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Aus der Vorrede zur ersten Auflage. 

Am 18. November 1900 feierte Geheimrat Professor Dr. Gustav Bauer 

in unverminderter geistiger und körperlicher Frische, noch rastlos tätig 

im akademischen Lehramte, seinen 80. Geburtstag. Zur Feier dieses sel- 

tenen Ereignisses veranstaltete der ‚Mathematische Verein München“, 

der von Studierenden der Universität und der Technischen Hochschule ge- 

bildet wird, einen Festabend und machte gewissermaßen als Ehrengabe 

dem Jubilar das Anerbieten, dessen Vorlesungen über ‚Algebra‘ im 

Drucke erscheinen zu lassen. Herr Professor Bauer erklärte sich damit 

einverstanden und kam dem mathematischen Vereine noch weiter ent- 

gegen, indem er das vom Verein aus verschiedenen Nachschriften zu- 

sammengestellte Manuskript vor der Drucklegung sorgfältig überarbeitete. 

Das vorliegende Buch soll demnach nicht nur den Titel ‚‚Vorlesungen‘“ 

führen, sondern in der Tat Vorlesungen, wie sie gehalten wurden, wieder- 

geben. Es ist hervorgegangen aus Vorträgen über Algebra, die Herr Pro- 

fessor Bauer in der Zeit von 1870—1897 je in Zwischenräumen von 2—8 

Jahren an der Universität München gehalten hat. Diese Vorlesungen 

waren für Studierende im ersten oder zweiten Studienjahr bestimmt. Der 

Zeit nach erstreckte sich die Vorlesung jeweilig über zwei Semester. 
Der Unterzeichnete hat, aus Interesse für die Sache, gern dem vom 

Mathematischen Vereine München geäußerten Wunsche Folge geleistet 

und die mit der Drucklegung verbundenen Arbeiten auf sich genommen. 

München, März 1903. 

Karl Doehlemann. 

Aus der Vorrede zur zweiten Auflage. 

Drei Jahre nach dem Erscheinen der ersten Auflage dieses Buches, am 

3. April 1906 beschloß Gustav Bauer, über 85 Jahre alt, nach kurzem 

Krankenlager sein arbeits- und erfolgreiches Leben. Wenn jetzt, also 

schon nach sechs Jahren, seine ‚Vorlesungen über Algebra‘ in neuer Auf- 

lage erscheinen müssen, so beweist dies, daß das Buch auch in weiteren 

Kreisen sich Freunde erworben hat. In der Tat besitzt es eine Reihe eigen- 
ar 
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artiger Vorzüge. Die fundamentalen Theoreme, auf welchen Cauchy, 

Gauß, Abel, Jacobi und andere das Gebäude der Algebra aufführten, 

gelangen in überaus schlichter und einfacher, aber um so wirksamerer Weise 

zur Darstellung. Daneben zeichnet sich das Buch aber auch durch eine 

gewisse praktische Auffassung aus, welche auch auf die Möglichkeit der 

wirklichen Ausführung von Rechnungen Rücksicht nimmt, Beispiele ein- 

flicht und die Anwendungen in der Geometrie wenigstens andeutet. Dies 

kann man namentlich bei der numerischen Auflösung der Gleichungen be- 

obachten. Die Graeffesche Methode zum Beispiel wird in keinem Lehr- 

buch der Algebra so eingehend erörtert. 

| Doehlemann. 

Vorrede zur vierten Auflage. 

Durch den allzufrühen Tod des bisherigen Herausgebers der Bauer- 

schen Vorlesungen, des verdienten Münchener Geometers Doehlemann, 

machte sich die Bestellung eines neuen Herausgebers notwendig, wenn das 

Buch nicht Gefahr laufen sollte, allmählich hinter dem derzeitigen Stand 

der Wissenschaft allzuweit herzuhinken. Der Aufforderung des Ver- 

legers, die Herausgabe des Buches zu übernehmen, bin ich gerne gefolgt, 

da ich mir in den Zeiten, als ich noch Algebra zu lesen pflegte, den Ein- 

druck gebildet hatte, daß das Buch für die Hand des Anfängers sehr zu 

empfehlen sei und da mir die Vorzüge, die Doehlemann in seinen Vor- 

reden hervorhob, zum Teil sehr wesentliche zu sein schienen. Es hat sich 

aber als nötig herausgestellt, sehr viel zu bessern und zu erneuern sowie 

zuzufügen, wenn das Buch modernen Ansprüchen genügen sollte. Für die 

neue Auflage hatte Herr Doehlemann schon einiges bereitgestellt, näm- 

lich ein Verzeichnis einiger Druckfehler sowie eine aus der Feder des 

Herrn Perron stammende Darstellung der Substitutionsgruppen und der 

Galoisschen Theorie. Auch diese Darstellung habe ich verwendet und ihr 

namentlich im fünften Abschnitt die Nr. 1 bis 9 des Kapitels 7 und die 
Nummern 11—13 des Kapitels 8 entnommen. Wieviel ich aus der 
dritten Auflage beibehalten oder entnommen habe, lasse ich unerörtert. 
Denn ein Leser, den das interessieren sollte, kann es durch einen Ver- 
gleich der dritten und der vierten Auflage selbst feststellen. 

An der Gesamtauffassung dessen, was Algebra sei, habe ich nichts ge- 
ändert. So stehen also nach wie vor die algebraischen Gleichungen im 
Mittelpunkt der Darstellung. Nur in der Behandlung der Determinanten 
und der quadratischen Formen bin ich, wie das auch schon in der dritten 
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Auflage war, etwas weiter gegangen, als es die im Buche selbst behandelten 

Theorien nötig gemacht hätten. Ich habe aber hie und da den Leser auf 

Originalliteratur verwiesen und wollte ihm im Buche selbst das vermitteln, 

was er zum Verständnis nötig hat. Mit einer gewissen Absichtlichkeit habe 

ich in einigen Paragraphen dem Leser die Lektüre von Originalarbeiten 

recht nahegelegt. Jeder Studierende muß recht bald lernen, auch Zeit- 

schriftenaufsätze zu lesen. In einigen wenigen Paragraphen habe ich 

funktionentheoretische Hilfsmittel benutzt. Außer dem Fundamental- 

satz der Algebra sind dies aber nur Darlegungen, die ein Leser, dem das 

Funktionentheoretische nicht liegt, überschlagen kann, ohne daß ihm im 

Rest des Buches dadurch etwas für das Verständnis Nötiges abhanden 

käme. Nur beim Fundamentalsatz der Algebra ist das anders. Ein 

Leser, der seinen Beweis aber noch nicht aufnehmen kann, tut gut, 

nur den Satz selbst sich anzueignen und sich zu merken, daß das Folgende 

sich durchweg auf Gleichungen bezieht, für die der Satz richtig ist. Was 

aber die anderen funktionentheoretisch gerichteten Paragraphen angeht, 

so wird ein in der Funktionentheorie bewanderter Leser, wohl gerade auch 

an ihnen, oder besser an den dort behandelten Sätzen, eine besondere 

Freude haben, da gerade sie sehr deutlich zeigen, wo heute im Gebiet der 

Algebra echtes, frisches Leben sproßt. 

Berlin, März 1928. 

Bieberbach. 
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Erster Absehnitt. 

Grundlegende Eigenschaften der algebraischen 

Gleichungen. 

Erstes Kapitel. 

Einleitung. 

1.Veränderliche und Funktionen. Man unterscheidet zwischen konstan- 

ten und veränderlichen Zahlen. Erstere haben einen bestimmtenWert, 

letztere können verschiedene, beliebige Werte aus einem gegebenen Werte- 

vorrat annehmen; man bezeichnet dieselben gewöhnlich zur Unterschei- 

dung von den konstanten Zahlen durch einen der letzten Buchstaben des 

Alphabets x, y,... Eine Zahl, deren Wert durch eine oder auch mehrere 

Veränderliche oder Variable bestimmt ist, heißt eine Funktion die- 

ser Veränderlichen. Man bezeichnet im allgemeinsten Sinne eine Funk- 

tion von einer oder mehrerer Variablen durch 

fe), Pa)... fa y), Fir y);- 
Die Funktion f(x) kann z. B. durch irgendeinen analytischen Ausdruck ge- 

geben sein, in welchen die Variable x eingeht. 

2. Rationale Funktionen. Sind in einem analytischen Ausdruck die Varia- 

blen nur den elementaren Operationen der Addition, Subtraktion, Multi- 

plikation und Division unterworfen, und sind diese Operationen nur in 

endlicher Anzahl wiederholt, so heißt der Ausdruck ratıonal, die durch 

den Ausdruck dargestellte Funktion heißt ebenfalls rational. 

3. Ganze rationale Funktionen. Ein rationaler analytischer Ausdruck 

stellt eine ganze rationale Funktion dar, wenn er keine variablen Divi- 

soren enthält. Eine ganze rationale Funktion ist mithin durch eine endliche 

Summe von Gliedern darstellbar, welche ganze positive Potenzen der 

Variablen, multipliziert mit konstanten Koeffizienten, enthalten. Die 

größte Anzahl der Variablen, welche in einem Gliede als Faktoren stehen, 

bestimmt den Grad der ganzen Funktion. Statt ganze rationale Funktion 

sagt man auch Polynom. 
” Bieberbach, Algebra 1 



2 Erstes Kapitel: Einleitung 

Die allgemeine Form eines Polynoms einer Variablen z ist mithin 

HE t+ tt + AmEN, 

WO Ag; Ay, g5 - - - 4m beliebig gegebene Konstante sind und m. eine ganze 

positive Zahl bedeutet. Ist m der größte der in der Funktion "Vorkommen- 

den Exponenten von z, d.h. alsoa„-+-0, so heißt die Funktion vom Grade m. 

Der Quotient aus zwei solchen ganzen Funktionen 

a+bzr + ca +..-+kam 

A+Bz+02+-.+Kar 

ist die allgemeinste Form einer gebrochenen rationalen Funktion von . 

4. Mehrere Veränderliche. Beispiele von Polynome in zwei Variablen 

x, y sind ee 

a+bze+cy+da—exy+fy, 

woa,b,c,...,f beliebige Konstante sind; erstere ist die allgemeine Funk- 

tion ersten Grades oder, wie man zu sagen pflegt, lineare Funktion, letz- 

tere die allgemeine Funktion zweiten Grades oder quadratische Funk- 

tion der zwei Variablen x, y. Eine ganze rationale Funktion aus ‚drei 

Variablen x, y, zist durch eine endliche Summe aus Gliedern von der Form 

OxP yaz! 

dargestellt, wo CO eine Konstante, p, q,r ganze positive Zahlen, die Null in- 

begriffen, bedeuten. Sie ist vom n-ten Grade, wenn n die größte Anzahl 

der Variablen ist, die in einem Gliede als Faktoren stehen, oder mit andern 

Worten, wenn n der größte Wert ist, den die Summe p—q + r erreicht. 

Eine ganze rationale Funktion f(x, y, 2,...) heißt insbesondere homo- 

gen, wenn für jede Sean: k die Identität f(kz,ky,kz2,...) 

=Rrf(x, y,2,...) besteht) wo n den Grad der Funktion bedeutet. Dann 

stehen in Kekın Gliede gleich viel dieser Variablen als Faktoren. So sind 
arena rt au 41,2] F ir 

ax + by, ER I Rx e a „nee 

ac +by-+ cz uhlbigtrzinnd Dh gung Full 
lineare homogene Funktionen von x, y bzw. z, y, 2; 

as +bay+ey +daz+eyz +f22 

ist eine quadratische homogene Funktion in x, Y2: 

ax +by° + ce + dayz 

eine solche vom dritten Grade; 

(v+o+w-+ d)% 



1,1, 5. Gleichungen 3 

ist homogen in bezug auf die vier Größen u, v, w, d; aber nicht homogen 

in bezug auf drei derselben, z. B. in bezug auf u, v, w. 

5. Gleichungen. Sind A und B zwei Ausdrücke, von denen der eine nur 

eine Umformung des anderen ist, so muß für jeden Wert derin A und B 

vorkommenden Variablen A = B sein. Eine solehe Gleiehung heißt eine 
identische Gleichung. Z.B. 

(a— 2). +2) = — a2 

@+2ary+yP=arla tay)+ylas+Y) 
sind identische Gleichungen; sie gelten für jeden Wert von.a, x, y. Eben- 

St (a—b)e+(b—c)a=(a—c)b 

identisch erfüllt für jeden Wert von a, b, c. 

Sind aber p(x) und y(x) zwei Funktionen von x, und stellen wir uns die 

Frage, ob dieselben, wenn x variiert, gleiche Werte erhalten können, oder 

fragen wir, ob die Funktion p(x) einen beliebig gegebenen Wert c an- 

nehmen kann, so sind damit die Bedingungen gesetzt: 

p(a) = yla), pe) = e. 
Im allgemeinen ist keine dieser Gleichungen eine identische, indem jede, 

wenn dies überhaupt möglich, höchstens für bestimmte Werte von x er- 

füllt werden kann. 

Bringen wir alle Glieder der Gleichung auf eine Seite derselben und 

fassen sie unter ein Funktionszeichen zusammen, so erhält sie die Form 

hl. 

Diejenigen Werte von z, welche der Gleichung genügen, heißen die Wur- 

zeln der Gleichung. 

” Die einfachsten Gleichungen sind diejenigen, in welchen an Stelle von 

f(x) eine ganze rationale Funktion der Variabeln steht. Sie haben die 

Form 
Er ana + +, =), 

wobei die ag, 41, - . -, d„ beliebig gegebene, konstante Zahlen sind und n, 

eine positive, ganze Zahl ist. Die Größen ay, 41, . . ., @„ heißen die Koef- 

fizienten der Gleichung, der höchste Exponent n bestimmt den Grad 

der Gleichung. Der obige Ausdruck gibt die allgemeine Form einer „alge- 

braischen Gleichung‘ mit einer Unbekannten. 

Sie führen auch zur allgemeinen Definition der algebraischen Funktion. 

Denken wir uns, um dies wenigstens anzudeuten, daß die Koeffizienten 

Ag, ds.» , d„ einer algebraischen Gleichung rationale Funktionen irgend- 
1* 



4 Zweites Kapitel: Komplexe Zahlen 

einer neuen Größe, eines Parameters seien, so wird eine Wurzel der 

algebraischen Gleichung als „algebraische Funktion“ dieses Para- 

meters bezeichnet. Eine algebraische Funktion y = p(«) ist somit durch 

eine Gleichung f(x, y) = definiert. Hier ist f(z, y) ein Polynom in x 

und y. Alle nicht algebraischen Funktionen heißen „transzendent“. 

Solche transzendente Funktionen sind z. B. e*, log(1 + x), sın x, tang x. 

Zweites Kapitel. 

Komplexe Zahlen. 

1. Historisches. Wer auf der Schule mit komplexen (oder, wie man dort 

wohl auch sagt, imaginären) Zahlen rechnen lernt, befolgt den Weg, den 

auch die Wissenschaft ging. Er gewöhnt sich allmählich an das Neue und 

Unbehagliche, das zunächst den komplexen Zahlen anhaftet. Er steht 

unter dem allmächtigen Trägheitsgesetz des menschlichen Geistes, das 

ihn die formalen Rechenregeln auf diese Gebilde anzuwenden treibt, ob- 

wohl ihnen bei etwas näherem Zusehen eine reale Bedeutung abzugehen 

scheint, obwohl sie in den Anwendungen die Rolle unmöglicher Lösungen 

oftmals spielen, und obwohl er nicht einsieht, wieso man mit Unmög- 

lichem soll rechnen können. Gerade das ist es, was nachdenkliche Mathe- 

matiker vor Gauß und rückständige Köpfe nach Gauß immer wieder 

gegen die komplexen Zahlen geltend machten. Und doch ging nebenher 

die steigende Einsicht, daß man sie doch nötig habe, ging nebenher die 

Erfahrung, daß die über den Umweg durchs Imaginäre gewonnenen Re- 

sultate über reelle Zahlen sich stets nachträglich bestätigen ließen. Der 

Weg durchs Imaginäre machte überdies einen besonders eleganten Ein- 

druck. Aber woher kam dem Unmöglichen diese geheimnisvolle Kraft ? 

Daß man die Antwort auf diese Frage erst so spät fand, daß man vor 

Gauß so sehr im Dunklen tappte, hat seinen inneren Grund in dem Cha- 

rakter der Mathematik in den vorausgehenden Jahrhunderten. In dieser 
Zeit war begriffliches Denken den meisten Mathematikern sehr fremd. Ver- 
suchte doch noch Euler zu beweisen, daß man alle unmöglichen Zahlen 
auf die Form x + iy!) bringen könne.?) Daß man dazu aber vorher aus 
der Vorstellung „unmögliche Zahl“ einen Begriff machen müsse, daß man 
anders zu logischen Schlüssen weder eine Unterlage noch ein Recht be- 

1) Die Bezeichnung i=YV—1 hat Euler als erster 1777 gebraucht. Indessen 
scheint sie sich erst seit Gauß (von 1801 an) eingebürgert zu haben. 

2) Mömoire de l’Acad&mie de Berlin V annse 1749. S. 222288. 
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sitzt, war Euler und seiner Zeit fremd. Grob ausgedrückt ist doch für uns 

heute die Sache so, daß das, was Euler beweisen wollte, gerade erst die 

Begriffsbestimmung seines Vorstellungsinhaltes „unmögliche Zahl“ ab- 
gibt. 

Das Wesen der Sache hat erst Gauß erfaßt. Gleich allen großen Genies 

wurzelt er zwar durchaus in der Vergangenheit), hat sich aber über dieselbe 

erhoben. Wenn man nun doch heute meist der gleich darzulegenden, auf 

W.R. Hamilton (1837) zurückgehenden englischen Theorie den Vorzug 

gibt, so hat dies seinen Grund darin, daß in dieser rein arithmetischen 

Darstellung die leitenden Gedanken noch klarer hervortreten als in der 

Gaußschen geometrischen Einkleidung. Ich beginne daher mit dieser 

arithmetischen Theorie. 

2. Zahlenpaare. An der Spitze steht der Satz: Das Rechnen mit kom- 

plexen Zahlen ist ein Rechnen mit Zahlenpaaren. Unter einer 

„komplexen Zahl“ versteht man ein geordnetes Paar (a, b) 

reeller Zahlen?), wofern gewisse Operationen erklärt sind, welche mit 

diesen Zahlenpaaren vorgenommen werden sollen. Geordnet heißt das 

Zahlenpaar, weil (a, b) von (b, a) unterschieden werden soll. Wir wollen 

ein derartiges Operieren mit den komplexen Zahlen ‚Rechnen‘ nennen. 

An sich ist es völlig willkürlich und ganz unserem Entschluß anheim- 

gegeben, wie wir diese Operationen erklären, und wie wir sie benennen 

wollen. Indessen werden wir den Wunsch haben, unsere Wahl durch den 

Zweck zu bestimmen, welchen wir mit der Einführung der komplexen 
Zahlen verfolgen. Wir wollen ja mit den neuen, den komplexen Zahlen 

eine Erweiterung des Zahlbegriffes vornehmen. Der Leser hat näm- 

lich zweifellos bei der Auflösung der quadratischen Gleichungen, z. B. 

schon bei 22 +1 =0, die Erfahrung gemacht, daß man nicht mit den 

reellen Zahlen auskommt. Unsere Zahlenpaare sollen also als speziellen Fall 

1) Noch in seiner Dissertation von 1799 finden sich Anklänge daran, daß er noch 
nicht voll mit der Tradition gebrochen hat. Erst 1831 ist volle Klarheit nachweis- 
bar. Eine sehr gute Darstellung dieser historischen Sachverhalte findet der Leser 
in der französischen Ausgabe der math. Encyklopädie im Bd. I,1S.337. Hier geben 
wir nur so viel, als für das Verständnis der Fragestellung zweckdienlich erscheint. 
Erwähnt mag nur noch werden, daß der Däne 0. Wessel schon 1799 in einer Schrift, 
die unbeachtet blieb, eine ausführliche Theorie der komplexen Zahlen auf geometri- 
scher Grundlage entwickelte. Wenn er so auch Gauß voranzustellen wäre, der sich 
mit knappen Andeutungen begnügt, so hat doch anderseits Wessels Arbeit gar 
keinen Einfluß ausgeübt. Es war vielmehr die Anregung von Gauß, dessen An- 
deutungen die intelligenten Mathematiker auch ohne Wessel durchzuführen ver- 

standen. 
2) Es wird gewöhnlich in der Form a + ib geschrieben, eine Schreibweise, auf die 

uns auch unsere weiteren Betrachtungen hinführen werden. 
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die gewöhnlichen reellen Zahlen, in nur etwas anderer Bezeichnung, unter 

sich begreifen. Die Rechenoperationen sollen demnach weiter so formu- 

liert werden, daß sie in Anwendung auf die gewöhnlichen Zahlen, die wir 

weiter als die reellen Zahlen bezeichnen, zu denselben Resultaten führen, 

wie die dort üblichen, Addition und Multiplikation genannten Operationen. 

Weiter werden wir den Wunsch haben, daß für Addieren und Multipli- 

zieren nicht nur in diesem Spezialfall, sondern überhaupt soweit als mög- 

lich unsere gewohnten Rechenregeln, Axiome der Arithmetik genannt, be- 

stehen bleiben. Wir werden beweisen, daß die folgenden Festsetzungen 

diese „„Permanenz der formalen Regeln‘‘t) gewährleisten. 

Das Zahlenpaar (a, 0) lassen wir der gewöhnlichen Zahl a entsprechen 

und verabreden, statt (a, 0) auch kurz a zu schreiben: (a,0) = a. 

Unter der Summe (a, b) + (c,d) der beiden komplexen Zahlen (a, b) 

und (c,d) verstehen wir die Zahl (a+c, b+.d). Also wird unserem 

Wunsche entsprechend insbesondere 

(,0) +(,0)=(la+c0)=a-+te. 

Unter dem Produkt (a,b) (c,d) verstehen wir die komplexe Zahl 

(ac—bd, ad + bc). Dann ist insbesondere, wie es sein sollte, (a, 0) - (c, 0) 

—(&6,0) =ac: 

3. Rechenregeln. Man sieht ohne weiteres, daß für diese Erklärungen das 

kommutative, assoziative und distributive Gesetz bestehen bleiben, daß 

also für die Zahlenpaare « = (a, b), ß = (c, d),y = (e, f) die Gesetze 

e+ß=ß+ea kommutatives Gesetz der Addition 

DE kommutatives Gesetz der Multiplikation 

(e +9) +y=a-+(ß+y) assoziatives Gesetz der Addition 

(e= By —=a:(ß y) assoziatives Gesetz der Multiplikation 

a-$B+y)=aß+a'y distributives Gesetz 

in Geltung bleiben. Wir überlassen dem Leser die Aufgabe, die zur Prü- 
fung nötige kleine Rechnung auszuführen. 

Wir verabreden weiter, die häufig vorkommende komplexe Zahl (0, 1) 
kurz mit i zu bezeichnen. Dann wird 

(a,b) = (a,0) + (0,b) =a+b-(0,1)=a-+ib. 

Ferner aber wird i? = (0,1) (0, 1)=(-1,0) =—1. 

Wir können also auchi= Y— 1 schreiben, und damit haben wir den An- 
schluß an die übliche Schreibweise a + ib der komplexen Zahlen erreicht. 

1) Dieser Ausdruck stammt von Hermann Hankel, der 1867 durch seine 
„, Theorie der komplexen Zahlensysteme“ sehr fördernd gewirkt hat. 
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Wir haben nämlich dargelegt, woher man das Recht nimmt, so zu 
schreiben. 

a heißt der Realteil, b der Imaginärteil der komplexen Zahl «=aHrıb. 

Man schreibt a = R(«) und b = %(«). 
Zwei komplexe Zahlen sollen nur dann gleich heißen, wenn sie identisch 

sind. Sie stimmen also stets in Realteil und in Imaginärteil überein. 

Die Zahl &=a— ib heißt zua=a-+ ib konjugiert. Stets werden 

wir die konjugierten Zahlen durch Überstreiechen bezeichnen. Eine 
Zahl heißt reell, wenn ihr el verschwindet. Sie heißt ‚rein 

ist also @ =ä; rein imaginäre Yahlen Kor en sind durch «= — a ge- 

kennzeichnet. Stets ist also «a +a4—=2R(e) reell und a—-ä=2iX(a) 
rein imaginär. 

Es gibt eine einzige komplexe Zahl Null, die der Gleichung 

(a Kr 

genügt. Das ist natürlich die reelle Zahl Null. Um das einzusehen, hat 

man nur auf beiden Seiten der Gleichung — azuaddieren (—a=—1:a). 

Ebenso ist die reelle Zahl Eins die einzige Lösung der Gleichung a& =, 

wenn @=#0 ist. 

Man hat, um das einzusehen, nur beide Seiten mit 

a 

P= an 
zu multiplizieren. Wir wollen diese Zahl fortan mit e bezeichnen, weil 

jaß’a=1iist. Denn es ist jaa® +b?=.«a-ä. Dabei ist vorausgesetzt, 

daß @=+0ist, d.h. daß nicht a und b gleichzeitig verschwinden, d.h. daß 

a? + b?=+0 ist. Denn sonst genügt ja jede Zahl unserer Gleichung @& = e. 

Ein Produkt kann nur dann verschwinden, wenn ein Faktor ver- 

schwindet. Denn wenn «-+0ist, aber doch a& = ist, somuß& =. en 

— ( sein, wie man durch Multiplikation beider Seiten der Gleichung mit 

J, erkennt. 
a 

Damit sind alle Axiome, deren Aufzählung der Leser etwa in meinem 

Leitfaden der Differentialrechnung auf S. 12/13 nachlesen möge, als gültig 

erkannt. Nur die Monotoniegesetze sind noch nicht besprochen. Es soll 

nicht näher davon die Rede sein, daß sie tatsächlich nicht mehr gelten, 

oder besser gesagt, daß die Relationen größer und kleiner im Gebiete der 

komplexen Zahlen nicht erklärt werden, da man ihrer nicht bedarf. Wollte 

man sie doch einführen, so wären sie sicher nicht mehr in der vom Reellen 

gewohnten Art mit den Rechenregeln verknüpft. 
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4. Einzigkeit der komplexen Zahlen. Wir haben also eingesehen, daß un- 

seren ursprünglichen Forderungen durch unsere Festsetzungen genügt 

wird. Manchem Leser wird es aber nicht recht erklärlich sein, wie man auf 

diese Festsetzungen kommt, und er wird sich fragen, ob es nicht noch an- 

dere Festsetzungen gibt, welche dem gleichen Zweck genügen. Daß man 

es gerade erst einmal mit unseren Festsetzungen versucht, hat seinen 

Grund darin, daß es ja gerade die Festsetzungen sind, auf die man stößt, 

wenn man ganz naiv z. B. auf der Schule mit «* — — 1 und den anderen 

Regeln an die komplexen Zahlen herantritt. Ob es aber die einzigen Fest- 

setzungen sind, die den Bedingungen genügen, das ist eine Frage, die noch 

nicht restlos geklärt ist. Bisher hat nur gezeigt werden können, daß unter 

gewissen Voraussetzungen keine weiteren wesentlich anderen Festsetzun- 

gen mehr möglich sind. Diese Voraussetzungen halten daran fest, daß 

Summe und Produkt eindeutige und stetige Funktionen der Summanden 

bzw. Faktoren sein sollen. Damit ist folgendes gemeint: Real- und Ima- 

ginärteil von Summe und Produkt sollen eindeutig und stetig durch Real- 

und Imaginärteil der Summanden bzw. Faktoren bestimmt sein.) 

Das Zahlensystem kann nicht dadurch aufs neue erweitert werden, daß 

man etwa Zahlentripel usw. heranzieht. Denn man kann beweisen?), daß 

man auf keine Weise für derartige Gebilde die Rechenprozesse so erklären 

kann, daß alle Rechenregeln bestehen bleiben. 

5. Bedeutung der komplexen Zahlen für die algebraischen Gleichungen. 

Die hohe Bedeutung der komplexen Zahlen kommt so recht im Fundamen- 

talsatz der Algebra zum Ausdruck. Zwar werden wir erst später einen Be- 

weis dafür kennenlernen, doch wollen wir jetzt schon den Satz formu- 

lieren und ihn in einfachen Fällen bestätigen. Nach diesem Satz hat jede 

algebraische Gleichung mit komplexen Koeffizienten mindestens eine 

(komplexe) Wurzel. Namentlich also haben die Gleichungen z+« =ß 
und za = ß mit «+ (0 genau eine Wurzel. So sind nun auch Subtraktion 
und Division eindeutig erklärt. Wir wollen die Lösungen mit ß— « und 

" bezeichnen. Seietwa« =a + ibundß =c + id, so sind die Lösungen 
| z ß 1 B—a=a—c+ti(b—d) und ae (e + td) - (a — ib). 

Das bekommt man im ersten Fall dadurch heraus, daß man rechts und 
links « addiert. Damit ist auch gezeigt, daß die angegebene die einzige 
Lösung ist. Im Falle der Gleichung z& = 8 multipliziert man rechts und 
links mit der zu @ konjugiert imaginären Zahl &. Dann wird zad — Pä. 

1) Vgl. meine Arbeit in Mathematische Zeitschrift Bd. 2 (1918) S. 171—179. 
2) Frobenius, Crelles Journal Bd. 84 (1878). 
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Nun multipliziert man rechts und links mit = _ So erhält man Bed 
a? + b2" 

dann rechts die Zahl u Ra. Du ER die wir mit 2 bezeichnen. Daß 

für das Rechnen mit solchen Brüchen die gewohnten Regeln gelten, sieht 

man leicht ein. 

