shaded in Pig. 70 hatched, similar to each other

triangles you can read that ISBN a0  z and that 'Si fii  - e z + tat. Then tat further SIA -- (e• 

+ ° )    iS$A$ (a$:r + a j:n -}- a$. Therefore iat really

MA = [(a0 z -]- ) z + et] z= - e ulld z a solution of equation (I). In Fig. 69, there 
are two right-angled straight lines, the coefficient line AA gA A$S and the 
solution line ABS Stk. They both lead from the starting point A to the end 
point S. The following rule applies to the formation of the coefficient line. 
First plot a line AA0 of length e, a > 0. Then, at right angles to this line, plot a 
line of length ! e, to the left of dea

vector AAE, if a, < 0, to the right, if a > 0. Al8then again at right angles to the 
just plotted A pA, e is plotted to the left, if al e < 0, and to the right, if alu > 0. 
According to the same rule
a is finally applied. Then use the two right angles to form a
hook the solution move ao that the leg 6 of the first hook through A

7 Bieberbach
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while its part 6 lies on qd. Then attach a leg fit of the second hook to another leg At 
so that a vertex 6 falls on p, and also change the position of the two hooks until the 
last leg fiq of the second hook p a s s e s  through fi. On the straight line Ei8

z is then derived, i.e. z < 0, if S lies to the right of AAE. If 'S

linka of AA , then z > 0.
The method described in this way is known as the Lillachea right angle 

method. Plan, it can also be used to calculate the polynomials on the left-hand 
side of (1) according to the Hornerach scheme

use.

Fla. 71

The explanations at the beginning 
of this paragraph suggest a 
generalization. It consists in placing 
the intersections of the right angle 
hooks on creiae instead of straight 
lines. Since the base points of the 
perpendiculars, which are dropped 
from a focal point of an ellipse or 
hyperbola onto the tangents, fulfill 
the large vertex creia, we are now 
dealing with the

Solution of the fourth degree problem of determining the common tangent cos ztrei 
fiegefec6tiiiteti, which can be solved directly with the two right angle hooks. Fig. 71 
shows the common tangents of an ellipse with the focal point and the large 
vertex circle K as well as a parabola with the focal point & and the vertex 
tangent p (see also § 25).

5 S1. The standing circle

This refers to a compass with two points, which should be used as follows: 
If circles, straight lines and points a r e  drawn, ao a point is to be determined by 
tracing with the compass on one of these straight lines or circles, the distance of 
which from a given point is equal to the greatest or smallest distance from the 
points of another given circle or another given straight line. For example, you 
solve the problem of determining a point P on a circle R. in such a way that its 
distance from another given point is equal to the (shortest) distance of the point 
P from a straight line p, so that one point of the compassa is inserted into an 
arbitrarily assumed point P of K, with the other point
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and by rotating the compassg around P determine whether the circle with the 
radius PC around P touches the straight line p as the center. Keep changingP 
until you have succeeded. Fix the position found of P on K by piercing it and 
then use the compass and ruler to d r a w  a perpendicular from P to p in order to 
determine the point on p that serves to solve the problem more precisely than is 
possible simply by touching it with the rotating compass.

Perhaps this procedure may hardly differ from a trial and error, which is 
familiar to every practical draughtsman. Conceptually, however, this is a 
mathematical operation which is assumed t o  be executable, i.e. the determination 
of a point P on K co that

Distance PS' -- Distance Pg.

Plan can of course also measure the distance Pq with the compass. 
However, as this can be achieved by plumb bobs, this does not extend the range 
of pieces that can be constructed with compass and ruler in the sense of § 6. The 
same applies when determining the greatest and smallest distance of a point 
from a circle.

However, the newly added operation e x t e n d s  the range of conatiuable pieces 
beyond what can be conatiuated with compass and ruler in the sense of § 6, namely 
b y  including all cubic conatiuctions. The geometric location of the points P, which 
are equidistant from and y 
is known to be a parabola with the focal point and the directrix q. The operaliott k8I 
assumed to be aue|iilsrbar is therefore equivalent to the ar "iitfftitip of the 
lschnillpunktle of a circle K. tind der Parabel mit Brennfninkl M vwd Zeitlinie p. lat 
aber in einem passend gewählten rechtwinkligen Roordinatengyatem

y'-2pm-0 (I)
the equation of the parabola and

z° -t- y° -l- 2a z -I- 2 b y -|- c = 0 (2)

the equation of any circle, the ordinates of the intersection points of the two 
have the equation of the fourth degree

y* -|- y* (4 p° -|- 4 ep) -|- 8 b p° y -j- 4 c p' -- 0.

Comparison with any fourth degree equation

y + ",2- + ", + ", o

(3)

(4}
leads to

8 p° ' ' 4 p-

Accordingly, (3) did the generalized equation of the fourth degreea with real
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coefficients and without a member with y° (cf. § 15, p. 73 because of complex 
coefficients and complex roots). This proves that every equation of the fourth 
(and therefore also of the third) degree, alao every cubic and biquadratic 
problem, can be solved if, in addition to the compass and ruler described in § 6, 
the Steoh compass is added to carry out the intersection of circle and parabola in 
the manner described, and that with a fixed parabola but a variable circle all 
these problems are already exhausted.

At the beginning, other operations with the lithotripsy circle were taken into 
consideration. We shall see in a moment that each of them performs the same 
service as the one just discussed. T h e  task now is to determine a point P on a 
circle A so that it is equidistant from another circle Cr and a point. This can be 
done with the divider compass by first assuming T* on K as desired, taking the 
distance PC and by rotating it around P, finding out whether the circle around P 
touches the circle O with the radius T*J. Keep trying until you have found such 
a position of P on K, then insert the tip of the compass, connect in a straight line 
with the center of Cr and intersect the straight line with 9. This operation results 
in the intersection of the circle K with an ellipse or hyperbola. This is because 
the geometric location of the points P, which are equidistant from a point and a 
circle Cr, is an ellipse or a hyperbola. I t  obviously consists of all points whose 
distances from two fixed points (F and the center of G) have a fixed sum or 
difference (equal to the Rodiug of Cr), and this is one of the usual definitions of 
ellipse and isyperbola.

The intersection of a given ellipse or hyperbola with a given creia is carried out 
as follows with the divider as follows: The two focal points of an ellipse 
and the sum 2e of the itadiene vectors are given. The two focal points and ae are 
marked and the circle with w h i c h  the ellipse is to be cut is set (Fig. 72). We draw 
a circle q with radius 2a around one of the focal points and determine a point P on fi 
with the compass so that a is a distance equal to a distance from y. If the circle with 
the radius Plz around P touches the circle g at a point f, then Jt, P and 2' lie in a 
straight line (a radius of q) and therefore 2e = F P -l- PC -- F P -l- F$P.

The same procedure is used for the hyperbola. The focal points Bl , and the 
difference of the radius vectors 2o are given. Again, a circle q of radius 2o is 
drawn around lt as the center.
Ellipse case 9 encloses the other focal point, q now excludes it. Again, a point P 
on K i s  equidistant from Jg and g. If a circle with the radius Pkt touches the 
circle g in 2', ao
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are again J"  P, f' on a radius of p. But now iat

Fig. 73 illustrates this.
Or also: Let the equation of q

and ifP has the coordinates (/, 0), / > 0, then the condition for the

geometric location of P(x, y)

(6)

If we remove the roots, we obtain the equation of the geometric Ortea

(T)

Daa is a hyperbola for } > r and an ellipse for < r an ellipse. The operation 
assumed to be aue|iihrbar means atso actually the artnittfunp of the sonitt- puzi£te 
eiziee circle tnwith an ellipse or a hyperbola. We now show again that every task 
of the third or fourth degree can be traced back to those just mentioned. However, 
as we shall see shortly, this is already proven b y  what we have just shown for 
the intersection of parabola and circle. The cluster of second-order curves 
determined by (I) and (2) also includes the 6-intercept cones for any value of the 
parameter 2 -1- 0.

s'+(l+X)y+2/- ) +2A + -0, (8)

which are ellipses or hyperbolas depending on the choice of parameter. Since (8)
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and (2) have the same intersection points as (1) and (2), it has therefore already 
been proven that the general equation of the fourth degree (4) can be traced 
back to the intersection of (2) with (8). However, in contrast to the parabola (1), 
the curve (8) is not independent of the specially presented fourth degree 
equation (4), but is connected to it by (5) like the creia (2). However, since the 
axis ratio i s  determined by the parameter 2 alone, ea is independent of the 
problem (4) presented. The conic section (8) is therefore, if it does not decay, 
similar for the right 2 to a fixed one independent of the task - or in the 
hyperbolic case deasen conjugated, i.e. equally asymptotic. However, since this 
similarity transformation can be carried out constructively with a compass and 
ruler, we can see in close proximity to the result') that any third and fourth ode 
can be used, if one adds to the compass and ruler in the sense of § 6 the 
operation of cutting a given elliptic or perpendicular with a circle that has been 
deprecated from the ellipse, whereby the ellipse i s  assumed to be noncircular.

$ SS. Drawn cone and compass and ruler

A result announced in § 21 may be proven because of its fundamental 
importance. IPenti a non-creio|iform non-sinqular second-order curre9 "or9eleqt, 
every third and fourth ordee task can be solved with compass and mnml if the 
intersection of Jfreisen tittzf t7erndea with the qezeicAzteteti U fii'isutiinont to the 
feruendiitigamöqficfi£eiten dieeer Jnefrumetite in the sense of § 6. This result is 
reminiscent of the one in
§ 5: Constructions with the ruler alone, if a drawn circle with its center pointsa 
is available. There is no need for such an additional specification here, because 
the center of the drawn cone section, for example, can be constructed from the 
known periphery, since distances can be bisected and parallels drawn with 
compass and ruler. It was also noted in § 5 that it is not necessary to have the 
full periphery of the circle. It is sufficient to know an arbitrary peripheral arc. 
The fact that an analogous result applies here can be seen without further ado in 
the parabola case. If there is only a parabolic arc covering a certain y-interval, 
the roots of equation {4) § 21 which fall within this interval are covered without 
further ado. A transformation y - e y does not change the form of equation (4) § 
21. However, such a transformation can be used to convert any root into a root 
belonging to the interval. Since you do not need to leave the domain of rational 
arithmetic to do this, you can use a compass and

') See also the notes and .§ 2i*
') One may restrict oneself to the case a, -J= 0.
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Nn' :d each task of the fourth degree t o  deti ischnitl a stroke with an öefieöiq fixed 
parabolic arc. The same applies in the case of the ellipse and the hyperbola.

If it is a ques t i on  of the intersection of the Ng with a straight line, the 
consideration of § 5 can be transferred because of its projective character. 

However, it is not worth pursuing thisa because, as is well known, the 
intersection of a straight line and a line can be constructed using a compass and 
ruler. ' achon can be constructed if only 5 points 

of the C' are given. If it were known that any fourth-degree equation can be 
obtained by inserting the rational parameter representation of the second-order 
curve into the equation of a paaaing circle'), it would be possible by parameter 

transformation to transform an interval i containing a real cube of a fourth-
degree equation into a partial interval of that interval that corresponds to 

the given conic averaging arc. The transformed equation is then solved by 
intersecting a suitable circle with the given conic a r c  and then applying the 

parameter transformation in reverse to the solution found in order to solve the 
original fourth degree equation. This will be explained in more detail at the end 

of this paragraph. First of all, it is important to recognize whether the most 
general equation of the fourth degree can be obtained by inserting the rational 

parameter representation of a fine noncircular ellipse or hyperbola into a 
variable circular equation. This will prove to be correct with the addition that 
one can obtain all those fourth-degree equations which cannot be decomposed 

into second-degree factors by solving quadratic equations.
and can therefore be solved. If the 

parameter representation

 
the illllysis

into the circular equation

z° -j- y° -j- 2 e z -j- 2Q y -J- y = 0, 

we obtain the equation

f^ (a° - 2 a a -j- y) -j- P 4 Q 6 -J- i- (- 2 a° -j- 4 b* -J- 2 y) -j-

-l- t 4 Q b -J- e° -j- 2 ota -j- y = 0,

(I)

(2)

(3)

i.e. a fourth-degree equation in which the coefficients of P and t ') The proof given in 
the previous paragraph does not suffice.

1 - l -  
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are equal to each other. You have to ask alao to what extent you can bring any 
fourth-degree equation to this particular form using a compass and ruler. If you
do this in

(5)

the substitution z - - + 2, the coefficients of zJ and zt become

(6)

For a sufficiently large 2, both have the same sign.

the substitution z = 

equation of the fourth 

degree

1, the result is = q one

t^ -J- A I* -l- B t* -J- A t -J- II = 0, (7)

where 1° and l have the same coefficients. If we compare any equation (7) with (4), 
we obtain the linear equations for e, Q, y

a 2a A -j- Q 4 b- y A - a* A -- 0,

- y (J3 - 2) - a*B - 2o^ + 46* 0,

" 2o (C' -|- 1) - y (C' - 1) - o*6' -|- o^ 0,

(8)

whose determinant does not vanish if 1 - & -l- N -J- 0 did. All slopes (7) with the 
additional condition 1 - B -}- CO -f- 0 can be solved as an intersection of circle and 
ellipse. However, if 1 - B -|- f7 = 0, you have

and therefore the fourth degree equation is now solvable by square root 
expressions. In order that ( 7) really follows from the equation (4) established with 
the solutions ", Q, y of (16), it must still be shown that e° - 2 e o -j- y -t- 0 iat. 
However, you can see from the last two equations (8) that 2 z e =- a° + y can only 
be if o° = b°, which is not the case.

However, if you use the parameter representation

dec I::I yperbel

in (3), the result is

 b

, - t, - 1 - 0

(9)

(10)

i* (e°- 2 et o-l- y j- I*4- |3 b -J- I* (2e° -l- 4h°-2 y) -j- 14 Q b + e° -t- 2 et e -l- y= 0. (11) 

Now the coefficients of t° and t are equal except for daa YorEeichen. If

l
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(4 J -|- o') (4 2° + 3 "' 2- + 2 ö'2 -]- c') = 0 has at least two real zero measures, one 
can now choose 2 ao that in (6) < 0). öfold the sub-

gt4.   tuti. on z, =-qc,  t, then you get a.. lt 
because of a
Fourth degree equation

° = -q ei. ne

I' - A I* + B t* + A t + O -- 0 , (l2)

in which the coefficients of t- and f differ only in sign.
Comparison of any (20) with ( 19} leads to the linear equations

a a 2 A -l- 4 Q ö - y A- a- A -- 0,

" o 2 B - (B -t- 2- a- B -J- 2a* -l- 4b° = 0, (13)

et e 2 (N -J- 1 )- y (N - l) - a° C -J- e° = 0

for e, Q, y, whose determinant does not vanish when 1 -}- B -J- CO -f- 0. In order that 
(12) really follows from the equation (4) established with the solutions e, Q, y of (13), it 
must still be shown that a° - 2 n e -J- y -{- 0. But you can see from the last two equations 
(l3) that from 2 e o = a° + y would follow e° -I- ö° = 0, which is impossible. All 
equations (12) with the additional condition 1 + B -j- G' -1- 0 can therefore be obtained 
by intersecting the circle and the hyperbola.

But if l -l- B + D - 0, ao iat

l^ - At* + Bt* -l- At -l- U = {1° - 1) (t° - A I - U) .

The equation of the fourth degree can alao be solved in the case of 1 -}- & + U = 0 
by square root expressions. All in all, therefore, a sweep-drawn arbitrary non-
aingular non-circular C'" is sufficient t o  solve all fourth-degree equations with 
compass and ruler.