Leicht erkennt man nun auch, daß alle quadratischen Gleiehungen mit 

reellen oder komplexen Koeffizienten lösbar werden. Wenn man an den 

Herleitungsprozeß für die Auflösungsformel der Gleichung zweiten Gra- 

des denkt, so erkennt man, daß man nur zu zeigen hat, wie man nun 

aus jeder komplexen Zahl die Quadratwurzel ziehen kann. Soll aber etwa 

® ° 5 ? IR 9%, Yı Pe 7 

(ce +iy®? =a-t ib oLlo K—uU FAARRETE 

T ı 
: 2 2 5 alle 4 “u 

sein, so findet man darauu m®—Y=a { ı 
Die ash 

HELR= 
2xy —b. . ya el 3 eh?! 

BAER RIN BE en zZ 
- a+Va?+ b? @-+b—a 

Also wird SU ı a: H ee, = e 

Die Wahl der Vorzeichen ist durch die Bedingung 22 y = b festgelegt. 

Diese Sachverhalte zeigen deutlich den Nutzen, den die Heranziehung 

der komplexen Zahlen für die Algebra bietet. Denn bei Verwendung von 

nur reellen Zahlen würden nicht alle Gleichungen Wurzeln besitzen. 

6. Geometrische Deutung der komplexen Zahlen. Die komplexen Zahlen 

2 = x + iy bilden eine zweiparametrige Schar: (x, y). Will man sie also 

geometrisch deuten, so wird man dazu nicht wie bei den reellen Zahlen 

eine Zahlengerade benutzen. Man wird vielmehr eine Zahlenebene 

heranziehen. Das hat zuerst Gauß getan. Sie heißt daher auch die Gauß- 

sche Zahlenebene. Die komplexe Zahla =a + ib = (a,b) bestimmt den 

Punkt P mit den rechtwinkligen Koordinaten x =a und y=b und den 

Vektor OP (O0 Koordinatenanfang).!) Auf der x-Achse werden dabei die 

reellen, auf der y-Achse die rein imaginären Zahlen aufgetragen. Daher 

heißt die x-Achse auch reelle Achse, die y-Achse aber imaginäre 

Achse. Der Realteil einer komplexen Zahl erscheint wieder als x-Kom- 

ponente, der Imaginärteil als y„-Komponente des zur komplexen Zahl ge- 

hörigen Vektors. Es ist reizvoll, sich die Rechenprozesse geometrisch zu 

veranschaulichen. Seien z, und 2, die Koordinaten zweier Punkte, die wir 

kurz mit z, und z, bezeichnen wollen. Man erhält dann den Punkt 

23 = 2} + z, nach der Konstruktion des Parallelogramms der Kräfte. Man 

1) Unter einem Vektor versteht man bekanntlich eine mit einem Durchlaufungs- 
sinn versehene Strecke, kurz eine gerichtete Strecke. 
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legt nämlich durch 2, als Anfangspunkt einen Vektor, der mit dem Vektor 

z,in Richtung und Länge übereinstimmt. Er endigt im Punkte 2,. Daß 

man dabei auch z, und z, ihre Rollen vertauschen lassen kann, leuchtet 

geometrisch ein und bringt das kommutative Gesetz der Addition zur An- 

schauung. Alles weitere entnimmt der Leser der Fig. 1, wo die drei Vek- 

toren 02, , 2123, 02; ein Dreieck bilden. 

Die Zahl — z bestimmt einen Vektor, der die entgegengesetzte Rich- 

tung, aber die gleiche Länge wie der Vektor z besitzt. Danach wird der 

Fig.1. Fig. 2. Fig. 3. 

Leser die geometrische Bedeutung der Subtraktion aus Fig. 2 ablesen: 

y„=h-a=aırt(—2). 

Die Zahl 3 geht durch Spiegelung an der reellen Achse aus der Zahl z 

hervor. Fig. 3 bringt das zur Anschauung. 

Um sich nun in ähnlicher Weise die Multiplikation zu verdeutlichen, 

tut man gut, Polarkoordinaten einzuführen. Die Länge des Vektors z 

=+/2/-}zj wird r 2 Ve® Y=+ Vzz. Diese Zahl heißt absoluter Betrag 

von zund wird nach Weierstraß wieim Reellen mit | z | bezeichnet. Für 
reelles 2 fällt nämlich diese Erklärung des absoluten Betrages mit der üb- 

lichen zusammen. Wir führen weiter in der komplexen Ebene einen posi- 

tiven Drehsinn ein. Wir legen ihn durch die Forderung fest, daß durch 
Drehung um den Winkel x]? im positiven Sinn die positive x-Richtung 
in die positive y-Richtung übergeführt werde. Dann sei @ der Winkel, um 
welchen man in positiver Richtung die positive x-Richtung zu drehen hat, 
um sie in die Richtung des Vektors z überzuführen. Wichtig ist die Be- 
merkung, daß dieser Winkel nur bis auf Vielfache von 2x bestimmt ist. 
Da also jedem Wert von z Werte von @ zugehören, so ist p eine Funktion 
der komplexen Veränderlichen z, die wir mit arg 2 (lies Argument von 2)" 
bezeichnen wollen, und zwar ist p =argz eine unendlich vieldeutige 
Funktion von z, insofern als zu jedem Wert z unendlich viele Winkel o 
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gehören, die sich voneinander um Vielfache von 2x unterscheiden. Mit 

Hilfe von |2| = r und g läßt sich nun z = x + iy so darstellen 

z=rc89, y=rsinp, 2=|2]| (cos + sin p).) 

Hat man nun zwei komplexe Zahlen 2, und 2, zu multiplizieren, so 

erhält man 

212, = |2ı| |22| (e08 pı 608 9, — sin Q, sin ,+i [cos Qı sin 9,+ 608 9,8inY,]) 

= |2,| |22]| (cos (Yı + 9) +isin(p + p2)). 

Man sieht also, daß der absolute Betrag des Produktes dem 

Produkt der absoluten Beträge der Faktoren gleich ist: 

[2ı 23] = |2ı|  |2?2]| und daß das Argument des Produktes der 

Summe der Argumente der Faktoren gleich ist: arg (2, ' 2,) 

=arg2, + alg2. 

Wir kommen zur Division, und beginnen da mit. Manhat 1= 2 - a ee 
Zu 2 22 Iz] e* 

— Fan FR Da aber |z| = |? | undargz = — arg? ist, "so wird BE = And 

arg (*) =—argz. Daher wird nun a- = , und arg (> ) = — arg2, 

— arg 2. Denn man hat ja A = Manerhalt aleo den 
nn 2a 

luten Betrag eines ee als Quotient der absoluten 

Beträge und das Argument des Quotienten als Differenz der 

Argumente von Zähler und Nenner. 

Die gegenseitige Lage der Punkte z und z kann man sich an Hand der 

folgenden Konstruktion klarmachen. Man. konstruiere (Fig. = zunächst fe 

den Punkt z’, der aus z durch Transfor- AL ZA 
mation nach aproken Radien am Kreis 

vom Radius Eins um 2 = 0 hervorgeht.2)” 

Da in Fig. 4 das Dreieck 02’ T bzw. 02T 

bei T rechtwinklig ist, so entnimmt man 

sofort dem Kathetensatz, daß tatsächlie 
2) 

lz| [27] =1, daß also |z’| = 77: Dabei ist 
aber noch arg 2’ =argz. Spiegelt man 

also noch z’ an der reellen Achse, so erhält man 2 — 2’. Nebenbei be- 
e A 

merkt ıst also 2’ = Gi 

1) Häufig ist es bequemer, statt des argz den Faktor cos + isin p heranzu- 
ziehen. Er spielt bei den komplexen Zahlen offenbar dieselbe Rolle wie das Vor- 
zeichen bei den reellen Zahlen und wird daher auch mit sign z bezeichnet (lies signum 

von 2). Also setzen wir sign z= cos 9 + i85inp= 7° sigenz ist im Gegensatz 
zu arg z eine eindeutige Funktion von 2. 

2) Die Winkel 02T und 0 T7z’ sollen also rechte Winkel sein. 
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7. Potenzen und Wurzeln. Wir wenden die gefundenen Ergebnisse noch 

auf Potenzen und Wurzeln an. Sei n eine ganze positive Zahl. Dann hat 

man (cos @ + i sin p)" = cosnp +isinngp. Denn cos + sin p hat den 

absoluten Betrag Eins. Wendet man nun auf (eos + i sin @)* den bino- 

mischen Lehrsatz an und trennt dann Real- und Imaginärteil, so findet man 

die bekannten Darstellungen von ecosnp und sinn durch cos p und sin @. 

Betrachten wir nun Ya, so wird der absolute Betrag von Ya die positiv 

genommene n-te Wurzel aus dem absoluten Betrag von a. Das Argument 

von Va hingegen wird der nte Teil des Argumentes von a.) Dabei kommt 

aber nun wesentlich zur Geltung, daß argz eine unendlich vieldeutige 

Funktion von zist. Die verschiedenen Werte von arg a unterscheiden sich 

voneinander um Vielfache von 2z. Teilt man sie alle durch n, so erhält 
Ei E s 5 2 e 

man Werte, die sich voneinander um Vielfache von > unterscheiden. 

Seien etwa @ + Ahr die Werte von arg a, so werden > +h = die Werte 

von arg (Ya). Diesen Winkeln entsprechen im ganzen n verschiedene 
EN ae 

| 
ch Cpstwl4}6 Richtungen in der z2-Ebene. Denn von den n Winkeln = = +, 

Jet) 
s 

sr 4 .., = +(mn—]) — unterscheiden sich alle anderen ar nur 

um Vielfache von 2x. Demnach gibt es n verschiedene Zahlen, deren 

n-te Potenz a ist. Sie liegen sämtlich auf einem 

Kreis vom Radius '/|a|| um den Punkt z=0 und 
bilden auf ihm die Ecken eines regulären n-Ecks. 

Wir bringen in Fig.5 den Fala=1,n =5 zur 

ı Anschauung. Die fünf dort angegebenen Zahlen 

sind die fünf Wurzeln der Gleichung > —1=0. 

Allgemein hat so die Gleichung 2” — a = 0 genau 

n voneinander verschiedene Wurzeln. Wir finden 
13, also bei dieser Gleichung den Fundamentalsatz 

Fig. 5. der Algebra bestätigt. 

E, e? 

8. Absoluter Betrag. Die Betrachtung der absoluten Beträge bei Summe 
und Differenz führt zu einigen wichtigen Ungleichungen. Aus dem Drei- 
eck 02,23 der Fig. 1 liest man sofort ab, daß 

s1=|a| + 2» 

und daß Ba 
Rg 

ist. Der absolute Betrag einer Summe ist also höchstens der 
Summe der absoluten Beträge und mindestens der Differenz 
der absoluten Beträge der Summanden gleich. Dies ergibt 



7) zury re Aa) NEST 

x (Aferkiyı) "zYı Yu I el = & 2X Mn 1m 
soluter Betr: A) Ben win ee Dr 

(X yft = Di”, uf MU 8 x Yu 4 r Es 2; ki 713 m Anden 

X || 

FF 

sich sofort, wenn man beachtet, daß die absoluten Beträge a die 

Längen der Dreiecksseiten sind, und daß also unsere Ungleichungen be-|+ 

kannte Beziehungen zwischen den Dreiecksseiten zum Ausdruck bringen. 

Wenn aber die drei Vektoren alle auf eine Gerade fallen, so kommen in 

den Ungleiehungen bekannte Längenbeziehungen zum Ausdruck, die ja 

schon die geometrische Bedeutung der entsprechenden Ungleichungen aus- 

machen. Man erkennt auch, daß in der ersten Ungleichung das Gleichheits- 

zeichen nur stehen kann, wenn alle drei Vektoren gleich sind, und daß es 

in der zweiten nur dann eintritt, wenn 2, und 2, verschiedene Richtung 

haben, aber auf derselben Geraden liegen, und wenn gleichzeitig z, keinen 

kleineren Betrag hat als 2,. 

N | 

Yıya) 

Will man diese Abschätzungen rein rechnerisch ohne Bezugnahme auf 

eine geometrische Deutung beweisen, so kann man etwa so vorgehen. 

Die Schwarzsche Ungleichung lehrt, daß für vet, Zahlen 2 RL 
Enstem um A%0 u Dez +X, y +12 iv 

(1) Fark KYvoh (Ex,y) < Far Iy 1 u < 2 (nr) 
SUR 4) 25% Y as a 

ist. Denn es ist für reelles 4: I(2,+ Ay? 0. 

(&) Er} + Ey + RZ > 0 
Daraus folgt (1), weil sonst die linke Seite von (2) für zwei reelle ver- 

schiedene A verschwände und daher auch für passende Werte von A nega- 

tiv würde. Aus (1) folgt (= 1420 Zimt ho Zgutdr eben ch und) 

(a) Zuy sV2W VEy% 

und (b) Ze Z—-V2% VEy, 

wo die Wurzeln Pot sein sollen. Setzt man 3 =&%,+V&, 3 = Yyıt ya, 

so ist hiernach {* (# Ft 

— 2|2,||2] < 17. + 371 = 2 ]|2ı| |22] - a vo, 2, [2 ‚Je re 

Daher ist auch BR l22=12.] =]. 

(3) a? +12? —-2lallalsa% +3A1ıH+la’+l2?® und 

(4) + 24+la®+ 12? = la’ +2’ + 2]2ıllel. 

Also ist nach (8) Jalz,|* 2212.22 9, 

Ial— l22|}? < (4 +2) +2) =lat 22 

4. l21-+ 2| & la] — |22|- 

1 +23|<|a|-+ |2%]- 

Damit sind beide Behauptungen bewiesen. 

Ferner ist nach (4) 
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Drittes Kapitel. 

' Ganze rationale Funktionen. 

1. Abschätzung für große |z|. In der ganzen Funktion 

fe) = Hr + A414, 4) 

wo die Koeffizienten A reelle oder komplexe Zahlen sind, 

kann man immer den absoluten Wert von z so groß wählen, 

daß der absolute Wert des höchsten Gliedes A,2” beliebig 

vielmal größer wird als der absolute Wert der Summe aller 
folgenden Glieder. Mit anderen Worten: Zu jeder Zahlk >0 

gehörtein R>0,so daßfür |2| > R 

402°] >.k | A127 272274, et 

Sind a,, Qı; QAy,... die absoluten Werte von Ay, 41, 45, ... und ist r 

der absolute Betrag von z, dann ist der absolute Wert der einzelnen Glie- 

der von f(2) 
Re N und es ist 

a a Ede ee ae 

Soll also |A4o2"| > & - |A12r 72 + Asar 2 4. | 

sein, wo k eine beliebig gegebene positive Zahl, so wird diese Bedingung 

immer erfüllt sein, wenn r der Bedingung genügt, 

Ar? > klar?" + ar”? +... +0Q,). 

Ist h die größte der Zahlen a,,...a,, so wird diese Ungleichheit um so 

mehr erfüllt sein, wenn wir r so wählen, daß 

Ar? > kh(r" I + 7-24... +1), 

n—1 dans > kh —) 

oder endlich, wenn wirr >1 und 
yn 

ur ——:k f) =, kh 

Pr >> R } 

verlangen, d.h. le a Ar Kol NP a 
Y fd a KA 

annehmen. Hieraus ergibt sich, daß, wenn 

kh 
ner bleR 

Ag 

genommen wird, die Aussage obigen Satzes erfüllt ist, indem sodann der 
absolute Wert des ersten Gliedes A,2"” jedenfalls kmal größer ist als der 
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absolute Wert des folgenden Teiles; k kann hier beliebig große Zahl sein. 

Da demnach der absolute Betrag des zweiten Teiles bei wachsendem r 

beliebig klein im Verhältnis zu a,r” werden kann und der absolute Wert 

einer Summe zwischen der Summe und Differenz der absoluten Werte. x. 

der zwei Summanden liegt, so läßt sich obiger Satz auch so aussprechen: 

Man kann immer R so groß wählen, daß der absolute Wert der ganzen 

Funktion f(2) für |2| 2 R zwischen die Schranken 

apr"(1l-+e) und ayr”(l—e) 

fällt, wo & eine gegebene zwischen 0 und 1 gelegene Zahl ist. 

2. Abschätzung für kleine |z2|. Dieganzerationale Funktion f(e) sei 

nach steigenden Potenzen von 2 geordnet und 2” die niedrig- 

ste Potenz von 2, welche f(z) enthält, also 

re) = 4,2” 4.4, rt +... 4 A,."t7, At). 

Man kann immer den absoluten Wert von z so klein wäh- 

len, daß der absolute Wert des ersten Gliedes beliebig viel- 

mal größer wird als der absolute Wert der Summe der f£ol- 

genden Glieder. Mit anderen Worten, zu jedem k > 0 gehört ein 

R>0,so daß für |2| < R 

|Ao2r]| > k | A127? + --- + A,"#?|. 

Der Beweis ist dem des Satzes in 1. ganz analog. Behält man dieselben 

Bezeichnungen bei, so ist der Satz erwiesen, wenn r so bestimmt werden 

kann, daß 
3 nt = klaut" t: en 0,r® Er), 

Ist h die größte der Zahlen a, :..a,, so ist diese Ungleichheit jedenfalls 

erfüllt, wenn arm > kh(rm+t 4...pmtp), 

d.i. >kh-\ U ırmtı 

oder auch, da hier r < 1 vorausgesetzt werden kann, wenn 

n 
ar" >kh- —— u 

a>kh Br 

Hieraus folgt, daß, wenn TS- z, — TE z = 

genommen wird, der absolute Wert von A,2” wenigstens k-mal so groß 

ist als der absolute Wert der Summe aller folgenden Glieder. 



16 Drittes Kapitel: Ganze rationale Funktionen 

Da k eine beliebig große Zahl sein darf, so kann man auch diesen Satz 

in der Form aussprechen: 

Ist & eine beliebige gegebene zwischen 0 und 1 gelegene Zahl, so kann 

R so gewählt werden, daß der absolute Wert der Funktion 

Idee Ara 

für |2] < R innerhalb der Grenzen 

ayr®(1 + e) liegt. 

3. Die Abgeleiteten. Setzen wir in der Funktion 

fe) = A, A 22 > Pr 2eir 

2 + han die Stelle von z, so wird 

Ha+h) = Al + hr + Al + hrit-.- + A, 1l@+h)+ An 

Entwickeln wir nun die Potenzen von 2 + h nach dem binomischen Lehr- 

satz und ordnen den Ausdruck nach Potenzen von h, so ergibt sich 

fer) =) + P)-h+f@- at at tt 

wobei 

Po) = nAger- + m 1) Aa? + m 2) Ag? +. + Ana, 
T() =nın —1)4.”7 + m — 1)n — 2)412”"? +---+1-2- A,_s 

(a) nn —1)(n — 2) 4,2"? + (n—1)(n — 2) (n — 3) A12”"?+--- 

+1-2-37 4, 

we, een ie Be See 0 erlernen lol De ee Le ee ae ee ee re 

el = n(n—]) le Az (n—1)(n — 2) lee 

nn m 

Die Funktionen (2), f"(2),... sind mithin ganze Funktionen von 2 

vom Grade n—1, n—2,.... Sie heißen die erste, zweite, ... Abge- 
leiteten (Derivierten) von f(z). Die n-te Abgeleitete ist eine Konstante. 
Die erste Abgeleitete f’(z) geht aus f(z) hervor, indem man jedes Glied 
mit dem Exponenten von 2 multipliziert und diesen um die Einheit ver- 
mindert. Nach demselben Gesetze geht f’’(z) aus (2), f’(z) aus 142) 
hervor. Bs ist also auch f’’(z) die erste Abgeleitete von f(2), F(@) die 
erste Abgeleitete von f”(z) und die zweite Abgeleitete von f’(z) usf. 



1,3, 4. Stetigkeit. — 5. Differentiation 17 

4. Stetigkeit. Nun folgt aus obiger Gleichung für f(2 + h) 

vn 

Die Koeffizienten dieser Reihe, f’(2), f’(2),..., sind ganze Funktionen 

von 2, haben also für jedes endliche 2 einen bestimmten endlichen abso- 

luten Wert. Dann folgt aber aus 2., daß man den absoluten Wert von h 

so klein wählen kann, daß auch der der ganzen Reihe auf der rechten Seite 

der Gleichung und also auch der absolute Wert von f(z + h) — f(z) kleiner 

wird als eine beliebig kleine gegebene Größe. Es ist mithin jede ganze 

rationale Funktion f(z2) eine stetige Funktion für alle end- 

lichen Werte von 2. 

5. Differentiation. Aus der Entwicklung von f(z2 + h) in eine Reihe nach 

Potenzen von Ah (3.) ergibt sich 

Rh) — ’ [24 f@+ . Ba _ er Bene 

Da nun die Reihe f’(2)- Es + +» sich bei konstantem 2 mit h stetig 

ändert, für hinreichend kleine Werte von h unter eine beliebig kleine ge- 

gebene Größe herabsinkt und mit h zugleich verschwindet, so ersieht man, 
@+h)—f@) 

h 
daß, wenn h zu Null abnimmt, i gegen den Grenzwert f’(2)- 

konvergiert. Man drückt dies durch die Gleichung aus 

h>0 

Hierdurch ist die Abgeleitete der ganzen Funktion f(z) definiert als der 

Grenzwert des Verhältnisses der Differenz der Funktionswerte f(z + h) 

— f(z) zur Differenz h der Werte der Variabeln, wenn diese Differenz bis 

zu Null abnimmt. 

Aus dieser Definition von f’(z) ergeben sich sogleich folgende Sätze: 

a) Die Abgeleitete von a - f(z), wo a eine Konstante ‚ist a - f’(2). 

Die Abgeleitete von a - f(z) + b, wo b ebenfalls konstant ist, hat den- 

selben Wert a f’(z). 

b) Sind ferner P,Q, R,... endlich viele ganze Funktionen von z und ist 

en. 

und bezeichnen wir mit P,,Q,, Rı,-.. den Wert dieser Funktionen, 

wenn man in ihnen 2 + h statt z setzt, so wird 

f@+MW-fIQ)_PA-P a9, R-R,,, 
h Fame rhe x 

DD Bieberbach, Algebra 
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—R 
a en, im © en 

h>V0 h>0 

-=P’+QV’ +R+--,, 

wenn P’',Q', R'... die Abgeleiteten von P,Q,R,... bezeichnen, oder: 

Die Abgeleitete einer Summe von ganzen Funktionen ist gleich der 

Summe ihrer Abgeleiteten. 

c) Ist ferner f(z) = PQ, so wird 

f@ +) —-fa) = PıQdı — PQ = Pılı IS + Qi, 9% 

an Sup en ep: KR 
ae a 

oder, wenn man zur Grenze für h — 0 en 

fa=P-Q+@P) 

da für — 0 P, in P, sowie Q, in Q übergeht, 

Hieraus ergibt sich, wenn man Q durch Q - R ersetzt, 

I@) = PQR, 

f(@) = P(QR) +QR-P=PQ-R'+RP.Q’ +QR-P. 
Die Abgeleitete eines Produktes von beliebig vielen ganzen Funktionen 

ist also eine Summe von Gliedern, die man erhält, wenn man die Ab- 

geleitete von jedem einzelnen Faktor mit allen übrigen Faktoren multi- 

pliziert. 

d) Hieraus ergibt sich auch die Abgeleitete von 

f (2) = Pr, 

won eine ganze positive Zahl. Ist nämlich f(z) ein Produkt von n gleichen 

Faktoren, so besteht f’(z) aus n Gliedern, welehesämtlich = Pr-1. P’ sind. 

Also ist Ten n: 

Beispiel: Es sei (2) = a2" (b — 2)", 

wo a, b beliebige Konstante, n, m ganze positive Zahlen, so ist 

Pd) = (aan)'- dm + am m). 
Nun ist (a2)! G-.nanzd 

((d — 3") = m(b — z23m-1(b — 2)’ = m(b— ze) m-1.(— 22). 

Also Fee) = anzr1(b — 22)m — Amazr+ı(b — ze)m-1 
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6. Funktionen mehrerer Variablen. Enthält die Funktion mehrere 
Variable, so kann man immernach denselben Gesetzen die Abgeleiteten der- 

selben nach der einen oder andern Variablen bilden, indem man die andern 

Variablen als konstant ansieht. Ist f(x, y,2) die gegebene Funktion, so 

kann man, um anzuzeigen, nach welcher Variablen man die Abgeleitete 

genommen hat, die Abgeleiteten nach x, y, 2 mit fz, f,, f; bezeichnen. 

Von diesen kann man wieder die Abgeleiteten nach irgendeiner der Varia- 

blen nehmen; so wäre fx. die zweite Abgeleitete nach x, fx, die zweite 

Abgeleitete!), welche man erhält, wenn man einmal die Abgeleitete nach 

x und von dieser die Abgeleitete nach y nimmt, f,, die zweite Abgeleitete 

nach y usf. 

Wir haben nun in (3.) die Entwicklung von f(x + h) nach Potenzen von 

h betrachtet; suchen wir jetzt die Entwicklung der ganzen Funktion 

f(x + h, y-+ k) nach Potenzen von h und k. Um die Koeffizienten der 

Entwicklung besser zu übersehen, gehen wir schrittweise vor. Zunächst 

ist (nach 3.) für ein konstantes y 
‚ 1 h? m h® 

Lassen wir hierin y in y + k übergehen, so ergibt sich nach derselben 
Formel fMutautz [ef bei Autinhumer 343) 

fa, y+ Fo Wt+h the ati gat 
’ \ ’ „ [224 k3 

(2, y+k)=fe(®, ”: ae 

fez(2, y+k)= faa(&, Y) + Tray kb 

212, Y == k) Do; ERS Y) .. 

Hiermit wird (Taylorsche Entwicklung) 

faet+hy+h=fay)+lehtfk+ 
1 „ 7 77 9 

4) 3 (ze N’ + 2fayhk + fyy: R°) 

Ho bee +3 Kay + Sy +) + 

1) Es ist leicht zu ersehen, daß f/, = fy, ist. Denn ist 

jede ++ cayl- ++, 

so verschwinden in f/, alle Glieder, welche x nicht als Faktor enthalten, wie z. B. 
ay”, in f, ebenso alle Glieder, welche y nicht als Faktor enthalten. Aus cz y@ aber 
geht das Glied e- pqx?-!,4! hervor, man mag zuerst die Abgeleitete //, bilden und 
aus dieser die Abgeleitete nach y oder umgekehrt zuerst die Abgeleitete f, und von 
dieser die Abgeleitete nach z nehmen. 

9% 
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Ebenso läßt sich die Funktion von drei Variablen fe +h,y+k,2+ l) 

nach Potenzen von h, k, entwickeln. Aber wenn die Anzahl der Variablen, 

nach welchen die Abgeleiteten zu nehmen sind, wächst, oder höhere Ab- 

geleitete in Betracht kommen, ist die eben gebrauchte Bezeichnung der- 

selben wenig bequem. Wir führen daher hier die Bezeichnung ein, wie sie 
of: of. 

in der Differentialrechnung üblich ist, und schreiben —- da’ dy dar für 

7 0°f o2f 027 „ „ 

I 108 In 30) 0a? 020 y’ oy:’ . . für 1 Tays Tee o.7 allgemein 

OP+a+r...f 

Oarayadz... 

für die Abgeleitete, welehe man erhält, wenn man von f die p-te Abgeleitete 

nach z, von dieser die gte Abgeleitete nach y, dann die r-te nach 2,. 

bildet. Dann schreibt sich obige Entwicklung 

fer, y+h=fa, y) +g6h +56 + 
’ er or N ie 

tum 087, OT: of of +05 (+3, Fra la ee 

oder mit leicht verständlicher symbolischer Bezeichnung 

f@+h,y+ fa y)+ (RZ, +k2) fa N) + 
(12) 1 n) 0\2 1 P) 0\3 

ar tat) Tent- i 

Ebenso erhält man 

d fat hyt+ke+)=f@y,2)+ (RZ; - at! 2) fa,y,2) 
&) 

+ alte Hi) te y, 2: 
Man sieht leicht, wie diese Entwicklung auf Funktionen von beliebig vielen 
Variablen ausgedehnt werden kann. 

. Der Eulersche Satz für homogene Funktionen. Wir wenden diese Ent- 
wicklungen an zum Beweise des Eulerschen Satzes von den homo- 
genen Funktionen, den wirspäter wiederholt zu benutzen haben werden. 

Sei f(2, 9, 2,...) eine ganze homogene Funktion von beliebig vielen 
Variablen vom ten Grade, so folgt aus der Definition der homogenen 
Funktion, daß, wenn man jede Variable mit einer Zahl t multipliziert, 
jedes Glied der Funktion t* zum Faktor hat; es ist also 

(1) Hintiyptiae,, = 1 ne 
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eine Gleichung, die auch als Definition einer homogenen Funktion dienen 
kann. Setzen wir in dieser Gleichung 

t=1 
so wird dieselbe ui 

ME ra0,Yy 709,2 +02...)=(l-+ 0o)fi&,d, 2%...) 

Wir entwickeln nun die linke Seite nach der Gleichung (2) von 6., wobei 

an die Stelle von h,k,l,... hier ax, ay, a2,... treten; damit erhalten 

wir eine Entwicklung nach Potenzen von a. Auf der rechten Seite ent- 

wickeln wir (1 + a)” nach dem binomischen Lehrsatz. Da die Gleichung 

eine identische ist, so müssen die Koeffizienten einer jeden Potenz von a 

auf beiden Seiten dieselben sein. Daraus ergeben sich die Eulerschen 

Gleichungen für homogene Funktionen: eh Palo 4.65 

0 of of 2 a a En = 2) en nf, 

rare. Z BD rrakteir Hay t ee =nn—Df 
oder auch in symbolischer Form 

or 6 [2 0 2 

8) lat, tet) Tena—di 

usf., wenn wir die Koeffizienten von a?, a?, .... vergleichen. 

Dies sind identische Gleichungen, die für jeden Wert der Variablen 

gelten. 

Viertes Kapitel. 

Der Fundamentalsatz der Algebra. 

1. Beweis des Fundamentalsatzes der Algebra. Jede Gleichung 

a) fl) = + At +40, 
in der die Koeffizienten beliebige reelle oder komplexe Zah- 

len sind, hat mindestens eine Wurzel z=a + bi.!) 

1) Den ersten einwandfreien Beweis dieses Satzes gab Gauß in seiner Doktor- 
dissertation: Demonstratio nova theorematis omnem functionem algebraicam unius 
variabilis in factores reales primi vel secundi gradus resolvi posse (Helmstedt 1799). 
Gauß gibt darin auch eine Kritik der früheren Beweise von D’Alembert, dem er 
den ersten Beweis des Satzes zuschreibt, von Euler, vonLagrange. Einen zweiten 

und dritten Beweis gab er 1815 und 1816, und kam endlich 1849 nochmals auf seinen 
ersten Beweis zurück (Gauß’ Werke, Bd. III). Einen neuen Beweis gab Cauchy 

(Cours d’analyse algebrique Chap. X 1821), den Sturm (Journ. de Mathematiques 
I 1836) überarbeitete. Obiger Beweis ist im wesentlichen der von Cauchy. 
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Wenden wir (1,3,1)!) mit k=1an, so erkennen wir, daßfür2| z2h-+1 

f(z) keine Nullstellen besitzen kann. Denn für diese z-Werte ist 

ler] > [Auer + + Anl. 
Also Faller —lAr+ +41 > 0. 
In diesem Kreise |2| <h + 1 ist nun nach (1, 3, 4) f(z) stetig. Daher ist 

auch |f(z)| stetig. Denn es ist 

Id — fol = If) Fee). 
Da z = x + iy gesetzt wird, und da dann |f(z)| eine stetige Funktion der 

reellen Veränderlichen &, y in dem Kreise |@® + y?| <h+ 1 wird, so lehrt 

ein bekannter Satz über stetige Funktionen), daß |f(z)| in diesem Kreise 

ein Minimum besitzt, d.h. eine Stelle in diesem Kreise oder auf seinem 

Rande, wo |f(z)| einen Wert annimmt, der von keinem anderen seiner 

Werte in diesem Kreise unterboten werden kann. Wir haben zu zeigen, 

daß dieses Minimum Null ist. Nach den Ausführungen von S. 14 ist 

ala» all 

für |2]| > 2h +1. Dies aber ist in dem uns allein interessierenden Fall 

n > 1 größer alsh. Fürz = O aber wird f(z) = A,„, nimmt also einen Wert 

an, dessen absoluter Betrag nicht größer als h ist. Daher nimmt |f(2) | sein 

Minimum in Inneren, nicht am Rande, des Kreises an. Nun aber läßt sich 

zeigen, daß f(2) in einer jeden Kreisscheibe um eine Stellez = a Werte an- 

nimmt, die eine passende Kreisscheibe um die Stelle f(a) der Bildebene 

vollständig bedecken. Nimmt man als z = a die Stelle, wo f(z) sein Mini- 

mum annimmt, und als Kreisscheibe um einen Punkt eine dem Kreise 

|2]| sh + 1 angehörige, so nimmt darin f(z) auch Werte an, deren ab- 

soluter Betrag kleiner als |f(a)| ist, wofern nicht f(a) = 0 ist. Denn eine 

Kreisscheibe um f(a) wird vollständig bedeckt; sie enthält Punkte, die 

näher am Nullpunkt der Bildebene liegen, wie f(a) selbst, wenn nicht 

f(a) = 0 ist. Der Fundamentalsatz der Algebra wird also bewiesen sein, 

sobald der folgende Hilfssatz bewiesen ist: 

Ein jedes Polynom 

v=fle) eu tr Am 2... 4, 0 

nimmt in jeder Kreisscheibe um jede Stelle 2 = a als Mittelpunkt Werte 
an, zu denen jedenfalls alle Werte aus einer gewissen Kreisscheibe um 
w=f(a) als Mittelpunkt gehören. 

1) D.h. Abschnitt I, Kap. III, $1. 
2) Vgl. z.B. Bieberbach, Leitfaden der Differentialrechnung, 3. A $. 121. 
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Man wird aber bemerken, daß zum Beweis des Fundamentalsatzes der 

Algebra nur ein Stück dieses Hilfssatzes nötig ist. Wir benötigen ja nur 
folgendes: Wenn der kleinste Wert von f(z) von Null verschieden ist, so 

gibt es in jedem Kreis, um die Stelle z= a, wo das vermeintliche Mini- 
mum stattfindet, Stellen, wo f(z) Werte von kleinerem absoluten Betrag 

besitzt, oder geometrisch ausgedrückt: Es gibt in jedem Kreis um 

z2=a Stellen, wo w=f(z2) Werte aus dem Inneren des Kreises 

jw| < |f(a)Jannimmt, wofern f(a) + ist. 

Diesen etwas abgeschwächten Hilfssatz wollen wir nun beweisen. Es 

sei f(a)+0 und 

fa+h)=fla) +hrc, +: +hron, nF#0. 

; Kath) _ |, _W% höoprı , „„ Tr 
Br me 
Da h er +...4+ un als Funktion von h stetig ist und für h = 0 

endet, so gibt es ein ö,, so daß 

ori. E, n-pn 1 
D Cp + 4 h ae 2 

ist, für |h| < &.. 
Ferner gibt es ein ö,, so daß 

für |h| < ö,. Nun wähle man ein diesen beiden Bedingungen genügen- 
des h so, daß 

hPcy 

on 
= - hPc Klo 
ist. Dann ist 0 (1 + Ar 

hr= —e) 

eine von Null verschiedene kai Zahl, für die 

arg a= arg” - 5 2 + arg (1 + *eett 4...) 

mus), 
Denn nach $. 11 ist das Argument eines Produktes gleich der Summe der 

Argumente; ferner ist z das Argument der negativen Zahl Th. D 

ber weiter 
Por o=1+ + 
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eine Zahl aus dem Kreis vom Radius 

3 um w = 1 ist, so ist 

IT 

larg | < 7 

Daher ist 

5n ons 
6 <arga<n 

Nun war 

fla+h) _ 3, a =1-+te, a7 

Also ist 1 + « eine Zahl, die im Kreis vom Radius 2 um 1 liegt und 

die außerdem dem aus Fig. 6 ersichtlichen Winkelraum angehört. 

Also gehört 1 + « dem Inneren des Kreises vom Radius lumw=0 

an. Daher ist 
f(a+h)| 
oa 

also fa +h) <ffa). 

Damit ist der Fundamentalsatz der Algebra bewiesen. 

Bemerkung. Der oben zuerst aufgestellte Hilfssatz ist wesentlich mit 

dem identisch, was man in der Funktionentheorie den Satz von der Ge- 

bietstreue nennt. Vgl. z.B. Bieberbach, Lehrbuch der Funktionen- 

theorie Bd. I 8.187. Bei Kenntnis der Anfangsgründe der Funktionen- 

theorie kann man ihn auch leicht aus bekannten Sätzen über das Nicht- 

verschwinden einer Funktionaldeterminante gewinnen. 

2. Funktionentheoretisches.!) Die Theorie der analytischen Funktionen 

kennt noch mancherlei andere Beweise des Fundamentalsatzes der Alge- 

bra. Ich will hier einen herausgreifen, der uns zugleich noch einen weiteren 

Einblick liefert. Wenn f(z) eine ganze rationale Funktion bedeutet, so gibt 

1 (PO ge un 
m) 3 1 ar. 

die Zahl der Nullstellen von f(z) an, die innerhalb eines Kreises k liegen, 

wenn man als Integrationsweg die positiv durchlaufene Peripherie dieses 

Kreises wählt, und wenn man annimmt, daß auf dieser Peripherie selbst 

Nullstellen von f(z) nicht liegen. Der sogenannte Satz von Rouche lehrt: 

I@) + Pl) 
1) Ein mit der Funktionentheorie nicht vertrauter Leser nehme nur zur Kenntnis, 

daß die Gleichungswurzeln stetig von den Koeffizienten abhängen. Von diesem 
Ergebnis werden wir gelegentlich Gebrauch machen; allerdings nie an Stellen, die 
den Nerv des ganzen Buches berühren. 
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hat im Kreis k genau ebenso viele Nullstellen wie f(z), wenn auch @(z) 

eine ganze rationale Funktion von 2 ist, und wenn auf der Peripherie von 
k durchweg || < |f| ist. Denn dann ist 

il se E= A op “ 

EA 
für 0 <A <1 eine stetige Funktion von A und daher konstant, da sie 

nur ganzzahlige Werte annimmt. 

Setzt man nun 

1) in 22) de en, 

und ist Blei ,en, 

so ist nach S.14 auf |2] =1 + h durchweg |p| < |f|. Daher hat nach 

dem Satz von Rouche f+ @ = 2” + a12""1 +... + a, ın diesem Kreis 

genau ebenso viele Nullstellen wie 2”, also genau n, womit der Fundamen- 

talsatz erneut bewiesen ist. Vgl. hierzu S. 27. 

Wir machen noch eine zweite Anwendung des Satzes von Rouche. 

Es sei a eine Nullstelle von f(2). Wir legen um a als Mittelpunkt einen 

Kreis von einem beliebig gegebenen Radius o, so daß in diesem Kreise und 

auf seinem Rande keine weitere Nullstelle von f(z) vorkommt. Wenn wir 

dann aus f durch Änderung seiner Koeffizienten eine andere ganze ratio- 

nale Funktion g gewinnen, derart, daß auf der Peripherie des Kreises 

If—gl < |f| ist, so hat g in diesem Kreise genau ebenso viele Nullstellen 
wie f. |f—gl| < |f| wird aber dadurch zu erreichen sein, daß wir die ab- 

soluten Beträge der Koeffizientenänderung hinreichend klein wählen. Dies 

Ergebnis sprechen wie so aus: Die Gleichungswurzeln sind stetige 

Funktionen der Koeffizienten. 

Ist insbesondere eine Folge von Polynomen nten Grades 

Ir (2) = Amot" Ar VER Al + ER + Amn (m=1,2...) 

vorgelegt, die gegen ein Grenzpolynom 

konvergieren, so daß imo... 0, (k=0,...n) 

gilt, so liegen in jedem Kreis um eine Nullstelle von f(x) Nullstellen von 

f„ (x), sobald nur m hinreichend groß ist. 

Haben also z.B. alle f„(&) nur reelle Nullstellen, so hat auch 

- f(x) nur reelle Nullstellen. 
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Fünftes Kapitel. 

Teilbarkeitsfragen. 

1. Division durch z — a. Es sei die ganze rationale Funktion 

fd) = Aoa® + Arzt + An 

durch 2— a zu dividieren, wo a eine beliebige Konstante ist. Nennen wir 

Q den Quotienten und R den Rest der Division, so ist Q ein Polynom vom 

n—1-ten Grad, R hingegen ist von z unabhängig, da der Divisor vom 

ersten Grade ist, und man hat die identische Gleichung 

d)=@-a)Q+R. 

Setzt man hierin 2 = a, so folgt, da (2—a)Q für z=a verschwindet, 

f(a) = R. Es ist also für jeden Wert von a identisch 

I —-fa)=®—- a0, 

d.h. f(z) — f(a) ıst durch 2 — a teilbar. 

Man kann auch leicht einen Ausdruck von Q finden, der das Bildungs- 

gesetz dieses Quotienten erkennen läßt. Es ist nämlich 

fa) = Ava” + Ara! +--+A,, also 

Id) — flo) = Ale" — ar) + Ale ar) Er An se), 

Jedes dieser Binome 2” — a”, z#-1— ar-1,,,.. ist durch z2— a bekanntlich 

teilbar. Führt man die Division aus, so erhält man als Quotienten 

Q=AytitaA, | 272 +02, | 232... Lamıd, 
| 

er +4, +.a4, | + ar=2A, 

| 4 A N i fr / Bar AR. } ytnde | - ar 28 

34 | W N ‘ 

== Aa 

2. Zerlegung in Linearfaktoren. Aus dem Vorigen folgt sofort: 
Ist a, eine Wurzel der Gleichung f(z) =0, so ist f(e) durch 

2 — a, teilbar. 

Denn es ist dann f(a,) = 0 und folglich f(z) = (2— a,)Q oder also 

Id) =-k-a)hle); 
wo fı(2) ein Polynom vom (n — 1)-ten Grade ist. f(z) verschwindet aber 
nicht nur für z = a, sondern auch für jeden Wert von 2, welcher hed)=0- 
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macht, d.h. für jede Wurzel der Gleichung f,(z) =0. Hat nun diese 

Gleichung eine Wurzel, die wir mit a, bezeiehnen wollen, so ist 

he) = ®—-a)fr() 

und folglich I) = ®—-a)(2 — a)fa(2): 

wo f,(2) eine ganze Funktion vom Grade n— 2 ist. Hat aber f,(2) = 0 
eine Wurzel a,, so ist 

(ed) = (a) fl), 

fe) = ®— u)®— a)(@— a,)f;(2); 

wo f,(2) vom (n— 3)-ten Grade. Auf diese Weise schließen wir fort, bis 

wir zu fn_1 (2) kommen, das vom ersten Grade, also von der Form A,(2—a,) 7 4% 
. 5 . h / = \ 
ist; so erhalten wir endlich 2.4 [2]a A (2A) AR A. (R- 

A) fe) = AR —-am)R— a)@— 4)... (2 — an), 

da stets der noch nicht in Linearfaktoren zerlegte Faktor mindestens eine 

Nullstelle besitzt, und da stets A, der Koeffizient seiner höchsten 

Potenz ist. 

Jede ganze rationale Funktion n-ten Grades kann also in n 

lineare Faktoren zerlegt werden. 

Da f(z) verschwindet, wenn einer der Faktoren verschwindet, so sind 

die Größen a,,..., a„ sämtlich Wurzeln der Gleichung f(2) = 0. 

Jede algebraische Gleichung vom n-ten Grade hat mithin 

n Wurzeln. 

Unter diesen Wurzeln können mehrere gleich sein. Wäre z.B. 

@) = Gy = As, So sind drei lineare Faktoren von f(z) gleich und f(z) wäre 

durch (z— a,)? teilbar. Man sagt aber auch in diesem Falle, die Gleichung 

habe n Wurzeln, indem man die Multiplizität der gleichen Wurzeln 

berücksichtigt. Eine Wurzel a heißt k-fach, wenn der Faktor (2— a) bei der 

obigen Zerlegung genau k-mal auftritt. Damit diese Definition sinnvoll sei, 

ist es wesentlich, zu bemerken, daß eine ganze rationale Funktion f(z) vom 

n-ten Grade nur auf eine Weisein lineare Faktoren zerlegt werden kann. 

Wenn nämlich 

Av — a.) ... (2 —A,) 

= B,@-b,)...@—bn), 40, +0 

für alle z gilt, so ist auch B, + 0; denn sonst verschwände A,(2—4,)... 

(z—a,) auch für alle z-Werte.' Wählt man einen von den a, ver- 

schiedenen Wert, so folgt Au,=0 gegen die Voraussetzung. Weiter 

muß zunächst a, unter den b, vorkommen, weil sonst für 2=a, die 
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beiden Ausdrücke nicht gleich sein könnten. Hebt man auf beiden 

Seiten 2— a, weg, so kann man ebenso für 2— a, schließen usw. Sind 

alle Linearfaktoren 2— a, weggehoben, so kann auch kein b mehr übrig 

sein, da sonst wieder die Gleichheit aufhörte, wenn man z einem solchen 

b gleichsetzt. Daher bleibt endlich A, = B.. 

Aus der Zerlegung der Funktion f(z) in lineare Faktoren, wie sie durch 

die Gleiehung (1) gegeben wird, können wir noch weitere wichtige Folge- 

rungen ziehen. Nehmen wir an, die Funktion f(z) verschwinde für mehr 

als n verschiedene Werte von 2. Dann müßte in (1), wie wir vorhin 

schon schlossen, notwendig A, = 0 sein, da ein Produkt nur verschwindet, 

wenn einer seiner Faktoren verschwindet. Die Gleichung wäre also vom 

Grade n— 1; dann folgt aber ebenso, daß A, = 0 ist usf. Es müssen also 

alle Koeffizienten die Werte 0 haben, und die Gleichung wird für jeden 

Wert von 2 befriedigt; also folst: 

Verschwindet eine Funktion f(2) vom n-ten Grade für mehr 

als n voneinander verschiedene Werte von 2, so müssen alle 

Koeffizienten 4 von f(2) einzeln = 0 sein, und die Gleichung 

f@) =0 muß eine identische Gleichung sein, die für alle 

Werte von 2 erfüllt ist. en) 

3. Gleichungen mit gegebenen Wurzeln. Jedes andere Polynom n-ten 

Grades F(z), das dieselben Nullstellen wie f(z) hat, ist von der Form 

F(z) = Af(<), wie die oben besprochene Linearfaktorenzerlegung lehrt. 

An die Zerlegung der ganzen rationalen Funktion f(z) knüpfen wir ferner 

folgende einfache Bemerkungen. 

a) Man kann immer eine Gleichung n-ten Grades bilden, welche vor- 
gegebene n Zahlen zu Wurzeln hat. Denn sind die Wurzeln &,,@s,... 
gegeben, so sind die linearen Faktoren z— &,,2— @,,...... gegeben und mit- 
hin auch ihr Produkt f(z) und eine Gleichung f(z) = 0, welche die gegebenen 
Wurzeln hat. 

Die Koeffizienten des Polynoms 

(2) 2— 0)... —a,)=2r Loen 22.0.2106 

werden 1 = — DR > 8 FE + ® r 

[23 — pP) 0,0; 

eg, =—Lı &,;,0,4%, 

ER 
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Dabei sind die Summen über alle Produkte zu je 1 oder 2 oder 8 usw. der 

a mit verschiedenen Nummern zu erstrecken. Man nennt (—-1)%e, die 

elementarsymmetrischen Funktionen der a,; und will damit sagen, 

daß es die einfachsten Funktionen sind, die sich nicht ändern, wenn man 

die « beliebig untereinander vertauscht. Denn bei einer solehen Permu- 

tation ändert sich nur die Reihenfolge der Faktoren auf der linken Seite 

von (2). Daher behält das Polynom rechts seine Werte für beliebige z un- 

verändert bei. Daher ändern sich auch seine Koeffizienten nicht bei einer 

Permutation der «,. Anderenfalls gehörten zu verschiedenen Anordnungen 

der « verschiedene Werte der e,. Wir hätten dann zwei Polynome vom 

n-ten Grade, die für alle 2 dieselben Werte besitzen. Ihre Differenz, die 

von höchstens n-tem Grade ist, verschwände für mehr als n verschiedene 

Werte von z, nämlich für alle. Also sind nach 2. die Koeffizienten der 

Differenz alle Null. Also sind die Koeffizienten in beiden Polynomen 

dieselben. Die e sind also symmetrisch. 

b) Ändert manin der Gleichung (z) = 0 das Vorzeichen der Variablen 2, so 
geht der Faktor z— a überin —2— a =— (2 + a), dem der Wurzelwert 

z = — aentspricht. Hat also die Gleichung (2) = 0 die Wurzeln a,b, c,..., 

so hat die Gleichung f(— 2) = 0 die Wurzeln —a, —b, —c,. 

ce) Hat eine Gleichung zu jeder Wurzel a auch die Wurzel — a, so hat 

f(z) zu jedem Faktor 2— a auch den Faktor 2-+.a; esist also dann 

fd) -A@- 9) -B)@-)..., 
und die Gleichung f(z) = 0 enthält nur gerade Potenzen der Variablen 2. 

Enthält umgekehrt die Gleichung f(z) = 0 nur gerade Potenzen von 2 

so kann man 2? = x setzen und hat sodann eine Gleichung von halb so 

hohem Grade in der neuen Variablen x. Ist dann « ein Wurzelwert von z, 

so entsprechen demselben die zwei Wertez = + Va und 2 SUR Die 

Gleichung f(z) = 0 hat also nur Paare gleicher Wurzeln mit entgegenge- 

setztem Vorzeichen. 

d) Setzt man in der Gleichung f(z) =0 2 + kan die Stelle von 2, so 

geht jeder lineare Faktor z— a von f(2) über in z—(a—k). a also ), 

a,b, c,... die Wurzeln von f(z) = 0, so hat die Gleichung 7 fC Dr "far re) Fab 
(7-4 mar 4 

fe+k) =0 Har)- Ve (&- Bi 6-0} 

die Wurzeln a—k, b—k, c—k,.. ) 

e) Ebenso leicht läßt sich aus der Gleichung f(z) = 0 eine andere her- 

stellen, deren Wurzeln k-mal so groß sind. Denn setzt man in der Gleı- 

chung E an die Stelle von z, so verwandelt sich irgendein Faktor 2— a 
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von f(2) in z —_ a, und verschwindet fürz2=k-.a. Hat also die Gleichung 

f(z) = 0 die Wurzeln a, b,c,..., so hat die Gleichung 

oder kr.f(4)= Aoer + k- Ayzrt + RrAzan the + KrAn— 0 

die Wurzeln Kaya: 

f) Auf dieselbe Weise ergibt sich, daß, wenn die Gleichung 

te) = Ay2r HA, 2 Ar 

die Wurzeln a, b, c,.... hat, die Gleichung f ) —= 0,0.) 

Be se 

die reziproken Werte — en ... zu Wurzeln hat. 
WED 6 

4. Gleichungen mit reellen Koeffizienten. Wenn die Koeffizienten 

einer Gleichung alle reell "sind, und die Gleichung die imagi- 

näre Wurzel @+ßi hat, so hat sie auch die konjugierte 

Wurzel«— ft. 

Es sei die Gleichung 

He) = u2r Ha 21 Faser 2a 

gegeben, in welcher die Koeffizienten a sämtlich reelle Zahlen sind. Die 

Wurzelwerte von x können reell oder imaginär sein. Setzen wir =« +ßi, 

so wird das Resultat der Substitution dieses Wertes von x in f(x) von 
der Form P(a, ß) + iQ («, ß) 
sein, wo P und Q ganze Funktionen der reellen Variablen « und £ sind, 
und zwar wird P nur die geraden Potenzen von ß, Q nur die ungeraden 

Potenzen enthalten, da die geraden Potenzen von i reell = +1, die un- 

geraden Potenzen von aber = -+ it, also mit dem Faktor i behaftet sind. 

Dabei ist nach dem eben Gesagten 

P(a,—P)=P(e,9); 9,—-P) =—-Q(a, ß).) 

Ist aber e=« + iß eine Wurzel der Gleichung f(x) = 0, so muß P(e, ß) 

=@(a, ß)=0 sein. Daher ist auch P(a,— Pf) =0Q(a,—ß) =0. Daher 
ist auch x = @— if eine Lösung von f(x) = 0. 

Eine Gleichung mit reellen Koeffizienten kann demnach imaginäre 
Wurzeln immer nur paarweise, mithin in gerader Anzahl enthalten. 
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Hieraus folgt weiter, daß, wenn das Gleichungspolynom f(x) den Faktor 

% — (@ + ft) hat, es auch den Faktor z— (« — ßi) enthält. Das Produkt 
dieser beiden Faktoren ist aber xiy. (x +ß i)-# l w-BE) + (nHü ) / aß 2 ) 

(—- eo? +? = —2or +02 + PR. 

Also: Eine ganze rationale Funktion f(x) mit reellen Koeffi- 

zienten läßt sich immer in reelle Faktoren ersten und zweiten 
Grades zerlegen. Jede reelle Wurzel der Gleichung f(x) — 0 liefert einen 

reellen Faktor ersten Grades & — a, je zwei konjugiert imaginäre Wurzeln 

& + reinen reellen Faktor zweiten Grades x? + px + q(wo pund qreelle 
Zahlen sind). 

5. Körper und Ringe. Nach dem Fundamentalsatz der Algebra läßt sich 

ein jedes Polynom n-ten Grades als Produkt von n Linearfaktoren schrei- 

ben. Diese einfache Formulierung verdankt der Satz der Heranziehung 

beliebiger reeller und komplexer Zahlen. Schon das Schlußergebnis von 

(4.) zeigt, daß der Satz eine kompliziertere Fassung erhalten muß, wenn 

man nur mit reellen Zahlen zu tun haben will. Stellt man aber gar die 

Forderung, daß nur rationale Zahlen zulässig sein sollen, so ist unter Um- 

ständen das vorgelegte Polynom unzerlegbar. So kann z. B. 2? — 2 nicht 

in Faktoren mit rationalen Koeffizienten zerlegt werden. Denn die Null- 

stelle eines jeden dabei auftretenden Linearfaktors wäre eine Wurzel von 

2. Es gibt aber bekanntlich keine rationale Zahl, deren Quadrat 2 ist. 

Sind nämlich p und q zwei teilerfremde ganze Zahlen, so daß ka —=2 

ist, so wäre auch p? = 2q?. Da die rechte Seite eine gerade Zahl ist, so 

müßte auch die linke Seite gerade sein. Da aber das Quadrat einer un- 

geraden Zahl ungerade ist, so muß p gerade sein. Da dann p? durch 4 teil- 

bar ist, so muß 29? durch 4, also q? durch 2 teilbar sein. Daher ist auch q 

gerade. p und q wären also gegen die Voraussetzung nicht teilerfremd. 

Die eben erwähnten Sachverhalte führen bei Einführung des Begriffes 

„Körper“ und ‚Ring‘ zu präzisen Fragestellungen. Hat eine Menge von 

Zahlen die Eigenschaft, daß die Summe, das Produkt, die Differenz, der 

Quotient je zweier Zahlen der Menge wieder zur Menge gehört, so be- 

deutet die Zahlenmenge das, was wir einen Zahlkörper nennen. Die 

Gesamtheit aller reellen und komplexen Zahlen bildet einen Körper; auch 

die Gesamtheit aller reellen Zahlen, auch die Gesamtheit aller rationalen 

Zahlen sind Beispiele von Zahlkörpern. Dagegen ist die Menge aller ganzen eher 

rationalen Zahlen kein Körper. Sie bilden einen Ring: Quotientenbildung 

führt unter Umständen aus dem Ring heraus; dagegen liefern Summe, 

Differenz oder Produkt von zwei Zahlen des Rings wieder Zahlen des Rings. 
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Auch die Gesamtheit aller rationalen Funktionen bildet einen Körper. 

Ebenso liefern die Gesamtheit aller rationalen Funktionen mit reellen oder 

die mit rationalen Koeffizienten Beispiele von Körpern. Dagegen bilden 

die Polynome, oder die Polynome mit reellen, oder die mit rationalen, oder 

die mit ganzen rationalen Koeffizienten Beispiele von Ringen. 

Die Gesamtheit der ganzen rationalen Funktionen, deren Koeffizienten 

alle einem gegebenen Körper k angehören, bilden einen Ring. 

Ist dann ein Zahlkörper K vorgelegt und ein Polynom p(x) gegeben, 

dessen Koeffizienten K angehören, so erhebt sich die Frage, ob p(x) in 

diesem Körper K reduzibel oder irreduzibel ist, d.h. ob es sich in 

Faktoren niedrigeren Grades zerlegen läßt, deren Koeffizienten K an- 

gehören (reduzibel), oder ob es eine solche Zerlegung nieht gibt (irredu- 

zibel). So ist also z.B. &— 2 im Körper der rationalen Zahlen irredu- 

zibel, während es im Körper der reellen Zahlen reduzibel wird. So ist 

x? + 1 im Körper der reellen Zahlen irreduzibel, während es im Körper 

der komplexen Zahlen reduzibel ist. 

6. Größter gemeinschaftlicher Teiler. Nun seien zwei Polynome A und B 

gegeben und irgendein Körper K vorgelegt, dem ihre Koeffizienten an- 

gehören. Das Polynom A heißt durch das Polynom B teilbar, wenn es ein 

drittes Polynom Ü gibt derart, daß A = BC ist für alle x. Da man Ü’ nach 

dem Schulverfahren der Partialdivision A: B finden kann, so gehören die 

Koeffizienten von C gleichfalls K an. Unter einem gemeinsamen Teiler 

von A und B versteht man ein Polynom von mindestens erstem Grade, 

das sowohl ein Teiler von A wie ein Teiler von B ist. Es erhebt sich die 

Frage, ob es analog wie im Gebiet der ganzen rationalen Zahlen einen 

größten gemeinschaftlichen Teiler von A und B gibt, d.h. ein Polynom D 

derart, daß D ein Teiler von A und B ist, und daß jeder gemeinschaftliche 

Teiler von A und B auch Teiler von D ist. 