Finally, it should be shown that one does not need the full U, but that with any 
Jesu drawn bogeti of the same Ott8kO ml. Ea at alao any arc

—— b   2 t
1 -}- s t- ' t'< t < t" , e = -l- 1 , ellipse (14)

e = - I , hyperbola

is given as a fixed point. The given equation of the fourth degree (5) is given by
') But if the equation just given has only one real root for Z, t h e n  for the same 4 2 -{- a' 0 a 

must be a. Since for ß i e  also the third degree factor disappears, this means according to (6) that 
in the fourth degree equation obtained by the substitution z , - o'/4 from (5) the members with z 
and s{ are missing. As the fourth degree polynomial then b e c o m e s  a second degree 
polynomial in s*, the corresponding equation can be solved by square root expressions.

q- ci q- ci



106 § 23. hje\otalees ßtecbzi£JteIeei-sucbe

15)

and pasaendem rational 2, ao can be transformed so that a given square root of 
the same falls into the interval given in (14). To do this, consider the cubic 
equation in 2

(zt - Z)° (o' + 4 2) e = z° (c' -j- 2 b' I -J- 3 e' 2° -j- 4 Z°) . (16)

Let z = z¢ -{- -t- I on (t', t") be assumed. (18) has at least one real zero @. I first assume 
that this zero is -{- z, and that for aie is also c' -t- 4 20 0. Then take a sufficiently close
the rational approximate value 2, -{- z1 of this root with 't' -)- 4 2l  -b 0 and choose 
the value rt ao, that for z - z, and 2 = the equation (is) is fulfilled. If 2 is sufficiently 
close to the root of the equation (16) belonging to r0 , then the value z, belonging to 
2, also falls within the interval (t', t").
But then the value belonging to theaem Bl  and l = z1 to be taken from (15) is 8 - (z1 - 
2t)/z, real and -J- 0. Therefore z = x z -|- Bl   and so there is
a root z1 = ' l of the fourth equation tranaformed by (15)

degree in (t', t"). Now the two exceptional cases are to be examined. lat first a' -l- 4 
2p = 0 for the root of the cubic equation (16), then the coefficients , q, of the 
equation transformed by z - t - a'/4 are both zero and the case of a fourth degree 
equationa is present, which can be solved with compass and ruler. lat however for 
the zero degrees J0 of (16) @ = y, then one uses again that according to (24) also

4 z' -J- 3 n' z* + 2 b' zt + c' = 0 (17)

must be. Daa is called a root z, the biquadratic equation (5) also satisfies the 
equation of the third degree (17). From this it can be seen that

e' z} + 2 b' :n j + 3 c' z, + 4 d' -- 0 (18)

must be. Pa11g now the two equations (17) and (18) have mutually proportional 
coefficients, one checks that for suitable y the equation
(5) must have the form (z -t- y)" = 0, i.e. it can be solved with a compass and ruler. 
However, if the two equations (17) and (18) have non-proportional coefficients, the 
polynomials on the left-hand side must have a common divisor of at most the 
second degreea, and thus zt can be determined by solving an equation of the second 
degreea.

Io nEg HJEcMgLuv, to whom the explanations in § 21 go back, refers to 
these and the
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Congruction methods are geometric experiments because, as already 
mentioned, they are more closely related to practical drawing. They differ, of 
course, as already mentioned, in that they are certain mathematical operations 
which are assumed to be feasible, whereas in the case of practical drawing 
experiments they are only attempts to achieve a usable drawing accuracy 
without an equivalent in a mathematical operation which in itself means an 
exact solution to the task. Thus, in the previous paragraph, it was the 
intersection of a circle and a straight line with a second-order curve that was 
assumed to be conatruable. The divider is the instrument with which, given a 
certain
use of the same, the cut becomes conatruable. 
This paragraph will deal with another use of 
the compass, of which many more can be 
thought up.  This paragraph will
among many possible examples *** "*
grasp. Mark the points 61, , et -{- e on a number line. At the points, attach two 
further straight lines q and fi at the angles a - # and aJ2 - ß against the positive 
direction of the number line. These are the z-axis and the y-axis (Fig. 74). It should 
now be possible to perform the following operation: construct a polygon line from 
O to a point on the y-axis, from there to a point on the z-axis and from there to the 
point e -j- a . The first and third of these lines should have the same length (not a 
given length, but only the same length), while the line between the y-axis and the z-
axis should have a given length b -f- 0. According to the Coainuaaatz or the 
Pythagorag, the conditions of the task are

(I)

°+y'=b. (2)

The construction can be carried out with the dividers by inserting an 
arbitrary opening r in 0 and marking the point on the y-axis that has this 
distance s from 0. Then take the given distance ö and enter the distance from the 
point found on the
y-axis to the z-axis; then see if this point of the
z-axis of 'it -l- e has the correct distance s (equal to the distance assumed between 0 
and the y-axis). This experiment is c a r r i e d  out with ever new assumptions of 
the first distance s until the correct polygon course i s  found. In algebraic terms 
this means: It is assumed that you can construct the intersection points of the 
courses (1) with the circle (2),
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( I) i8t a hyperbola if e* sin° ß - e* coa° ß is 0. From a distance, this formulation 
is reminiscent of the intersection of a hyperbola with a circle discussed in § 22. 
There, however, it was a matter of a hyperbola that was fixed once and for all 
and of the intersection with an arbitrary circle. Every third and fourth degree 
problem with compass and ruler can be traced back to this. Here we are dealing 
with a hyperbola that depends on the task and a circle that depends on the task, 
which are to be intersected. Nevertheless, the question of the extent to which 
each third- and fourth-degree task can be reduced to
(I) and (2) with the completion of the previous paragraph. In the event that

(3)

the similarity transformation leads to

s= # i1 nfo-P o,sin#,
(4)

Abe Byperbel (I) in

transitions. The circle (2) merges into

(5)

(6)

0 8iD' -0j CO8'

about. We compare this with the equation

(7)

of any circle. Can it be shown that a" a" ö, ß can be chosen in such a way that

(8)

and sinceEu still fulfills (3), we have a connection to the previous para- graph, 
since ea is then the intersection of the fixed hyperbola (Ii) with an arbitrary circle 
(7). In fact, we can see from (8)

(9)
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r

If this is inserted into the first equation (8), it becomes

(10)

or for e -J= 0

which means that (3) is fulfilled by itself. From (11) we can see for -}- 0

If ß is determined from this, whereby 0 < # < u/2 can still be assumed, ao 
returns (8)

tg 0 , -sin # . (12)

These equations then also prove to be sufficient for (8) without further ado. In the 
case et = 0, Q -l- 0, which is still excluded, the equations (8) are satisfied if we now 
use

e = 0, cotgß = b -- r ainß .

In the still closed case Q = 0 including z = Q = 0 one takes to satisfy (8)

=a, --=r.

In fact, as in § 22, any third or fourth degree problem can be solved with a 
compass and ruler and this divider test.

§ 24 Ellipse circle

Since, according to one of the results of § 22, every third and fourth degree 
problem can be reduced to the conetruction of the intersection points of a fixed 
ellipse - independent of the problem - with a circle adapted to the problem, it is 
obvious to use an ellipse circle to carry out this construction. The best known 
of these instruments is based on the obvious fact that a fixed point Q of a line 
of fixed length moving with its two end points A and B on the two right-angled 
coordinate axes describes an ellipse. In particular, if the line has the length 'i -l- 
b and is described by Q in the
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If the ratio a : b is divided in such a way t h a t  the section a lies on the y-axis, Q 
describes the ellipse -J-  = 1, as a glance at Fig. 75 shows. Such an ellipse circle1 
can be produced in a simple way in a form adapted to the intended con- structions 
by using a similar method.
as in the case of insertionIineaI at the edge of aa straight-lined trimmed or cut
folded strip of paper or on the edge of a ruler the dots

AQB and then position the ruler so that öa0 A 
and B fall on the coordinate axes, but Q 
comes to lie on the circle with which you 
wish to intersect the ellipse.

Other applications of the same idea arise 
from the remark that every point connected in 
the plane with the line AB, not necessarily 
lying on it or its extension, describes an 
ellipse, unless it lies on the circle with the 
diameter AB.

Then it describes a straight line through the origin (like A and B themselves). 
According to Fig. 76, we have for the geometric location of the points

r(z, y), which with respect to A ala origin and

the vector AB may have the polar coordinates r, 
P as the direction of the output, the parameter 
representation

y = r a ('p -j- #) - 2A ain 'p,

whereupon, by solving the equations (1), which are 
linear in cos 'p and a g, for cos 'p and sin 'p and by 
squaring and adding as

" Equation of the geometric Ortea of P

finds. The discriminant is

(3)

It is aIso really an ellipse ea aei that (3) disappears. In this case, however, P lies 
on the circle of radius fi above the through-
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of my AB. Then (2) exists on the double-counting straight line

(4)

through the origin. The aforementioned fixed connection of the point P with the 
line AB can be established, for example, by choosing P as the third corner of a 
fixed triangle whose other two corners are A and a feater point Q of the line AB, 
while T* lies on the periphery of the circle through the three points A, 0, B (Fig. 
77). Q divides the distance AB by the length e -{- b in the ratio e : b. The 
movement which is the same as that of Q

described ellipse + b- = 1 can b e  generated by moving A and B on the 
coordinates-

can also be caused by the fact that A and T- move 
on straight lines through the origin. This 

formulation suggests t h e  question as to which 
curve describes a corner Q of a geometrically fixed 
triangle A QP if the corners A and P are allowed to 

move on two straight lines through the origin (so 
that the sides of the triangle remain fixed during the 
movement). The answer can be found by looking at 

the circle K through the three points €I, A, P. This 
circle has the same shape for all positions of the

triangle A QP have the same radius. This is because the angle AOP at 0 is the same 
for all positions of triangle A QP (because A and P are always assumed to lie on the 
same straight line through 0). For all circles K, which correspond to the different 
positions of triangle A QP, there is always a constant peripheral angle to the 
constant chord. It is therefore always a circle with the same radius p. A and P (and 
therefore also Q) are firmly connected to it. It is the circle of radius p through the 
two points A and P, the center of which is the apex of an equilateral triangle with 
two equal sides e erected above the arc A P.

The movement of the triangle A QP can also be ale movement of this circle
can be described. A moves on a straight line through the origin. The diameter of 
A meets the perpendicular established to OA in 0 at the point B diametrical to A 
(TBaLES theorem). This point B is fixed to the circle. A and B move on two 
mutually perpendicular straight lines through 0, which may be taken as 
coordinate axes. Every point firmly connected to this circle, such as Q, which is 
not located on its periphery, describes an ellipse, as shown above. Accordingly, 
you can also u se  a triangle drawn on transparent paper, for example, as an 
ellipse circle, the corners A and T* of which are drawn along two lines drawn on 
the
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drawing sheet can be moved through the origin, while the third corner Q 
describes an ellipse (or, exceptionally, a straight line). The intersection of thea 
ellipse with a circle8 of the drawing sheeta can easily be seen when moving the 
transparent paper over the drawing sheet and can b e  indicated by drawing in. 
Instead of the transparent sheet, you can also use a three-pointed compass - also 
according to IlJELbtSLFv - which must be constructed in such a way that its 
three points can be set in the corners of a triangle and held in this position. Then 
slide two points along two intersecting straight lines until the third point meets 
the circle that you intersect with the ellipse.

§ 56. moving transparent cover sheet and standing circle

The constructions of § 20 with the double right-angle hook can also be 
carried out with the right-angle hook and the plumb bob. The right-angle hook 
is used both as a ruler and for plumb bobs, while the compass is also used to 
measure distances. In this way,  a third degree equationa

as given in § 20 by its right-angled coefficient train ala visible in Fig. 78. To 
solve this, first place the right-angle hook in such a way that no edge passes 
through A, while aa part at B lies on the straight line A Ab used to represent the 
coefficient. Its second leg then intersects the straight l i n e  of the ifo coefficient 
a at B. Instead of applying the first leg of the second right-angle hakena to B1 
B$, vertex at B , find the point Bq on AOA with the divider in such a way that the 
circle drawn around Bq with the radius B B$ touches the straight line AB. If the 
point Bq falls after A$ , the equation of the third degree is solved by the chosen 
position of the right angle hook, i.e .  the z-value corresponding to this position. 
The position of the right angle hook must be changed until thea effect - Bz falls 
on A - is achieved (Fig. 78). To do this, it is convenient to d r a w  two straight 
lines crossing at right angles on a transparent sheet of paper and move this cover 
sheet over the drawing sheet until the test with the compass shows the correct 
position'). Once the c o v e r  sheet has been placed on the drawing sheet in such 
a way that the line to be inserted has the correct position, the position of points 
B and B$ can be determined by

1) ("brigena one can also remain with the version of § 20 and also use the
Replace the second rowing angle hook with a second aolchea cover sheet.
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Use the compass to transfer the markings onto the drawing sheet and then 
connect the transferred points on the drawing sheet with the ruler.

We will now briefly discuss how the right angle method of § 20 can also be 
modified for fourth and higher degree oleohunqs with the help of a right angle 
hook and the dividers to make it easier to use. Imagine again the right-angle 
graph of the coefficients of an equation. Let it start at A and end at Ag+ (left the 
degree of the equation). Now imagine, as at the beginning of the paragraph, a 
pair of straight lines crossing at right angles drawn on a transparent sheet.
Now place thea sheet first ao on the 
sheet of the coefficient additiona so that 
one of the two straight lines crossing at 
right angles passes through A and that 
the vertex B of the right angleg lies on 
Al lg. Then determine, as before with 
the equation
third degree, the point B on Az A z with 
the dividers so that it is at a distance B1 
B$ from the line AB1 wil in Fig. 78, and 
then B on A A so that Bz from BMBF is 
at the distance
B$B$ has.  If the presented I'lg. 78

equation, for example, is one of the fourth degree,
then the criterion for the solution found is that the sheet A collapses, and the 
position of the transparent sheet has to be changed at a mild right angle until this 
effect occurs. However, if the equation presented is of higher than the fourth 
degree, place the transparent sheet 8o so that aa straight line on BGB Grillt, 
while the vertex of the right angles now lies at Bq, a n d  then, without having to 
draw the straight line BMBF on the drawing sheet, determine the point B$ with the 
compass on A$A$ ao that aa distance from B Bq becomes equal to BqB$. If B$ 
then coincides with A g for equations of the fifth degree, the equation is solved. 
Otherwise you have to repeat the test until this effect occurs. How t o  proceed 
with equations of even higher degree is obvious. It is important and has also 
been emphasized by HJELxgLEY, who invented thea procedure, that a 
transparent cover sheet with a course, e.g. a pair of right-angled intersecting 
€!erads, "ereeheneo transparent cover sheet in conjunction with
the isleoh circle is sufficient to solve#. •  i-de on an 
algebraic G/eicfiuirgendeiner Orades leading constructionoau|9abe.

A few examples may further illustrate the combined use of transparent sheet 
and compass. First, I will deal with the

8 Bieberbach
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Task of \V. K. B. Holz, to construct a triangle with the upper cusps. The 
orthocenter, i.e. the height intersection -f of a triangle, determines two lines on each 
side, one of which extends from Zf to a corner, the other from ff to the opposite 
side. A aei is the height belonging to corner A, lsq Mix upper section, i.e. the section 
adjacent to corner A. The mean perpendiculars of a triangle are also understood to 
be the distances l" lt, 1 of the center pointsa U from the sides. Then iat, as will be 
shown first, kq -- 21q, hp 21d, k -- 21 .

Flg- 80

the signs of these distances must be taken into account. To do this, orient the 
triangle by orbiting ea in the positive sense, i.e. in such a way that an interior 
lies to the left, and take the distance of a point from a side to be positive if the 
point lies to the left of the oriented side. Then the f" f" f are the signed distances 
of the point U from the sides, while is the difference of the distance of 
the point A from the side e reduced by the distance of the orthocenter ff from 
the side o, uaw. Then iat é = 2 f" kp 21d, k -- 21, also correct with sign. 
This can be read from Figs. 79 and 80. There iat the diameter UB is extended to 
the intersection D' with the circumcircle of the triangle, ao that ACl' becomes 
parallel to the height h and UU' to the height A. Therefore iat e.g.

AC' -- HC -- Ü" AC' -- 2f

immediately apparent.
If you now carry a chord on the circumference with the chord lengths

h" kp, h, with the sign ao, as shown in Fig. 81
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and 52, then the start and end points of the chord are diametrically opposite 
each other. The chord OIIBO' therefore fulfills a semicircle.

Conversely, if such a semicircle move is given in a circle
If b" é" é, is the upper height abachniHe, then a triangle can be specified on the  
basis of these two images.

The wood conatruction task is therefore comparable to that according to DÖRRIF- ßO
mentioned above are identical. For given F" kp, h

Flg. 81 Plg. 82

a semicircle, i.e. a radius, is to be found in which the J" é" A, form a semicircle 
chord. The task can be solved as follows using a transparent sheet and a 
compass: Since at least one of the is positive, we ateta choose 
the designation so that kp > 0 iat. Aladann we draw on a sheet a line of length

and d r a w  circles around its end points with the radii é and F, . At 
the center of the line I we set up a perpendicular and draw the center ff of the 
circumcirclea of the semicircular line on it. To do this, we draw a straight line 
on a transparent sheet and try to place ao over the drawing sheet so that i t s  
intersection ff with the center perpendicular of ä is as far away f r o m  the end 
points of Ii as it is from two matching intersections 'S and 6 with the two circles 
around the end points of é . To do this, the transparent sheet i s  moved over the 
drawing sheet until the test with the compass shows that thea distance condition 
is fulfilled ( Figs. 83 and 84).

8-
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I also derive the equation of the third degree, which connects the radius of 
the circumcircle with the three upper height sections. lat r theaer radii, ao one 
has

That means

CO8ß 2r , COß  -  ,

I'tg. 93

This is obtained by squaring

4r° - r ( qls -1- hp -l- h* j - h kp h. -- 0.

From this equation, the conditions for the solvability of the problem and for the 
number of its solutions are taken according to the rules of algebra. This may be 
l e f t  to the liver.