Die Existenz des größten gemeinschaftlichen Teilers ergibt sich für 

einen Körper K, dem die sämtlichen Nullstellen der beiden Polynome A und 

B angehören sofort daraus, daß man das Produkt aller der Linearfaktoren 
betrachtet, die gemeinsamen Nullstellen von A und B entsprechen. Man 
denke sich also A und B in Linearfaktoren zerlegt und bilde das Produkt 
aller der Linearfaktoren, die sowohl in der Zerlegung von A wiein der von 
B vorkommen, und zwar nehme man jeden Linearfaktor so oft, als er in 
jedem der beiden Polynome aufgeht. Es ist aber von Interesse zu be- 
merken, daß dieser größte gemeinschaftliche Teiler Koeffizienten besitzt, 
die jedem Körper angehören, dem auch die Koeffizienten von A 
und B angehören. Von Interesse ist auch die Bemerkung, daß man D 
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finden kann, ohne den Körper der Koeffizienten von A und B zu ver- 

lassen. Man bedient sich dabei des Euklidischen Teilerverfahrens, mit 

dem man auch den größten gemeinschaftlichen Teiler ganzer rationaler 

Zahlen bestimmt. Ist B von niedrigerem Grade als A, oder wenigstens 

nicht von höherem, so dividiere man A durch B. Ist @ der Quotient und 

R, der Rest dieser Division, so ist identisch in & 

Aero 

Jeder gemeinsame Teiler von A und B ist auch Teiler von R,; umgekehrt 

ist ein gemeinsamer Teiler von B und R, notwendig auch Teiler von A. 

Wir verfahren daher nun ebenso mit B und R, wie vorher mit A und B. 

Da R, von niedrigerem Grade als B ist, so dividieren wir mit R, in B. 

Ist Q, der Quotient und R, der Rest, so hat man 

B=RQ,+R,, 

und wir schließen nun wieder: jeder gemeinsame Teiler von B und R, ist 

Teiler von R, und R, und umgekehrt. Indem wir auf diese Weise fort- 

fahrend immer mit dem letzten Rest in den letzten Divisor dividieren, er- 

halten wir eine Reihe identischer Relationen 

A= BQ Ft R, 

B= R,Qı Tr R, 

(1) R, —z R,Q. a R;, 

ee a eat 

Russ - N, Mr Dh HRy-g 
a 

Re > Bale 5 R,. 

Die Reste R, sind ganze Funktionen der Variablen x, aber im Grade ab- 

nehmend; R, ist von niedrigerem Grade als R,, R, von niedrigerem als 

R, usf. Man muß also bei diesen wiederholten Divisionen notwendig auf 

einen Rest R, kommen, der die Variable x nieht mehr enthält und nur noch 

eine konstante Zahl ist. /Ist diese Zahl von Null verschieden, so haben 

R,_ı und R, keinen Teiler in x gemeinsam, also auch R,_sund R,_ınicht; 

und von jeder der obigen Relationen zur vorhergehenden aufsteigend, er- 

sieht man, daß dann auch A und B keinen gemeinsamen Teiler haben 

können. Ist aber R,= 0, so ist der letzte Divisor R,_ ı der größte gemein- 

schaftliche Teiler von A und B. Denn De 1 teilt dann einerseits R,_ 5: 

und folglich auch R,_s3,... R), Bund A. Andererseits ist jeder gemein- 

same Teiler von A und B, Teiler von R,,vonR,...undvonR,. 

Bieberbach, Algebra 3 
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Zusatz: Entnimmt man aus der ersten der Relationen (1) den Wert 

von AR, , setzt denselben in die zweite ein und sucht aus dieser sodann den 

Wert von R, usf., so erhält man 

ee) R,= B-R,d,=B-(A-BQ)G, 

(2) R,=—4Q,+(1+QQ)B 

R,=A(l 7 0192) — B(Q + 92 + 90192) 

So kommt man zu einer Gleichung von der Form 

(3) XA—YB=R, 

wo X, Y ganze Funktionen der Q, Q,,.. ., also auch ganze Funktionen 

von x sind. Hieraus folgt der Satz: 

Sind A und B ganze Funktionen von z, so lassen sich im- 

mer zwei ganze Funktionen X, Y von x so bestimmen, daß 

XA-YB = const. 

Diese Konstante ist Null, wenn 4 und B einen gemeinsamen 

Teiler besitzen. Sie ıst von Null verschieden, wenn A und B 

teilerfremd sind, d.h. keinen gemeinschaftlichen Teiler be- 

sitzen. 

Für die Konstante kann dann auch 1 gesetzt werden, in- 

dem man den Faktor = in die Funktionen X, Y aufnimmt. 

Es verdient noch besonders hervorgehoben zu werden, daß die Koeffi- 

zienten sämtlicher während des Euklidischen Teilerverfahrens vorkom- 

menden Polynome demselben Körper angehören, der die der ursprünglich 

gegebenen Polynome A und B enthält. Während des Verfahrens werden 
nämlich nur die vier Grundrechnungsarten benutzt. 

Eine besonders wichtige Anwendung dieser Bemerkung ist diese. 

Gehören die Koeffizienten von f(&) und g(x) einem Körper 
K an, in dem f(&) irreduzibel ist und hat f(x) mit g(&) einen 

Ein anderer gemeinsamer Teiler Seler wäre e mit der rear ne von | 
f(x) im Widerspruch. i a ‘ 

12T 2. Mehrfache wen: N wir an, die kann: f ade = ar 
"mehrere gleiche Wurzeln, sie habe z. B. die Wurzel a r-fach, so ıst identisch 

I) = (@—a)"p(a), 
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wo 9(x) die übrigen Faktoren von f(x) enthält, aber den Faktor 2 — a 

nicht mehr. Für die Abgeleitete!) von f(x) erhält man daher (1, 3, 5) / 1# 

Pia) =r(@— at: pla) + (ea) p'(R) 

= (@-a)'tlro(a) + (— a) 9’ (@)]. 

Der Ausdruck rg (x) + (x — a) op’ (x) enthält den Faktor x — a nicht, weil 

(x) ihn nicht enthält. Folglich enthält f(x) diesen Faktor noch (r— 1) - 

mal; istr =1, so enthält f(x) den Faktor 2 — a gar nicht. Hieraus er- 

gibt sich der Satz: 

Hat die Gleichung f(x) =0 keine mehrfachen Wurzeln, so 

hat die Gleichung f(x) =0 keine Wurzel mit f(x)=0 ge- 

mein; f(x) und f(x) haben keinen gemeinsamen Teiler. Hat 

aber f(x) =0 eine Wurzelar-fach, so ist diese Wurzel a noch 

(r—1)-fache Wurzel der Gleichung f(x) = 0. 

Sucht man nach der Bedingung dafür, daß f(x) überhaupt mehrfache 

Wurzeln hat, so hat man festzustellen, ob f(x) und f’(x) einen gemein- 

samen Teiler haben. Man kann sich dazu des früher dargelegten Teiler- 

verfahrens bedienen. Eine weitere Beantwortung der eben gestellten Frage 

werden wir S.117 beim Studium der Diskriminante kennenlernen. 

Der Satz läßt sich noch vervollständigen; denn da in der Reihe der 

Abgeleiteten f’ (x), f(x), f(x), ... . jede die erste Abgeleitete der vorher- 

gehenden ist, so folgt, daß der Faktor @— a noch (r — 2)-mal in f’’(x), 

(r — 3)-mal in f’”(z),..., Imal in f"-V(x) enthalten ist und daß die r-te 

und höheren Abgeleiteten denselben gar nicht enthalten. Es ist also auch 

die Wurzel a noch bzw. (r— 1)-fache, (r — 2)-fache, ..., 1-fache Wurzel 

der Gleichungen 

P(&) =0, f’(&) =0,..., fr (a) = 0. 

Nach dem Vorigen können wir ohne Ausrechnung der Wurzeln ent- 

scheiden, ob eine vorgelegte Gleichung mehrfache Wurzeln hat, und wenn 

solche vorhanden, können wir dieselben aus der Gleichung entfernen. In 

der Tat, nehmen wir an, die gegebene Gleichung f(x) = 0 habe die Wur- 

zel a p-mal, die Wurzel b q-mal und die Wurzel ce r-mal, sonst keine andern 

vielfachen Wurzeln, so ist 

(2) = (a — a (eb) (2 )"- plR), 

1) Aus dem Begriff der Abgeleiteten folgt nämlich, daß, wenn die zwei Funktionen 
F(x) und f(x) identisch gleich sind, auch ihre Abgeleiteten F’(z) und f’(z) iden- 
tisch gleich sind, d.h. man kann in diesem Falle und nur in diesem Falle aus der 
Identität F (x) = f(x) die Identität F’ (x) = f’(x) folgern. 

3* 
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wo p(x) die übrigen einfachen Faktoren von f(x) enthält. Dann hat die 

Abgeleitete f’(2) den Faktor x— a noch (p—1)- -mal, den Faktor 2— b 

noch (9 — 1)-mal und den Faktor » — cnoch (r —1)- -mal, aber keinen der 

übrigen einfachen Faktoren von f(x). Suchen wir also den größten ge- 

meinsamen Teiler D von f(x) und f(x), so muß 

D=(z— a)P1.(2 —b)e!.(2 — e)"-! 

sein, und die Division von f(x) mit D gibt demnach 

=-@-9@-d)e- gl). 
Die Gleichung 

hat mithin alle Wurzeln der vorgelegten Gleichung f(x) =, 

aber jede nur einfach. 
Ihre Koeffizienten gehören demjenigen Körper an, dem auch die Koeffi- 

zienten von f(x) angehören. Denn jeder Körper enthält alle ganzen ratio- 

nalen Zahlen, da er in dem Quotienten eines Elementes dividiert durch 

dieses Element selbst, die 1 und damit auch 1 + 1 usw. enthält. Daher ge- 

hören die Koeffizienten von f’(x) demselben Körper an, wie die von f(x). 

Daher gehören auch die Koeffizienten des größten gemeinsamen Teilers 

D von f(x) und f(x) diesem Körper an. Denn D wird durch des Eukli- 

dische Teilerverfahren ermittelt. Dabei kommen nur Koeffizienten aus 

jenem Körper vor. 

Man kann aber weiter auch das Produkt der einfachen Linearfaktoren, 

das Produkt aller Doppelfaktoren, das Produkt aller dreifachen Faktoren 

usf. der gegebenen Gleichung f(x) = 0 ohne Bereehnung der Wurzeln 

bestimmen. Um dies übersichtlich darzustellen, sei X, das Produkt aller 

einfachen Faktoren von f(x), X, das Produkt aller zweifachen, X, das 

aller dreifachen Faktoren in f(x) usw. Dann ist 

»A EI IKK 

N Be 
der gemeinsame Faktor von D, und seiner Abgeleiteten D! ist 

Dex. 

der gemeinsame Faktor von D, und seiner Abgeleiteten D; ist 

De 

So fährt man fort, bis man zu einem Teiler D kommt, der keinen Faktor 
mit seiner Abgeleiteten gemeint hat. Würde dies z.B. bei D, eintreten, 
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so wäre D, = X,, und man würde schließen, daß Faktoren vom fünften 
BUBEN 23 55 

oder höheren Grade in f(x) nicht enthalten sind. Dann würde folgen: 

A-- RER, SP KRR, KR, 

on = = NX,, 4 Xz, D;=X,. 

Man kann also nicht nur die Gleichung bilden, welche alle verschiedenen 

Wurzeln der vorgelegten Gleichung (jede Wurzel nur einfach) enthält, 

sondern auch die Gleichungen 

Ele ee, el... 

welche nur die Wurzeln ein und derselben Vielfachheit enthalten. Die 

Koeffizienten dieser Polynome X, gehören sämtlich demjenigen Körper 

an, dem die Koeffizienten von f(x) angehören. Sie lassen sich durch mehr- 

malıge Anwendung des Euklidischen Teilerverfahrens bestimmen. 

Beispiel: Gegeben sei die Gleichung 

fa) =" — 22° 20? +5 RI? +1=0, 

dann ergibt sicht, )D =? — ®—c+1 

D, =2—1. 

Da D, keinen Faktor mit D; gemein hat, so ist 

fa) = XXX, D = X, D,=X, 

und folglich 9, == KR - 2 +a+! 

=== r-1 
und schließlich 

a=-h=-R-ı-WH=--041.D--2-1. 

Die Gleichung ist also 

(2 — 2 —-1)(e +1 (ce —1?=0. 

Der quadratische Faktor & — x —1 liefert die zwei einzigen einfachen 

Wurzeln der Gleichung: 1ER, 

Man bemerke, daß, wenn die Gleichung f(x) = O rationale Koeffizienten 

hat, die X,, X,, X,,... sämtlich gleichfalls rationale Koeffizienten 

besitzen. Hat also die Gleichung nur eine Wurzel von einer bestimm- 

ten Vielfachheit, so ist der entsprechende Faktor X vom ersten Grade, und 

folglich muß diese Wurzel notwendig eine rationale Zahl sein. 

So im obigen Beispiel die eine zweifache und die eine dreifache Wurzel. 
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8. Rationale ganzzahlige Wurzeln. Hat eine Gleichung mit rationalen 

Koeffizienten rationale Wurzeln, so lassen sich dieselben auf folgendem 

Wege bestimmen. . 

Schafft man zuerst durch Multiplikation mit dem Generalnenner die 

Brüche aus den Koeffizienten weg, so erhält man eine ganzzahlige Glei- 

chung: kan + aam-ı bar... —=(. 

d.h. eine Gleichung mit ganzzahligen Koeffizienten. Um den ersten Koef- 

fizienten zu 1 zu machen, setze man £ = EN, S "wodurch die Gleichung in 

yr + ayr-!+ bkyr-2+..-=0 übergeht. 

Eine solche Gleichung, deren Koeffizienten ganze Zahlen 

sind und deren erster Koeffizient =1 ist, kann keine andern 

rationalen Wurzeln haben als ganze Zahlen. 

Denn hätte die Gleichung 

(1) ar ta ai 42? + +, —=0, 

WO 4d1,Q,... ganze Zahlen, einen rationalen Bruch er zur Wurzel, so 

müßte 
BL Rh: tr m—0 oder 

(2) a 

sein, d.h. der Bruch 2" müßte einer ganzen Zahl gleich sein. Da wir aber 

p und q ohne gemeinsamen Teiler voraussetzen können, so folgt q =1. 

Ist mithin eine Gleichung f(x) = 0 mit rationalen Koeffizienten ge- 

geben, so wird man die rationalen Wurzeln, wenn sie solche hat, leicht 

finden können. Man wird die Gleichung zunächst auf die Form (1) trans- 

formieren. Hat die Gleichung f(x) = 0 eine rationale Wurzel, so hat diese 

Gleichung (1) eine ganze Zahl p zur Wurzel, die notwendig ein Faktor 

von a, sein muß. Denn wird in Gleichung (2) qg = 1 genommen, so sind 
dien ersten Glieder durch 9 teilbar, also muß dies auch für a, gelten. Setzt 
man mithin nach und nach in die Gleichung (1) alle Faktoren von a,, 
positiv und negativ genommen, ein, so erhält man alle ganzzahligen Lö- 
sungen derselben und mithin auch die rationalen Wurzeln von f(x) = 0 
und kann die entsprechenden rationalen Faktoren von f(x) abtrennen. 

Wir wollen einige Beispiele vornehmen. Um zu sehen, ob die Gleichung 

> — 2 —93 +10 —-11e +9 =0 
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eine rationale Wurzel besitzt, hat man nur die Faktoren von 9, nämlich 

+1, +3, +9 zu prüfen. Keine dieser Zahlen genügt der Gleichung. 

Dieselbe hat folglich überhaupt keine rationale Wurzel. 

Zur Feststellung, daß + 9 z. B. der Gleichung nicht genügt, ist nur eine 

rohe Schätzung erforderlich. Denn man sieht doch sofort, daß für x = 9 

a a er 

und daß 1022 > 11x 

ist, daß also die linke Seite nicht verschwinden kann. Ähnlich kann man 

bei 2 = — 9 schließen. 

Sind die Koeffizienten der Gleichung große Zahlen, so kann man die 

Proben auf folgende Weise erleichtern. Ist (1) die gegebene Gleichung 

und soll sich das Polynom auf der linken Seite in die Faktoren 

(— a) |buar 2 + bar? 4. Hbu-gc + be-,} 

zerlegen, so gibt die Vergleichung der Koeffizienten 

ee ab„_1; An-1 = AT Ang = Da-a 00,3; ... Az en re: 

da == b,— cab,, dı = b,— abo, bo = u 

woraus sich ergibt 

b Ki Ay b bn-ı —- m-ı b er 
n—1 R— A a B) ns a ’ 

8) Be Be > 
b„_ı = = ne se, e = -— — „b= 1 on Si 

Sind nun die Koeffizienten ganze N und soll die Wurzel « ebenfalls 

eine ganze Zahl sein, so müssen sich auch aus den Gleichungen (3) für 

„die Werte der b nur ganze Zahlen ergeben; ist dies nicht der Fall, so ist « 

nicht die Wurzel der Gleichung; außerdem muß als letzte Bedingung 
b,—a > 
— 2 _. 1] gein. 

Ist z. B. die Gleichung gegeben 

25 — 5at — 232° + 2952? — 8242 + 700 = 0 

und zu untersuchen, ob sie ganze Zahlen zu Wurzeln hat, so hätte man, 

da 700 = 7-52 -2?ist, alle Zahlen zu untersuchen, die aus den Faktoren 

2,2, 5, 5, 7 zusammengesetzt sind und Zube RE von 700 sind. Das 

aber die Gleichung sich schreiben läßt ”” 4; 1 r 2 er pe A tee a 

3 —55—B)+-..- 0, Ka biuxs u ER DIEBE 

so ersieht man sogleich, daß 8 eine obere Grenze der positiven Wurzeln ist.’ a 

Ferner ergibt sich leicht — 8 als Grenze der negativen Wurzeln. Man hat 

also nur die Zahlen + 1, + 2, + 4, + 5, + 7 zu prüfen. 
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Nun ist 

füra=7, 4-70 _ 100, 4, - IF (keine ganze Zahl); 

lu = mr — 188, 

= 28 _ 10, ,- 72 _9,,-1- 
—7 

Also ist — 7 Wurzel und die eben berechneten b sind die Koeffizienten 

der Gleichung, welche aus der Division mit x + 7 hervorgeht. Dieselbe 

ER — 122° + 612° 1822 + 100 =. 

— 7 kann nicht Doppelwupel sein, da sonst x = — 7 Wurzel der neuen 

eben erhaltenen Gleichung wäre. 7 ist aber kein Teiler von 100. 

Auf diese Gleichung angewandt, ergeben die Formeln (2) für 2 =5, 

b, = -—_ = — 0, b= En ; 5 ist also nicht Wurzel; ebenso er- 

gibt sich, daß — 5, +4 Rn Wurzeln sind. Für = 2 ist b, = = 

-— 890, ,-— eb na 
= 1. Also ist 2 Wurzel, und die Entfernung des Faktors 2 — 2 ergibt 

23 — 1022? +41 —-50 =0. 

Da 2 Doppelwurzel sein kann, hat man diesen Faktor nochmals zu prüfen 
und erhält 

{0} N 

bu u 

Also ist x — 2 Faktor, und die Entfernung desselben gibt 

—8:2+95 =. 

Diese Gleichung hat keine rationale Wurzel. Die vorgelegte Gleichung 
ist mithin in ihre mit rationalen Koeffizienten versehenen Faktoren zerlegt 

(Ya +) — 8243) = 0. 



Zweiter Abschnitt. 

Theorie und Anwendung der Determinanten.) 

Erstes Kapitel. 

Grundeigenschaften der Determinanten. 

1. Historisches. Die Lehre von den Determinanten knüpft unmittelbar an 

die Auflösung eines Systems linearer Gleichungen an. Die Resultante 

eines Systems linearer Gleichungen ist nämlich geradezu die Determi- 

nante der Koeffizienten dieses Systems von Gleichungen. Nun lassen 

sich die Resultanten eines Systems von linearen Gleichungen zwar leicht 

berechnen. Aber die Elimination von zwei Variablen x, y aus drei linearen 

Gleichungen führt schon zu einer Resultante von 6 Gliedern; die Resul- 

tante von vier linearen Gleichungen mit drei Variablen ist ein Aggregat 

aus 24 Gliedern; die Resultante aus fünf linearen Gleichungen mit vier 

Variablen enthält 120 Glieder usf. 

Man sieht, daß diese Resultanten oder Determinanten ungefüge Aus- 

drücke sind, welche wir kaum übersehen können; noch weniger ließ sich 

mit ihnen rechnen, solange das Gesetz ihrer Bildung und ihre Eigenschaf- 

ten nicht bekannt waren. 

Die Anfänge der Theorie der Determinanten gehen auf Leibniz zurück, 

der zuerst erkannte und aussprach, welche wesentliche Rolle die Wahl 

der Bezeichnung spielt, um so mehr, je verwickelter die Ausdrücke sind, 

mit denen wir es zu tun haben. In den Schriften von Leibniz ist dieser 
Gegenstand nur an einer Stelle berührt, in einem höchst interessanten 

Briefe an den französischen Mathematiker De ’Hospital (1693.)?) 

1) Die weiteren Abschnitte dieses Buches sind mit geringer Ausnahme auch für 
einen Leser verständlich, der den vorliegenden Abschnitt II überschlägt. 

2) Leibniz, Mathematische Schriften, herausgegeben von Gerhardt, 1. Abt., 
2. Band, Brief an De ’Hospital, Hannover 1693. 
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Leibniz bemerkt darin, daß er öfter Zahlen statt der Buchstaben an- 

wende, und gibt ein Beispiel, indem er die drei linearen Gleichungen 
1 + lh 2 +1, y= 0 Aut A,4=7% 

» +42 +%y=0 ol Ant Me 

+3, 2+%;y=0 et 
anschreibt, und das Resultat der Elimination von &, y in der Form gibt 

12,52, 1,25, 

1, 2, 39 — 13 2, 3 

4,2097 4,2082 

Je drei beisammenstehende Zahlen sind hier als Produkt von drei Koeffi- 

zienten aufzufassen, und jedem dieser Produkte ist das Zeichen + vorzu- 

setzen; dann gibt die Gleichung die sechs Glieder, aus welchen die Resul- 

tante besteht. Aus diesem Resultat schließt Leibniz das allgemeine 
Theorem zur Bildung der Resultante für beliebig viele lineare Gleichungen, 
d.h. er gibt im wesentlichen das allgemeine Gesetz der Bildung der Deter- 
minanten. 

Leibnizens Lösung ging verloren.!) Dann wurde sie wieder gefunden 
von Oramer (Analyse des lignes eourbes, Geneve 1750). B&zout, La- 
place und zumal Vandermonde (M&moire sur l’&limination, 1772) er- 
weiterten die Kenntnis von den Eigenschaften der Determinanten. Auch 
in den zahlentheoretischen Untersuchungen (Disquisitiones arithmeticae, 
1801) von Gauß kommen dieselben vor als ‚„‚Determinanten quadratischer 
Formen‘. 

Die wesentlichsten Fortschritte in der Entwicklung der Theorie der De- 
terminanten verdankt man jedoch Cauchy?), der auch die jetzt übliche 
symbolische Bezeichnung der Determinanten zuerst benutzte, und zumal 
Jacobi, durch dessen Arbeit ‚De formatione et proprietatibus determi- 
nantium“ (Crelles Journ. XXII, 1841) die Kenntnis und der Gebrauch 
der Determinanten allgemein wurde. 

2. Definition der Determinanten. Es sei ein System von n linearen Glei- 
chungen homogen in den n Variablen x,, %g,...2n gegeben. Bezeich- 
nen wir nach dem Vorgang von Leibniz die Koeffizienten durch zwei In- 

1) In einem späteren Briefe an De l’Hos pital mahnt Leibniz denselben, ihre 
Entdeckungen nicht an die Öffentlichkeit zu bringen: „iln’est pas bon de prostituer 
nos me&thodes.‘‘ ; 

2) Cauchy, Journ. de l’Ee. Polytechnique, t. X, 17me cah. (1815). ‚‚M&m. sur 
les fonctions qui ne pouvent obtenir que deux valeurs etc.“ 
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dizes, von denen der erste anzeigt, in welcher Gleichung, der zweite, bei 

welcher Variablen der Koeffizient als Faktor steht, so schreibt sich dieses. 

Gleichungssystem in der Weise: 

AııFkı Flat + lısl3; ++ nn = 0 

Agıkı FAgalg + Agsl; + + Agn in = 0 

Anıkı t Angta Air Angftg De Ann tn =(. 

Unter der Resultante oder Determinante dieses Gleichungssystems wol- 
len wir eine Funktion der Koeffizienten verstehen, deren Verschwinden 

anzeigt, daß dies Gleichungssystem neben der trivialen Lösung &, = 2%, | 

=....=2,=0 noch eine weitere Lösung besitzt. Wir schreiben die 

Koeffizienten einer jeden Gleichung hintereinander und bezeichnen/abge- 

kürzt mit einem Buchstaben: a,, d,,... aA„. Die Determinante «u.» QL: ne 

Dim Bs2.20,) 

soll dann folgende Eigenschaften haben: Wenn wir qa,,.. .a, zugleich als 

Abkürzung für die Linearformen auf den linken Seiten benutzen, so wird 

das Gleichungssystem mit den linken Seiten 

(1 RR FEB 0; + 4x, Ajı1°.+- 0 G=ER) 

zugleich mit dem ursprünglichen Gleichungssystem lösbar sein. Wir for- 

dern daher 

A) Die 0: 7 + ne) 

= Den), 

Dabei bedeutet jetzt a; + A; 

die Summe der beiden Zahlenreihen 

EN 

und Belne sales 

d.h. die Koeffizientenfolge der Linearform a; + 4x. 

Diese Forderung (1) erscheint auch darum berechtigt, weil man zur Auf- 

findung der Bedingung der Lösbarkeit ja gerade durch lineare Kombina- 

tion der Gleichungen die Unbekannten zu eliminieren suchen wird mit 

dem Ziele, zu erreichen, daß in jeder Gleichung nur eine Unbekannte stehen- 

bleibt und derart, daß in verschiedenen Gleichungen nur verschiedene Un- 

bekannte vorkommen. Ist dies erreicht, so wird die Bedingung der Lös- 
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barkeit sein, daß das Produkt der Koeffizienten verschwindet. Dement- 

sprechend fordern wir weiter, daß 

(2) D(o.2. 20,21, Ausor se.) 

= /D(.e 0, 

sein soll, wenn A eine Zahl bedeutet; Aa, bedeutet die Zahlenfolge 

Alt ee A 

Endlich fordern wir den vorausgegangenen Erwägungen folgend, daß 

die Determinante des Gleichungssystems 

N) G=1,...n) 

den Wert @,1,. . - 4„n„ hat, oder was nach (2) dasselbe bedeutet 

0 0 Den...) -1. 
h & ’"2 Dabei ist e; die Zahlenfolge, bei der alle Zahlen außer der j-ten verschwin- 

/*s den. Die j-te selbst hat den Wert 1. 

4 = /4 Nun ist die interessante Tatsache die, daß es genau eine Funktion D 

gibt, die diesen drei Forderungen genügt. Davon werden wir uns erst 

überzeugen und dann nach Feststellung gewisser weiterer Eigenschaften 

derselben zeigen, daß sie auch die Resultanteneigenschaft für das lineare 

Gleichungssystem besitzt. 

3. Existenz der Determinanten. Ich zeige zunächst durch explizite An- 

gabe eines Beispieles, daß es Funktionen der a,, gibt, welche die drei an- 

gegebenen Eigenschaften besitzen. Dazu müssen wir erst etwas über die 

möglichen Anordnungen von n Objekten sagen. Die Ziffern 1,2,...n 

kann man in n! verschiedene Anordnungen bringen. Diese Anordnungen 

(auch Permutationen genannt) teilen wir in zwei Klassen ein, die gera- 

den und die ungeraden. Um das Einteilungsprinzip angeben zu können, 

betrachten wir das Differenzenprodukt 

(1 — %)(&ı— %s) . . - (&ı — %,) 

(& — X3) ... (La — %,) 

(En-ı — %n) 

von n unabhängigen Veränderlichen, das wir abgekürzt mit P(a,,...x,) 
bezeichnen. Bei Vertauschung von zweien derselben ändert es sein 
Vorzeichen 

ln es te) a Bl re 

Denn: die Differenz x, — x, ändert ihr Vorzeichen. Weiter bleiben die 
Differenzen unverändert, die weder x; noch x, enthalten. %; — 2, und 
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%, — %, vertauschen ihre Plätze, wenn A <jist. &,— x, und 2, — x, ver- 

tauschen ihre Plätze, wenn A>kist. 2,— x, und 2, — x, vertauschen 

ihre Plätze und wechseln beide das Vorzeichen, wenn IJ<A<k ist. 

Man beachte weiter, daß man jede Anordnung der Ziffern 1,...n 

aus dieser natürlichen Anordnung bekommen kann, indem man mehrfach 

je zwei der Ziffern miteinander vertauscht: man schaffe nur durch suk- 

zessives Vertauschen mit ihrem rechten Nachbarn zuerst die Ziffer ans 

Ende, die dort stehen soll, verfahre dann analog mit der Ziffer, die den 

vorletzten Platz einnehmen soll usw. Daher ist für jede Anordnung 

U ers, der 21... En 

Pia, ,...%) = + Pin... 2%). 

Wenn + steht, so nennen wir die Anordnung gerade, sonst ungerade. 

Alsdann betrachte man die Summe 

1) Ala..-W)=2 49 19,9. --% mn 

erstreckt über alle n! Anordnungen A,,...4, der Ziffern 1...n und 

setze dabei das Vorzeichen + oder —, je nachdem ob es eine gerade oder 

ungerade Anordnung ist. Diese Funktion ist die Determinante n-ter 

Ordnung. Beer 

Beispiele: Die Determinante zweiten Grades ist 

| A112 
— A11Q9g — A12Qaı- 

| Agı lag 

Die Determinante dritten Grades ist 

09.20, | 11912013 | 
| | = Ay]Qg2(33 — Ay1@gzligg + A12Qg3(l] — A191 Qigg 
Qgı@22Qaz | Sr Re E : 

| | r A321: — A13QlgaQgı. 
| Agıdaadaz | 

Die Determinante vierten Grades enthält bereits 24 Glieder, entsprechend 

den 24 Permutationen der Zahlen 1, 2,3, 4: 

d11919013 41a 

Ayı @gplliggliga | — A11lag az lg — Ay1 ga lzgdgz + Ay dazdizı de 

URSRAERLUERUUFT — Ayylggligglga + °"" 

Qgı Ag2 Agz Aga 

In jedem Glied der Summe (1) kommt genau ein Faktor vor, der der i-ten 

Zeile angehört, der die vordere Nummer : trägt. Ebenso kommt in jedem 

Glied genau ein Faktor vor, der die hintere Nummer ? trägt. 
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Die Funktion A(a,,... a„) hat dann die folgenden Eigenschaften 

(1) AO 

= N 0 te 

Denn die Vertauschung von a, mit a, hat zur Folge, daß man jedes Glied 

der Summe (1) durch eines ersetzt, das aus ihm durch eine Vertauschung 

von zwei der ersten Nummern der a hervorgeht, das also das andere Vor- 
zeichen hat. 

(2) Al. Br sen Dreren,) 

AR Et 

Dabei sei D; =.0,, zeRD,, 

eine weitere Zahlenreihe und a; + b, bedeute die Reihe a,, + b;ı,... 
Q;n + b;n. Dies folgt sofort daraus, daß A von den Elementen jeder „Zeile“ 

@j1> +++ 4;„ homogen und linear abhängt. Man nehme nur die Einsetzung 
in den einzelnen Gliedern der Summe (1) vor: [A ih e. n Ay hyt Hukız 

rd, A Aus (1) folgt, daß A ya Au bı, 
(1a) Als Hase) ==: 1@y, Az) Au A| 

A + Opal EL { 2 

D. h. daß ein A mit zwei gleichen „Zeilen‘‘ Nullist. Denn beı Vertäuschung 
von diesen beiden Zeilen bekommt es nach (1) den Faktor — 1, während 
es doch tatsächlich unverändert bleibt. 

Aus (2) folgt im Verein mit (1a), daß 

: (2a) Aa ar, ee 

= A(Q,....,...0,). U+h) 

Denn es ist AN ae Ra) 

IM ae) 

A ae 

Nach (la) aber ist Alt, Suse Bra 

Damit ist die erste Grundeigenschaft der Determinanten bei der Funktion 
A nachgewiesen. Die zweite folgt sofort daraus, daß A linear und homogen 
von den Gliedern jeder Zahlenfolge a, abhängt. Die dritte verifiziert man 
sofort, denn für, =qa,j=1...n) bleibt nur ein Summand von A 
stehen; und der ist +1. 

4. Folgeeigenschaften. Ich zeige nun weiter, daß A (A1,... A„) die einzige 
Funktion ist, welche die drei Grundeigenschaften besitzt. Der Grund: 
gedanke dieses Beweises ist dieser: Man zeigt, daß eine Funktion 
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D(a),...a,) für jedes System a,,...da, nur einen einzigen Wert be- 

sitzen kann, der durch die a,,... a„ und die drei Grundeigenschaften voll- 

kommen festgelegt ist. Um das zu diesem Beweis nötige Berechnungs- 

verfahren angeben zu können, schicken wir einige weitere Eigenschaften 

u surküon DINO er 0) VOTaus. 

I. Es ist Diana Asse sn... d,) 

DIRT IRRE. ET), (+) 

wenn 4 eine beliebige Zahl ist. 

Denn es ist für A 0, was alleın interessiert, 

Ian. .0, I 

—D(n...0, RAU, Ale) 

a \ Y {, 

—-1.Dia, DS A; + Adr: .. AQ, ee A) Ansuf (& 0.) 0.16 

II. Es ıst DO Olten) 

= Dia... (x A.) 

Denn es ist Day... Qx es 0) 

D(a,...a,. +4; Bus; ar) 

TR or, alas 0) x0,) 

=D... 0, 2... 0 a) 

= Dia... +9, —0,....— 4; Re) 

—7 Dias... 0; 2. 0% th, 

= — Dla,...ı; Rn ARE 

III. Esist I A RU 

zu), 

Dabei ist O die Zahlenfolge 0,0... 0, die aus lauter Nullen besteht. Denn 

sr, Da wear) 
a ER AR ERE 

5. Unitätsbeweis. Wir führen nun den zu Beginn von (2, 1, 4) in Aussicht 

genommenen Beweis für die Einzigkeit der Funktion D nach dem dort 

angegebenen Gedanken durch. Wir achten zu dem Zweck zunächst auf 

die ersten Zahlen a1, @gı, - - - @„ı der n Folgen a,,... a, und stellen fest, 

ob darunter von Null verschiedene Zahlen vorkommen. Ist das der Fall, 



'so sei @;ı diejenige kleinster Nummer, die von Null verschieden ıst. 

Indem wir dann die Multipla en a, von den folgenden a, abziehen, 
2 

ändern wir den Wert von D nach (2, 1, 4) nicht, erreichen aber, daß in der 

ersten „Kolonne“ ay1,.. . @„, nieht mehr als eine von Null verschiedene 

Zahl steht. Sie steht an j-ter Stelle/In dem wir dann noch a, der Reihe 

nach mit den vorausgehenden Zeilen vertauschen, bringen wir es an erste 

Stelle und bringen um diesen Austausch auszugleichen, gleichzeitig den 

Faktor (— 1)’ an dem nun noch zu bereehnenden D an. Dies neue D ist 

wieder eine Funktion von n Zahlenfolgen, welche nach wie vor die drei 

Grundeigenschaften besitzt. Wir bezeichnen ihre n Zahlenfolgen mit 

a ...a). Nura’, hat dann noch eine von Null verschiedene erste Zahl a/ı 

= a;ı, während die ersten Zahlen 

Ası ... O1 

alle verschwinden. Wir achten nun auf die Zahlen der zweiten Kolonne 

‘£ [2 

422: » » An 

der zweiten und der darauf folgenden Zahlenfolgen und stellen fest, ob 

darunter von Null verschiedene vorkommen. Ist dies der Fall, so sei a; 
N 2 5 s a, 

die von Null verschiedene kleinster Nummer. Indem wır dann ne A; 

von den folgenden a; abziehen, ändern wir den Wert von D nicht, erreichen 

aber, daß die zweiten Zahlen der auf a; folgenden Zahlenfolgen alle Null 

werden. Alsdann vertauschen wir wieder a; der Reihe nach mit den Zahlen- 

folgen kleinerer Nummer, bis es an die zweite Stelle gerückt ist und 

bringen zum Ausgleich dieser Vertauschungen den Faktor (— 1)*-1 an. 

So bleibt nun nur ein D zu berechnen, bei dem nur die erste Zahlenfolge 

eine von Null verschiedene erste Zahl und nur die zweite Zahlenfolge 

eine von Null verschiedene zweite Zahl besitzen kann. Mit den dritten 

Ziffern verfahren wir dann ebenso und erhalten so nach n-maliger Wieder- 

holung des Verfahrens ein D, das nun von n Zahlenfolgen dieser Art 
abhängt: 

A = (Au, Ai; ... An) 

N ON AN in 
SE lb en 
AW,=(0 0 AR. 

Nunmehr sehen wir zu, ob 

Ann = 0. 0der 4,0735 

I 1 ar ee SR ed Tee 
4- ii} au] nal), 10-204 | Fr 2-% ) 1} Ö Ay 

'48 a Erstes Kapitel: Grundeigenschaften der®Determin. nten 35 000/ 
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Ist A,„ = 0, so ist nach III von 4. 

TERE Be 

und also auch D(a,,...a,) = 0, da dies ihm gleich ist. 

Ist A„„=#0, so ziehen wir 

Axn 

An Ann 

von W, ab und gewinnen so n neue Zahlenfolgen, deren letzte Zahl außer 

bei W,„ verschwindet. D aber bleibt bei diesem Vorgang unverändert. Auch 

An-ı,n-1> AÄn-2,n-2; - - - Aıı bleiben dabei ganz unverändert. Wir achten 

Busur A elsd, n 0,80 iD tt 4 0 

gehen wir genau wie vorher zu neuen Zahlenfolgen über, deren n — 1-te 

Zahlen alle außer bei V,„_, zu Null werden. Setzen wir dies Verfahren fort, 

so erkennen wir, daß 

Dia...) = (127 DM, ...4.) 

= (irrt Ay Ada, AnnD(Eıs---En) 

a u Be Ann | 

ist. Das Rechenverfahren ist durch die Werte der ursprünglichen a, ein- 

deutig bestimmt. Also ist inbesondere das 

Die ..0,) == 1(0,250,) 

für jedes System qa,,...4,. 

Statt Da, 2e0,) 

pflegt man zu schreiben 

A1---Aın| 

Agı.. . Agn 

a 0 DR 

| 
Anı -Ayn 

oder auch || a; ; ||- 

"6. Eine Verallgemeinerung. Wenn für eine Funktion D(a, ... a„) die bei- 

den ersten Eigenschaften von 2. gelten, statt (8) aber Dfe,...e,)=d 

irgendwie vorgeschrieben ist, so ist a 

Dit 2...) =dDim...0,. 

Dies lehrt der Beweis in 5. unmittelbar. Denn da wurde nur zu aller- 

letzt der Wert von D(e,...e,„) benutzt. 
Bieberbach, Algebra. 4 
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7. Eine weitere Eigenschaft der Determinanten. Eine erste Eigenschaft 

entnehmen wir der in 3. betrachteten Summendarstellung der Determi- 

nanten. Wir haben dort die Determinanten entwickelt, indem wir die 

ersten Indizes der a;, permutierten; man könnte aber auch die zweiten 

Indizes permutieren und die ersten in der Ordnung 1, 2,3... belassen 

oder, was auf dasselbe hinauskommt, man kann in jedem Gliede die ersten 

und zweiten Zeiger vertauschen. Dabei wird das Zeichen des Gliedes nicht 

geändert; denn nach der Definition hängt das Zeichen des Gliedes nur da- 

von ab, ob die Reihenfolge der zwei Indizesreihen von derselben Klasse 

sind oder nicht. Daraus folgt, daß die Determinante sich nicht 

ändert, wenn man in allen Elementen die ersten und zweiten 

Indizes vertauscht, wodurch in dem Quadrat der Elemente 

die Horizontalreihen in die Vertikalreihen, und umgekehrt, 

übergehen. Es ist also 

A11812dı3 + +» Aın | Ayıdaı » +» Anı 

Qgı@g2Qaz - - - Apn A122 » - - Anz 

er I se, De,Tirerze — A13 (93 .0.. Anz 

Anı9n2Inz +» +» Ann Aından ++ - Ann 

Statt Horizontalreihe gebrauchen wir, wie schon mehrfach im Vorstehen- 

den,auch denAusdruck: Zeile. Statt VertikalreihesagenwirauchKolonne. 

8. Entwicklung einer Determinante nach den Elementen einer Kolonne. 

Aus dem analytischen Ausdruck der Determinanten, oder aus dem in 

(2,1,5) auseinandergesetzten Berechnungsverfahren, folgt, daß eine Deter- 

minante eine homogene lineare Funktion ihrer letzten Kolonne ist. Da 

aber bei Vertauschung der Kolonnen sich nur das Vorzeichen ändern kann, 

so gilt das für jede Kolonne. Da man weiter Zeilen und Kolonnen aus- 

tauschen kann, ohne die Determinante zu ändern, so gilt das auch für 

die einzelnen Zeilen. Es sei nun gesetzt 

Diesss.a,) = Da,A ee) 

Dann ist, wie gezeigt werden soll, 

A;r = (= 1)SED 

Dabei ist D,, die n — 1-reihige Determinante, die aus D entsteht, wenn 

man die v-te Zeile und die k-te Kolonne beseitigt. Es ist nämlich 

Ars = D(a, ... ;_-1> ( 41 ... RR 
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Dabei ist e, die Zahlenfolge, deren k-tes Element 1 ist, deren übrige Ble- 
mente aber verschwinden. 

Zieht man in I Se eye 30%) 

Q;, k & von A, 

ab, so erkennt man, daß 

Dl0,2.20.,8, ee... 0%) 

Die ed ee) 

ist. Dabei ist a} diejenige Zahlenfolge, die aus a; entsteht, indem man 

@,; durch O ersetzt, die übrigen Elemente von a; aber unverändert bei- 

behält. Nun ist weiter 

Da euer Win. rel.) 

= (— 1);+*?D (a SO 0 uzı ee an) 

Denn setzen wir zunächst einmal 

Diem ser ne...) 

= D(a)...A), so ist 

(1) Dürr) 

N 
(2) Da PR EN ERDn .r. 0.) 

(3) MET eek l)tr 

Um das letztere einzusehen, vertauscht man erst die i-te Zeile mit 

der — 1-ten, dann der i— 2-ten usw., bis sie zur ersten geworden ist; dann 

vertausche man die k-te Kolonne mit der k — 1-ten, dann mit der k — 2-ten 

Kolonne usw., bis zur ersten geraden ist. Dadurch findet man 

ea een) 

= De(e, PR Tee en) 

ER Me AN EEE) 

(Wa ee.) 

(— 122 

Daher folgt nach 5. die Richtigkeit unserer Behauptung, da die drei 

eben festgestellten Rigenschaften für die Funktion (— 1)!+*D (ai... di -ı, 

0;,,...0,) ehrakteristisch sind. 
4* 
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Aus der eben gefundenen Zerlegung 

(1) 
Dez Dar Arr 

(k=1,...R) 

folgt weiter 

Denn nach (1)ist ja D(a\...-...d....A,) 

— Sala 

für jede Zahlenfolge a,. Setzt man insbesondere a, — A;, SO wird die 

Determinante 0, und daraus folgt (2). Vertauscht man Zeilen und Kolonnen, 

so wird man zu den Relationen 

D= Dar Air 
k 

0 = Dan ;r; + 7 geführt. 

k 

Zweites Kapitel. 

Systeme linearer Gleichungen. 

1. Inhomogene Gleichungen. Aus den Eigenschaften der Determinanten 

ergibt sich nun sofort die Auflösung eines Systems von linearen Glei- 

chungen. 
Es seien die n linearen Gleichungen zwischen den n Unbekannten 

%1, Ian «0, gegeben. 

4% F heat than = 

(1) Rgılı + Agala tt Aenln = le 

Anıdı Sn Anata ee Rn AnnFTn En: 

Wir bilden aus sämtlichen n? Koeffizienten der Unbekannten x in der 

Ordnung, wie sie in den n Gleichungen stehen, die Determinante des 

Systems 

Aılıa-- Gm | 

(2) FE Agıdaa - - - dan £ 



= A 4 0; 4, Asa rt 9 Ant = 22 A 2 [2.4 N “u in x ® Va 2 an | 

Ay; 45 433 2,2, 2. Die Determinante ist von Null verschieden 5 13] 4 j 

Die Entwicklung dieser Determinante nach den Elementen der einzelnen’; Ye ll) 

Kolonnen liefert nach S$. 52 die Relationen | ar 

(3a) Aırdır + Apr Aon ++ Ann Ann = A") und 

(8b) aA tag Aıat ta Anr= 0. (ik) 

Nehmen wir zunächst an, es gebe n Zahlen x, ... x„, die den Gleichun- 

gen (1) genügen. Multiplizieren wir dann die erste Gleichung des Systems 

(1) mit A,,, die zweite mit A,, usf., dien-te mit A„, und addieren hierauf 

die sämtlichen n Gleichungen, so ergibt sich unmittelbar 

(4) A-. = Ant 0gAgn + OnAnr- 

Hier sind nun zwei Fälle zu unterscheiden, je nachdem A von Null ver- 

schieden oder gleich Null ist. 

2. Die Determinante ist von Null verschieden. Ist erstens A von Null ver- 
schieden, so kann man die Gleichungen (4) durch A dividieren, wodurch 

man die Werte der x erhält, welche allein den Gleichungen (1) genügen 

können. Es bleibt nun aber noch zu zeigen, daß die Werte (4) wirklich 

die Gleichungen (1) erfüllen. (Denn auf die Werte (4) führte uns die An- 

nahme, es existierten Lösungen.) Multipliziert man aber in (4) beide 

Seiten mit a,, und summiert vonk =1bisk = n, so kommt 

AL Aa, = CL MeÄın + ol maAgn ++ m 2 Gin fipr- len 
n = 2 (ale 1,33 meet 
Nach den Relationen (3b) folgt aber ah rar A <A 

AZ Urt —= 44, Ay, Krllg, “ ig; 

so daß wegen A + 0 sich ergibt, daß Akt Ask My Ayla ‚ya © 

Z Gr —I6, 2) ei Ajd WE? 

ist. Daher sind die Gleichungen (1) durch die Werte (4) der x gelöst. 

Man wird bemerken, daß die Determinante A der gemein- 

schaftliche Nenner der sämtlichen Werte der x ist. Aber die 

rechte Seite der Gleichung (4), also der Zähler von x,, kann ebenfalls als 

Determinante geschrieben werden. Derselbe geht nämlich aus A hervor, 

wenn man an die Stelle der Elemente a, x, @dgax; - - - @„„ der k-ten Vertikal- 
ni Se Ge 

reihe die Größen ct, C3, - - . c„ einsetzt JEs ist daher auch Yr Anh ara ee) / IR 
Vers Atnuermusti nt, 77 

A114ı2 + «+ A1,x-1C1ıd1,x+41- ..(O1n | Yin f- nf 14 M 

1 Agjdgg...Ag,n-1ıC2da,c+1 ++ + dan Ye /iR_ 
(5) I. = PATE D MT A 

ara. Sea are Tri a re f } 
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und die Werte der verschiedenen x unterscheiden sich nur dadurch, daß 

in der Determinante des Zählers die Größen c,, 63, . .. c%„ nacheinander 

die erste, zweite, ...n-te Vertikalreihe der a ersetzen. 

3. Die Determinante verschwindet. Ganz anders verhält sich aber die 

Sache im zweiten Fall, wenn 

(6) Ar 0 

ist. Dann reduziert sich die linke Seite von (4) auf Null, und daher muß das 

gleiche von der rechten Seite gelten, damit die Gleichungen (1) überhaupt 

zusammen bestehen können. Man findet demnach die notwendige Be- 

aneune GA + @As ++ CnAnn = 0 

für k=1,2,...n. Ob nun aber, wenn diese erfüllt ist, eine Lösung auch 

wirklich existiert und wie sie gefunden werden kann, ergibt sich aus un- 

serer Methode noch nicht, da sich die Gleichungen (4) jetzt identisch auf 

0 = 0 reduzieren. 

Es empfiehlt sich in diesem Fall, unsere ursprünglichen Gleichungen 

durch Einführung einer neuen Unbekannten x,homogen zu machen. Setzen 

wir nämlich —, ne = an Stelle von z,,... x, und schreiben noch der 
o () 

Symmetrie wegen — Go» - - » — Ano Statt C1,.. . C%„n, so nehmen die Glei- 

chungen (1) die Form an: 

HH tn at tm =d 

EEE LU NEN re mat eher 156 ER LENUE- Varna ar Me er 

Anoko t Hılı tt nn =). 

Ein solches homogenes Gleichungssystem hat immer die triviale Lösung 

el 

von welcher wir absehen wollen. Dann wird man bemerken, daß das 

System, wenn es überhaupt eine (weitere) Lösung zuläßt, deren gleich un- 

endlich viele hat; denn wenn etwa 

Lp = Ip; Lı = dr, m = In 

eine Lösung darstellt, so ist offenbar auch 

% = 00; I = 041,...%n = 04, 

eine Lösung, wo o ein beliebiger Faktor ist. 

Nehmen wir nun an, daß wir für die Gleichungen Au) eine Lösung ge- 
funden haben, bei der x, von Null verschieden ist, so haben wir wegen der 
Willkürlichkeit des Faktors og auch eine Lösung mit x, =1 und haben 
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dann sogleich eine Lösung des Systems (1). Wenn dagegen die Gleichun- 

gen (7) nur solche Lösungen zulassen, für welche x, = 0 ist, so haben die 

Gleichungen (1) offenbar gar keine Lösung, d.h. sie widersprechen sich, 

so lange nicht alle ec, Null sind. Beispielsweise würden die zwei Gleichungen 

a.yel 2 y=2 

mit den Unbekannten x, y augenscheinlich diesem Typus angehören. 

4.HomogeneGleichungen. Durch diese Erwägungen wird die vollständige 

Auflösung der Gleichungen (1) zurückgeführt auf das homogene System (7). 

Dieses enthält eine Unbekannte mehr als Gleichungen. Ehe wir aber der- 

artige Gleichungssysteme untersuchen, ist es nützlich, zuerst solche homo- 

gene Systeme zu betrachten, die ebenso viele Unbekannte wie Gleichungen 

enthalten. Ist etwa n diese Anzahl, so haben wir 

Yıkı het + =0 

Ar 4A t + = 0 

(1) a N EN TER 

Anıkı + Angla + + Annkn =. 

Um diese Gleichungen aufzulösen, bemerke man, daß sie sich von dem 

zuerst behandelten System (2, 2,1) nur dadurch unterscheiden, daß die 

rechts stehenden Größen c,, ... . c„ alle durch Null ersetzt sind. Verfahren 

wir also wie dort, indem wir die Gleichungen der Reihe nach mit A,,, 

Asr;- -- A„„ multiplizieren und dann addieren, so erhalten wir 

ATz=" wobei wieder 

| TER 

(@) A= 

gesetzt ist. Ist A von Null verschieden, so hat das System (1) nur die 
selbstverständliche Lösung wi 

Ben eye) 

Sollen also noch weitere Lösungen existieren, so muß jedenfalls A = 0 

sein. Weil somit die Bedingung A = 0 notwendig ist für das Zusammen- 

bestehen der Gleichungen (1), so wird A als Resultante dieser Glei- 

chungen bezeichnet. NE 

Wir müssen nun aber noch untersuchen, ob die Bedingung A = 0 auch 

hinreichend ist dafür, daß die Gleichungen (1) eine Lösung haben, und 

wie sie gefunden werden kann. Zu dem Zweck setzen wir zuerst voraus, 



a MN UWE er = [3 

j q rg , f5 
} nr Kan 

x 

/ 

7n „li Ä Wir | " 
{3 
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daß vonder Determinante Anicht auch alle Unterdeterminanten?) (n—1)-ten 

Grades verschwinden, daß sie also, wie man sagt, den Rang n—1 besitzt. 

Ist speziell z. B. A, nieht Null, so setzen wir die linken Seiten der Glei- 

chungen (1) zur Abkürzung u, , Ug, » - - Un, SO daß also 

U =hıdkı + ale tt ann 

(8) 

UnZhmıkı + make +" + Inn 

ist. Dann folgt wegen A = 0 

Ayntıı + Agntte + + Annın = An = 0, 

oder auch, da A„„ nach Voraussetzung nicht Null ist 

Aı Sal An 
Un u ct Me Ug — en Un-1: 

nn 

Daher setzt sich u, linear aus den übrigen u, zusammen, und folglich be- 

friedigt jedes Wertesystem &, .. . 2„, welches den Gleichungen 

(4) else yo 

genügt, ganz von selbst auch die Gleichung u, =. Diese ist also in 

unserm System überschüssig und braucht nicht weiter berücksichtigt zu 

werden. Um aber die Gleichungen (4), das sind die n— 1-ten der Glei- 

chungen (1), aufzulösen, schreiben wir sie in der Form 

Akt Arala + °F Aı,n-ıUa-ı = — Ani 

An-1,1%ı + An-ı,2% 4°" FT An-1,n-1T0a-ı = — In-1,ndn- 

Denken wir uns hierin x, ganz willkürlich, so ist die Determinante dieses 

Gleichungssystems gleich A„„, also nicht Null, so daß wır die Lösungs- 

(3% methode von (2,2,2) anwenden können, wobei nur an Stelle von A jetzt 
A,. tritt. Es kommt dann: 

- | 11 Q1,R-ı — Ann Aı,c+1 Q1,n-ı | 
= ——lr ee neun) Ale es u a er ee Ze 

Ann | 

An-1,1° + + In-1,5-1 7 In-ı,n®n &n-1,%+1° ++ In-ı,n-i | 
. . . . . er . ü x 

Schiebt man hier die k-te Vertikalreihe über die folgenden hinweg und 
. . 4) . . N F re P 

zieht aus ihr den Faktor x,,so ergibt sich: Nyat n1-R Tnlgefähionen 
i en 
h, Jod „Na Ya EN re Ya 

(6) ln, ee ee 
Ye „n-t-K+f j KR R 

u LS nn Jid(— 1) _ 1) pl 

4) Unterdeterm inante einer gegebenen Determinante D heißt allgemein A 
eine ne die aus D durch Weglassen einiger Zeilen und Kolonnen x 
entsteht. ” 
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fürk = 1,2,...n— 1. Man erkennt hieraus, daß unser Gleiehungssystem 

wirklich eine Lösung hat, und zwar bleibt eine Unbekannte, nämlich x,, 

ganz willkürlich, während die anderen Unbekannten durch x, eindeutig 

bestimmt sind. Man sagt daher, das System ist einfach unbestimmt, und 

die Lösungen bilden eine einfache oder eindimensionale Mannigfaltigkeit. 

Wir können die Lösungen (5) auch in der übersichtlichen Form 

schreiben: 
ER Re ee 

oder auch symbolisch 

An-1,19n-1,1** + An-ı,n | 

wodurch eben ausgedrückt werden soll, daß die links stehenden Größen 

proportional sind den Determinanten des rechts stehenden Schemas, mit 

abwechselnden Vorzeichen. 

Wenn nun aber A,„„ = 0 ist, so wird eine andere Unterdeterminante 

(n — 1)-ten Grades, etwa A,,, nicht verschwinden, und es kommt ebenso: 

Bene Ay Asp ne 

Überhaupt erkennt man, daß diese Proportion für jeden Index k besteht, 

bei dem nicht alle Glieder der rechten Seite verschwinden. Daher muß auch 

Ag As: A A Ay 

sein, was wir später auch auf andere Weise bestätigen werden. 

Wir könnten jetzt zu dem Fall aufsteigen, daß nicht nur A selbst, son- 

dern auch alle Unterdeterminanten (n— 1)-ten Grades verschwinden. 

Dann wären zwei Gleichungen überschüssig, und das System wäre zwei- 

fach unbestimmt, indem zwei Unbekannte willkürlich blieben. An dritter 

Stelle käme dann der Fall, daß auch noch alle Unterdeterminanten 

(n — 2)-ten Grades, aber nicht mehr alle (n — 3)-ten Grades verschwinden, 

usw. 
Indes wollen wir diese Untersuchung gleich an einem sehr viel allge- 

meineren Gleichungssystem durchführen, indem wir annehmen, daß u 

homogene Gleichungen mit » Unbekannten vorliegen, wobei es ganz 

gleichgültig ist, ob « gleich, größer oder kleiner als » ist. 

Sind etwa Andı Ft Gala ++ Qu = 0 

(6) 
IygFı + Get +. +0, =0 

er, m, 0 0 ale De Au lounare 

a1 + ya tt a = 0 
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unsere Gleichungen, so schreiben wir ihre Koeffizienten in der Anordnung, 

wie sie in den Gleichungen auftreten, in ein Schema von „ Horizontal- und 

v Vertikalreihen zusammen: 

UFER) 6 A1v 

(7) 
| Aurlu2». » Auv 

Ein solches Schema wird „Matrix‘ genannt, und wir können aus dieser 

Matrix in mannigfacher Weise Determinanten gewinnen, indem wir einige 

Horizontal- und Vertikalreihen unterdrücken. Eine Determinante vom 

n-ten Grad m <», n<u) wird z.B. immer entstehen, wenn irgend 

u — n Horizontal- und »— n Vertikalreihen weggelassen werden, und folg- 

lich ist die Anzahl der Determinanten n-ten Grades, die sich aus der Ma- 

trix herausschneiden lassen, gleich (*) (“). ?) 

Man sagt nun, die Matrix ist vom „Range“ n, wenn ihre Determi- 

nanten n-ten Grades nicht alle gleich Null sind, wohl aber die Determi- 

nanten höheren Grades (wenn es solche gibt). Es zeigt sich, daß es bei der 

Auflösung der Gleichungen (6) wesentlich auf den Rang der Matrix (7) 

ankommt. Nehmen wir nämlich an, die Matrix sei vom Range n, und es 

sei etwa speziell die aus den n ersten Horizontal- und Vertikalreihen ge- 

bildete Determinante, d.i. 

| Q119ı2- - - Aın 

8) 4= 
Anıdnz + - +» Ann 

n ersten und noch irgendeine der u—n letzten heraus, und bezeichnen 
ihre linken Seiten mit u,, Us, .. . U,, SO ist 

uU =AıFı + Mala 4° + AR, 

9) 
Un = An1%ı Ei Angdae Se t Ggr Ir 

Up = Apılı + Apgta + a oe Opy Try 

1) Sollte A = 0 sein, aber eine andere Determinante nten Grades von Null ver- 
schieden, so ließe sich die Sache ebenso behandeln. Man kann aber diesen Fall auch 
einfach dadurch auf den des Textes reduzieren, daß man die Reihenfolge unserer 
Gleichungen in geeigneter Weise abändert und auch die Unbekannten passend um- 
numeriert. 
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wo » eine beliebige der Zahlen n +1,n + 2,... u bedeutet. Bilden wir 

dann die Determinante (n + 1)-ten Grades 

Ayıdız» +» Aynlı 

(10) 

| Apılpa + - - Apnlp 

so sind die Elemente ihrer letzten Vertikalreihe v-gliedrige Summen. Die 

Determinante ist daher nach 8.46 eine Summe von » Determinanten 4 

der Form 

Ayıdı2 ++ +» Aynlıiki Ayıdı2 -» + Aınlıi 

= %; . 