I will give another example. It aei from a point P eiti fetch to a parabola 
given by the focal point and the directrix. If p" p are the coordinates of the 
point P and is

y°-Sgm-0 1)

is the slope of the parabola, ao the insertion of the coordinates z, y of the 
parabola point at which the normal meets the parabola leads, in addition to
(1) nor the equation

V - pt +  pl ) = 0 (2)

to pose. The task therefore requires you to find the intersection of the parabola (1) 
with the isopod (2). Plan can of course immediately reduce this to an equation
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third degree. However, instead of solving this according to the procedure 
described at the beginning of these paragraphs, it is more convenient to 
approach the problem directly with the help of a transparent sheet of paper, a 
straight line drawn on it and the diverging circlea , i.e. to find the point of 
intersection of the two curves immediately. The remark that the focal point of 
the parabola is equidistant from the two points at which the perpendicular of 
point T meets the parabola and the parabola axis leads to this. In Fig. 86 i is the 
focal point, i is the directrix, A is the point at which the perpendicular of P 
meets the parabola, and B is the point at which the perpendicular meets the axis 
of the parabola. According to (2), the equation of the normal at the parabola 
point (z, y) in current coordinates }, p

The intersection point B of the normal (3) with 
p = 0 is at = z -l- p. Therefore AB -- z -J- p/2. 
On the other hand, the distance of point A from 
the directrix is also fid -- z -t- p/2 and therefore 
II'A -- z -}- p/2 according to the fundamental 
axis of the parabola.
requirements, point A can be constructed by placing the axis, guideline and P 

on the drawing sheet and drawing a straight line on a transparent sheet.
- the normals are drawn aoll -. Then place thea sheet over the drawing sheet so 
that the straight line passes through P. If B ib:r intersects the axis, ao use the 
compass to trace the line Ii'B, hold one point in feat, place the other on the line 
PB, Maa may give a point A, then aetse the other point of the compassa at this 
point A and check with the opening 'B of the compassg whether a circle placed 
with thea radius around A touches the guiding line i. The position of the 
transparent sheet must be changed until this effect occurs.

Fig. 85 shows another convenient construction of the parabolic normal 
through the point P. In Fig. 85 you can also see the imirror image J, off in 
relation to the parabolic normal of the point P. Il'$ lies on the circle of the radius 
ET around the point P from the center. Further, however, the following 
statement results for the geometric location of the mirror points of F with 
respect to all parabolic normals: Since the quadrilateral visible in Fig. 85 is a 
rhombua and since MA -- AB - c + p|2 has already been established, it follows that 
the coordinates n, z of J are these:

(4)

Where z, y are the coordinates of the parabola pointsa at deaaen normals
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was mirrored in J, . Since equation (l) therefore applies to z, y, J, lies on the 
parabola

(5)

with half the parameter pJ2 and the vertex J. Its focal point & and
their guiding line 2 can be seen in Fig. 86. The construction of J, - and

so that the parabola normal ala the 
perpendicular from P to the straight line 
NJ, - therefore amounts to the 
intersection of the circle P (NN) with the 
parabola (5), and this intersection can be 
accomplished with the dividers, as 
described on p. 98/99.

Ea is obvious, as is the construction 
of the common tangents of two conic 
sections discussed in § 20 using the 
method dieaea
§ 25 can be amended.

Another example. Mr. A. SPEISER
Flg. 8fi has me occasionally to one from 

Arabic sources known fiia-
echiebunqoau|gabe by AnGHTHEDES, which is closely related to the construction 
of the regular Siebenecka.  As in sig. 87, there is a

Square of the edge lines I and a of a diagonal are 
drawn. A straight line ao is to be laid through aa 
corner 0 so that the two triangles hatched in Fig. 
87 have the same content. This problem can be 
solved using the method described in this 
paragraph. Place a straight line through corner 0 
using a transparent

Flg. 87 Blattea has a trial straight marked on it.
The condition of the task requires that the 

relationship Ur = s|is exists for the pieces marked in Fig. 87. To check whether 
it is fulfilled for the test line, lay another test line through the points A, D of Fig. 
87 with the aid of a second transparent sheet, determine the point P on it with 
the compass, which has the distance h from AB, and see whether this point P has 
the distance s from OR. To do this, take the line Ä on p. 117 and find the point 
on AD that is a t  a  distance fi from AB, i.e .  choose it so that a circle drawn 
around it with radius h touches the line AB. Then hold the point of the compass 
on AD firmly and grasp it with the compass.
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circle the distance die8ea points from OA. See if this distance is equal to s and 
change the position of the test line until this effect is achieved.

The connection between the task and the regular heptagon is shown by the 
following consideration: The test line drawn through 0 in Fig. 87 has the equation y 
= y z. It intersects y = - z -l- 1 at

(6)

and meets y = I at z = Ug = I -t- s. Therefore iat s = (1 - du)/y. Therefore

the task

Flg. 84 E'lg. 89

1 -|- y * (1 - /z) .

Daa iat converted to s

(7)

or, which is the same thing,

If you set s = Um, you get H -{- 'r° - 2s - I = 0. According to p. 59, this is the equation 
for the number 2 cot (2 7ZJ7) associated with the regular heptagon. Therefore iat e = 
lJ(2 coa 2 uJ7).

To a noois better - held entirely in the spirit of HJsLoscsv -
The following remark, also based on Anc2tIbtEDss, leads to the construction of " with 
the compass. JYfan construct over the base line AB of length 1 an equilateral triangle A 
BU with the initially arbitrary isides AG -- BO -- e (Sig. 88). Its base angle is at e. Then 
' x = s/2. If the distance AH -- e° is further subtracted from AB, then
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a triangle AIIG is obtained. According to the cosine theorem, the side äd -- s° is 
in it. It is therefore also equiaxed. Now remember that according to (6) and (7) 
the distance OE and thus the distance of the pointF from the squared side OA is 
just et  . Therefore, the following construction of a i s  obtained with the 
dividers, which is illustrated in Fig. 89: Using a transparent sheeta , lay a test 
straight line through the corner 0 of aa drawn squarea with an edge length of 1 
and bring theae with the diagonal A Q theaes squarea in one point to the 
intersection. to the intersection. Plan a 
perpendicular in the little of the square side AB. Then use the dividers to 
measure the distance of the points f r o m  the square side AB.

Now insert one point of the dividersa 
into A and move to Zf so that All is 
equal to the distance of the points from 
the side AB. Then hold the point of the 
dividerg at H and, holding the divider in 
place, bring the other point to the center 
line of AB. This gives you a point d on 
this. Now use the dividers to measure 
the distance OB and see if theae is equal 
to BC!

Change the test line for as long as it takes for this effect to occur.
It is not known whether AnouiuzDze thought o f  solving the problem in the 

way described here. However, the fact that the Hjelmalevache method of 
construction with the compass and the test line (without a transparent cover 
sheet) was not far removed from antiquity may be shown by a final example 
going back to Arozconms. It is a 2photographic representation of the third root. 
If the third root is to be taken from the number m, assume a rectangle ABC!D 
with sides 1 and m, as shown in Fig. 90. Determine aa center point A and place 
a straight line p ao through a corner D so that its intersection points and O with 
the extended sides AB and A€l of E have the same distance. This can, of course, 
be done immediately using a compass and a transparent cover sheet (on which 
the straight line g is marked). Then iat the distance BH' marked z in Fig. 90

even ]/m . Alan denotes CO with y.  Then it follows from similar triangles Um = (1 -t- 
y)J(z + m) and l/z = Um. Stan denotes the diagonal of the rectangle by d. Then the 
application of Coainugaatzea to two triangles with the angles et and Q teaches
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From this follows

So in total And 

from this follows

z and y are the two middle proportions between 1 and m.

§ 56. sewing ionization conditions

The belief that one must be able to solve any construction problem, e.g. also 
the trisection of any angle, with compass and ruler, cannot be eradicated, 
although the impossibility of constructing a circle with a ruler is a quite obvious 
example of the fact that there are limits to the scope of any construction aid, and 
although the proof given in § 13, e.g. that the angle of 80 degrees cannot be 
trisected with compass and ruler alone, is sufficiently simple to be made 
accessible to anyone who feels called upon to deal with mathematics. For 
example, the proof given in § 13 that an angle of 80 degrees cannot be divided 
into three with a compass and ruler alone is sufficiently simple to be made 
accessible to anyone who feels called upon to deal with mathematical problems. 
Nevertheless, it is not only outsiders, but also academics, even qualified 
mathematics teachers at higher education institutions, who repeatedly offer 
compass and ruler constrictions for the trisection of any angle. The 
constructions, which the originators consider to be exact, naturally turn out to be 
approximate constructions whose result is more or less close to the desired goal. 
It cannot be the task here to enter into an enumeration of such approximations. 
But the goal of fundamental completeness that the book has set itself makes it 
seem appropriate not to completely ignore these procedures.

We call approximation aconatructions constructions with compass and ruler in 
the sense of § 6, which, for example, do not exactly divide the angle into three 

equal parts, but which nevertheless provide values that differ so little from the true 
value that they arouse our interest, especially if the difference in drawings of 

normal size proves to be imperceptible. The construction given by the great painter 
MaRECBT DÖRER, fully aware of its approximate character, is of the highest 

dignity and rarely surpassed accuracy. Instead of dividing the arc corresponding to 
the angle 'p into thirds, DüRsR divides the chord of the arc into thirds and b u i l d s  

the perpendiculars in these partial points up to the circle arc. These peripheral 
points are connected to each other and to the beginning and end of the arc by a 

chord.
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connected. The arithmetic mean of these three chords is then taken as the chord 
of the approximate angular third. The recalculation not to be presented here 
shows that the difference against the third part of Q for
0 Q uJ2 increases with 'p and reaches its maximum for Q = u/2 with 18". Fig. 91 
shows the construction given by DöRsR. The chord AB is divided into three parts in 
O and D and perpendiculars are constructed which meet the circle in A and . Make 
AG -- AUH and BH -- BA,thirds UCr in and BH in A with JR = 1/3 f7R 
and KH 1 J3 DH and finally makes AG -- AJ and

B f -- BK. Then fi and ff are the 
approximate third points of the arc of 
a circle AB according to DöBER.

Among the many other possible 
approximations for the trisection, 
two more may be mentioned, which 
can be found on p. 78 and p. 79.

The exact "constructions by means of insertion are given if the conchoidal or 
Pascal's scroll playing in there is replaced by paagendeKreig arcs. First the insertion 
between two straight lines (Fig. 45, p. 78). The distance of length 2 is drawn 
between the straight lines z - cos g

and y = sin g on a straight line through 
the vertex 0 - which is also the origin of 
the coordinates. In other words: The 
conchoid with pole 0, base z = cos g and 
interval 2 is intersected by the straight 
l i n e  y = a g. This conchoid meets y = 
0, the one leg of the

angle to be thirded from the first quadrant, in z - 2 -l- cos g. Now bring a circle 
instead of the conchoids

which also meets y = 0 in z = 2 -}- cot g, with y - a 'p to the cut and also et to be chosen 
in such a way that the maximum error occurring for 0 Q u/2 is as small as possible. 
Numerical calculation shows that e = 1.27 is almost correct. The circle used is the 
circle of curvature in z = 2 -l- cos Q, y = 0 of the conchoidal curve belonging to an 
angle of approximately 57° 18' 59". It i s  easy to construct as e defines its center.  
With g = 0 and
'p = uJ2 the construction is accurate. The maximum error is about 40". Apply alao 
to y = 0 to the left of the origin I,27 cos g to obtain the center T* of a circle, which 
is to be placed through the point z = 2 -l- cot 'p, y = 0 and intersected by y = a 'p. 
The resulting point Q of
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Sig. 92 is connected to 0. OQ approximately includes the angle 'p/3 with y = 0. 
The quality of the approximation can also be judged by the difference between the 
points Q and Q where the creia and conchoidal line
;y = sin 'p meet. This difference is smaller than8 2- 10 *. For example, if the unit of 
length chosen for the drawing is 10 cm, ao is 'Jp mm. For about
'p 72° 30' the approximation angle is too large, for 'p > 72° 30' the 
approximation angle is too small. The fact that e is chosen as favorably as 
possible can be seen from the fact that the absolute values of the maximum 
deviations upwards and downwards are equal. For each angle 'p, the angular 
error changes monotonically with e.

Another approximate construction can be obtained by using a
Modification of Archimedes' construction Yon p. 79, Fi{;. 46, the Pascal

Flg. 03 T "lg. 04

scroll replaced by a circle. This modification can be s e e n  in Fig. 93. The two 
circles have the same radius r. T h e  centers are points A and 0. BOQ is to be 
divided into thirds. The line r is inserted on a straight line through P between the 
circle around A and the straight line AQ. It forms the angle QJ3 with PA in P. 
According to Fig. 93, 'p/2 = y -{- y/2,
i.e. 'p = 3 y. The construction is based on the intersection of the Pascal's helix of 
the circle A(r) with pole P and distance r with the straight line A Q. For 
approximation, take a suitable circle with the center on AB through the point B 
where it touches the snail. For example, the circle of curvature of the worm at B 
will give a good approximation for small angles. Its radius is (9/5) r. As 
FmsLEa has calculated, for 0 N 'p 22° 30' you get a three-part approximation 
with a maximum error of 0"- 074 at g = 22° 30'. In Fig. 94, first draw the circle 
of radius r around 0 as the center and extend its diameter AB by r to P. Then 
determine the point ff as the center of curvature of the scroll in B, i.e .  choose ff 
ao that f& - (9/6) r, and draw the circle of curvature with MB as the radius. BiS 
is an arc of the same. Then enter the angle 'p = @ QOB in 0 and intersect the 
straight line A Q with the circle of curvature in Qi  . The angle Qk PB is then 
almost g/3.



§ 26. approximation8constructions

The approximation of the screw by an arc of a circle is also the basis of the 
approximation construction of the master tailor Korz in Ludwigghafen, which 
became famous through a work by Mr. PzRRon. The approximating circle has to 
b e  chosen so that it provides an exact construction for 'p = 90º. In Fig. 95, the 
tangent to the circle O(r j is laid through T*, the distance r is traced on this from the 
point of contact, i.e. the point of intersection of O(r) with A(r), to the outside of 
A[r) and through the point 'S' obtained øo and through & a point in & the screw is 
laid.

touching circle. It - which which 
has point 6 in common with the worm -  i s  
cut, instead of the worm, with the straight 
line AQ in a point Q. Then iøt @ QA PA 
almost ø/3. The maximum error
is 14" - 867 at g = 69º 56' 2"  447.
When they became known through Herm 
Pzenon because of their high ge-

This surprising construction is, as we know today, only one of a whole 
chain of constructions of even greater accuracy based on the same principle; 
for example, we can note with P. Fusses that every angle in the form 'p = 
n - 45º -I- y, 0 y 22º 30', n whole,
can be written. Then ø/3 = I-t
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15° -}- y/3. However, since 16º all 
difference between 60º and 45º can 
easily be con- øtructed, øo the 
construction mentioned above, which 
is based on the approximation of the 
screw by its circle of curvature in B, 
provides an approximation con- 
atruction for any angle with a 
maximum error of only 0" - 074.

The following final construction, which approximates another curve by a circular 
arc instead of the scroll, is even more accurate. In Fig. 96 Rei OO -- r, OA -- 3 r, ôfA -- (2 -I- 
4/7) r. A circle is drawn around if as the center point with MA at radius. g aei the angle 
to be thirded. It aei @ BOA -- 'p|4. Then @ BÕA is almost øJ3. For 0 ø 22º 30' the 
maximum error is 0" - 016 for 'p = 2 2 º  30'. Thus, according to the above, if suitable 
multiples of 45º are subtracted for all angles, we have an approximation with this 
maximum error.  The congruence uses

in A the curvature circleø of the curve e - -
ßİn

according to FINSLER t o  the n-division.

.  You can aie

3 4
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Starting from the construction with the carpenter's hook shown in Figs. 65 and 66, it 
is also possible to approximate the trisectrix with a circular arc, following n'Oczonz.

§ S7. Regular polygons

As an example of the scope of the cubic constructions, the regular polygons 
congruent with the insertion ruler should be determined. These are the ones for 
which the equation of the three-division can be traced back to a chain of 
equations of the second and third degree. öflecting the Cardan formula, it can 
also be said that these are the ones for which the equation of the three-division 
can be solved by repeated extraction of square and cube roots. This leads to a 
consideration similar to that made in § 14 when dealing with the question of 
regular polygons that can be constructed with a compass and ruler. Again we 
start from an irreducible equation of the first degree /(z) = 0 in the body K of 
rational numbers. By adjuncting } to R. we obtain a body K(5 j which has the 
relative degree tt with respect to K. (See § 14.)

By multiple adjoint of square roots and cube roots we obtain an upper body 
Kg over A, in which Zf(}) is contained as a lower body. The relative degree n 
of A(}) with respect to R is therefore given by a
p. 60ff is a divisor of the relative degree of Kg with respect to K. The relative degree, 
however, is of the form 2° 3 since square and cube roots are added one after the other. 
Therefore n is also such a product n - 2' 3 .

The condition found is, as p. 64 in the case of constructions with compass 
and ruler, a necessary, not a sufficient condition. A necessary and sufficient 
condition is provided by Galoigache's theory of slopes in conjunction with 
group theory. It can also be expressed here in the following form: Under }, }1.- 
f" - i  we understand all-
roots of an irreducible equation /(z) = 0 in K. For the fact that aich
even one of these roots can be represented by a square-cubic root expression, it is 
necessary and sufficient that the relative degree of the body K [$, d" ...  , }q ) with 
respect to K is of the form 2' 3*.