Anıdna- > « AnnIniki | Anıdna ®. Anni 

Apılpa + + - ApnApiki | Apı@pa - - - Apndpi 

Diese Determinanten sind aber alle gleich Null; denn sie sind zum Teil . 

solche, deren letzte Vertikalreihe mit einer früheren übereinstimmt, zum 

andern Teil sind es (n + 1)-reihige Determinanten der Matrix (7), die ver- 

schwinden, weil der Rang nur gleich n ist. Somit ist die Determinante (10) 

in der Tat identisch Null. Entwickelt man sie aber nach den Elementen 

der letzten Vertikalreihe und beachtet, daß dabei der Koeffizient von u, 

gerade die Determinante A, also von Null verschieden ist, so erhält man 

dadurch u, ausgedrückt als lineare Funktion von u,,Us,...U,. Die 

Gleichung u, = 0 ist also eine lineare Verbindung der n ersten und folg- 

lich in der Tat überschüssig. 

Hiernach brauchen wir nur noch die n ersten der Gleichungen (6) auf- 

zulösen. Schreiben wir diese aber in Gestalt 

Al Fat Fan n =— (Ger ++ 40,%,) 

A ee A ca co > 

Onılı F Opal 4:4 Anal =— (u ,nH1laHı FH Any), 

so erkennt man, daß die Unbekannten &,.;1,... 2, ganz willkürlich gewählt 

werden können, während &,, 2,,... 2, nach der in (2, 2, 2) gegebenen 33 

Methode dann eindeutig bestimmt sind; denn die Determinante A ist ja 

nicht Null. ÖUsV- N Veh ned PER ml taf 

Es ist aber zu beachten, daß man ieh v—n Eeehı Se der Unbe- 

kannten willkürlich wählen darf, wie wir an Beispielen näher sehen werden. 

Ferner bemerke man, daß gewiß dann immer Lösungen vorhanden sind, 

wenn die Anzahl der Gleichungen geringer ist als die der Unbekannten. 
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Dann ist nämlich u. < », also erst recht n < », und daher die Dimension 

y—n positiv. 

Noch mag man bemerken, daß der Beweis des eben ausgesprochenen 

Satzes die Annahme n # 0 benutzte. Der Satz bleibt aber auch fürn = 0, 

d.h. für den Fall, daß alle Gleichungskoeffizienten verschwinden, richtig. 

Wenn man von den homogenen Gleichungen (6) mehrere Lösungen 

kennt, etwa 
% = (1; I =hd,.--% = (A, 

ub, mb, 

so kann man daraus neue herleiten durch lineare Verbindungen, indem ja 

offenbar 

sam +ßh +, Bay; +ßb, +, m =aa,+Ppb,+ 

ebenfalls Lösungen sind, die Multiplikatoren «, 8 mögen sein, welche sie 

wollen. Man sieht nun leicht, daß es genau » — n Lösungen gibt, aus denen 
alle anderen linear zusammengesetzt werden können. Solche v—n Lö- 

sungen nennen wir ein „Fundamentalsystem“. Da &,,1,...%, will- 

kürlich bleiben, so können etwa die folgenden »— n Lösungen Als Funda- 

mentalsystem gewählt werden: 

Da al anna Dar 

lan ne Bed 

er bar Very 

wobei die jeweils zugehörigen Werte von &,,... x, aus (11) zu berechnen 

sind. Allgemein werden die » — n Lösungen 

g=0,(k=12...1, 3 120, 

immer dann ein Fundamentalsystem darstellen, wenn die (» — n)-reihige 

Determinante | 

rer ar | nicht Null ist. 
An+ıiv-n +++ Ayın 

Um dies einzusehen, brauchen wir nur zu zeigen, daß jede Lösung sich 

linear aus ihnen zusammensetzen läßt, daß also zu willkürlichen Werten 

&%n+1> +++ %, Sich die Multiplikatoren a, , &, ...«,_,„ derart bestimmen las- 

sen, daß 
0191 7 0A; + tr _ nr n = Ins 

u = va east en — In+2 

0191 = 0293 Feen Cy_nIv—n = %r 
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wird. Dies ist aber, wenn Q nicht verschwindet, nach (2, 1,1) in der Tat 

möglich, und zwar nur auf eine Weise. W.z. b. w. 

Anhang: Die Gesamtheit aller Lösungen (&,...x,) von (6) 

bildeteinesogenannte v„—n-dimensionale Mannigfaltigkeit. 

Damit soll gesagt sein, daß man jede Lösung, wie wir schon zeigten, 

aus » — n Lösungen (eines Fundamentalsystems) linear darstellen kann, 
daß es aber nicht möglich ist, alle Lösungen aus weniger als v—n der- 

selben linear darzustellen. Sind nämlich 

Re) (=12...1uu<n—») 

Lösungen, deren Matrix den Rang u hat und sind 

(dig++- b,,) (e=1...n-») 

daraus linear kombinierte Lösungen, so ist der Rang der Matrix dieser 

n — » Lösungen stets höchstens u, während er auch den Wert n— » 

müßte haben können, wenn es möglich wäre, alle Lösungen, namentlich 

also auch die des vorhin aufgestellten Fundamentalsystems daraus linear 

darzustellen. Diese Behauptung ist gewiß richtig, wenn der Rang der 

Matrix aus beliebigen «u Lösungen b stets kleiner als u ist. Anderenfalls 

ee bu = rodrı t Zeohra‘"t Zuolau a re) 

a Lösungen, deren Matrix den Rang u hat. Daher ist die Determinante 

||| #0.) Ist dann 

b, = 2191 °° + Zu (k=1...») 

irgendeine weitere Lösung, so kann man die Zahlen A, .... A, stets so 

bestimmen, daß die Gleichungen 

ha, ER win 

erfüllt sind. Daher ist dann 

= Abt + Rd (k=1...v) 

und daher ist der Rang der Matrix 

bye b;, 

Bezrabs, 

en Ali)n 

gleichfalls u. (Man vgl. hierzu auch was S. 91/92 über lineare Abhängig- 

keit gesagt werden wird.) 

1) Dies lehrt der Multiplikationssatz der Determinanten, dessen Beweis auf 
8.65 folgt. 
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5. Beispiele. Ein paar Beispiele mögen das in den letzten Nummern Ge- 

sagte erläutern. 

Erstes Beispiel. Seien die fünf Gleichungen mit fünf Unbekannten 

gegeben 

2 —-2y+32— u— v=0 

22 — y+ 2 +9u —- 2 =0 

—27r —5y+82—-4u+3vV—=0 

— 1—- y+%3:— u+ v=0 

ar Wr ua: 

Die Matrix dieses Systems ist 

1 Me] 

en al) 

So 

Au al. al 

-1-11-1 2] 

Ihre fünfreihige Determinante verschwindet, wie die Ausrechnung zeigt. 
Aber auch die Determinanten vierten Grades sind sämtlich Null. Da- 
gegen ist von den dreireihigen z. B. die aus den drei ersten Horizontal- 
und Vertikalreihen gebildete gleich 

I a 3 

| 2-11 =-3, 

12-58 

also von Null verschieden. Demnach müssen die zwei letzten Gleichungen 
überschüssig sein. Man erkennt auch in der Tat, daß die vierte Gleichung 
nichts anderes ist als die Differenz der zwei ersten, während die fünfte da- 
durch aus den drei ersten entsteht, daß man sie mit — 3, 2, 1 multipliziert 
und dann addiert. 

Um die drei ersten Gleichungen aufzulösen, schreiben wir sie in der 
Form 

s—-2y + = u+ov 

22 — y+ 2=% 

— 22 —5y+82 =4u— 3. 
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Es bleiben also u, v willkürlich, und für x, y, z findet man 

u+ı —2 . 1 u+ v3 

— 3: = 23V — 1, —-3y= 2 2v1 |; 

au yo — 24u— 308 

| 1 —2 u+v 

— 32 = 2 —1 % 

—2 —5 4u—3v 

oder durch Ausrechnung der Determinanten 

xz=4(—-u+4), y= %(—2u + 5vV),2 =. 

Aus diesem Beispiel erkennt man wieder, daß nicht zwei beliebige der Un- 

bekannten willkürlich gewählt werden dürfen; z und v nämlich nicht, 

weil bei jeder Lösung 2 = v sein muß. 

Um ein Fundamentalsystem zu erhalten, setzen wir enmalu=3,0—=0, 

sodann u = 0,» = 3, wodurch man die beiden Lösungen erhält 

Bey alu 3,0 0 

und ee ey nr 

Die allgemeine Lösung hat daher die Form 

z=—- a +4B,y=—2e +5P,2=3P,u=9I0,Vv =5P. 

Wir können aber auch irgendein anderes Fundamentalsystem wählen, 

etwa dasjenige, welches füru=1,v=1 und u =—2,v =1 resultiert. 

Dann erhalten wir die allgemeine Lösung in der Form: 

= 2P,y=ad+3Pß,2 = +P,u=d—2P,v=a-+P. 

Dies muß natürlich auf das gleiche hinauslaufen wie vorhin, was man auch 

leicht bestätigt, indem man 

e«=a+2ß,P =—a+Pß setzt. 

Man wird übrigens bei numerisch gegebenen Gleichungen durch kleine 

Kunstgriffe meist die allgemeine Methode umgehen oder doch wesentlich 

abkürzen können. So ergibt sich bei unserem Beispiel, mdem man die bei- 

den letzten Gleichungen voneinander abzieht, sogleich 2 = v. Setzt man 

dies in die zweite ein, so kommt 

3—v-2r—y, 

und sodann aus der ersten 

u=1—2y+22 =5r7r—4y. 
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Führt man diese Werte von z, v, u in die drei letzten Gleichungen ein, so 

werden sie identisch befriedigt, so daß die Auflösung bereits fertig geleistet 

ist, indem x, y willkürlich bleiben. Man sieht leicht, daß diese Lösung mit 

der vorigen übereinstimmt. 

Zweites Beispiel. Gegeben sind die drei Ebenen mit den Gleichungen 

uc+by+ca2+d,=0 

2 +by+Co2+d—=0 

E+by+C2+d—=0. 

Man bestimme ihren Schnittpunkt, eventuell die ihnen gemeinsamen 

Punkte. 

Wir bezeichnen die dreireihigen Determinanten der Matrix 

a, bi Cı dı 

A, b, ©, d, | 

Q3 bz 03 d, | 

mit a, ß,y, 6. Wenn dann ö nicht Null ist, so kommt 

euye2:l—0:- By 0, 

oder \ =— 

Die Ebenen haben also in diesem Falleinen im Endlichen gelegenen Punkt 

miteinander gemein. 

Wenn aber ö = 0 ist, dagegen nicht alle dreireihigen Determinanten der 

Matrix verschwinden, so machen wir die Gleichungen homogen, indem wir 

= 3, = an Stelle von &, y, 2 setzen. Es kommt dann 

Days an By: 

Die Ebenen haben daher jetzt keinen im Endlichen gelegenen Punkt mit- 

einander gemein, wohl aber einen und zwar nur einen unendlich fernen. 

Die Richtung, in der dieser unendlich ferne Punkt liegt, bestimmt sich 

durch die Gleichungen 
z:y:2=a:—ß:Y. 

Wir kommen jetzt zu dem Fall, daß alle dreireihigen Determinanten 

verschwinden, aber nicht alle zweireihigen. Wenn dann speziell in der 
Determinante 

a, bı Cı 

6= Ay by, c, | 
habs | 
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eine von Null verschiedene zweireihige Unterdeterminante enthalten ist, 

so werden wir t und eine passende der anderen Unbekannten willkürlich 

wählen können; z.B. t und 2, wenn schon die zwei ersten Vertikalreihen 

eine von Null verschiedene Determinante aufweisen. Die allgemeine Lö- 

sung hat dann die Form 

gs=A2H+utl,y=»v2-+ ot, 

und dies zeigt, daß die drei Ebenen eine im Endlichen gelegene Gerade 

miteinander gemein haben. 

Wenn aber die zweireihigen Unterdeterminanten von ö alle verschwin- 

den, so können nur zwei passende von den Größen x, y, 2 willkürlich ge- 

wählt werden, während t immer gleich Null wird. Die allgemeine Lösung 

hat daher jetzt die Form 

az+by+ce=0,t=0; 

daher haben die Ebenen eine unendlich ferne Gerade miteinander gemein, 

sind also parallel. 

Endlich betrachten wir den Fall, daß auch alle zweireihigen Determi- 

nanten Null sind. Dann bleiben drei der homogenen Unbekannten will- 

kürlich, und zwei Gleichungen sind überschüssig. Die drei Ebenen fallen 

daher jetzt in eine einzige zusammen. 

Drittes Kapitel. 

Weiteres über Determinanten. 

1. Der Multiplikationssatz der Determinanten. Setzen wir, dem Ge- 

brauch der Vektorrechnung folgend, für das innere Produkt zweier 

Zahlenfolgen 
n 

4. = Da,ıbır, 
1=1 

| Mı---Qın De 00 Mb anbe 
| 

- | a b b ra a,b so ist au an 21 an 2°1 2,2 2°Yn 

er RE Re ER SLR 

| IE 
| Aynı1* . Ann | | Dir DE A„bı 0,03.% Andi) 

Denn auf der linken Seite steht eine Funktion } 

Alb .h,), für die 

(1) Abus. 02  DueusD,) 

= All. Vs aA A) 

Bieberbach, Algebra 5 
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(2) Alben cb DEE 

(8) Ale...) = ||am||. 844 

Dadurch ist nach (2,1, 6) die Funktion A eindeutig festgelegt. 

Auf der rechten Seite steht aber eine Funktion 

für die (A-+ u) na bre 

SER 

Y.50 Dies ergibt sich ja sofort aus (2, 18), wenn man nach der 4-ten Kolonne ent- 
wickelt. Nun aber stimmt in dem zweiten Summanden die A-te Kolonne 

mit der „-ten überein. Daher ist 

(4) fr. Pure, 

— (07.2 005)% Weiter gilt 

(5) 1bs.akben hen 

wie man sofort verifiziert. 

Endlich ist 

(6) fer ...&%) = ||a ||. 

Denn es ist Kerl 

Daher ist nach (2,2,6) f(bı...b)=4A(b,...b) 

Damit ist der Multiplikationssatz bewiesen. 

Da nach S. 50 der Wert einer jeden Determinante unverändert bleibt, 

wenn man die Zeilen und die Kolonnen derselben miteinander vertauscht, 

so muß man bei der Produktbildung nicht notwendig die Zeilen in die Zeilen 

multiplizieren, sondern man kann auch die Zeilen in die Kolonnen, oder die 
Kolonnen mit den Zeilen, oder dieKolonnen mit denKolonnen multiplizieren. 

Beispiele. Multipliziert man die Zeilen mit den Zeilen, so gibt 

abe 242 az+by+tcz ad +by +c2 aa’ +by" +ce” 
a’ b’ c' x ge’ y' 2" ER ax + b’y + c'2 ax 4 b’y' En c'z' ax E= b’y" +.c'2' s 

a’ he Ca ge’ y" 2 asc-+ b’y+c"z a’zx' + by + cz’ ax" + b’y" 4 Ca 
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Multipliziert man jedoch die Kolonnen mit den Kolonnen, so ist das Produkt 

az ta +a'z" be+rbe’ + ba” ca ten + cc" 

= ay+tay+a'y’by+by +b'y' cey+cy +c'y" 

az-+az +u': bz+br +62" cz +cz2 +02" 

Setzt man die zwei Faktoren gleich, so erhält man das Quadrat einer De- 

terminante wieder als Determinante. So ist 

2 lo era CR EG | © | @ 

Daebirc ne naebu ce Kol bi c. 

| 0: Di ce’ | | oe bi ce’ Ar bh” cd’ 

aa b2 e2 aa’+bb" +cc aa”’+bb" cc" 

aa' — bb’ + cc a’? + b’? u ed? oa’ +b'b"’-+ cc’ 

| a bb’ cc” aa _E b’b’’ dc" a’2+ b’2 + ce’? 

a+0a?+a'? ab+uab'+a’b’ ac+tad+a”c” 

=| ab+ab+a”d" bB+b? +b2 bo+bed+bre . 
| ac ae + ac" be u b’e’ + DECH c® + c'? + cd’? 

Das Quadrat einer Determinante ist, wie dieses Beispiel zeigt, eine so- 

genannte symmetrische Determinante, welche die Eigenschaft hat, daß 

für alle Werte der Indizes t, k stets a,, = a,, Ist. 

2. Erweiterung. Die Regel für die Multiplikation zweier Determinanten 

gleichen Grades läßt sich sofort auf die Multiplikation von Determinanten 

verschiedenen Grades ausdehnen, da man jede Determinante auch als 

Determinante höheren Grades schreiben kann. So ist z. B. 

Erb dh, I\abadh| |aß00 

ER aß 1604| |y800 

Des de yoö Garbacaed, 0010 

0 by 04 Ga ne 002021 

a„a+bß ay+bö a d 

%a+bß Ay +bö Ca d, 

Asa +b;ß azy+bö cc; d; 

ya+bß y+bö a d 

Es läßt sich demnach auch das Produkt beliebig vieler Determinanten 

verschiedenen Grades immer als Determinante darstellen. 
5* 
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Durch diesen Kunstgriff, eine Determinante als Determinante höheren 

Grades zu schreiben, läßt sich auch das Produkt zweier Determinanten 

gleichen Grades auf verschiedene Formen bringen. Es ist z. B. 

abe| 

Ob aCH 

a’ b’’ ec’ 

Geben) 

I Es cen 

ar EIN IN EN 

leer 0202071 

abco00 N 

04,02.0000 0.078427 

2 Fehl DE DEBEy N: 

VEOLOEIEU 021202080 

020200 DEOZEOED 

Je nachdem wir die eine oder andere Form wählen, erhalten wir, wenn man 

Horizontalreihen mit Horizontalreihen multipliziert, 

VebEc 

a’ hu c' 

Pr In ec’ 

oder schließlich 

aß 0y 
eBay. 

a” BOY” 
0202180 

aßy| 
a aa+bB-+cy 

DI a’ [73 [2 [23 [23 

m pr y' a re +b ß a Y | 
& 

aa+bBß aw+bPß' aca”’+bB" c 

aa + b’ß aa En b’p’ a’ 4 b’p" c' 

a’a + b'’ß aa ' nu b’B’ aa [23 + bs CH 

0 | 

eg0aı \0 MERG 

(os | Jasdopßpp" 

oe age 
oo300| 4 500 

000040) Iyasood 
oovn0!! Iyorod? 
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3.Matrizenprodukte. Das Theorem der Multiplikation läßt sicherweitern. ./, N.“s- 

Es seien zwei Systeme von Elementen gegeben in je n Horizontalreihen y£)/ 

und p Vertikalreihen geordnet: » 

Ada». » Am b1dia- » » dir 

Ag Qaa Ag» b51ba2 Da» 
1) 

RR DR RR Re 

Multiplizieren wir die Horizontalreihen mit den Horizontalreihen, wie bei 

der Multiplikation von Determinanten, so erhalten wir n? Elemente h;r 

einer Determinante 

(2) re ken t wo 

r=» 
fen ‘ 

(3) hir Asıdrı + Aiadret+ de drr- 4" =4,2,--") 
77 = 

Das erste Glied dieser Determinante H ist 
BE £ 

Aııhaa ». - Ann => ED dos0s .. der 
r $ ® 

Y 

a AyrQgsQ0gzt .-: AnaDirDasdst .r- Dan; 
1,58...0 

wo die Summe sich auf die Werte von r, s,t,...v von 1 bis p erstreckt. 

Aus diesem Anfangsglied erhält man alle Glieder der Determinante H 

durch Permutation der zweiten Indizes der h. Dadurch permutieren sich 

aber nur die ersten Indizes der b; alle andern Zeiger bleiben unverändert. 

Daher ist 

Den lee an =D (de age 2 0 
1,8,8...0 21, er ‚P- 

lee Ve 
Sb. d ZA,R,-.-P 

wo Bys1.... die Determinante n-ten Grades aus der Matrix der b ist, 

welche die n Vertikalreihen mit den Indizes r, s, t,... vn dieser Reihen- 

folge enthält. 

In dieser Summe & ist jedes Glied Null, in welchem die Kombination 

rst...v nicht aus lauter verschiedenen Zahlen besteht. 

Ist mithin p <n, so ist H = 0; denn unter den n Indizes r, s, t,...®, 

die aus der Reihe der Zahlen 1,2,3,...p genommen sind, müssen mehrere 

gleich sein; folglich ist jedes B,,..,.... — 0. f PER 
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Ist p = n, so lassen die n Indizes r, s, t,...v nur eine Kombination aus 

lauter verschiedenen zu, und die Summe & erstreckt sich nur auf die 

Permutationen der Zahlen 1,2,8,...n. Ist also B die aus dem System 

der b gebildete Determinante, so ist B,.1... = + B; je nachdem die 

Permutation rst...v mit der Anordnung 123...n gleicher Klasse !st 

oder nicht. Es ist mithin 

H= Be 2 0,028 Ber, 

wenn A die Determinante der a ist. Dies ist der Satz von der Multiplika- 

tion der Determinanten A, B, der damit erneut bewiesen ist. 

Ist aber p>n, so kann man zunächst in dem Ausdruck für H das. 

Summenzeichen I nur auf eine Kombination der n Indizes r, s,t,... aus- 

dehnen und in dieser die Indizes permutieren. Man erhält dann, wie im 

vorigen Falle, das Produkt A,.s.,...0° Brs1,...0, WO Ar... die aus der Matrix 

der a gebildete Determinante n-ten Grades ist, in welche die Vertikalreihen 

mit den Indizes r, s, t,.... v eingehen: folglich ist in diesem Falle 

(4) al ee Den 

wo sich die Summe auf die (p,) Kombinationen r,s,t,...v erstreckt, 

welche aus den Zahlen 1,2,...p zu je n gebildet werden können; d.h. 

die Determinante H ist die Summe aller n-reihigen Determi- 

nanten, die aus der Matrix A entnommen werden können, 

jede multipliziert mit der entsprechenden Determinante aus 

der Matrix der b. 

Es ist zu bemerken, daß die Resultate fürp<n und p>n sich ver- 

tauschen, wenn man die zwei Systeme statt nach Horizontalreihen nach 

Vertikalreihen multipliziert. 

Als Beispiel zu obigem Satze betrachten wir die zwei Systeme (1) 

abe aßy 

anrbye: a NEE 

dann ergibt sich nach (4) die sogenannte Identität von Lagrange 

aa +bBß+cy da +bPB -+cy 
(8) 

aa +bB’+cy' aa +bP’+c'y’ 
= (ab’ — ba’) (aß’ — Ba‘) 

+ (bei — eb) (By! — YB') 
+ (ac’ — ca’) (ay’ — ya’). 

Nehmen wir aus der Matrix A von (1) irgend r Horizontalreihen, z. B. 
dier ersten und ebenso dier ersten der Matrix B von (1) und multiplizieren 
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hıı 
die zwei Systeme, so erhalten wir die Unterdeterminante | - vonH 

s Kr 
(vgl. 2), und nach (4) wird 

| hu, | a | ba, 

(6) | ; ha | -3 . , 

| Ryr | | Oyy Der 

wo die Summe X sich erstreckt auf alle Determinanten r-ten Grades, die 

wir aus den r Horizontalreihen der a bilden können, jede multipliziert in 

dieselbe Determinante r-ten Grades aus den Reihen der b. 

4. Adjungierte Matrix. Es sei wie bisher A,, der Koeffizient von aq;, 

in der Determinante MMdla-P. 53) 
| dıı SIE Aın | MA Fu We b7, 
| / 

= 

| Inı .. (nn 

en 10 a, lee. 076 

Er FON nz ig 

(die zu der Matrix der aadjungierte Matrix). 

Ist S die Determinante, aus dieser Matrix der A, so folgt 

rel IR0d:...0| 
PR yo Ai e Me 4 

| Dee Non ® Ei Ah 

wo hir = Ası9ı + Asalga 4° + Asntkn- 

Nach $.52 ist h,, immer = 0, außer für i = k, in welchem Falle h den 

Wert R hat, und also 

d) Sa hr, 

Daher ist 8 = krifür R=-e0. 

Die aus der Matrix der A gebildete Determinante ist folg- 

lich die (n— 1)-te Potenz der ursprünglichen DeterminanteR. 

Bei dieser Formulierung des Ergebnisses haben wir auf die Voraus- 

setzung R-+0 verzichtet. Das Ergebnis gilt nämlich auch ohne diese 

Voraussetzung. Denn aus R = 0 folgt $=0. Dies ist zunächst selbst- 
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verständlich für den Fall, daß der Rang der zu R gehörigen Matrix kleiner 

alsn—1 ist. Denn dann verschwinden alle Elemente von $. Hat aber 

R den Rang n—1 und verschwinden beispielsweise nicht alle aus den 

n—1 ersten Kolonnen von R zu bildende Determinanten, so kann man 

durch beliebig kleine Abänderung der Elemente in der letzten Kolonne 

von R zu einem von 0 verschiedenen R übergehen. Da für dieses dann 

unser Ergebnis gilt, so ist es durch Grenzübergang auch für ein R vom 

Range n— 1 und damit allgemein als richtig erkannt. 

Einen allgemeineren Satz über die Matrix der A erhalten wir, wenn wir 

R mit einer Unterdeterminante m-ten Grades von $ multiplizieren. Die- 

selbe mag zunächst aus den m ersten Horizontal- und Vertikalreihen ge- 

bildet sein. 

- Wir schreiben sie behufs der Multiplikation als Determinante n-ten 

Grades in der Form: 

| An- “ Am Aım+ı: 2 4. 

A een ne Arm 

Vor. OTEle el) 

Se lZE OEL SEO Er) 

BEE AT aha 

VEREOMS0TO: ae len et 

ee a Leere er Sr Uma om een 

NEN eg eter: = he ee ee . 

00.0.0 Om Euer 

See > re er Se Eee Am,m+1 An,n 

05.020. DI 

Es ist mithin 

An-- Am Am+1,m+1 Oma | 
| 

N SR 

erlebe u #0. ln "Ma ea a erren | 

Am,ı nn An,m+1 Ann 
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Dieses Resultat läßt sich sogleich auf eine beliebige Unterdeterminante 
der Matrix der A ausdehnen. Sind r,,r9,...Tm5 851, Say «+ .Sm die In- 

dizes der Horizontal- und Vertikalreihen derselben und hi... ,Uu,0,W 

die der komplementären Unterdeterminante, so hat man 

| 
| Ay s, is Ar, sm | Agulgvdgwr:- 
| 
u A rg) | CH 7,8 hu®hv®hw**+* (2) | St a, — (— 1)“ Rm-ı } 

| weprel ua eure On Yin lim» > 

ER a Eee 

wou=2r+L2s oder aah=(+h+i+.)+uwtv+tw+-.). 

Dieses zunächst nur für R=+0 hergeleitete Ergebnis gilt auch für 

R =0. Man erkennt dies ähnlich wie früher durch Grenzübergang. 

Ar ++ - 15 A 

Beispiel. Ist ee ‚a Ant Ans, tr? + Arm Ten 

Use + Op Meilen: 

Ass Aya Ass | 

so ist BL BEE 
2 4, Ben 

Allgemein sagt Gleichung (2) aus: Eine Unterdeterminante m-ten 

Grades der adjungierten Matrix ist gleich der entsprechen- 

den komplementären Unterdeterminante von R, multipli- 

ziert mit der (m —1)-ten Potenz von R. 

Die komplementäre Unterdeterminante von a,, ist gleich dem Differen- 

tialquotienten von R nach a,,, wenn man dabei die a,, der Determinante 

Ans, ae Arm neh. IR ar, 

. . . = A | om R 8 3 = w— = ERBETEN 

(3) | | Zr F ZN Or: 
3 e mm 

Arzsı ir Ayem 

Insbesondere ist 

4) Arıdr 8 Me oR 

( DER FL 

oder anders geschrieben Weber (26 

e öR OR RD &@R 
(4) dar: 0 2 or OQys Apızr Ar gr Ayıg r sl Arı gr 

eine oft benutzte Formel. 
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Zusatz. Ist R=0, so verschwindet nicht nur die Determinante S 

der adjungierten Matrix, sondern nach (2) auch alle ihre Unterdetermi- 

nanten vom zweiten oder höheren Grade. 

A Ars 

Aus h En = A AA 0 

folgt dann Andre Anand 

(Med 2} ß 4 A ö Ay: = Ays ö An 

und daraus Ay adyase Ay Ar An ee 

A1s:Ags: An, = Aus: As An 

ein Satz, welcher schon früher gefunden wurde. 

Ist insbesondere das System so beschaffen, daß A,;,, = + Ar; (siehe 

symmetrische und schiefsymmetrische Determinanten in den nächsten 

Nummern), so ist fürR = 0 Man Ku) 

TE ‚ also = V+ ii Akcks 

woraus Ayızdgs: Ass sa ea 

mr YAu : V Az: : VAs: a 

wo die Zeichen der Wurzelgröße so zu nehmen sind, daß sie mit den Zeichen 

der A,, stimmen. 

5.Symmetrische Determinanten. Eine Determinante heißt symmetrisch, 
wenn 4, =Ay. Soist z.B. 

abd | 

bce 

E 

eine symmetrische Determinante. In einer solchen Determinante ist mit- 
hin die i-te Horizontalreihe gleich der i-ten Vertikalreihe. Vertauscht man 
die Horizontalreihen mit den Vertikalreihen, so bleibt nicht nur der Wert, 
sondern auch die Form der Determinante dieselbe. 

Es ist demnach auch 

A;r 3 el 

und ebenso ändert sich auch keine Unterdeterminante, wenn man die In- 
dizes der Horizontalreihen und Vertikalreihen vertauscht. 
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6. Schiefsymmetrische Determinanten. Schiefsymmetrische Deter- 
minante heißt eine Determinante, wenn 

Gr =, also a, =0 

ist. Da in einer solchen Determinante die Rlemente der i-ten Horizontal- 

reihe gleich und entgegengesetzt sind denen der i-ten Vertikalreihe, so ist 

klar, daß wenn man die Horizontalreihen mit den Vertikalreihen vertauscht, 

alle Elemente ihr Zeichen wechseln. Die Determinante R geht mithin 

über in (— 1)*”R, wenn n der Grad der Determinante ist. Aber dabei hat 

die Determinante ihren Wert nicht geändert. Ist also n ungerade, so muß 

R=0 sein. (}% Here R=-R ) 

Jede schiefsymmetrische Determinante von ungeradem 
Grade verschwindet. 

Beispiel. | Dar), [ a 

—ıO 0 e —(. 12 | - 

a 4,- bl 24 
114 | «D a „iX 

Da ferner auch A,, aus A,, hervorgeht, wenn man alle Zeichen der Ele- 

mente wechselt, so ist TE 

Es ist mithin Ay = 4A;n, Wennn ungerade, 

Ar; = — A;r, wenn n gerade. 

Ist also R eine schiefsymmetrische Determinante von ungeradem Grade 

so ist die aus den A,, gebildete Determinante eine gewöhnliche symme- 

trische Determinante, welche aber den Wert Null hat, wie R selbst. 

Der Koeffizient A,, von a,, ist wieder eine schiefsymmetrische Determi- 

nante vom Grade n— 1 für jeden Wert von n; also 

A, =0, wennn gerade. 

Die Determinante der adjungierten Matrix ist folglich, wenn n gerade, 

wieder eine schief-symmetrische Determinante. 

Nun beweist man unschwer den Satz: Jede schief-symmetrische 

Determinante R von geradem Grade ist das Quadrat einer 

ganzen rationalen Funktion ihrer Elemente. 

Die Determinante zweiten Grades 

| 0a} 

00/7 
ist ein Quadrat. Nach (4) in (2, 3, 4) ist ferner '}? 

Au: Air 
&®R 

In 

——— 
„EL OT, et) = 

| N meRe: 2 R Ra 

+ a? 

Ark 

RA 
{ 

) 
K 
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& 
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u in geht aus R hervor durch Streichung der Reihen, die sich in a,; 
ei kk 

und a,, schneiden. Es ist also selbst eine schiefsymmetrische Determi- 

nante vom (n — 2)-ten Grade, wenn R vom n-ten Grade ist. Bezeichnen 

wir sie mit R„_,, so liefert die vorige Gleichung, da A,, = A xx = 0 für ein 

gerades n, und An =— Ars, RR An 

AR Any 
Fürn = 4 ist R„_, ein Quadrat und folglich ist R auch das Quadrat einer 

rationalen Funktion, Ist R vom sechsten Grad, so ist R„_, vom vierten 

Grad, also ein Quadrat, mithin ist R ebenfalls ein Quadrat, usf. Hiermit 

ist der Satz durch vollständige Induktion erwiesen. 

Durch diese Betrachtung ist freilich zunächst nur gezeigt, daß R das 

Quadrat einer rationalen Funktion ist. Wir behaupteten aber, R sei das 

Quadrat einer ganzen rationalen Funktion. Es ist also noch a zeigen, 

daß eine rationale Funktion f(x)... 2„), deren Quadrat ganz ist, selbst 

ganz ist. Dies lehrt das Emkhdische Teilerverfahren. Wir betrachten 

Zähler und Nenner von f, also zwei ganze rationale Funktionen, als Funk- 

tionen einer x. der m Veränderlichen, während wir den anderen feste 

Werte geben. Wenn dann Zähler und Nenner als ganze Funktionen von 

x. einen gemeinsamen Teiler haben, so liefert ihn das Euklidische Teiler- 

verfahren mit Koeffizienten, die rational von den übrigen x abhängen. 

Man kann ihn daher durch Division beseitigen und daher annehmen, 

daß Zähler und Nenner als Funktionen von x, teilerfremd sind. Da aber 

das Quadrat von f eine ganze rationale Funktion von x, ist, so kann 

x „1m Nenner gar nicht vorkommen. Denn sonst wären Zähler und Nenner 

von f? nicht teilerfremd; es wäre vielmehr der Nenner ein Teiler des 

Zählers. Daher hätte auch der Nenner von f einen Teiler mit dem Zähler 
gemein. 

Beispiel. Für n = 4 sei 

Urea za 

on — 2 —-0 ch 

—yYy —c 0:78 

—2—b —a 0 

a | 
dannist Ay =— US (ax —by-+ cz), 

” —a 0 

| ®R RO 
ne kr “ Ira 0.0.38 nu 

mithin R=(a@—by- c2)%. 
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Viertes Kapitel. 

Quadratische und bilineare Formen. 

1. Matrizenkalkül. Es seien die n linearen Funktionen 

uU = AyıTı + Aal ++ Ann 

Re 

Un = Anıkı + Anal tt + Ann En 

gegeben. Transformieren wir dieselben durch die lineare Substitution 

% = biYı + Bieya + + dinYn 

Fu ne 2 orale 

In = b„1%ı u bn2Y2 ie ONE URS 

so erhält man das transformierte System nl kt tan N 
Aal fı +b, wat fi B In, FA, RR? +br BR Aland) +: rum und? ER dr k 

u, a Ben 

Ar rn 

Un = Paıdlı ru Dany wo 

(4) EN + Gundnk- 2 
we ‚by, : ; ee A a a Gar: 

Ist also A die eg des ee A), B die Determinante der Sub- 

stitution, und P die Determinante des transformierten Systems (3), so ist 

(5) P=4:B. 

Da die Determinante des transformierten Systems sich nur durch den 

Faktor B, den Modul der Substitution, von der Determinante des ur- 

sprünglichen Systems unterscheidet, so sagt man, die Determinante A 

sei eine Invariante der n linearen Funktionen (1) gegenüber linearen | 

Substitutionen ihrer Variablen. 

Ist die Determinante B der Substitution nicht Null (reguläre Substi- 

tution), so kann P nur verschwinden, wenn A verschwindet. 

Wir haben früher gesehen (2,3, 3), daß die Unterdeterminanten des Pro- 

dukts P sich linear aus den Unterdeterminanten desselben Grades von A 

zusammensetzen. 

Sınd dj ya! Am Du ... biu 

(6) U  UndsBleh...: 
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zwei Matrizen, so versteht man unter ihrem Produkt die Matrix 

Pur Pin 
(7) Din ee ; wo 

| Pi else Du 

8) Pix =D a;obsr 
G=t 

gesetzt ist. Man schreibt el) 

und multipliziert also bei der Produktbildung die Zeilen von X in die Ko- 

lonnen von ®. Man kann also sagen, die Matrix von (3) sei das Produkt 
der Matrix von (1) und der Matrix von (2). Man muß aber dabei scharf auf 

die Reihenfolge der Faktoren achten. Die Matrix ® - W ist begrifflich 

und sachlich etwas anderes als die eben besprochene Matrix Y-%. Denn 

DB - U würde vorkommen, wenn b,, die Koeffizienten der Linearformen (1) 

und a,, die Koeffizienten der Substitutionen (2) wären. Es könnten aber 

trotz dieser begrifflichen Verschiedenheit die beiden Produkte sachlich 

übereinstimmen, d.h. aus denselben Elementen bestehen. Daß sie aber 

nurin besonderen Fächern sachlich übereinstimmen können — z. B. wenn 

‚beide Faktoren gleich sind — lehrt schon dieses Beispiel 

1 |! 0 01 1.8 01] Bl 0-1} 

2021, 120 So 0 

Für die Multiplikation der Matrizen gilt also nicht das kommutative Ge- 
setz. Wohl aber gilt das assoziative Gesetz, d.h. es ist 

AU(B.G=- (AUÜ-DME-ABE. 

\öy.- Om ) E,,°- €; 

Es seiinoch Mal. are h Eee Inn au 

At Boy t le, h Cr 

7% «712 | 

Dann ist DO N NE . 

| Tmı- ma 

o=u y hr, m ] 
wo Tr = Dio@or» 3 

g=1 
Teen, Bunte Pıı 

Also Us (BO 

ns ara ara 
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o=m o=m = 

wo I m LER, => ad oo Go 
o=i o=1o= 

en Da Pıi 

Setzt man aber Ute)... 

a a Sn En) 

o=u V=wo=ı 

so wird DE IR: nn >a “0 0 7 
oe=1 e=1o=1 

= Pop 

7 

Setzt man noch Deren 

In 

u 

= 5 

U, 

Yı 

velee:l, 

Yn 

so kann man (1), (2), (3) so schreiben . 2 

(1) u=N\- c (dr gu wen U del mad vi a lan ah il 

(2’) DD) 
() V=U- By, hehe U Par lue )e 

so daß sich alles als Anwendung der Matrizenmultiplikation herausstellt. 

2. Bilinearformen. Ist eine ganze Funktion linear und homogen in zwei 

Reihen von je n Variablen &,,... &n» Yı> +» Yn, So nennt man sie eine 

bilineare. Sie ist mithin von der Form 
e 4) 

(1) PB Pa AL 

= A4yıFıYı 4° FH AnnEnYn + AıalıYa + Aa layıTt er. 

Dann ist J = AA, da f Ay KU 

0 ! BR 
zn = dıYı + %aYa + + AinYn + Ka HA Na 7 
0%, ß d' #L ( 

2) 
rn) FE U, & . Zı 5 

= a4 Agelat + Ann. 0 Ark ger el 
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Die Determinante der a 

(3) = 

heißt die Determinante oder auch Diskriminante der bilinearen 

Form. 

Man versteht noch unter der Transponierten W’ irgendeiner Matrix A 

diejenige Matrix, die sich aus X durch Vertauschung von Zeilen und Ko- 

lonnen ergibt. Man setzt also z.B. r’= (%,...2,), wenn 

Tı 

= 

un 4 wet Da re 
fo= 

SAN AL TeerhiutyA hack d) 
ist. Dann kann man f so schreiben “u gt 

f=ray, 

Ay... Aın | 

wo — IE 

die Matrix der bilinearen Form ist. 

Ist Men 5 

so ist (ALFEA u 

Denn, sind wie vorhin W, B, ® durch (6), (7), (8) erklärt, so ist 

95 = 
411 ... Anı 

| N N I I —u la 6 ar ol 

f bt Br ae Et RE mt am Am ++ + Anm 

« » ” r ba ... De 

A N 
the 7 th Im POSEN eh In i 

bi .. De 

Pıı*** Pnı 

= or 

| 
en Be da =fy2 Van } 

4 =D or dis \ n } 
o=1 e.. 
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wirklich zugleich die Elemente von ®’W’ sind. Transformiert man also 

jetzt f durch die linearen Transformationen 

t=6& -u 

y=T:b, 
so wird ne ES NE, 4, 

so daß also SAT nu ad Ur Tauate bu 

die Matrix der transformierten Bilinearformen sind! Sind A, T,8 die 

Determinanten der Matrizen W, T, ©, so wird 

A= 78 

die Determinante der transformierten Form. 

3. QuadratischeFormen. Läßt man in der bilinearen Form die zwei Reihen 

der Variablen zusammenfallen und setzt zugleich a;, — a,, für irgend- „_ 

welche Indizes ti, k voraus, so geht die Form in die quadratische Form R 

von n Variablen OK Hark t Ay X 
> ll far dA, NT? (1) Wei (ke, 2, en) is 

= Al ++ 242%ı%, +. über. 

Bezeichnen wir die halben Abgeleiteten von u nach je einer Variablen 

rs t 2) fi fr Kiuavile 

(3) Ui + Uglg + °F Un =U Ymun Im Oral la le pe 

Die Resultante aus dem Gleichungssystem re 5 I du T fu a fo | 

es u =0,ı.=0,...u,=0 Huf nf de Ya 

en 

(4) De 

RN EN 

heißt die Determinante oder Diskriminante der quadratischen 

Form. Da nun a,, = a,, vorausgesetzt ist, so ist die Determinante so wie 

die Matrix der quadratischen Form symmetrisch, während die der bili- 

nearen Form es im allgemeinen nicht ist. a 

Man kann die quadratische Form (1) so schreiben: (+ AUBz Zr 

A NT. 
Bieberbach, Algebra 6 
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Macht man dann die Substitution 

= %), 
so wird Te 

Die Matrix 
4 (8 IE=E dt 

ist wieder symmetrisch. Denn es = BR 1 as } 

El Br BUB=-BAL. PER 

Die Determinante der transformierten Form wird 

A-B®, 

d.h. die Diskriminante der transformierten Funktion ist 

gleich der Diskriminante der ursprünglichen quadratischen 

Funktion, multipliziert mit dem Quadrat des Moduls der 

Substitution. 
Da die Determinante D der quadratischen Form bei der Transformation 

der Form nur mit einer Potenz des Moduls der Substitution multipliziert 

wird, so sagt man, diese Determinante sei invariant gegenüber einer 

linearen Substitution oder sie sei eine Invariante der Form. 

4. Reziproke Matrix. Aus den u o) a. h.aus = 2 
= + X3 Ars kr 

u=4r) u, ei a u e Rn, K, 
Be u unter der Voraussetzung A+0) Un B.,Xı + B,, X.t », 

Au. de Se 
Dabei ist u. 2 hr. ya 1% 

Fr) A BEN ara Mhakreing buganıf A... A| an, ge ,. A . af 

wo (baden 1310) an = : = a > f. FR; 

Man an die zu Yreziproke oder inverse M Matrix. Daher ist } IR 

Fin serdenbttFnan{t 0) u = EU = WAY AA-IU rc b> fe. 

_yA-1..% mf=e u 

Man nennt wNzEı 

die zu er reziproke Form. 

5. Rang. Wenn in der Matrix der quadratischen Form alle Unterdetermi- 
nanten von höherem Grade als dem r-ten verschwinden, aber nicht zu- 
gleich alle vom r-ten, so sagen wir, die Matrix sei vom Ran ger. Über- 

.58 
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trägt man nun diese Bezeichnung auch auf die quadratische Form selbst, 

‘so bleibt dieser Rang ungeändert durch eine lineare Sub- 

stitution mit nieht verschwindender Determinante. Denn, da 

B® wieder als Determinante geschrieben werden kann, ergibt sich analog 

wie 8. 64/70, daß alle Unterdeterminanten einer beliebigen Ordnung von 

A=-Be= 4 1 lineare Funktionen von Unterdeterminanten gleicher Ordnung 

von A sind.) Ist also 4 vom Range r, so kann A nieht von höherem 

Range sein. Es kann aber auch A nieht von niedrigerem Range sein 

als A; denn sonst müßte sich der Rang der Determinante erhöhen, wenn 

man durch die reziproke Substitution von der transformierten quadrati- 

schen Funktion auf die ursprüngliche zurückgeht. 

Ist speziell A nicht = 0, mithin vom Range n, so gilt dasselbe von A. 

Aus dieser Betrachtung folgt beiläufig auch, daß die Determinante der 

linearen Transformation, welche die Unterdeterminanten erfahren, von 

Null verschieden ist. Denn sind A, die Unterdeterminanten r-ter Ordnung 

4A, | 

wonA,a=|--- | ihre Matrix und hat A a die entsprechende Bedeutung 

a) 
für A, so haben wir zwei lineare Transformationen mit den Matrizen © 

ae i=&a und a=&. 
Also ist a = &6& - &. . Also ist 

Kerr on 
65 =%=|01...0 

Ki 1 

die Matrix der identischen Transformation. Daher ist das Produkt der 

Determinanten von & und © gleich Eins und daher kann keine von beiden 

Determinanten verschwinden. 

6. Transformation einer quadratischen Form auf eine Summe von 
x * ” ” 

Quadraten. Man kann die lineare Transformation 

Vanakte, T=-6&eu mit S-+0 

stets so wählen, daß die durch dieselbe aus 

= 
erhaltene Form = oO ASu 

die Gestalt f=dI Aw 

hat. Die = der von Null verschiedenen A, ist dabei gleich dem 1 Rang vonf. 
6* 

Of 2 HR, 22 

Enten 3 
7.319 
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Beweis. Wenn sämtliche Koeffizienten von f=!%'4,,%,2, Null sind, 44 

so ist der Rang 0 und es bleibt nichts zu beweisen. Anderenfalls darf man 

annehmen, daß eines der a,,, also der Koeffizient eines der quadrati- 

schen Glieder 2 + 0 ist. Denn sind sie alle Null, ist aber a,.(A + u) von 

Null verschieden, so führe man durch 

=, W#+A,r-+u) 

r=YıTt Yu 

Lu =Yr — Yu 

neue Hilfsvariable ein. Dies ist eine Substitution = TH mit von 

Null verschiedener Determinante. Denn man kann sie ja umkehrbar ein- 

deutig auflösen. Durch sie geht f in eine quadratische Form über, in der 

2a; der Koeffizient von 4% ist. Nehmen wir also en in f= 2 4,,%,7; Sei 
E> 

+ am 0. Alsdann hängt «nu X, = Te 

ne Re ne .) en 

von &, nicht mehr ab. Also ist f, eine Form von nurn — 1 Variablen, wenn 

f deren n enthielt. F j Veh 
? , elf Ba a uud 

Wir machen daher die Transformation /’-= + u a FR 1, & 4 ) 
{ f r inda ER we 

20 #8 I v , 

[07 
rg 

2, = Rs > ee: 
oe+r ıv 

Zi; = 2% (=) 

E 

mit von Null verschiedener Determinante und gewinnen, damit die Dar- 
n 

stellung Hay...) =a,, Z2 +}, (dh Dam rn) 
ee Te ar 

wo f, nurnoch vonn —1 Variablen abhängt. Wiederholung dieses Schlusses 

führt zur Darstellung von f als Summe von Quadraten linearer Funktionen. 

Bei jedem Schritt wird nämlich eine lineare Transformation von Null 

verschiedener Determinante ausgeübt. Wir bekommen so schließlich 

fe 9.1... Solo 2.20, 

falls h lineare Transformationen nacheinander anzuführen waren, und es 

5 RE en 
Daß nun die Zahl der von Null verschiedenen Koeffizienten A, im Plz 
resultat 

[=24W 
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dem Rang gleich ist, ergibt sich daraus, daß nach (2,4,5) der Rang von f 

bei linearer Transformation unverändert bleibt, und daß der Rang einer 
Matrix 

A00..,0 

IR RE) 

gleich der Anzahl der von Null verschiedenen A ist. Jin Ann Se ha Inn 

Beispiel. BU A rn Da Ahr Som (fa .M Heleol 22, ) h) 

f=2:2 +23 4203 —Aai + 40,0, — 4805 — AR, + 40, 

aaa 2a 
2 1—2 2 

—2—-232 2 0 

0 2 0 —4 

Ihre Determinante, sowie alle dreireihigen Unterdeterminanten sind Null. 
% 

= — 1 von Null verschieden. Der Rang ist also zwei. 

hat dıe Matrix 

Dagegen ist 

In der Tat hat man 

T=2lı + a %)” —  —Aıi +40, 

=2(1 +. — 3) — (3,— 20) =2yi —y. 

Die Substitution Y-ıht+n—% % = Yı- Ya +4 24 i 

Ya = Ta = 2 %4 Kr 1a +2 Y e 

Y = Lg K,= 13 

Fe 
up ’ 

Yq 4 Kyz y 4 

mit der Determinante 1 liefert also die Transformation in eine Summe 

von zwei Quadraten. 

Bemerkung. Ganz analog ergibt sich auch, daß man mit Hilfe der- 

selben Matrix © die Bilinearform 

va 
auf die Form ZA -u;-v, 

bringen kann. Denn durch die Transformation 

T=-o1. 4-60 

wird ja ey = EAUSH 

und ©’W© hat ja gerade die Form einer Diagonalmatrix. 
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7. Trägheitsgesetz der quadratischen Formen. Wird eine quadratische 

Form irgendwie durch eine Substitution mit nicht verschwindender De- 

terminante in eine Summe von Quadraten verwandelt, so ist nicht nur, 

wie wir schon wissen, die Gesamtzahl der vorkommenden Quadrate dem 

Rang der Form gleich, also ein für allemal dieselbe, sondern es ist auch 

in der transformierten Form die Zahl der Quadrate mit po- 

sitiven Koeffizienten und mithin auch die mit negativen 

Koeffizienten konstant, d.h. von der Art der Transformation in 

eine Quadratsumme unabhängig. 

Dieses Gesetz, das von Sylvester herrührt, wurde vonihm das „Träg- 

heitsgesetz der quadratischen Form‘ genannt. 

Es sei die quadratische Funktion u von n Variablen x,,... x„ durch die 

zwei Substitutionen 

3; =bayıt + bdindn 
(1) (=1,2,...n) 

= cl 4° 10 

mit nicht verschwindenden Determinanten auf die Formen gebracht 

(2) w=hyytr th u=mätr 4 Un: 

Nun ist durch die zwei Substitutionen (1) ein System linearer Gleichungen 

zwischen den Variablen y und z gegeben: 

(8) DiaYı 4 > Den Yan = 12 ae ne (1, 2, u): 

Vermöge dieser Abhängigkeit der Variablen y und z voneinander muß 

identisch 

(4) R 1‘ Ay a Jo Ay Um en er nat: Hn?n n 

4N=N RK) ZW | 
sein. Nehmen wir nun an, auf der en Seite ber Gleichung seien 

h Glieder, auf der linken Seite a + k Glieder negativ. Wir können dann 

die h Größen 2 der negativen Glieder und dien — h— k Größen y der posi- 
tiven Glieder verschwinden lassen! Es bleiben sodann immer noch n + k 
Größen y und z übrig, um den n Gleichungen (3) genügen zu können. 
Hierdurch bleiben aber nun auf der rechten Seite der Gleichung (4) nur 
positive Glieder, auf der linken nur negative stehen. Die Gleichung (4) 
würde unmöglich sein. Die Annahme also, daß die zwei Formen (2) von 
u eine ungleiche Anzahl negativer Glieder enthalten, ist falsch. 

Durch das „Trägheitsgesetz‘“ können die quadratischen Formen in Ar- 
ten eingeteilt werden nach der Differenz der Anzahl der positiven und 
negativen Glieder bei der Darstellung derselben als eine Summe von Qua- 
draten. 
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Nach Gauß nennt man diejenigen Formen von n Variablen, bei welchen 

diese Differenz = n ist und mithin alle Quadrate ’gleiches Zeichen haben, 

definite Formen, weil für reelle Werte der Variablen der Zahlenwert der- 

selben nie verschiedenes Zeichen hat; die andern Formen bezeichnet man 

alsindefinite, dasiesowohl positive alsnegative Werteannehmen können. 

Insbesondere heißt eine Form positiv definit, wenn sie nur positive 

Werte annehmen kann, d. h. also wenn sie definit ist, mit dem Zusatz, daß 

sie (außer für alle x, = 0) nie verschwindet, und nur positive Werte 

annimmt. Sie heißt negativ_definit, wenn sie nur negativer Werte fähig 

ist, sofern nicht alle x, verschwinden. Den absoluten Betrag der Differenz 

zwischen der Anzahl der positiven und der negativen Quadrate nennt 

man die Signatur der Form. 

8. Definite Formen. Ein Spezialfall der in (2, 4, ‚6 behandelten Transfor- 

mation sei noch besonders ee Es sei angenommen, daß die dort X #4 .4.. 
lu erwähnte Hilfstransformation” nie nötig werde, sondern daß bei jedem 

Schritt eine Variable rein quadratisch vorkomme. Man kann sich die- 

selben dann so numeriert denken, daß sie in ihrer natürlichen Reihenfolge 

Verwendung finden. Die dann der Reihe nach zu leistenden Transforma- 

tionen haben alle eine dreieckige Matrix. Sie sind nämlich von der Form, 

RE 
H=ıtsle + Ann A In 

% = %z Vi ar 

’ 

et 4 

8 DIN I 
P- G 

x + Ogzlg 4° 4 Ooankn 

[22 4 

IL = 3 

„ 

I = In 

Nur oberhalb der Hauptdiagonalen haben die Matrizen dieser Transfor- 

mationen von Null verschiedene Elemente. Ist so 

!=-C5 Mesr..; u=6), 
so hat auch west DC, seit 

eine dreieckige Matrix. Die Matrix der transformierten quadratischen 

a SAS- 8. 

A u ten 

Ihren s # 

v N Er N BY Pu;e 

I = Tg ker A ' 
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Aus der dreieckigen Form der Matrix © 

ee 

en 01 Pas Ban 

0 01 

folgt, daß die folgenden Unterdeterminanten der Matrix A unverändert 

bleiben. 

Ayı ++» Aın A11@ı2 Aın-ı | 

4A al, — le % 00 0,0 ; Ay ».. SB ala a li se 5 

Anı: Ann An-i 1 An-ı,n 

Aj1 ++» Ajn-2 | 

Anh A ae kend,— O1» 

An-2,1°*An-2,n-2| 

d.h. die aus den gleichen Zeilen und Kolonnen gebildeten Determinanten 

der transformierten Matrix ® haben jeweils dieselben Werte. Nun ist 
aber © 6.85 vbun \ 

EN) 

® en 0) 2 . x 

RE y 

Also ıst Ar = AıAs EN An An, == )ı ... Ana: An = ),.A,=4;4, 

Arad! 
Also wird ned, nalen. , © We 

i z - Aı An An-ı Ir Az A, — 

Hiernach sieht man, daß die Zahl der et 2; a der "Anzahl Ab 

Vorzeichenwechsel in der Reihe (= ww A, 3 

Amar, 

ist. Die von uns gemachte Voraussetzung läuft darauf hinaus, daß alle 
A,+0 sind. Denn zunächst ist ja A, = a... Spaltet man dann beim 
ersten Sa x, ab, so bleiben die Determinanten A, ff. unverändert. 

Also wird G® ” der Koeffizient im rein quadratischen Glied der zweiten 

Variahlen de on 

Dafür also, daß eine quadratische Form positiv definit sei, ist hin- 
reichend, daß alle A, > 0 sind. Dafür, daß sie negativ definit sei, ist, 
hinreichend, daß A, > 0 und daß die A„ abwechselndes Vorzeichen haben. 

< ) -— U Sy 
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Die eben ausgesprochenen hinreichenden Bedingungen erweisen sich bei 

näherem Zusehen auch als notwendig. Wenn nämlich in der gegebenen 

Form ein a,, z.B. a, = 0 ist, so setze man x, =1, die übrigen x, aber 

Null. Dann verschwindet die Form, ist also sicher weder positiv noch 

negativ definit. Daher müssen alle a,, von Null verschieden sein. Durch 

eine Transformation 

En dıa 4ı y-ntlmd..+@e,, 
Qıı A 

Yy= %g 

Yan = En 

wird a,%,° abgespaltet. Bei dieser Transformation bleiben aber alle unter 

Verwendung der ersten Zeile und Kolonne zu bildenden Hauptunterdeter- 
minanten/von A unverändert, d.h. also alle Unterdeterminanten, deren 

Matrix zur Hauptdiagonalen 

Qıı 

Aa 

Ann 

symmetrisch ist. Da aber zugleich in der ersten Zeile und in der ersten 

Kolonne nur a,, = bleibt, so werden die zweireihigen dieser Haupt- 

unterdeterminanten dividiert durch a,, nunmehr die Koeffizienten der 

übrigen rein quadratischen Glieder. Soll die Form positiv oder negativ 

definit sein, so kann wieder keine derselben Null sein. Denn sonst könnte 

man x, = 0 setzen und auf die verbleibende Restform den früheren Schluß 

anwenden und so die Form auf nichttriviale Weise zum Verschwinden 

bringen. Setzt man diese Schlußweise fest, so gewinnt man das Ergebnis. 

Dafür, daß eine quadratische Form positiv definit sei, 

ist notwendig und hinreichend, daß die Hauptunterdetermi- 

nanten A,... A, alle positiv sind. 

Dafür, daß die Form negativ definit sei, ist notwendig 

und hinreichend die Folge 

ie eine. 44, 

n Vorzeichenwechsel aufweist, daß also A, <0, und daß die 

A, abwechselndes Vorzeichen besitzen. 

Durch ähnliche Schlüsse kann man auch den Fall behandeln, daß die 

Form definit ist. Ist dann «u der Rang, so lautet das Ergebnis: 
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Dafür, daß eine Form vom Rang u nie negativ sei, ist not- 

wendig und hinreichend, daß man die Variablen so numerie- 

ren könne, daß die Hauptunterdeterminanten A,...4. alle 

positiv sind. 

Dafür, daß eine Form vom Range u nie negativ sei, ist not- 

wendig und hinreichend, daß man die Variablen so numerie- 

ren könne, daß die Folge 1,4A,,...4, abwechselnde Vor- 

zeichen aufweist. 

Daß diese Bedingung hinreicht, sieht man ganz wie im positiv oder 

negativ definiten Fallein. Daß sie notwendig ist, sieht man so ein. 

Ist u=0, so verschwinden alle a,,, und unsere Behauptung ist richtig. 