Let us apply this result to the circle division equation. If it is to be solvable by 
square and cube roots, its degree g(zt) must be of the given form. (Cf. §14.) Thus

it follows that the prime factors pt are either 2 and 3 or only
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inof the eratepower in tt and are of the form 2' 3* + 1. The result is therefore: the 
regular tt-I attn can only be congruent with the Aimcfiiebe- linml if its corner number 
n is of the form 2' 3* p p, 
whereby the p lazier different primes are of the form 2e  3° + I. That this condition is 
also sufficient can be seen from the algebraic theory of circle division. This should not 
be explained here. Possible prime factors of a are therefore 3, 5, 7, 13, 17, 19 ... . In 
contrast, for example, the regular pentagon cannot be configured with the single-slide 
ruler.

§ S8. The quadrature and rectification of the circle.
Qnadjustable circular arc branches

The task of constructing a number that is not the root of an algebraic equation 
with rational coefficients is called non-algebraic or tranacendent. This includes the 
task of determining a content from the radius of a circle (quadrature) and finding a 
circumference (rectification). These tasks cannot be solved with compasses and 
rulers in the sense of § 6 and cannot be solved w i t h  a single-axis ruler. This is 
because the number a, on which ea depends, is a tremmnent SaM, i.e. it does not 
satisfy an algebraic equation with rational coefficients. This was proved in 1882 by 
FanoTNND LlND£mnn according to a basic idea stated by C aau.ss HERMIzz 
when proving the transcendence of the number e. Since then, many mathematicians, 
including some of the greatest such as KAnc WEZER- sein andDamn 
Hnazez, have developed new proof variants following the basic idea. The proof 
has been included in so many textbooks and can be found in so many places in the 
literature that it is not n e c e s s a r y  to reproduce it here.  Rather, I p r e f e r  to 
follow
C. L. Sizosz, who uses a method derived from A. 0. G£LFOirD. Although the 
Beweia approach may have some inconveniences in magician implementation,  ao 
it is based on a very simple memorable basic idea and was applicable to other 
tranazendence questions, as shown by A. 0. GELFOND, C. L. SIEGEL and also 
Ta. SGHNEZDzR have shown. While one is at a loss to characterize the basic idea 
of Hermite-Lindemann's proof in a few words, the proof to be given here is based 
on the assumption that exp(zz) with all aone derivatives at the points z = 0, 1, 2, ... 
is not compatible with the growth properties of thea function for z -+ m. To carry 
out the proofs, some tools are necessary from the theory of algebraic numbers and 
from the theory of functions, which are familiar to every trained mathematician. 
These will now be explained.
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1. A number d is called algebraic if it satisfies an equation (1) with rational 
coefficients. Sum and product of algebraic numbers
are algebraic numbers again. For ea aeien }l  llnd p, the two algebraic numbers and 
d2 , ... , d", the roots of an algebraic equation

with rational coefficients , ... , ng and furthermore p" . . . , pp are the 
roots of a second algebraic equation

(2)

with rational coefficients. Then the two products have

according to the main theorem on symmetric functions, are themselves rational 
coefficients if these products are extended over aße z from 1 e ii and all Q from 1 Q 
m . Therefore }t -J- pt aand } p are also algebraic numbers.

2. The }; and the p$ are called algebraic weapons if the coefficients , ... , ap 
and t'2 , ... , b", in (I) and (2) are integer rational numbers 8. Then the 
coefficients of the two specified products are also integer rational numbers (and 
again the coefficients of the highest powers of z are exactly 1). Therefore, the 
sum and product of integer algebraic numbers are again integer algebraic 
numbers.

The equation of lowest degree (1) with rational coefficients, which is 
satisfied by a given integer algebraic number }, in other words, the irreducible 
equation in the body of rational numbers, which is satisfied by the number, has 
in turn integer rational coefficients, if the coefficient of the highest power of 
this equation is assumed to be 12). The absolute value of this equation is 
different from zero for n > 1.

3. An algebraic integer z that i s  also rational is a rational integer. For then the 
degree of the irreducible equation in fi, which satisfies e, is one, i.e. the equation z - z = 
0, and its coefficients are integer rational numbers.

4. If } is any algebraic number, ao always gives ea rational integers p -t- 0 such 
that p} is an algebraic integer. I f  eq z' -l- - - -l- ag = 0, e0 -|- 0, any equation with 
rational integers

') Cf. Biznzaeace-Bznzs, \"orlesungen über Algebra, 6th ed., p. 2d7: Gxoss' 
theorem: If a polynomial /{z) with integer ra4ional coeoisients can be decomposed into 
two factors with rational coefficients, it can also be decomposed into two factors with 
integer rational ifoefficients.
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coefficients, one of whose roots is }, then o is an algebraic integer. By 
multiplying the equation for } by ab we see that y = o } of the equation

is sufficient.
5. Finally, remember the remarks in § 14 about algebraic number fields. If 

an algebraic number } is added to the body fi of rational numbers, which 
satisfies an equation of degree a that is irreducible in this body fi, ao a body 
fi(}) of algebraic numbers is created, which has the relative degree li with 
respect to fi. Each number e of this body then satisfies an equation of at most 
nth degree irreducible in fi. If }, = }, }" ... , }q are the roots of the irreducible 
equation for }, then according to § 14 daa e has a representation

with rational coefficients, and are called

the numbers conjugated to z. Then Zf (z - e ) = G(z) = 0 is an equation with
i

coefficients on fi of degree n, which satisfies e. The equation q (z) = 0 of the 
lowest degreeB in fi, which satisfies z, is a factor of the same. Its degree is 
therefore at most a. More precisely, the degree of g is a divisor of n. According 
to the  proof in § 14 about the relative degree, the relative degree n of 
fi(}) over St is the product of the relative degreesg m of St(e) over fi and dea 
relative degree of fi (}) over St (e).

If we again adjoin to fi(}) an algebraic number p which satisfies an equation 
(2) of degree si with rational coefficients which is irreducible in A, then 
according to § 14 we obtain a body fi(}, ty) of algebraic numbers whose relative 
degree with respect to A according to § 14 is both a multiple of tt and a 
multipleB of m iat. Such bodies fi(}, p) are, however, completely identical with 
the iforbs fi(ß), i.e. they can also be obtained by adjunction of a single algebraic 
number ß to fi. If } = }, }" ..., }q are all the roots of (1) and p = p, p" ..., p", 
are all the roots of (2), then choose the rational numbers e and ö so that the a to 
numbers

are all different from each other. All you have to do is assume e -1- 0 and then weigh b 
so that there is no difference between two of the n m
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numbers #,p disappears. Then

a polynomial (ti m)-th degree with rational coefficients, deasen Nussatellen jene 
#, p aind. If then &(}, p) is any rational function of } and p with coefficients 
from fi and if &, p = 'f'(}" p ) are the values obtained by replacing the }, p in 
&(}, p) by any }" p, ao iat also

is a polynomial with rational coefficients. From this it follows for z = ß  that

 '(4)  
0'(6)

is. This proves that fi({, p) is - fi(ß).

6. The absolute implied of U(z) is the product (- I)' Zf e$ over z= 'zt and
t

its all conjugates and is called the norm of et: N('x jand also the norm of the 
conjugates with et. The norm iet OI8O defines ats product of all K -im!-<--
••  i• luri   algebraic number rone of N2tH "different from zero".
rational number. The norm of a 9integer algebraic number other than zero is a 
qarise rational number other than zero. The absolute value of the norm of a non-
zero algebraic integer is therefore at least one. By definition, the norm N("j depends 
on the body fi(}).

7. One can avoid the somewhat subtle discussions in 5. and 6. in a manner 
sufficient for the purposes of these paragraphs if one understands by N(5 j, i.e. the 
norm of the algebraic number }, the absolute term multiplied by (- 1)" of that in fi 
irreducible equation (1) with the highest coefficient 1, which satisfies }. If the su } 
conjugate numbers are then understood to be the remaining roots of this equation, 
then N( ) is equal to the product of d and its conjugates except fora sign. For every 
non-zero algebraic number }, N( j is therefore a non-zero rational number. 
Furthermore, the norm of an algebraic integer is a rational i n t e g e r . The degree of 
an algebraic number is then called the degree of the irreducible equation in fi that 
the number satisfies. If }, p are then two algebraic numbers of degree n and m 
which may satisfy equations (I) and (2) respectively and if ß - r( , p j is a rational 
function of } and p with rational coefficients, ao satisfies # the equation ff [z - r(}" p 
)] = 0 of degree In n if the product over }, p and all is extended to both conjugates. 
The equation has rational coefficients. The in fi irreducible equation satisfying ß 
corresponds to a divisor of its left-hand side, and therefore ß has degree a m at most.

8 Bieberbaoh
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Now the general statement about algebraic numbers should be applied to n. The 
assertion that neither e nor u are algebraic numbers is contained in the more general 
assertion that doc e andexp (e) for a.-f- 0 cannot be qfeic£- temporiy algebraic 
numbers. For for e = I this is the assertion that e is transcendent, ufid for z = 2ai it is 
the assertion that 2ai and thus u is transcendent. (For if a were algebraic, ao would 
also be algebraic as a product of algebraic numbers).

The proof that u is trangcendent is now given by the proof of the more general 
theorem: e and e' are never simultaneously algebraic for z -{- 0.

To prove this, we assume on the contrary that cc aeien et -|- 0 otid e° 
alqebraioch. Then we adjoin aie to the body fi of rational numbers and obtain a 
body fi(e, e') of algebraic numbers to which the numbers ot' and n'e' also belong for 
each integer rational s. I8t is then the whole r a t i o n a l  ZaM g 0 is such 
that qa and pe' are algebraic integers'), ao q'".' and g'+' a.'e' are also algebraic. h is 
the degree of the body fi(e, e'),
i.e. a relative degree in relation to fi.

The function-theoretical tools required for the proof are Cauchy's integral 
theorem, Cauchy's integral formula and the concept of the residue, which the 
reader will find in every textbook on function theory.

The proof is based on an interyolator representation of the joa£iion /(z) - e''. 
Here z -J- 0 is a number, z is the complex variable.
Stan divides the identity

by (} - z ) (} - z). Then it becomes

(3)

Bier Bind } and z complex variable and rd with £ = 0, 1, ... , n dio places where 
interpolation is to be performed. Stan writes down (3) for £= 0, I, ... , n and insert 
the identity of the number £ -t- 1 into that of the number £. Daa

') As stated above, ea gives an integer rational number g, -[- 0 such that 9,a is 
algebraically integer, and an integer rational number -[- 0 such that g,e' is algebraically 
integer. Then for g = g, q is obviously both qm and ge' completely algebraic, because 
the product of whole algebraic numbers is again completely algebraic. (The whole 
rational numbers obviously belong to the whole algebraic numbers).

• ) Cf. E.g. L. BIBBERBzcn, Lehrbuch der Funktionentheorie Bd. I, 4th ed. 1834, 
American reprint 194ö or I . Bizazaazcu, Introduction to Function Theory, p. ed., 
Bielefeld 1951.
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leads to the idontity

(4)

Now multiply theae by /({) and integrate over a circle r 
in the positive sense, which contains all the variables z0 , q, ...  , zg, z l i n  the 

interior. Then, according to N. E. Nösnrir, miin has the following interpolatory 
representation of the t'nnction {(z):

£ = 0, 1,  ()

(7)

If the points z$ are assumed to be different from each other, the result is a 
representation of the Newtonian interpolation formula with remainder. The 
interpolation points should be chosen differently for the purpose of the proof of 
sanscendence. To do this, take an integer rational number m > 1, which is then 
suitably disposed of, and generally use

z f for n 0, I, 2, .. . ,

n = m s -1- i, 0 ts m - 1; in other words, set

Because (Ii) becomes

f()=•,+q•+az(•-1)+---

+"m-+'*"(- )+'"'h-'+')+ih-)" h-' + f

(8)

(8')
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and it is

(9)

Now the proof of the following assertion is started: If the function
l(-) -- -"  øamŁ all derivatives at the points z = 0, a = 1, ...  , z = øi - 1 with a paøaender 
choice of m has algebraic numerical values, then /(z) must b e  a polynomial. This 
nonsensical ł 'olgerung proves that œ -}- 0 and
e' cannot be algebraİBch at the same time. This is because the stated values of 
the function and its derivatives aare

e°J'# o,i-0,1,2,...,

and they would all have to be algebraic if œ and e° were algebraic.
The proof, however, that {(z) must be a polycom is based on the fact that the oq 

for sufficiently large numbers a and that the remainder of (5') for n -- n disappears. 
The eg and daø Regtg1ied must be estimated for these digressions.

I first estimate the coefficients e,ø,q t upwards. Letu be
= s* -  2 (øi - 1) mil any fixed s from 0 < e 1 the Into- grationøweg. Then for all I 

from 0 tñ m - 1

-expose'-'-m -e)#log4- log 1-

< ezp ( ø| a* -- + m (m - 1) a' - m (1 - c) a log a) .

Because it is available for 1£ ü m - 1

and therefore

k (10)
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Further, for - e '- and | s1 according to (9) for iille Ot N 
m - 1

ezp (| o | a* "') (m!)* 
" 8' " "* (8' "* - 1)' - - (8 "' - Nt -|- 1)*

< ezp() o a' ' -|- (a -I- I) log(m!) -I- m (m - 1) a' - m (1 - c) e log8).

(1I) shows that for feates or and featea e in z 1 of the

lizn r"" + z^" - - (z - m -|- 1)* 0

i3s

(II)

(12)

iat. e° is therefore represented for zl I is represented by the 
interpolation series resulting from (5').

he  level unend-

(10) also shows for feate m and c that lim ap, + t = 0. Hence

could only be derived from a"" t t = G if the ag,+ t were rational integers. But this is 
not the case. However, we will soon establish that the a""+ t are algebraic numbers 
from the body A('x, e'). We will also determine the factors that must be applied in 
order to convert the ep,+ t into whole algebraic numbers. The conclusion that the 
a""+ t we are large s zero, however, must then be drawn by estimating the norm. 
And for this purpose, the numbers conjugated to the ag,+ t must also be estimated. 
This is alla accomplished by the residuals theorem of function theory, which should 
now be applied to the representation (9) of the coefficients a", +. According to this, 
a""+ t is equal to the sum of the Reaiduen at the singular points of the integrand 
enclosed by the integration path. However, these are the places 0, 1, 2, ..., m - 1. 
The Reaiduum at each of these places is the coefficient of the - I- th power in the 
Laurent expansion of the Irite- grand at the relevant place. Since, for example, at = 
0 the integrand has a (s + 1)-fold polar cell, the Taylor expansion of the integrand 
freed from the factor I J{- + ', i.e . from

at } = 0 and, in particular, use the coefficients of the members }' of the Taylor 
expansion. However, this is known to be the s- th derivative of the function just 
written at } = 0, divided by e! Similarly for the other zeros of the denominator 
of the lntegrandon. This gives us the following representation (13) of a", + t:
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/°-'1
/--f+1 £-0

In ( 13), /*$ = 'x* e°*. Therefore, a s  already noted above, +"/(*) and thus also q'+ '^ 
/J*) for 0 k ( e , 0 y to - 1 is quite olgebraic if q x and pe' are gonz a1gebraic and p -1- 0 
i s  a pitaaing rational integer. When the differentiations occurring in (13) are carried 
out,  the denominators are again integer rational functions, but they a r e  all divisors 
of

gQ)= Q}-1):(§-mdl "+1/Q-p@'*1

are. The fact is tha t  every denominator N[(j has whole rational coefficients and 
that every N[(j has a whole rational Q({) with likewise whole rational coefficients 
such t h a t  ip(d) = N[(j Q({). Therefore, for every integer rational number ,tt 
every denominator N(g j is a divisor of g(/i) = [p! (m - I - y) ! (- 1)"' -j" + ', and 
according to the binomial theorem, this number iis a divisor of ( m - 1)! " + '. 
Because according to theaem
sentence is ') p (

!

! pJ
!

an integer rational number. One has
Therefore, as a result of the consideration that all denominators occurring after the 
differentiations in (13) are divisors of [(m - 1)! + ' are. All in all, therefore, the

";#+1   !@"+-1)]"'1  (14}

integer algebraisoho numbers.
The conjugates 't ,+ , of op + t are obtained from (13), if in

//*$ = ot'e°* which replaces et and e° with their conjugates. Ea may have z the degree p, e° 
the degree n. Then according to 7. of p. 129 e", ,+ t has a degree A n p. It aei e = , e° = q, 
and ot" ... , e"  e , ... , e aeien the

l



Proof of transparency

other conjugated. Ea aei

(é)

Then /* < A' +'^ for all conjugates. We use this to estimate the 'i ,+ 
u p w a r d s  in (13). In order to estimate the upward derivatives of the 
rational functions there, remember the formula for the differentiation of a 
product of m - 1 factors, which is proved by independent induction and which 
was already used for m = 3 in the derivation of (13). It reads')

As usual, 0 ! = 1. p" p" . . . . pp_t means non-negative
whole numbers.

') See e.g. 0. Römer and G. Amen, Differential- und Integralrechnuog, vol. 2, Bsrlin 
1838, p. 20. There seem to be only a few modern books in which the formula is given. 
Therefore, the proof is given below:

(18) is obviously correct for £ = 1. Because then

Assume that (18) is correct for k - I. Let it therefore be known

  (£ - 1)!' d  

Here the et, . . . tp _ coefficients still to be determined, and the sum is again
over all p" p"- - . es - t with the 8sum £. Each item of the last sum is created by a single 
differentiation from an item of the (k-1)th derivative. Therefore I, depending on which of the 
factors is differentiated again,

(ä - 1)!

Only for eacha p 0 a summond has to be added, since, as mentioned above, each poat is a 
unique differentiation of one of the (£-l)th derivatives.

°ei---em-y  (8- I)!p, (8 -1)!   lk - 1)! p "i 1  £ !
- ",!...r.-



£!

2!

°m-1
1

(ß - l) !

l3fi § 28 Quadrature and rectification of the circle

The , p_are the polynomial coefficients'), i.e. whole rational numbers.
!

len. Therefore iat

is. Formula (18) can be applied to (13). Because there the. products of m - I factors 
are to be differentiated. The item ({ - y)- + * or

') The polynomial theorem - a generalization of the binomial mismatch to more than two 
summands under the 6th power - is

It is proven by complete induction. Obviously, for £ = 1 is correct

because there is always only one pi -|- 0, namely = I. Assuming cc Aoi

Here the et, ... t", _1  coefficients still to be determined, and ea is the sum again to be 
extended over all non-negative p" p" ....e - i with the sum £. Each pole
of the £th power arises aue aom the (le-1)-tsn by blulbiplication with a zj. Therefore, 
depending on which zj al8 factor was added,

Only one summand has to be written down for each pt -[- 0, since, as already mentioned, 
each Pmtsn arises from one of the (£- 1)th power by multiplication with an sj. Therefore, 
again

+ ( ß - l) ! pe -1

pi I - - - p - 11'

The analogy with the £th derivation is striking. This is why i t  i s  also customary to write

If you set s,-s - - - = em i - 1, ao you get the formula mentioned in the text concerning 
the sum of all polynomial coefficients.
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)' (Ö8)

(} - y)' in the numerator only means that the corresponding item of the 
denominator is to be omitted before differentiation. Nowfor 0 N t

it' t-+'- "-''-+'(t -'- i)-- " -- + i)'
  Z!

! - - Qm-1!

Therefore, for 0 2 ü s

This Abachiitzung') was so rough that, as can be seen at a glance, it also 
remains correct for the other derivatives of rational functions occurring in (13). 
Therefore, according to (13) we have the valid estimate for all conjugates

.,/ A'+"' 2(m-1)(2) (m-l)<C' a. (17)

Here U means a number independent of a. To estimate the norm of e""+t, we have to 
use (10), (14) and (17). Thus, we find the following estimate (18) for the norm of an 
integer a1gebraized by (14) by using (10) for op + t itself and (17) for the h - l 
conjugates:

') It is also possible to avoid the formulas used in differential calculus and still arrive at 
a useful conclusion. You can then use the Oauchyache integral formula

Plan then takes place
£ - m - 1

That means

with a number independent of o . for which you can take 2(m - 1), as in the text.
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N (o ,+t g""- s! [(m - 1)!/*°"')

Xe  
() t 1- -+ y ( y) - (} ) I g )

< C'j s" ')* e (( ") 8' -|- ex (m - 1) a' - m (1 - c) slogs)

< e () " a! ' -|- m (m - E) a* -j- s IogC/ -|- th - 1 - m (1 - c)/ aloga).

(18)

Here U means another number independent of e. If you therefore choose

and if such a si is fixed, the following applies

IizaN(" ,+, '+*-'s!(("r - 1)!)*+')- o.

For sufficiently large s, this norm 
therefore has an absolute value less than I 
and is therefore zero as a rational integer.

Hence the o""+ t for large s are also large nuts. If we now look at (12), we see that 
(5') with the coefficients (9) merges into an infinite series which, however, breaks 
off because its coefficients are all zero from a certain number onwards. The series 
arepresents the function e°' in z 1. Theae is therefore a polynomial for z 1 and 
therefore, according to the principle of analytic continuation, for all z. This 
obvious nonsense teaches us that e and e° for 'x -J- 0 can never be algebraic 
numbers at the same time.

Approximations for n can be made to the chain break development

- s, 7, 1s, i, 292, i, 1, ...]

extract. Approximation breaks aare

p3, 7, 15, 1] = 3.14159292 ... = 3 - l -   4* 

7*-F8"

The latter can b e  constructed like this: Fig. 97. Here CAD -- I, C!lil -- 7J8, AG -- 1/2, 
JG OD, EH EG, AH -- 4°/(7° -I- 8-). The subsequent proximity fractions for a are:

[3, 7, 15, I, 292] - 3 - I -   4687 
33102
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33215

[3, 7, 16, 1, 292, 1] = 3 -l- 703$ ,

[3, 7, 15, 1, 292, 1, 1] ^ 66317 '

According to the general theory of continued fractions, the approximationB-

break 3 -|-0 g um hÖChatens

is alao only slightly beaaer than the 
general theory suggests. However, the 
general theory further teaches that the 
next approximation truncation

3 -{- 63  with the only slightly larger 

denominator 113must give a much better 
approximation. For it can
highest data at .3. 33102< - ' °*
be large.

The proximity breaks described 
above can be seen one at,

that

10* too small. The approximation

Ftg. 88

3 + 4703   is expected to be particularly good again.

The old approximation construction of Koc xnsxY is particularly elegant

Flg. ß8 Flg. 100

from 1685, which uses only one compass opening. In Fig. 98 MA

-- MB -- BO -- BD -- C f -- ID -- fiJ-- J9-- Call and AH --

0 3 i - 3 , 141533 ...  a good approximation for a.
Particularly simple and sufficiently accurate for all practical purposes did

'lie the following recently published approximation aconatruction by HEnt- 
itICß STILLER. It i s  shown in Fig. 99. The circle has a radius of 1 and AB is 
perpendicular to the marked diameter. Ea is G f = 1J4
and DA -- US (7 -{- J3J = 1, 5710 ...  a good approximation to u/2.

2* + 3 -
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Incidentally, the construction which L. Cesuona described in a graphical 
calculation of 1875 to the engineer CERADrxi
ascribes. It iat according to Fig. 100 )/ 2- + (3 - tg a/6)- = 3.14153 . . .. It 
should be noted, however, that this approximation according to Fig. 98 agrees 
with the much older one by Kocaansxr, with the only difference that 
Koemnsxv has given the construction a particularly elegant fit by the mere 
use of a single circular opening.

We understand a triangle of circular arcs to be an area bounded by two circular 
arcs. If A andö B are the two corners, ao the two arcs have the chord AB in 
common. The area of the triangle is then equal to the sum or the difference of two 
circle segments with this common chord. Let r and r$ be the radii, 2 Q and 2 gt be 
the angles of the two circular sectors to which these chords belong. Then iat

r-z sin2

the content of the Kreiabogenzweieck. Due to the common chord, there is still 
the condition

If we take r$ -- 1, ao then becomes r --

Circular arc branches
aing, and the content of the

 

The following is the problem of the two arcs of a circle. It is assumed that both 
the arc bisector and its content are congruent with compass and ruler for a given 
distance 1 (Tt adius of one circle). In addition, it should be assumed that g, = m 
#, g = n # with whole rational m and n and fitting angle ß. Then the in- stop of 
the circular arc bisector

as a square root augdruok an a1gebraic number. Since ginm ß, sinn # are also 
aIge- braigohe numbers due to the assumed congruence of the arc of the circle, 
then

ßin-m0 ' " "

must be an a1gebraic number. If we divide by ml, we see that even
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aJtn ß must be an algebraic number. lat here a -}- 0, it follows that ml must also be 
an algebraic number a. Therefore ml and ainni ß and therefore also i m ß and e""' 
would be algebraic numbers at the same time. But it was proved earlier that this is 
impossible. Therefore iat o - 0.

The problem of squaring arc bisectors therefore boils down to the question 
for which positive integer rational numbers si and n

ßin-m0 m '

becomes an algebraic equation for a # that is solvable by a square root 
expression. Since this is not possible with plus signs, there are no configurable 
bisectors of arcs of circles, and the question for the others is for which integers 
m and n an equation solvable by a square-root expression is possible.

can exist for ain ß. Up to now, five such triangular bifurcations are known;

m - 2, n1 ; m3, n - 1 ; m - 3, n - 2 ; m - 5, n1 ; m - 5, n - 3.

If m is prime and a = 1, then L*nce has also shown that for qua drier- ble arc 
bisectors this prime must be a Gaussian, i.e. one of the form 2° -{- 1 a. Tgcmxacorr 
again showed that m = 1 does not lead to squareable monads.

In 1771 EULER gave four monads whose quadrature is a third degree 
problem. Ea are theae:

m = 4, ti = 1 ; m = 4, " = 3 ; m = 5, Ii = 2; m = 5, ii = 4.

§ S9. Ifonstructions with compass and ruler on the ifngel surface

When constructing on the surface of a sphere, a ruler is an instrument for 
drawing great circles through two given, non-diametrically located points. As 
geodesic lines on the sphere, the great circles represent the role of straight lines 
in the geometry of the plane. By vortex we mean an instrument for drawing 
circles around a given point as the center with a given compass span. We call 
the circular span the length of the chord between two points on the surface of a 
sphere. The compass span of a circle is therefore the length of the chord 
between a )Y center point and a peripheral point. We distinguish the 2tadiu" of 
the circle from the circular span. This is the distance of the center pointsa from 
the periphery measured on the surface of the sphere.
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Of course, you can also use the compass to draw great circles as soon as you 
know the corresponding compass span, the great circle compass aperture. If r is 
the radius of the sphere, ao iat r is the great circle aperture. With the
Constructing on the surface of the sphere, new points are created from given points.
points as intersections of circles (small circles and large circles). My first aim was 
to gain an overview of all the points that can be constructed from given points using a 
compass and ruler.

If only one point or two diametrically 
opposed points a r e  given, you cannot 
construct another point using a compass and 
ruler. Let us assume that there are two points 
A and B that are not diametrically opposed to 
each other. Then, as is initially clear, if A and 
B are two corners of a simultaneous triangle 
inscribed in a great circle, you can only 
construct the third corner and no further point. 
If this is not the case, ao aei the apherical 
distance of A and B. Then the great circle 
apanne is given. Place around A and B as

Center points with this great circle span great ciriae. They are perpendicular to 
each other and intersect at the )¥center points of the two great ciriae passing 
through A and B and perpendicular to the first two. Let us now assume that the 
spherical distance between the two points is not (aJ2) r. Then let the closest sun 
be less than (2s/3) r. Then the two circles placed around A and B ala center 
points with the circle span AB intersect at two non-diametrical points U and Ut. 
A great circle is drawn through both with the ruler. It meets the great circle 
through A and B at two diametrical points C and U', which bisect the two great 
circle arcs defined by A and B, and is perpendicular to the great circle through A 
and B. If you can now also bisect the great circle arc 6'f7', ao you have a third 
great circle perpendicular to the first two and thus the great circle span again. 
This does not work according to the construction described for arc AB, because 
UC' is half a great circle. If, however, the arc C!B > (a/6) r, co is traced from N' 
as in Fig. 101 as arc C'B, and then you have arc BB <  (2s/3) r.
)Yfan can therefore bisect the arc BB according to the construction described for 
AB and arrive ao at a point bisecting the semicircle UN'. If the arc AB does not 
satisfy the specified condition,  note that by continuing to bisect and join all arcs 
with



The set of points that can be measured 143

of an apherical length of the form n OB can be constructed. With CB iat

denotes, for the sake of brevity, the aphaerial length of the arc OB, and n and ä 
are integers. Among these arcs, however, there are certainly those that
r > a OB > g r used earlier and which can be

can then be subtracted from N and U' to obtain a suitable arc BB, the center of 
which is also the center of the arc GC/'. Finally, if the spherical length of the given 
arca AB is between (2u/3) r and a r, double this arc and consider the rainbow arc of 
the great circle passing through A and B. This arc will then be shorter ala (2u/3) r. 
This is then shorter ala (2s/3) r, so that the described construction can b e  applied 
to it. The case in which the arc AB has the spherical length (2a/3) is the exceptional 
case just mentioned, in which the great circle span cannot b e  found from the two 
given points. In a.Hen other cases, three pairwise perpendicular great circles have 
now been found. Their six intersection points are N, N' , -0, 0' -, P, P' and two points 
labeled with the same letters a r e  diametrically opposed. Then, for example, N, O, 
P are the three corners of a spherical octant, i.e. a spherical triangle with three right 
angles. We now want to introduce the planes of these three pairs of perpendicular 
great circles as the planes } = 0, p = 0, d = 0 of a right-angled Cartesian coordinate 
system. The designations are chosen so that N has the coordinates (r, 0, 0), 0 the 
coordinates (0, r, 0) and T* the coordinates (0, 0, r j . We now project the sphere from 
P onto the equatorial plane = 0. In this plane we choose N and 0 from the r-point of 
the coordinates and denote by z, y the coordinates of the stereographic projection of 
the pointsa }, p, {. Then, as is well known

r   g r  

( —— r *' + ¥' -
s- -l- y- -t- r- "

(*)

'"
The double spatial coordinates 2}, 2 p, 2 and r a r e  known as circular 
margins. For example, 2} is the circular gap between the spherical point K, one 
coordinate of which is }, and its mirror image at the great circle } = 0. 
However, K is also used to construct thea mirror image. For if, for example, K 
lies in the eucloctant with the corners N, 0, P, ao place around 0 and P as the 
center the two ciriae through K, which are in the mirror image of K at
} = 0 again.

Conversely, it is easy to see that a point with the double spatial coordinates 
2 }, 2 p, 2 can be found as the intersection of three circles if the circle spans 2 }, 
2 p, 2 § are given and the sum of squares 4 r-

*^ -|- y° -|- r- '
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have. The sign of the }, p, indicates the octant in which the point is located. If, for 
example, it is the octant with the corners NOP and all three coordinates are positive, 
then first obtain two points z4 B on the great circle N P with the circle span 2 d = 
AG. Bisect the great circle arc AB at a point M. ( fr/2) r reduced by the spherical 
distance between 0 and (u/2) r of the two points 1 and ff is then the spherical radius 
of a circle around P as the center on which all points with twice the spatial 
coordinate 2 d of the spherical surface lie. The same applies to the other two spatial 
coordinates.

A construction with compass and ruler on the fuyefober/föcbe becomes a 
construction with compass and ruler in the aegualo plane and vice versa through 
this stereoqraphic projection.

As is well known, the circles on the surface of the sphere merge into the 
circles and straight lines of the equatorial plane in a reversible and unambiguous 

manner. With each circle on the sphere you know three of its points and thus 
their stereographic projection. However, a circle (or straight line) through three 
points can be constructed in the plane using a compass and ruler. Conversely, if 

a circle or a straight line is g i v e n  in the equatorial plane, you know three of 
its points and thus their projection onto the sphere. However, you can construct 

a circle through three given points on the sphere again using a compass and 
ruler (according to the definition of these instruments given at the beginning of 
this paragraph). This can be done in exactly the same way as finding the center 

of a circle through three points in plane geometry. This consideration now gives 
an overview of the collectivity of the points,

which can be constructed on the given sphere using a compass and ruler. 
Determine the coordinates of their sfereoyrapbic projection according to (1), form 
from them iryetidwefcfie quodrofwurzefamdrüc£e and enter in (2) any of these 
qundraftrurzefousdrüc£e. iso one obtains the (double) spatial coordi- nates of all 
points that can be conslrued from given points with compass and direct on the 
sphere.

The result can also be expressed as follows: Plan Wilde from the spatial 
coordinates of the given points irpendtrefcÄe QandraftrurzektusdrticLe. Any three 
eofcÄe outdriicke, whose sum of squares is r*, are then the spatial coordinates of 
constructible points, and one thus obtains the spatial coordinates of all points 
constructible with compass and direct from given points on the sphere.

Finally, the result can also be expressed (independently of a right-angled 
coordinate system) 8o : Starting from given points with given mutual compass 
spans, one can construct all and only those compass spans on the sphere with 
compass and ruler which can be represented from the given compass spans by 
Q,uadratttnirze/ausdriic£e.
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I8t ar the great circle arc corresponding to the compass span o r, then s = 2 
i s  an et/2. Therefore, the sats can also be expressed in this way: Starting from a 
given orbital arc, you can construct all and any great circle arcs on the sphere 
using a compass and a ruler, the trigonometric functions of which can be 
represented by square-inexpressions from the trigonometric II'unclions of the given 
orbital arcs. The only exceptions to this rule are the following two cases:
1. There are only two points with the aperture distance (2 7r/3) r.
2. There are only two diametrically opposed points.

§ 30. Ifonstrnctions with the compass alone on the upper edge of the 

sphere By compass we mean the instrument explained at the beginning of § 

29,
init in which circles are created around existing points as an open center point. 
New points are created as intersections of such circles. Again, we call a point 
existing if it is either given or already constructed. Constructing with compass 
and ruler amounts to constructing with the compass alone if the great circle span 
occurs among the existing pieces. It is therefore obvious to ask how Irina can 
emRmmi with the compass alone if the oropcircle compass is one of the given 
pieces. The first question is on which given pieces you can or cannot construct the 
great circle span with the compass,

First of all, I assume that there are two points on the surface of the sphere 
and ask which points can be constructed on them with the compass. I maintain 
that the oropcircle span cannot always be constructed from this using the 
compass alone. If, for example, two corners A and B of a regular tetrahedrona 
are given, then the other two corners of the tetrahedrong can be constructed 
with the compass alone, but no other points. This is because the circles around 
A and B with the circle apex AB as the radius intersect in the other two corners, 
and this statement applies to every pair of corners of the regular tetrahedron. If, 
on the other hand, the two end points A and B of an edge of the regular 
icogahedron are given, the remaining corners of the regular &oaasdera and no 
other points can be constructed with the compass alone. Among the 
constructible circular spans is only the circular apex of the spherical dihedral, 
which connects two diametrical points, but not the great circle circular span.

In these two examples, the set of constructible points was finite. But even if 
this was not the case, the great circle span does not always belong to the 
constructible circle spans. I r the spherical radius, AB the given pair of points 
whose radii are at the center of the sphere

10 Bleberbach
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include the angle œ ,  then œ r  is the spherical distance and 2r em 'x|2 is the 
circular span of the pair of points. The fiÆz then applies: Zøł a point f'aor GB 
ąe g e b e n , fiir dae øinœ/2 a transcendent ZaM iet, øo iet the Oro#£reitzir£ef-
8panne r pŹ mil dem Zirket allein aue B mold: konetruierbar. To prove this, 
I first note: If 2 r is an e,/. 2 are the six circular spans of the rantøn of a 
tetrahedronø, øo each can be represented by a square root expression from 
the five others according to § 29. òfan can easily write the algebraic equation 
that exists between the six circular apertures explicitly. If , ..., (t are the 
vectors from the center of the sphere to the corners of the tetrahedronø, øo 
there is a relation between them

Œ;G; -0 vomRsngEMs 1)

since four Yektorøn of the three-dimensional spacea find linearly dependent. Multi-
plizing (1) with the vectors Rt økalar, øo one obtains four Rslations

Since the a; oicbt all XčI1 siztd, dafter is the detemú0aztte

|| E; IEt| 0. (3)

This is the relationship we are looking for, which we will now transform a 
little. If "t$ is the angle of the vectors Ri and Rt at the center of the sphere, 
then

It therefore follows from (3) that

Theø is for eachøs ain° œ;ş/2 a square sliding. If, for example, in (4) five of the 
ainp$/2 are equal to each other and equal to a transcendental number øinœ/2, øo 
the øøohsts øin is also a transcendentalø number. Otherwise it would be
(4) an algøbraic equation for sins/2 with algebraic number coefficients
tsn, and therefore, according to a known, easily') mi provable theorem

') Is n8mIioh
"- + œ ' -1- --- -1- - = o Isl

an algebraiøohe Gleiohung mi4 algøbraiøohen Koeffiziøntøn, which satisfies sin œ/ß, øo 
bøo trachtø man gømåß Ziffer 6 von § 28 einen K.örpsr 2t(}), dem øåmtliohe 
koøffizientøn ay øugehörøn. Theøø øare then ra4ionaIe functions o¡ = r;( ) of with rational 
coeffi- nientøn. It øøien - Ş" " ..., ",the to conjugatedøn numbers. If we then denote the 
polynomial in (5) by p(s, ) in order to make the representation of the coefficients without 
coefficients, then p(z, 1$), £ = I, ..., m are the polynomials with the coefficients conjugated 
to the coefficients in (6). This is naoh the foundationøløøtz of the øjrmmetriøohen 
functions

/ff(*, fi) = -m -I- $i - m-i -I- - - - -ł- I" "
a polynomial with rational coøffizientøn, and sin œ/ß iø4 a nullstølle deøøelben and 
dømnaoh ølø algebraiøohe Zøhl kenntlioh.
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of algebra, sin z/2 is also an algebraic number. This remark c a n  be 
generalized as follows: If in (4) five of the sines can be represented by square 
root expressions from a transcendental ain e/2, then the sixth sine is also a 
transcendental number. Otherwise, form from (4) all the conjugate expressions 
obtained by any changes of sign in the square roots occurring therein, and 
multiply all these expressions together. Then, according to the fundamental 
theorem of symmetric functions in algebra, we obtain an algebraic equation for 
sin z/2 with algebraic coefficients, and again sin e/2 would be algebraic.
From this, however, follows the proof of the 
theorem stated above. For a construction with 
the compass alone produces new points from 
existing points as intersections of two circles 
around existing points with existing compass 
spans. Thus, at each construction step, a new 
circle span appears as the sixth edge of a 
tetrahedron. So if the circular spans used in the 
construction of the tetrahedron are
- between the two centers around which we placed 
circles, and the two radii, resulting in
together provides five tetrahedral edges - from one F1g• 102
transcendental sin z/2 by square root-
expressions, the new compass span, which appears as the sixth edge of the 
tetrahedron, must also have a center angle with a transcendental sine. This 
therefore teaches us that all circular spans 2 r sin Q/2 that can be constructed 
from a circular span 2 r an e/2 with transcendent an eJ2 with the compass alone 
also have a transcendent ain Q/2. Therefore, the large
circular span r )''2 and also the diameter circular span 2 r cannot be con- 
structed. This proves the theorem.

Let's go one step further and prove the following theorem: Zs/ auper any two 
PvnWn with the circle span AB still the circle span of the cuqel diameter is given, 
int A' the point diametrical to A and int finally on the half circle ABA' still a point B 
8o is given, Since the circle span A'B is equal to the circle span AB, it is not possible 
to construct all the points from the pair of points AB using the circle alone, which 
can be constructed from it using the circle and Direct. However, in addition to the 
use of the compass as described in § 29, it is also necessary to allow the vertebra 
alone to be used to determine whether two designated circles intersect, overlap or 
are separated.

In Fig. 102 you can see a large circle that carries the given points.
We beat around B and Pfl  with the circle span BBG  Kr ise. They intersect i0-
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in two points P, P of the great circle whose two equidistant points are A and A'. 
Therefore, A P -- A'P
-- A P -- A'P the great circle span.

There are several comments to be made on the construction described. If, for 
example, B and B coincide, AB -- A'B already did the great circle apan and the 
construction does not apply. So that in the case that B and Bl  are different points, 
the two intersection points P and P exist, the spherical distance of BB must be

(2a/3) must be r. If the
sign, the two points P and f* are combined. If, however, the distance B B > (2 
a/3) r, we first note that we may assume that the points A, B, B , A' have the 
arrangement on the semicircle indicated in Fig. 102 ; for this can be achieved by 
changing the designation (B atatt B) if necessary. The fact that the distance of 
BB > (2 aJ3) r means that the spherical distance of AB < (a/6) r. In this case, the 
point B diametrical to B is congruent with the help of the spherical girth circle 
a n d  t h e  construction is repeated with the girth circle belonging to the arc BB 
1 staH AB twice as long. The pair of points B B takes the place of the pair of 
points AA'. To carry out the construction, a point is then required on half of the 
great circle BI BB.
B$ in such a way t h a t  &1 B = B B. It is obtained as a8 diametric point of aa
points B' , which itself is created by mirroring B at the great circle omega BZ B'. 
This reflection is achieved by mak ing  circles around B1 with the circular 
aperture BQB and around B with the circular aperture BGB, which meet in B as 
well as in B. If the distance BB <  (u/6) r
aein, double again8 and so on until you have a sufficiently large arc.

The example of the edge of the icogahedron mentioned above shows that it 
is not sufficient to take the circular apex of the spherical ameaaerg as given in 
addition t o  the pair of points AB. The example of the edge of the regular 
tetrahedron shows that it is not sufficient to take only a pair of points A, B as 
given. Instead of assuming the point B, one can also assume that another point B 
is given on the great circle AB in such a way that A is the center of the arc BB. 
B$ is diametrically opposed to B .

The description of the construction now assumes that you can use the compass
alone can decide whether a spherical distance  (2 a/3) r iat, i.e. that the 
compass can be used to decide whether two circles intersect, touch or do not 
intersect. Otherwise, the compass is used in the manner defined in § 29. All 
compass spans between existing points are permitted.

There is another atiff0R8unq of the 1t'raq position. Only small circles should be 
drawn with the compass and only those should be cut.
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It is also possible to use a suitable additional specification, such as naoh
D. Foo of the added bisection of any great arcs with small circles around 
existing center points with YOrhandenen compass aßes, aßes on a given pair of 
points, waa you can construct from it with compass and ruler.

I also prove the following theorem: If a non-diametral pair of points is given 
and, in addition, an instrument with which one cannot draw great circles, but 
can determine the center of each great circle arc, then one can construct all the 
points on AB with the compass alone, which one can construct with compass 
and ruler. This simply follows from the fact that the centers of the two great 
arcs of a great circle, defined by A and B,  form a diametrical pair of points. 
Then the correctness of the theorem8 just stated follows from the previous one. 
You only have to give the center of the arc AB the role that point A had in the 
previous theorem.

Notes and additions

The following notes also provide references. They are not intended to be 
exhaustive. Some are references, some are intended to provide the reader with 
suggestions, and some are references that are not found in older reference works 
and textbooks due to their novelty. These include in particular Enz yklopädie der 
mathematischen Wissenschaften ; Tsorzxz, Geschichte der Elementarmathematik ; 
EB£R- WELLSZEIN, Enzyklopädie der Elementarmathematik ; ENRIQTfES, 
Fragen der Elementarmathematik ; ENRIQozS, Enciclopedia delle matematiche 
elemen- tare ; Tu. Vmzzu, Constructions and approximations; AnLER, Theory of 
geometric constructions. In some respects my account is in agreement with the 
subsequent work of H. LEBESOoz, Lepons zur lea conatructions géométriques, 
Pari8 l9Ii0. - It was only after the corrections had been made that I became aware of 
them: G. von Sz. Nzor, Geometrai azerkesztések elmélete, Kolozgvär 1943.

§1 For the questions just touched on here, please refer to: J. HJELAIS-
LEV, The geometry of reality. Acta math. Vol. 40, pp. 35-66 (1916). -

J. JELiisczY, The natural geometry. Hamb. math. Einselachr. 1928, Reft I.
§§ 2, 3, 4, 5 J. STEINz's is fundamental for the questions dealt with here:

J. ÜTEINER, Die geometrischen Konstruktionen, ausgeführt mittels der ge- 
raden Linie und eines featen Krei8ea. Berlin 1833 (Gea. t'erke vol. 1, pp. 461 
bia 529, 1882 ; Ogtwalds Klassiker vol. 60, 1895.) - Many of Steiner's theorems 
are of older origin. Many can be found, for example, in T BEsz, and the theorem 
of the fine circle with center comes from PoiroELET: Traité der propriétés 
projectivea des figurea, p. 187 (1822). The constructions in limited
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plane have found a monographic representation : P. Züaixs, Konstruktionen in 
begrenster Ebene. Math.-phys. Bib1. Vol. 11. 2nd ed. 1930.

The i$teiners' ifonatructions are treated succesfully in Gzoes
äfoait, Euclides curioaua. Amsterdam 1672. the contents of this lost book are 
known from the correspondence between GRsooRv and GOLLINS. See J.E. 
Horror, Die Entwicklungsgeschichte der Leibnizachen Mathe- matik, p. 107, 
Munich 1949.

§ H. TisTzz has devoted three works to points that can be constructed with the 
right-angled ruler: H. TIETZE, Über die Konstruierbarkeit mit Lineal und Zirkel. 
Sitzgsber. kaiserl. Akad. d. Wis8. Vienna, math.-nat. Kl. 118, Abt. II a, pp. 735-757 
(1909). - H. Trszzz, über die mit Lineal und Zirkel und die mit dem rechten 
Zeichenwinkel löabbaren Konstruktionaaufgaben. I. Math. Z. vol. 46, pp. 191-203 
(1940). - H. TiETZE, Zur Analyse der Lineal- und Zirkelkongtruktionen. I. 
Sitzgsber. bayr. Akad. d. Wiaa., math. nat. Abt. 1944, pp. 209-231. - The main 
result of this work is: If in the plane n -t- 2 points are given whose coordinates in a 
suitable rectangular coordinate system are (0, 0), (1, 0), ( , b ), ..., (ag, bq), then 
aße and only those points are conatruable with the right-angle ruler whose 
coordinates (z, y) are rational functions of , ..., b with 
rational number coefficients, in such a way that z is an even, y an odd function of 
be-. - ., bq.

§ F. SEVERI, Sui problemi risolubili colla riga e col compasao. Pal. Rend.
Vol. 18, pp. 256-259 (1904). - F. IlözTzmnu, A contribution to the Steiner 
constructions. Tber. German. Math. vol. 43, pp. 184 to 185 (1933).
- D. Moeoc i-BocTovsxoi, Sur les congtructions au moyen de la régle et 
d'un arc de cercle fixe, dont le center ert connu. Periodico di mat.
(4) 14, PP. 101-11I (1934). - D. Corso, On the construction of the center of a circle 
with the ruler alone. Math. ann. Vol. 73, pp. 90-94 (1913). - D. CaU£R, On the 
construction of the center of a circle with the ruler alone (correction). Math. ann. 
Vol. 74, pp. 462-464 ( 1 9 1 3 ). --
E.A. WEisg, Ifonstruktionen mit hängenden Linealen. German. Mathematik 
vol. 6, pp. 3-15 (1941).

Perhaps it is also of interest to note that instead of a ge-
circle with center can also take any arc of another cone with center and focal points, 
or in the parabola case the focal point and a diameter, in order to be sure that one 
can then carry out all quadratic constructions with the ruler alone. - lt. J. S. SbftTTt, 
Mémoire aur quelques problemes cubiqueg et bi- quadratiqueg. Annali di mat. Ser. 
2, Vol. 3 (1869) ; Collected math. Paperg vol. 2, pp. 1-66 (1894).



§ 1 to § 6 isi
§ H. TIETZE (1. c. § 4) has made the following remark on the result of this 

paragraph: When carrying out the construction, several points are obtained at 
the intersection of a circle with a straight line or another line. When continuing 
the construction, it is then necessary to specify which of the two points obtained 
in the nth step should be used when continuing the construction. Ofen can ask 
for which congruction tasks it is always indifferent which of the points 
generated in the nth step is used in the (tt -l- 1)-th construction step. H. TIzzzE 
has found that these are exactly the problems that can be solved with the right-
angle equation in the sense of § 4. (These constructions are not to be confused 
with the constructions with the right angle £a£en to be considered in § 9).

From this point of view, the result of the considerations in §§ 5 and 6 and 
later § 10 can only be understood to mean that the booked points are to be 
found and selected among those whose coordinates can be represented from the 
coordinates of the given points by the four basic arithmetic operations and 
square root operations. This finding or selecting means using the arrangement 
axioms of geometry or, in other words, deciding on the signs of the square roots 
that occur in each case. This can be done with the aid of the circle if it is 
determined that it is to be used not only for drawing circles but also for 
comparing sizes, i.e. for the pris/tittq of relationships. If, for example, the two 
points (0, 0), (1, 0) are given and the
If you are given the task of constructing the point (1/2, + 1/2 3), this task is not 
determined by the given pieces because it is not specified on which side the 
points with positive second coordinates should lie. The pair of points (1/2, -}- 
1/2 J3) can be found using a compass and ruler, and the
point to be found or searched for. If, however, by specifying a further point 
with a positive second coordinate, this additional
If the third point is given, the point (1/2, -{- l/2 J3) is the one of the two 
constructed points that is closer to the third given point than the other point 
obtained during the construction. The plan shows which of the two constructed 
points this condition applies to by using the compass. The example is not 
kinetic. Because if you think of the elementary geometric theorem that the side 
dea regeimö§ipea Schreck is the larger section dea circle radius divided 
according to the golden ratio,
i.e. the mean proportional between the whole radius and the smaller section, the 
correct one must likewise be sought among two points (even if this is somewhat 
cached in the usual description of the construction ibid). TIEzzz's remark can 
also be understood to mean that between
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A distinction must be made between conatructions at the oriented and non-
oriented level.

The considerations of R. C. ESPzNSEn, Nogle geometriake forsog. bfat. 
Tidsskr. A, PP. 55-61, 94-96 (1937). Certain given pieces may only be used to a 
limited extent. For example, no straight line and no circle through one of the given 
points may be used in the congruence. The a u t h o r  only knows this work from 
the papers in the Tb. Fortschr. Math, where no results are given.

§ 7. the congructions with the compass alone were made known by the Italian M 
SGTtERONI in 1797. They are usually named after him. òfan has known since 1928 
through J. JELMSLßV that they were first mentioned by GEOso MoøR İn his 
Euclideg Danicus,  Amsterdam 1672.  -  J. HJELbfS- LEV, Om en af den danske 
Matematiker GEOBO MoiiR udgivet Skrift "Euclides Danicus" i Amsterdam 1672. 
mat. Tidsskr. B, p. l -7 (1928). - J. HJSLAISLEV, Beiträge zur Lebensbeschreibullp" 
vOH GFORO MoilR (1640- 1697). Det kgl. Videnskaberneg Selskab Math. fys. Medd. 
Vol. 11, 4 (1931). - H. GEPPERT, CEOso Moøn e la geometric del compasso. 
Periodico di mat. Ser. 4, Vol. 9,
S. 149-160 (1929). - ĞEORG MOTlR, Euclides Danicus, Amsterdam 1672, with a 
preface by Joømnzs HJELMSLEV and a German translation by JimiUS Pin, 
Copenhagen 1928.

H. C. ESPENSEN makes similar considerations to those mentioned in § 6 
for constructions with the compass alone. H. C. Esr£1NSEN, Geometriøche 
Untersuohungen mit dem Zirkel allein. (Danish.) Mat. Tidsskr. A, PP. 11-23 
(1941).

§ 8. F. ÜEVERI (1. C. § 5). F. SEYERi, Complementi di geometria projettiva.
Bologna 1906, p. 303. Hiør shows how to get by with a limited parallel ruler, while 
the representation of the text assumes an unlimitedø parallel ruler.

§ 9. H. Fume, Congtructions with the drawing angle. Z. math.-nat. Unter- riclit, 
vol. 65, pp. 279-287 (1934). - F. BAGBuANN, Geometries with Euclidean ăfetric, 
in which for every straight line through a point not lying on it there a r e  several 
non-intersecting lines. I. Math. Z. Vol. 51, pp. 752-768 (1949).

. § 10. H. GErPERz, Sulle costruzioni geometriche che øi eseguigcono colla riga 
ed un compasso ad aperture fissa. Periodico di mat. Ser. 4, Vol. 9, pp. 292 to 319 
(1929). - J. JELosczv, Konstruktion ved Passer med fest Indstelling uden Brug af 
Lineal. Mat. Tidsskr. A, PP. 77- 85 (1938).

§ 11. J. HJ Et*MSLEv, Konstruktioner med normeret Lineal. flat. Tidsskr. B, 
PP. 21-26 ( 1943). Here the proofs are given without the parallel axiom.

§ D. HILBERT, Grundlagen der Geometrie, 7th ed. 1930 - E. MNDAU, Über 
die Darstellung definiter binärer Formen durch Quadrate. Math. Ann.
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57, P. 6M64 (1903). - E. ABTIN, On the decomposition of definite functions 
into squares. n "b. Abh""dl. Vol. 6, pp. 100- 115 (1926).

F. SCBUR, Fundamentals of Geometry (1909). - F. BAcBatanx, Geometries 
with Euclidean metric, in which for every straight line through a point not lying on 
it there are several non-intersecting lines. II Math. vol. 51, pp. 769-779 (1949). - F. 
Bzcnzer, Über die Konatruierbarkeit mit Lineal, Rechtwinkel- Maß und 
Eichmaß. Math.-phys. Semeaterber. 1, S. 77-88 ( 1 9 4 9 ).

§ 13 The version of the text, which is often found in the literature with various 
modifications, goes back to a discovery by E. Lernen. Among the papers left 
behind by H. A. Sciiz-znz was a sheet with the heading "EDblirND Lwnzn, atud. 
math, Berlin, June 28, 1897" and with the following text, undoubtedly written by 
UND&If''s hand, like the heading: "In order to prove that the trigection of an 
arbitrary angle by a finite number of constructions with ruler and compass is not 
possible, it must be shown that there is no expression formed by a finite number of 
rational operations and square root extractions aua e which satisfies the equation 
/(ti) = 4tt° - 3 u -{- a - 0. For z - ain 'p/3 is a g - 3 z - 4 z°, i.e. 4 z° - 3 z -}- sin 'p = 0. 
Let us assume that such an expression exists. If, to form it, sizes y" ... , y, are 
adjoint w, where generally y* belongs to Pra, y , ... , y; _ ), whereas y; does not, 
and if z is a quantity of P(a, y" ... , y,), z
the form z -- 'x -1- Q y" where e, Q belong to P r a , y" .r. — )  , Q 0 could be assumed, 
since otherwise z would already belong to Pra, y , ... , y ).
It must also be z - Q y, a root of /(ti) = 0 ; because if 0 = /(z -l- Q y,)
-- A -{- B y is, where A and B belong to P(a, y , ... , y ), B -- 0 must abe, since 
otherwise y - A |B would be, i.e. would belong to Pra, y" ... , y _ ); therefore /(et - Q 
y,) = A - B y -- 0. The two roots z -{- Q y" ot - Q y, aare different, since their 
difference is not 0; since the member with u° is missing in /(u),  the third root = - (z 
-}- Q y, -}- et - Q y ) - - 2 z, al8o belonging to P{a, yt, ... , y, _ t). If it did not belong 
to Pra), repeating the same swallowing would result in a fourth root for the cubic 
equation, i.e. a contradiction. Thus - 2 z would have to belong to P(a) ; now it can 
be shown in a known way that no quantity of P(a j can satisfy the equation; thus the 
assertion is proved." So much for the transcript of denen's proof from the age of 
twenty-one. The proof also offers a variant of the argument that does not seem to be 
known in the literature, namely to trace the contradiction back to a fourth solution 
of the cubic equation. On this page we have the first independent achievement of 
the great mathematician. A slightly different version of the proof first appeared in 
print in 1903 in : WzBER-WEccszsiN, Ensyklopädie der Elemen- tarmathematik, 
vol. 1. (H. WEBER) p. 320. Leipzig 1903.
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H. Bzimxs and H. HERbIES have examined the proofs for the impossibility of 
the trisection of angles with compass and ruler from the point of view o f  basic 
formalistic research and have given a conclusion which can also be applied to ala 
proof from this point of view (HILBERT, GENzzEx). H. BElimE and H. HERblzs, 
Über die Unmöglichkeit der Drei- teilung dea Winkeln. Sem.-Ber., Math. Sem. d. 
Universität Münster 1I, p. 23 bia 47 (1938). - B. L. vNnre WAERDEn, 
Moderne Algebra I, p. 1811 and 183 and p. 49, Berlin 1930, second, verb. Ed. p. 
194. 1937. °l950. Now t h e  explanation of the indeterminate mentioned in the text 
is omitted. Instead, the8e is introduced on p. 50 as an element of an infinite cyclic 
group.  -
W. GEBER, On the uniformity of constructions with compass and ruler. Dtgch. 
Mathematics Vol. I, pp. 635-665 (1936). - W. WEBEB, On constructions with 
compass and ruler in favorable cases. Dtgch. Mathematics Vol. I, p p .  782-802 
( 1 9 3 6 ). - WEBER'S results: Let Zt, ..., Zq be inter- vaße ; a conatructiona task 
with the auagangaat distances z" ..., zq be solvable with compass and ruler in 
every single case in which eacha z lies in Z. Ea will prove that there is a uniform 
solution if the solution path p is an algebraic function of z , ..., xq iBL. However, if 
the algebraic function q erat is made whole by multiplication with a polynomial N(x 
, ..., zq), the uniformity of the construction erat can be achieved if those systems zt, 
..., zq are excluded for which N(x , ..., xq) vanishes, although even then 9 still 
lies in a square root body over the rational functions of y, ..., zq. The possibility of 
a uniform construction nevertheless fails due to the occurrence of denominators. - 
The question of construction possibilities in favorable cases depends on whether or 
not the system of the Augganggat segments can be constructed from a single one 
using a compass and ruler. If not, t h e r e  are always such favorable cases for 
continuous problems with at least two starting lines. However, if the starting line is 
to b e  drawn with a compass and ruler, as in the case of the division of an angle of 
90°, f o r  example, this is a special feature which, given our limited knowledge of 
square root numbers, we do not yet know whether it has an analog in every other 
problem. - L. E. DIc&SON, New first courae in the theory of equationg. New York 
1939. 8th ed. 1949.

§ 14. J. R6EMELz, The irreducibility of the Kreiateilung8 equation. 
Publicationa mathématiqueg de l'univeraitß de Belgrade. Vol. 2 (1933).
S. I6MI65. J. E. Honer, Natur und Kultur vol. 29, p. 477 (1932).

§ 15. monographs : A. HS'.TtRbIANN, Das Deliache Problem (Die Verdopp- lung 
der Würfeln). Math.-phyg. Bibl. vol. G8 (1927). - W. BSEIDENBAGH, The tripartition 
of the angle. Math.-phya. Bibl. vol. 78 ( 1933).
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§§ 16, 17, 18. W. BsEIDENBAoH, Der rechte Winkel und das Einschiebe- 
lineal. Z. math.-nat. Unterricht vol. so, p. 4- ls (1925). - J. E. HOPMANN, A 
contribution to the theory of insertion. Z. math.-nat. Unterricht v o l .  57, pp. 433 
to 442 (1926). - J. E. HormNN, Graphical solution of cubic equations by inserting a 
line between a circle and a straight line. Lessons. Math. Naturv-igg. Vol. 40, pp. 
64-67 (1934). - L. BIEBERnaca, Zur Lehre Von den kubigchen Konstruktionen. J. 
reine u. angew. Math. vol. 167, pp. 142- 146 (1931). - R. lozisca, Über die 
Dreiteilung der Winkeln und die Verdoppelung dea Cube unter Benutzung von 
Zirkel und rechtwinkligem Dreieck. Z. math.- nat. Unterricht vol. 64, pp. 207-210 
(1933). - R. GABVER, A nOte on BiEBEB- aaeii'n trigection method. J. reine u. 
angew. Math. vol. 173, pp. 243 and 244 (1935).
- R. GARVER, BiEBERBAca's trisection method. Scripts math. 3, pp. 251-255 
(1935). - E. L. Gonr+tEY, A IlOte on BIEBERBAoH's trigection method. Scripta math. 
3, p. 326 ( 1 9 3 5 ).

§ 17. M. D'OCAONE, Etude rationnelle du probléme de la trisection de l'angle. 
L'enseignement math. Vol. 33, pp. 49-63 (1934). - J. JELusczv, Geometrigke 
Experimenten. Copenhagen 1913, °l9I9. German edition: Beih. z. math.- nat. 
Unterricht H. 5 (1915). - P. BOGKNER, Eine Aufgabe, die mit Zirkel und Lineal 
nicht lösbar ist. Elemente d. Math. vol. 2, pp. 14- 16 ( 1947).

§ 19. I. Nzwzoir, Arithmetica universalia. Cited in I. Nzwzo", Universal 
arithmetic or a treatise of arithnietical composition and resolution, p. 246. London 
1725. - R. Oaz4m, Zur Théorie der Konstruktionen dritten Grades. Töhoku math. J. 
vol. 39, pp. 1-15 (1934). - R. Oacäzii, Ida théorie des cons- tructions cubiques. Paris 
G. R. vol. 197, pp. 1383- 1385 (1933). - R. G. NATES, The angle ruler, the marked 
ruler, and the Carpenter Square. Nat. Math. Mag. Louisiana vol. 15, pp. 61-73 
(1940).

§§ 21, 22 The theorem of the solvability of arbitrary problems of the third 
and fourth degree with compass and ruler with a firmly drawn conic section is 
due to
for the parabolic case f r o m  DssCARTzs and is found for ellipse and hyperbola in 
FnN€'OIS RznE SLtfSE, Meaolabum.  Liège 1659, s1G68 and then
carried out at NEwzo" 1. c. § 19. The proof given in § 22 goes back to Tu. 
VATILEn, who  included it in his still classic book on constructions and 
approximations. The proof given in § 21 was carried out by G. v. Sz. Nzor 
carried it out: G. von S z . Nenn, Ein Beweis des Satzes von H. J. S. SCH und 
H. Koitzt u. Elemente der Math. vol. 3,
S. 95-97. (1948). The naming of the theorem after Seit andKORText h a s  
become customary because both mathematicians independently solved the task 
set for the Steinerpreig of obtaining this theorem, first referred to by NEwzon, 
in the style of the time using the means of geometric geometry. The following 
is said about the implementation of the approach of § 21. If 2 is chosen 
according to the given conic section, then
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the problem presented does entail that the curve leaves (8). Then it consists of 
two straight lines, and this means that the problem presented is a quadratic one 
which can be reduced to the intersection of circles and straight lines. If the 
given second-order curve is an ellipse, this decay does not occur in problems 
with real solutions, and there is nothing to add to the information given in the 
text. In the hyperbolic case indegsen there are indeed two hyperbolas Ht for 1 -
}- Z - o°/b° and H for 1 -]- 2 = b*|a* in the bundle (8), whose asymptotes 
enclose the same angle as those of the drawn conic section. However, it may be 
the case that öeide are not similar to H, but to the hyperbola Zf' conjugated to ff 
and located in the other angle space of the asymptotes. In this case, the 
reasoning of the ellipse can not be transferred without further ado, but it is still 
necessary to consider how the intersection of H' and any circle K' can be 
constructed with the help of H and compass and ruler. If then

z- y-
z- + y° + A x -t- B y -l- C! -- 0 or q, -6 , - 1 - 0

the equation of K' or ff', ao draw the circle K, which is slightly congruent to K', with 
the equation

approach. If P(5, p) is an intersection of ff and K, then P' [(a/ö) p, (b|a j $) is an 
intersection of Zf' and N'. Because the equation of H is

Therefore, the parameter representation

 b  for Zfand tgt for Zf'.
CO8 ¢

The intersection points of ff and K and of ff' and K' are therefore determined by 
the same equation

(o* -|- ö*) tg*f -}- bB tgf -|- a A -l-C-t-o'-0.
cosl

If t = z is one of its roots, then 'i tgz, b|ooe c are the coordinates of an 
intersection point T of Zf and K and o/cos z, h tg z are the coordinates of an 
intersection point P' of H' and A'.

§ W.K.B. HOLZ, Das ebene obere Dreieck. Hagen i. Tt'. 1944. -
H. Düwiz, Mathematical Miniatures. Breslau 1943. The context of the task of 
constructing a triangle from its upper height sections,
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W. K. B. HoLz discovered the Newtongo semi-circular task. (The task o f  
constructing a triangle on its heights is a circle-and-linear task, since the triangle 

itself has heights on the three heights that f o r m  a triangle similar to the triangle 
being sought). Due to the realism of the problem, its execution presents particular 
difficulties, i.e. particular beauties for a good mathematician. P. BtfGrESER, Die 
Benutzung der Imagi- nären bei Konstruktionen. Z. math.-nat. Unterricht vol. 61, 

pp. 338-343 (1931). The construction of a triangle from the three upper sections of 
the angle bisectors can also be traced back to Newton's semicircular task, since, 

according to Dö sia, the equation of the third degree for this reciprocal radius, 
which dominates the semicircular task, exists between the reciprocal values of these 

sections and the reciprocal value of the radius of the inscribed circle. The 
construction of a triangle from its three angle bisectors leads to an equation of the 

tenth degree with a symmetrical group. A. koa- szcz, Z. Math. Phys. 42, p. 30M3I2 
(1897). F. lEISs, On the impossibility of constructing a triangle on its three angle 

bisectors.
J. reine u. angew. Math. vol. 177, pp. 129-133 (1937). II. WOLPP, On the 
determination of a plane triangle from its angle bisectors. J. reine u. angew. 
M a t h . vol. 1 7 7 , pp. 134=-151 ( 1 9 3 7 ). B. L. YAfl DER AnRDEN,
On the determination of a triangle from its angle bisector. J. pure
u. angew. Math. vol. 179, pp. 65-68 (1938).

The heptagonal treatise of the AecBIMEDES was published by C. Senor on 
corrupted copies of the Arabic translation by TaBI'r Izo Qenea.
G. Senor, The trigonometric teachings of the Persian astronomer Anne-Rio Mna. 
IBN AahJYtED Ac-BIRtfNi, illustrated after M- 

JinAx- Ws'iini. Published after the death of the author by J. Rasse and 
H.WIELEI3'NEl:t. Hanover 1927. - J. TitorraE, Geschichte der Elementar- 
mathematik, vol. 3, p. 127. 3rd ed. 1937. - C. DER, Die Würfelverdopplung des 
ArocLONIuS. Dtgch. Mathematik vol. 5, pp. 241-243 (1940). - J. LEME£*J 
has shown how the construction of the regular Siebenecka with compass and ruler can be 
traced back more simply to the trisection of an angle. (J. RSEMELJ, Die Siebenteilung 
der Kreises. Monatshefte f. Math. u. Phyg. Bd. 23 (1912), pp. 309-311.) His method is 
theaeg: The equation (1) H -}- z° - 2 z - 1 = 0, which appears several times in the text, 
satisfies, among other things, z = p° -|- p °

with p = - exp - .  The iside of the heptagon in the unit circle is s =

= 2 sin7  = i (p - p). It is " - 2 - z. Thus, from (1) we find the equation for the side of the 

heptagon in the unit circle (2) e® - 7 8* -l- 14 s° - 7 = 0. It decays into two equations of 
the third degree s° -j- ( 8* - I ) - 0 or

3 3 }/7 Alao is = -{- - cot - , if cos
j3 3  

 
3



Notes and additions158

is. From this, the side of the Siebenecka s with tg z
' 3 3

or approached s . The latter is the rule of Auto West MomuEn, also 

c a l l e d  t h e  Indian rule.
§ 26 H . SzaIO6tÜLLER, DiIRER alB Mathematician.  Stuttgart 1891.

F. VOOEL, On the approximation approximations for the trisection of an angle. Z. 
math.-nat. Unterricht vol. 62, pp. 145-155 (1931). - 0. PERRON, Über eine 
Winkeldreiteilung dea Schneidermeisters Korn. Bavarian Academy of Sciences, 
m a t h  and science. Abt. 1933, p. 439-445. - 0. NEBRTNG, On the trisection of the 
angle according to EnoEir Kors. Seatgaber. bayr. Akad. d. WiBg., math.-nat. Abt. 
1936, pp. 77-79. - P. FINSLER, Einige elementargeometrißche 
Näherunggkonstruktionen. Comm. math. llelv. Vol. 10, pp. 243-262 (1938). 
Approximations of high accuracy for the Deliache problem, regular polygons, etc. 
are also given here. - W. TbfANN, Some groups of angle-
divisions and the numerical size of their errors. With an appendix: On a curious 
property of the Pascal snail. A circle-curve problem. Dtgch. Mathematics vol. 3, pp. 
556-597 (1938). - B. Doss, Approximation conatructions for the side of the regular 
heptagon. Tber. Dtgch. Math. vol. 44, pp. 291-292 (1934). - H. J. FisCriEe and K. 
SCBMEI8Efl,
Studies on approximate circle division. SiJzgsber. Akad. d. Wi8s. Heidelberg, 
math.-nat. Cl. no. 18 (1934).

§ 27 T. Kuzozz, Mathematical Notes. T8hoku Math. J. Vol. 16, pp. 92 to 98 
(1919). - T. KuaoTz, Histories of geometrical constructions. Annals. DMV. Vol. 37, 
pp. 71-74 ( 1927).

§ A detailed analysis of Hermite-Lindemann's proof and its connection with 
Lambert's proof for the irrationality of a is recently given by LEBEsonE in his 
subsequent book: Le§on8 zur les constructions géométriqueg. Paris 1950 - See also 
G. L. SIEOEL, Über einige Anwendungen Diophantischer Approximationen. Abh. 
Preuß. Akad. d. Wiaa., phya.-math. Kl. 1929 (Paggim.). - A. GEzsoun, Sur len 
nombreB trangcendanto. G. R. Paris vol. 189, pp. 1224-1226 (1929). - G. L. 
SIEOEL, On the periods of elliptic functions. Grellen J. vol. 167, pp. 62-69 (1931). 
SiEoEL remarks here p. 63/64 following a sketch of the proof presented in § 28 of 
this book: "This is probably the most natural proof of Hermite-Lindemann's 
theorem, and HEitiimE, as can be seen from several passages of his treatise, came 
very close to this proof; but he obviously lacked the simple idea of forming the 
norm from the number (4)." Recently, Tx. SGIfNEIDE+t has attempted to present the 
train of thought outlined by SisoEc in detail. TUT. ScHnEIDER, On the proof of the 
trance x-on e

') Daa corresponds to (14) in the presentation of § 28.
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and u. Math.-phys. Semesterber. Vol. I, pp. 299-303 (1950). The starting point for 
the new method of proving transcendence inaugurated by A. 0. CiELPonn and used 
in the text is a groundbreaking function-theoretical theorem by ĞEORO PÓLYA. 
Gzonc Pócra, On integer integer functions. Rend. del circolo mat. di Palermo vol. 
40 (1915) and Nachr. v. d. kgl. Ges. d. Wiss. Göttingen, math.-phys. This SaŁz 
says: Let q(z) be a gauze function of the complex variable z, which at the points z = 
0, I, ... assumes gauze rational numerical values. Then either p(z) is a polynomial, 
or else g(z) for ø m is at least as fast as 2'. Sharper: If one sets 
3f(r) = Max p(z) , then lim sup M(r) 2* " 1. a similar new functio-

nentheoretical SaŁz follows from the method of proof described in § 28. It 
reads: Let g(z) be an integer function which at the points z= 0, 1, 2, ................., m
together with all its derivatives assumes gauze rational numerical values ; then 
either g!z) is a polynomial or eø grows q(z) at least as fast as 
eg (- (z - I) ... (z - m)). Schiirfer: It is then lim sup M(r) exp (- r'^+ j I. 
The proof of transcendence presented here is a generalization for the case that p(z) 
assumes algebraic numerical values of a certain kind at the m -}- 1 points 
mentioned. Cf. also Tø. SoREIDER, A theorem on integer functions as a principle 
for proofs of transcendence. Math. Ann. Vol. 121,
Here a more general approach is presented. The author did not have access to G. L. 
SIEOEc, Transcendental numbers. Princeton 1949.

-. N. E. NÖRLÓND, Differences calculus. Berlin 1924, p. 199 - E. Mnnzu, Über 
quadrierbare Kreisbogenzweiecke. Sitzgsber. Berl. math. Ges. 2, pp. 1-6 (1903). -L

.  TgcmmLOFz, Contribution to the problem of squareable b i s e c t o r s . 
Math. Z. vol. 30, pp. 552-559 (1929). - L. Tscœxmcozr, Application of the theory 

of algebraic numbers and ideals to the p r o b l e m  of squareable circle-arc 
b i s e c t o r s . C. r. du premier congrès des math. des pays slaves. Warachau 

1930. - H. WIELEITnzR and J.  OFMANir, Zur Geschichte der quadrierbaren 
Kreiamonde. Wiss. Beilage zum Jahresber. d. neuen Realgymnasiums München für 

das Schuljahr 1933/34. IIETNRIGH MÜLLEB, Eine einfache 
Näherungakonstruktion für u. ZaãfM. Vol. 29,

S. 254 (1949).
§§ 29, 30. T. BONNEsEn, Geometriske KonsŁruktioner  kuglefladen. Nyt 

Tidsskr. for Max. Vol. 10, pp. 1-13, 25-35 (I599). - D. Foo, Om kon- struktioner 
med paaseren alene. MaŁ. Tidøøkr. A, PP. 16-24 (1935). - B. WIEDE- firm, 
Algebraic-geometric investigations on construc- tion possibilities on the Hugel. 
German. Mathematik vol. 2, pp. 520-544 (1937), vol. 7,
S. 178-184 (1942). The results and suggestions of P. E. Böii- ozR are utilized here.
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ABÖ'z Waz1' (940-998) 158
Aoaxzt, Aooosz 149
Es Bisöni (973-1048) 157
Algebraic number 127
Arrangement 151
APOLLONIOS (-250 bia -200 t) 44, 120,

157
Apolloniachea touch problem 44
ÄRCBIBEDE9 (? -287 to -212) 79, 
81,

118,119,120,123,138,157
ABmw,Ebnr(born 1898)44, 153 
ADm&NN,Gxoxo(born 1906)135 
Extraction of the third root 73ff...,

81€.,89f" 120

B*caH*NW,FRIBDRI€a(geb.1909)36,40,
45ff., 152, 153

Basis of a body 60
BEaxBs, Elmtica (born 1898) 154
Movable triangle 113
BiEBEnBAoit, Ltrnwio (born 1886) 4, 6, 7,

10, 17, 127, 130, 155
BöKbfER, PxöL E£toEn (born 1877) 159
BONltESEN, T. 159
BszIDEltBA9g, WALTER (born 1893) 154 f.
BtfGB2f ER, Pxcc (born 1892) 87, 155, 157

ÜADRB, 0E+EP(1880-1918) 21, 150
OVERADIV 140
CBEMOltA, Lmoi (1831903 ) 140

OB9AB0OES, GIZLARD (1591-1CGj ) f'
Desargueaecher Dreieckaeatz G 
DESCARTEe, REWE (l59fi-ltis0) 155 
ÖIC$SO24t LEONzRD EUO Es (born 1874)

57, 154
DösnIE, lEINBIca (born 1873) 115, l5ö
ßO9E, B. 158
Three-pointed circle 112
Tripartite division of angles 60 ff, 72 ff, 87 
f.,

94 f., 121 ff., 153ff.
Decagon 65, 65, 126
OtiTtETt, A1,gazc+rr (1471-1528) 121, 158

Gauge block 40
Uniform constructions 2, o3ff., 154
Single-axis ruler 74 ff.
Elfeck 69, US, 126

Ellipse circle 109 f.
E "niQYf E9 KEDEBIOO (1871-1946) 149
EsrzneEn, H. C. 152
E czR ÜEO24HABD (1707-1783) 18, GS,

141
Eulera Q-function IG, 65

E "IITSI.ER, Pxoz (born 1894) 123 f., 158
WSGBER, Hzrbtv°l' JOaclam (born I91 I) 58 
TOO, ÖAYID 149, 159

JEINRIGn (I897-1939) 152
Pentagon 68
Fivefold division of the 
angle 71 Base point curve 
87

GnevEs, R. 155
Gx "Ss, CARLIEDRIGn (I777-

I855) fi4, 70, 127
Gaussachea Lemma 64, 127
GELFOND, op. cit. 126, 130, 158 f.
GENTZEN, GERBABD 154
GEPP BRT, ARALD (1902-I945) 152
GODFREY, E. L. ISS

Hanging rulers 24
HABTMAN", W. 158
Hxcrr, Orro (born 1887) 135
ÄERMES H*xs 154 
HERMAE,CxARLE91822-1901)126,158 
HiLBERT ÖAVin (1852-1943) 21, 40,

43ff., l2fi, 152 f.
Hilbert's constructions 40 ff. 
HaE£.uszEv, Jomti'nEs (1873-1950) 37,

8ö, 106ff., 112, I l0 f., 149, 152, 155
Horwi'n, JOSEP E8eznrBIED (b.1900) G6, 

84, 150, 154, I55, J59
Holz, WALTEB K. B. (born 1908) 114, 156 

f.

loziscn, R¥tDOcr (born 1903) 81, 84, 153
Indian rule 158
Interpolation 131
Inrersion 30
Involution theorem over complete 

quadrilaterals 7
Irreducible 51



Kissoide 90ff.

Name and subject index

bLtcLzunin; Come {1698-1746) 95

161

Kiasoid circle 94
Kims, Peiax {1849-l92čì) 2l 
Kocœvnsxz, Annes Avenues (1631

until 1700) 139 f. 
conchoide 74ff.
Construction of a triangle from the rows 

157
- - - - - upper sections of the angle bisector 

157
- - - - - - Altitude sounders 114, 157
- - - - - Angle bisectors157
- - - two sides and the inner circle radius 

86
Conatructions on the spherical surface 

141ff.
— third and fourth degree 72ff.
— erates grade 4
— with the ruler alone 2ff.
— - Circle alone 28ff.
— - Gauge 40 ff.
— - featem circle and ruler 18ff.
— - fixed compass opening 37
— - given Kreiøen 22
— - Cone section bend 102 f.
— - standardized ruler 39 ff.
— - regulàrem a-Eok and ruler 11ff.
— - Square and ruler I I ff.
— - Compasses and ruler 24ff.
— second degree 26 
Construction task I 
Kong, Exozø 124, 158
body 36, 43, 59ff.
Koøszzz, Yvu ( born 1864) 157
xoø œ , Hosts ¡i836-I904) 155 
Kreisbogenzweiøck 140ff.
Creation equation 65f.
Kreiaverwandtachaft 30 
Kubißche Reaolvente 7l
køøozz, Tmaømo (born 1886) 158

Laarøssz, JoøaNN Hamelcø (1728 to
1777) 149, 158

Wuozo, Eoatowo (I877-1938) 51, 141,
153, 169

I-aazsooz, Ba az (1875-1941) 149, 168 
Izxoa txu, E  "zaoxx-uo ( I852-1939)
126, 158

Łíaeal 1
Linear constructions 4
Coxoon, Eexzz (1863-1917) 96
Erect plumb bobs Il
— felling II

10' Bieberbach

Wmzmi, GIovzøs Fmøoøsco (1731 to 
1807) 44

òíalfattiaohe touch task 44 mscøsnom, 
Losznzo (l750-I800) 28,

32, 1íí2
Moon, Gaoøo (1640-1697) 28, 32, 150,

152
blohr-ßføscheronisohekonstruktionen 28íf.
Moxooxam-BOLTOY9ÆOI,D.150
MüLL-ER, Hzrsnicø 138, 159

Nzcv, Gross vow SsosøaPaøi (born 
1887) 149, 155

Constructions of approximation 121ff., 138, 158
Nsøn ro, 0. 158
Nsiss, FøianRIGø (born 1883) 157
Neuneck 58, 65, l2fl
Nzw'roø, Iszze (1643-1727) 85, 90, 94,

115, 131, 155, 167
Newton's semicircle task 115, 157
- Kisøoid circle 94
Standardized rectangular hook 90ff. 
Standardized r u l e r  39 ff.
Nö søøn, Ni:cmsEnm (born 1885)131, 

159

Oa tea, R. 155
Ocxoxz, tozu:ca a' (1862-1936), 79,

125, 155

Pfiz, Jm.ms 152
Paper folding 49
Parabellot 116
Parallel ruler 32 ff.
Parallel right angles 87ff.
Pzsczz, Bzzxsz (1Gß3-1562) 20, 21, 23
-, Ezi:esøa {1588-I651) 80, 82
Paaoalsche Schneckø 80, 123
Pøøøoø, Osxx ( born 1880) 124, 158
Œøuøm, Josaz (born 1873) 66, 154, 157
Pó vx, Gaoao (born I88'7) 159

149
Poncelet-Steinerache conatructionsl8ff.

Square constructions 26
Square root expression 26 ff. Squarable 
triangular bifurcation 140 ff.

Rschtwinkelhaken 46, 87 f.
- and grooving circle 113
Right-angle inversion 12
Right-angle ruler 14, 161



162

Right angle method fi8, 97
Redusible 51
Regular polygons 58ff, 125 
RdMig "d60ff 
Rhombusl3

2'(name and subject index

'f'ROT'Pzz, Jozutuuzs (18G6-1939) 149, 157
'Iscuxxxcoss, WoeO3€IR (born 188G) 141, 

159

Rosm,Joims(l867—l949)157
Rmg36

8omt "zsa9, IE. 158
Bern zzozR, Tzoooa (born 191I) 126,159
Intersection of creia and ellipse 100f., 155
- - - Ilyperbel 100ff., l5 5f.
- - - Parabola 99 f., 155 Scaoz, C. 
157
ÜCBOR, EDBIca (1856-1932) 45, 153
, Efz xxAslapoo9 (1843 bi8 

1921) 153
ÜgYgSI, uczsco (born 1879) 150, 152
heptagon 58f., 84, 118, 157 
heptagon ö9 ff.
Czzozz, Cool. I oowzo (born 1896) 12G, 

159
ßaosz, ucozs-Rzufi (1622-I685) 155
Suzza, BgltRv Joax ifizzz'nzs (1826 to

1883) 160, 155
ßPRISBR, Anderes (born 1885) 118
Szmouüzzzs, H. (born 1857) 158
Punching circle 98 ff.
Szzrxzs, Jaxoa (179ti-1853) 18, 149
Route extractor 42

TIBII' IeN @uzu t (82G-901) 157 
IIABR, Z3EB s (1883-1950) 157

Tzzzzz, MazxBica (born 1880) 151 
Transforzastiozt du1cIt reziyrolre Radien

30
AanspwentesDeckbMtll2
Transcendental number 126
Transcendence of n 126, 158 
Trisectrix of MacLzenin 95

Inaccessible points 5

daacan, Tzoooa (I869-I945) 149, 155
von nes Wazeozn, BARTEN (born 1903) 53f., 

154, 157
Multiplication of the cube 50ff., 81f. 
Fourth harmonic point 3
Voozz, F. 158
Vömuv, ERWT2t (1881951 ) 95
Complete square 3, 7

WzBBR, JEINRIca (1842-19I3) 149, 153
-, Wzanza (born 1906) 64, 56, 154
Wzzzxszwss, Wz'c ( 181 1897) 126
Walss, Eausz Aooosz (19 1942) 24,

150
Wzaaszazn, Joszs (1869-1919) 149, 153

Wzz:uazznza, Bszxzucu (187A1931) I57, 
159

Arbitrary auxiliary points 58
Angle bisector 49
Angle bisector 11 Angle ruler 
33ff.
Angle doubling 11
Wozr, Hzsuen ( born 1878) 157

Decagon 68 Carpenter hook 9G
Compasses, ruler and feater conical cut 

l02ff.
Accessible points 5
Zömaz, Pznz (born 1877) 150