Ist u > 0, so verschwinden nicht alle a,.. Wären aber alle a,, = 0, aber 

2. B. 09 #0, so setzt man = y 4 y, u = Yı Y,ı = uU > 2). 

Dann kommen in der transformierten Form die beiden Glieder 2a, 1 

— 240,43 vor. Setzt man y, = 0 für i > 2, so sieht man, daß die Form 

nicht definiert sein kann. Also ist mindestens ein a,,+0. Man numeriere 

so, daß a], = 0 ist und setze wie vorhin eine erste Transformation an, um 

411% abzuspalten. Ist der Rang u=1, so verschwindet dienoch verbleibende 

Form identisch. Für u > 1 muß eine der zweireihigen Hauptunterdeter- 
minanten von Null verschieden sein. 

Denn diese sind wieder die Koeffizienten der rein quadratischen 

Glieder. Diese können aber nicht alle Null sein, da sonst die Form 

nicht definit wäre. So weiterschließend gelangt man zum Beweis der 

Behauptung. ; 

9. Orthogonale Transformationen. In der analytischen Geometrie und 

anderwärts taucht die Frage auf, ob man mit Hilfe orthogonaler Trans- 
formationen eine jede quadratische Form auf die Summe von Quadraten 
transformieren kann. Wir haben es weiterhin mit Formen mit reellen 
Koeffizienten und mit reellen Transformationen zu tun. Orthogonale 
Transformationen 

Met 

sind dadurch charakterisiert, daß für sie die quadratische Form 

rr=-22 

unverändert bleibt, daß also die Gleichung 

u=t u’ ;% gilt, d.h. daß 

(1) &S=-% 
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die Einheitsmatrix ist.’ Setzt man dann 

€11 C12 (in 

& Cg1 E22 Con 
Zi ’ 

U an 

so ist ©’& = % mit den Relationen 

Otunk-el ln Ir | 

Zarcı TIER 

gleichwertig. D.h. das Produkt zweier verschiedener Kolonnen ist 0, das 

Quadrat einer Kolonne ist eins: das ist ja gerade der analytische Aus- 

druck dafür, daß die n Einheitsvektoren der Koordinaten in n paarweise 

senkrechte Einheitsvektoren übergeführt werden. 

Die Relation (1) besagt, dß S= +1, d.h. daß die Determinante 

einer orthogonalen Matrix + 1 ist. Denn ©’ und © sind ja zueinander 

transponiert und haben also die gleiche Determinante, deren Quadrat nach 

(1) den Wert 1 hat. 

Die Relation (1) besagt weiter, daß ©’ gleichzeitig die Inverse von © 

ist. Für orthogonale Matrizen ist es also charakteristisch, daß Inverse und 

transponierte Matrix identisch sind. (Tüchot 92 3, u, MX 27 Pl 
Aus (1) folgt weiter 

U: 
RE ÜhX 

(2) Sera. Dan 
Diese Relation besagt, daß auch die Gleichungen 

ee 0 für. 1] 
.— lten. > a 

Wir schicken der orthogonalen Transformation der quadratischen For- 

men noch die Betrachtung des Prozesses der Orthogonalisierung voraus. 

Seien De lb.) 

Aue he Dub Lac, 

b,. —— (br1 ee bx.n) 

k einreihige Matrizen, so setzen wir 
i=k k 

Abit. (Ib :- DI bin) 
i=1 vet 

und sagen, die Matrizen seien linearunabhängig, wenn die Relation 

PIAM- (0, 0 aa . 0) 
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nur dann besteht, wenn alle A, = 0 sind. Andernfalls heißen die Matrizen 

linear abhängig. Sind nun die Matrizen b, paarweise orthogonal, 

gelten also die Relationen 

b.6,+0,6,6, = 0,i+k Wia—l1r..n), 

so sind sie ganz von selbst linear unabhängig, eine Verallgemeinerung der 

früheren Feststellung, daß die Determinante einer orthogonalen Trans- 

formation von Null verschieden ist. Wäre nämlich 

Abdı ++ 4:0: = (0,...0), 

so multipliziere man mit b;. Dann wird 

1,66, =0. 

Also wegen 66, +0 ist 4, =. 

Nun der Prozeß der Orthogonalisierung. Seien 

er 

irgendwelche einreihige Matrizen. Dann suchen wir darunter zunächst 

eine, von der Nullmatrix (0...0) verschiedene, falls es eine solche gibt. 

Nur dieser Fall interessiert uns weiter. Sei also 

#0; 

dann setze ich fı = —_, so daß also Ub= 1 wıd. 
aa; 

Alsdann sehe ich zu, ob es unter den Matrizen a solche gibt, die keine 

Multipla von z, sind, d.h. die von r, linear unabhängig sind; nur der 

Fall, wo es solche gibt, verlangt eine weitere Behandlung. Sei a, von r, 

linear unabhängig. Dann setze ich mit unbestimmten Koeffizienten a, b 

(8) %t =arı + ba, 

an und suche a, b so zu bestimmen, daß 

1b =0,5%=1 
wird. Zunächst liefert {;r, = 0 die Bedingung 

a+bim,;=(, 

woraus a=—brYa, 

folgt. Also ist % =b(—-(Ka)tı + 9). 

Da g, und a, linear unabhängig sind, so ist a,— (X,a,)t, keine Null- 
matrix, und daher kann man b so bestimmen, daß 2,1, =1 wird. Da 
also jedenfalls b-+0 ausfällt, so kann man aus (8) wieder a, durch r, 
und r, linear darstellen. Daher sind alle von a, und a, linear abhängigen 
Vektoren auch von rt, und r, linear abhängig. Sind dann alle anderen a 
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von a, und a, linear abhängig, so ist der Rang des Systemes der Matrizen a 

gleich 2 und der Prozeß der Orthogonalisierung beendet; wir haben zwei 

paarweise orthogonale Matrizen gefunden, aus denen sich alle a linear zu- 

sammensetzen lassen. Gibt es aber ein a,, das von a, und a, und damit 

von t, und t, linear abhängt, so setzen wir 

L; = Aılı + Aula + Az; 

an und suchen die a, so zu bestimmen, daß 

Hl = 4 + La; = 0 

Bu =+ u —0 

Gt —1 
wird. Aus den beiden ersten Gleichungen folgt jedenfalls 

Es = — As [(EıQ5)Lı + (iaQ)Ea — Es] 
und daher wie vorhin, daß man c;=-0 so wählen kann, daß £;r,—=1 wird. 

Nun wird es deutlich sein, wie man aus den a so viele paarweise ortho- 

gonale Matrizen herstellen kann, als der Rang der a beträgt, derart, daß 

man aus ihnen alle a durch lineare Kombination gewinnen kann. 

Nun zur orthogonalen Transformation der quadratischen Formen auf 

eine Summe von Quadraten. In Gedanken an die Anwendung dieses Pro- 

zesses in der analytischen Geometrie sagt man statt dessen auch „Haupt- 

achsentransformation“. Es wird also gefordert, eine orthogonale 

Transformation 
= Su 

so zu finden, daß die quadratische Form 

2 0,4%; %% 

in einer von der Gestalt Zu,u? übergeht, daß also 

ul) 

gus-  M..) 

DIEBE 4, 

Nennen wir die einreihigen Matrizen, welche die Zeilen von X ausmachen, 

#80, 

und seien De 9 

die Kolonnen von ©, so soll also 
Mi für k = % 

u er 
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a1 3;| 

sein. D.h. also die Matrix |... | —= (‚ist zu den Matrizen 3, mit k#t 

0n8;| 

orthogonal. 

Daher muß = uB, 

sein. D. h. also jede Kolonne von © ist für passende u Lösung der linearen 

Gleichungen 

Aıkı ++ Ann UL 

(ONE REIT 

Anıkı 7°’ tr Innkn = Min: 

Damit diese Gleichung eine Lösung besitze, deren x nicht alle verschwin- 

den — nur solche x sind als Kolonnen von © brauchbar —, muß u der 

Gleichung 

Aı U Ge An 

(12 Agg —U Agn 

(8) N 

Ay n Ag n Ayn u 

genügen. Sind dann in der Tat «, und u, zwei verschiedene Lösungen von 

(5), so sind die zugehörigen Lösungen = (£ı-... 2.) und 5 = 

(&2ı - - - 2an) zueinander orthogonal. Denn es wird nach (4) 

An Hıtı % = Mıkalı 

% Ar = mindı- 

Nunaberist 29% = Ay) on = Wu = Ag. 

Denn wegen qa;, = a,,ist W=: Y. Also folgt 

(-m)&h =. 

Wegen a1 + az ist daher Hr, = 0. 

Beiläufig folgt daraus, daß die Wurzeln von (5) alle reell sind, wenn die 
Q;x reell sind, wie das bisher schon immer angenommen war. Denn sonst 
könnte man a, und z, und daher auch x, und z, konjugiert imaginär an- 
nehmen; dann wäre 

Lstı =2|2,.|? =(. 

Also r, sowie 1, die Nullmatrix. 
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Sind nun die Wurzeln von (5) alle verschieden, so liefern die n 

Wurzeln durch Auflösung von (4) dien Kolonnen einer orthogonalen Trans- 

formation ©, für die nach dem Vorstehenden 

0...0 | 

Ö Er 
00 a 

ausfällt. w, sind dabei die Wurzeln von (5). 

Sind aber nicht alle «; verschieden, so muß etwas anders geschlossen 

werden, um © zu finden. Das Ergebnis wird wieder durch (6) gegeben 

sein. Einer solchen allgemein gültigen Methode zur Auffindung von © 

wenden wir uns jetzt zu. Sie beruht darauf, daß zu jedem w, soviel linear 

unabhängige Lösungen von (4) gehören, als die Vielfachheit von u, als 

Lösung von (5) beträgt. Diese Lösungen orthogonalisiert man. Da die 

zu verschiedenen u gehörigen Lösungen ohnedies orthogonal zueinander 

sind, so gelangt man so wieder zu ©. Die Schwierigkeit liegt nun darin, 

zu erkennen, daß die Vielfachheit von u, mit der Zahl der linear unab- 

hängigen Lösungen der zugehörigen (4) übereinkommt. Nennen wir die 

linke Seite von (5) die charakteristische Funktion der Matrix X und nennen 

wir für eine orthogonale Matrix © die Matrizen X und ©’A© orthogonal 
äquivalent, so gilt zunächst der Satz: 

Orthogonal äquivalente Matrizen haben die gleiche cha- 

rakteristische Funktion. 

Denn es ist Neu, ed u) 

Also ist die Determinante von E'US — u gleich der Determinante von 

S(U— u%)©. Diese ist aber gleich der Determinante von Y— u, weil 

SS —= N, ist, 
Eine jede Wurzel der charakteristischen Funktion von X nennen wir 

einen Eigenwert von V. Die zu einem Eigenwert . gehörigen Lösungen 

von (4) nennen wir Eigenmatrizen, die aus ihren Elementen als Koeffi- 

zienten gebildeten Linearformen heißen Eigenformen. 

Wir kommen nun zu dem Beweis der Behauptung, daß die Anzahl der 

linear unabhängigen Lösungen, die (4) für u = u, besitzt, gleich der Viel- 

fachheit ist, die z, als Wurzel von (5) besitzt. Sei zunächst r, eine zu u, 

gehörige nichttriviale d.h. von der Nullmatrix verschiedene Lösung von (4). 

Dann kann man eine orthogonale Matrix bestimmen, deren erste Kolonne 

tı ist. Denn setzt man d = (&iı1, Lig -.- %ın) und ist z.B. 21 +0, 

so sind die Matrizen (010...0),(001...0)...(010,...1) vonein- 

ander und von x; linear unabhängig. Der Prozeß der Orthogonalisierung 
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erlaubt es daher, aus diesen n Matrizen dien Kolonnen einer orthogonalen 

Matrix herzustellen, so daß x, die erste Kolonne wird. Sei ©, diese 

Matrix, dann wird 
u; 0 0 | 

SANS, = 0 a, Q;, 

0 Og, Inn 

Man erkennt dies am raschesten, wenn man zunächst die erste Kolonne 

von AS&, bestimmt; diese wird 

Adı = Mil 

Aglı = Hilıe 

Ankı = HiFın- 

Daher wird die erste Kolonne von &W6©, die vorhin angegebene. Daß 

auch die erste Zeile die angegebenen Werte hat, entnimmt man am rasche- 

sten der Tatsache, daß (ES AS,)’ = SW 6, = SAG, daß also die 
Matrix der transformierten Form wieder symmetrisch ist. 

sp = Ay, | 

Setzt man HR Ai % 

Gr = Un 

so wird WARS] 
die charakteristische Funktion von %X. wu, ist also dann und nur dann 

k-facher Eigenwert von W, wenn es k — 1-facher Eigenwert von W’ ist. 

MHiYı ey 

A2Yo ++ ,Yn = Ude 
(4) 4 Fa BETRETEN TEIL 

Q,nYa er: > er Q,nYn = MYn 

sind die charakteristischen Gleichungen der transformierten Form. Ihre 
Lösungen sind durch 

r= ©) 
di. y=6&r 

gegeben, so daß die Zahl der linear unabhängigen Lösungen bei (4) und 
(4’) die gleiche ist. 

Zu HZ ik 

gehören aber als Lösungen von (4) neben der Matrix (yı...%,) 
= (1,0...0) die Lösungen (0, y... Y„), wobei (Y2...%„) die weiteren 
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Lösungen der charakteristischen Gleichungen (4) für u = u, sind. Die 

Zahl der zu u = u, gehörigen linear unabhängigen Eigenmatrizen ist also 

genau um 1 größer als die Zahl der zu 4 = u, gehörigen linear unab- 

hängigen Eigenmatrizen von W. 

Ist also insbesondere «, ein einfacher Eigenwert von W, so ist es O-facher 

Eigenwert von W. Zu W’ und «=u, gehört dann gar keine Eigenform. Also 

gehört zu einem einfachen Eigenwert eine einzige Eigenmatrix. Wenden 

wir vollständige Induktion an und nehmen also unsere Behauptung für 

k — 1-fache Eigenwerte beliebiger Matrizen als richtig an. Dann gehören 

zu dem k—1-fachen Eigenwert u, von W genau k—1 linear unab- 

hängige Matrizen, die auch von der Eigenmatrix (1,0...0) von X linear 

unabhängig sind. Zu X und u = u, gehören also genau k linear unab- 

hängige Eigenmatrizen. Sind weiter 

Ey Er 

Lösungen von (4), d.h.von ar=ut, 

so ist auch DA 

eine Lösung. Denn aus Gt Bl 

folgt durch Addition Dahl DAn. 

Daher sind auch die durch den Prozeß der Orthogonalisierung erhältlichen, 

paarweise orthogonalen Matrizen, Lösungen. Bilden wir nun aus allen so 

erhaltenen Matrizen als Kolonnen eine neue n-reihige Matrix, so besitzt 

diese genau n Kolonnen, und diese sind paarweise orthogonal. Denn die 

Summe der Vielfachheiten der Eigenwerte ist n. Zu jedem Eigenwert ge- 

hören so viele Kolonnen, als seine Vielfachheit beträgt. Die zu verschiede- 

nen Eigenwerten gehörigen Kolonnen sind von selbst paarweise orthogonal. 

Die zu einem Eigenwert gehörigen Kolonnen sind nach dem Prozeß der 

Orthogonalisierung paarweise orthogonal und zur Quadratsumme 1 nor- 

miert. Wir haben so eine orthogonale Matrix © gewonnen. Für sie ist 

| east 

0 Re) SAS a Ya h 

|0 0... in 

wie man sofort nachrechnet. 

Wir haben also jetzt vLXr= wSASu, 

ach: PTAERTEDTAH 

und es ist IST, 

d. h. die U; — PARTZ 

Bieberbach, Algebra. 7 
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sind die n paarweise orthogonalen normierten Eigenformen 

der Matrix X. Normiert bedeutet, daß in jeder die Quadratsumme der 

Koeffizienten Fins ist. Die u, sind die Eigenwerte der Matrix W, so daß 

u, immer eine zu u, gehörige Eigenform ist. 

10. Hermitesche Formen. Eine Bilinearform 

Qıı * din 

(1) Alz,y)=Ia,.ny =, A=|------- 
iemen 

D I 

und eine quadratische Form 

(2) A(0,8) = Da2,22%,. = vUR 
De 

heißen hermitesch, wenn a;. = @,., d.h. A’= A ist. Dabei wird durch 

Überstreichen das konjugiert Komplexe bezeichnet. Namentlich ist a;; 

reell. Wendet man auf die Variablen die Transformation 

t=6&u,y=6&bh 

an, wo © und © konjugiert komplexe Matrizen sind, so geben die Formen 

(1) und (2) in 

(12) A*(u,v) = U SASH und 

(2') A* (u, 0) = WE ASu 

über. Diese sind wieder hermitesch. Denn es ıst 

(S’AS) = SWS = SANS = (E’AS). 

Die Theorie der Hermiteschen Formen ist ganz analog der der quadra- 

tischen Formen. 

Insbesondere kann man wieder die Matrix © so wählen, daß die trans- 

formierte Form die Gestalt 

PAR bzw. Sb,u,d, 

bekommt. Wieder ist dabei der Rang der Matrix gleich der Zahl der von 

Null verschiedenen b,. Den Beweis wird der Leser an Hand der Nummer 

9. leicht selbst durchführen. 

Auch den Beweis des Trägheitsgesetzes wird der Leser leicht über- 

tragen. Was endlich die orthogonale Transformation der Hermiteschen 

Formen anlangt, so treten hier an Stelle der in 9. betrachteten durch 

©& = J definierten Transformationen, die durch 

&6=J 

definierten sogenannten unitären Transformationen, die die Form r’r 
in Wu überführen. 
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Gleichungen. 

Erstes Kapitel. 

Symmetrische Funktionen. 

1. Einfachste symmetrische Funktionen. Man nennt eine Funktionsym- 

metrisch in bezug auf gewisse Variable x,, &,, . . ., die sie enthält, wenn 

sie bei beliebiger Vertauschung dieser Variablen untereinander ungeändert 
bleibt. Wir betrachten hier nur rationale ganze Funktionen. Dieselben 

werden im allgemeinen nicht homogen sein in bezug auf diese Variablen. 

So ıst a 

eine symmetrische Funktion von «a, und «,, aber dieselbe ist nicht homo- 

gen; ebenso ist 

(@ + P)(@a, + pP) = 1a, + Plaı + a) + p? 

eine symmetrische, aber nicht homogene Funktion von «a, und «,, da aa, 

vom zweiten Grad, p(&, + «,) vom ersten Grad und p? vom 0-ten Grad 

in bezug auf @,,«, ist. Da nun bei der Vertauschung von «a, und «a, nur 

Glieder von gleichem Grade ineinander übergehen können, so müssen diese 

Funktionen in einfachere homogene symmetrische Funktionen zerfallen; 

so zerfällt die erste in die homogenen Funktionen a? +03 und &, +; 

die letztere in die drei homogenen Funktionen &,@,, P(&ı + «,) und p?. 

Man sieht, daß dies allgemein gültig ist. Ist die symmetrische Funktion 

nicht homogen, so muß sie die Summe von homogenen symmetrischen 

Funktionen sein. Aber auch die homogenen symmetrischen Funktionen 

können in einfachere symmetrische Funktionen zerfallen. So ist 

(@i + &)(@, + a5) (a5 + 61) 

homogen und symmetrisch in bezug auf die drei Variablen «,,«,,«,. Die 

Entwicklung des Produkts gibt 

oa, + ala; + a3aı 

2 2 2 +0,05 + ag} + aa + 2010903. 
T* 

Univ. of Arizona Library 
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Da das letzte Glied selbst symmetrisch ist, so muß auch die Summe der 

sechs ersten Glieder für sich eine symmetrische Funktion bilden. Betrach- 

ten wir noch die homogene symmetrische Funktion von a1, @,, @; 

(a +0 + a3)". 

Diesselbe enthält, wie leicht zu sehen, die Glieder «;, 4.0024 00408, 

12@?a,a,, und da die Funktion symetrisch ist, muß sie alle Glieder ent- 

halten, die aus diesen durch Vertauschung der Variablen hervorgehen. 

Da nun nur Glieder mit gleichviel Elementen ineinander sich vertauschen 

können, so bilden die Glieder mit einem Element, mit zwei Elementen 

und mit drei Elementen für sich symmetrische Funktionen. Aber auch 

die Glieder, welche zwei Elemente von der Form aa, und aja, ent- 

halten, können bei der Vertauschung der Elemente nicht ineinander über- 

gehen, da die einen Glieder die Exponenten 3, 1, die andern die Exponen- 

ten 2,2 haben. Die Funktion zerfällt also in vier symmetrische Funktio- 

nen. Bezeichnen wir nun allgemein mit 

Dam apab or 

die symmetrische Funktion, welche alle die verschiedenen Glieder um- 

faßt, die aus dem ersten ata$ab?... durch Vertauschung der Elemente, 

hervorgehen, so ergibt sich 

(a, +0 + 0,)!= Sat +4 Nadia, +6 Naila; + 12 Da; a.0,, 

w  Ied-d+tate 
a MEN 5 3 >= da + mad + aa; + aa + ac, + Aa} 

I 2092 2 >= + a0, 4 au 

2 2 2 > 0505 = OQylz + a0; + Qılacz. 

Daß in der Entwicklung alle Glieder von («| + & + «s)* berücksichtigt sind, 

ergibt sich daraus, daß diese vierte Potenz3-3-3-3 = 81 einfache Glie- 

der enthält, während die Zerlegung drei Glieder enthält, welche einfach, 

sechs Glieder, welche vierfach, drei Glieder, welche sechsfach, und drei, 

welche zwölffach in der Funktion enthalten sind; dieselbe zählt also 

3+4:6+6-:3+12-3,d.1ı. ebenfalls 81 Glieder. 

Aus dem Vorhergehenden ist ersichtlich: 

Alle (homogenen und nichthomogenen) symmetrischen ganzen 

Funktionen bestehen aus einer Summe von einfacheren sym- 

metrischen Funktionen, welche in jedem Gliede gleich viel 

Elemente mit denselben Exponenten haben. 
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Es ist leicht, eine solche symmetrische Funktion zu bilden und ihre 

Gliederzahl zu berechnen. Denn ist n die Zahl der zu vertauschenden Ble- 

mente &,&,@3...«a, und enthält die zu berechnende symmetrische 

Funktion 
Daypı or: QgP3 ae 8 

in jedem Gliede m der Elemente, so bilde man zunächst die Kombina- 

tionen der m-ten Klasse ohne Wiederholung aus den n Elementen. Die 

Anzahl derselben ist 
n(n—1)(n —2 n—m-+1 M+t I ee 3 

Dann versehe man in jeder dieser Kombinationen die Variablen der Reihe 

nach mit dem Exponenten p,, Ps, P3 . . . und permutiere dieselben. Diese 

Exponenten seien zunächst voneinander verschieden. Da die Anzahl der 

Permutationen der m Exponenten 1:2-3...m beträgt, so gehen aus 

jeder Kombination ebenso viele nl der symmetrischen Iunzaaa her- 
f f rn Car BRUvTTE ni li. vor. Dieselbe enthält also (%- u zufthher Ten nme un Pin pn m Per hf > 

nn—1)(n—2)...n—m-+1) Glieder. 

Sind aber unter den Exponenten Gruppen von s, $Sı,... gleichen Ex- 

ponenten, so ist die Anzahl der verschiedenen Permutationen der m Ex- 

ponenten Be, 

1993 use DON es, 

und demgemäß die Anzahl der verschiedenen Glieder der symmetrischen 

Funktion, jedes Glied einmal gezählt, 

an wenn. 

1-.2..-5-1-.2- 

So ist in obigem Beispiel die Anzahl A Glieder in Zoo, fürn =3, 

m = 2 gleich sechs, hingegen in Zafa?, da die zwei Exponenten gleich 

sind, nur drei. In Ya’a,a, gibt es nur eine Kombination @,@,a, und drei 

Permutationen der Exponenten 2, 1,1, also ergeben sich nur drei Glieder. 

2. Elementarsymmetrische Funktionen. Es sei die Gleichung gegeben 

(1) Ma age rer re el, 

wo wir der Einfachheit wegen den ersten Koeffizienten a, = 1 setzen, da 

derselbe ja immer durch Division mit a, auf die Einheit reduziert werden 

kann. Die Wurzeln dieser Gleichung seien a,@g,...«,. Dann ist das 

Polynom auf der linken Seite 

(2) (2) = (& —- a) (8)... (8 an). 
Dies ist aber eine symmetrische Funktion der «, und folglich müssen nach 

S.28 auch die Koeffizienten a,,@s,...qd„ der Gleichung symmetrisch 
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sein in bezug auf die Wurzeln «. In der Tat, entwickelt man das Produkt 

auf der rechten Seite, so erhielten wir 8.28 durch Vergleichung mit der 

gegebenen Gleichung sofort folgende Relationen: 

auto tr +, = —- 

(lg - Gılz -- see, u. On-1%n = — (dag 

(3) Aylglg +" + An-2ln-ıEn = — Ag 

LAU el a, On — (— 120,2 

Es sind also die Koeffizienten der Gleichung symmetrische Funktionen 

der Wurzeln, und zwar die einfachsten symmetrischen Funktionen der 

ersten, zweiten, dritten... .. Ordnung; und zwar ist — a, gleich der Summe 

der Wurzeln, + a, gleich der Summe ihrer Kombinationen zu zweien, — Q3 

gleich der Summe ihrer Kombinationen zu je dreien, usf., endlich (— 1)”a, 

das Produkt sämtlicher Wurzeln. Wäre der erste Koeffizient a, der Glei- 

chung nicht = 1, so würde in den Gleichungen an Stelle von a,, as, ... @, 
[47 a [07 . . . = 

nur a GE ya a zu setzen sein. Wir nennen diese Funktionen elementar- 
0 N) N) een 

; symmetrisch. 
Man bemerke, daß aus der ersten der Relationen (3) folgt, daß, wenn das 

zweite Glied a,” -! einer Gleichung fehlt, die Summe der Wurzeln Null 

ist; und aus der letzten, daß, wenn das konstante Glied a, = 0 ist, die 

Gleichung eine Wurzel x = 0 hat, was an sich evident ist. 

Bemerkung. Man könnte versucht sein, zu glauben, daß man die 

Auflösung einer gegebenen Gleichung erleichtert, indem man sie durch 

das System der Relationen (3) ersetzt. Dieser Versuch scheitert aber an 

der symmetrischen Form dieser Relationen. Für eine Gleichung dritten 
Grades z. B. 

> + ++, —=0 

ist To 0 = —-4,, 

ARL2) + Qılz + Oolz = (Ag, 

dı 023 Ü&z NT (Az . 

Sucht man aus diesen Relationen «, zu bestimmen, so gelangt man zu der 
Gleichung s % 

Gt aM + 9Atı +4 = (0, 

welche dieselbe ist wie die gegebene. Dies war vorauszusehen. Denn da 
die Relationen, von welchen man ausging, sich nicht ändern, wenn man 
@, mit a, oder a, vertauscht, so muß die für «, gefundene Gleichung zu- 
gleich für «, und «a, gelten. i 
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Y,=.04 + A, 0, 

Ya? + dd HA 
3. Potenzsummen. Die Wichtigkeit der symmetrischen Funktionen für 

die Theorie der Gleichungen geht aus folgendem Satz hervor: 
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Jede rationale symmetrische Funktion von a,...a, läßt 

sich rational durch die elementarsymmetrischen aus- 

drücken. 

Zunächst beweisen wir diesen Satz für die einfachen symmetrischen 

Funktionen, welche in jedem Gliede nur eine Wurzel enthalten, diePotenz- 

summen der Wurzeln 

(& Zeit tatec tes, 
wo m irgendeine ganze positive Zahl sein kann. Zu diesem Zwecke ver- 

gleichen wir die Abgeleiteten der zwei Formen (1), (2) der Funktion f(x) 

in 2. Die Abgeleitete von f(x) = (£— a)... (&—a,) wird da die Ab- 

geleitete des einzelnen Faktors x — «a gleich der Einheit ist, 

Iie)=(2 9) =)... -0,)4 (2 - u) 0)... (2 0,00 

+ (@—- a) —- 9)(8— 0)... (8 — an-1); 

d.h. die Abgeleitete f’(x) ist die Summe der Kombinationen der n Fak- 

toren von f(x) zujen —1. Wir können also auch schreiben: 

(5) ee ON; 
NER | T — (Ga I — (On 

Führt man die Divisionen aus, addiert und bezeichnet die erste, zweite, ... 

Potenzsumme der Wurzeln mit s,, S,, . . ., so erhält man 

Be) ne ee en 

+ na, | + 4151 | + ASn-a 

na | + AySn-3 

+ An-351 

Se ee 

Sind also b,, bi, .. . b„_ı die Koeffizienten von f’(x), so ist 

= + MS-1 + MS5-2 4° 50; 

wenn wir s, für n setzen. 

Nun gibt aber die Form (1) von f(x) als Polynom 

Ile) = n- 2"! (nn —1a,2r 2 + (nn — 21077? +... +01 
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also b, = (n—i)a,. Die Vergleichung dieser zwei Werte für b, liefert, 

wenn wir der Reihe nachi =1,2,...n — 1 setzen, folgendes System von 

Gleichungen: A+ A: dr = Bo, Ar 

Ss +4, = 0 Patpı a, 05 Pi Az le 

w | we 

dt ni: 4,34 5 + YA, 0 
Sg EA RAN AR —( Ay tig P3 t A, tr 45 Ä 4 

Sg + 4151 + 20, = 0 

(6) u 1 
+ uS- I a een 

rn eftuleeisnan +31 + (n— 1)a,-, =. 

Diese Formeln heißen die Newtonschen Formeln, da sie schon Newton 

in seiner „Arithmetica Universalis‘‘ gegeben hat. Man kann dieselben 

leicht für beliebig hohe Potenzsummen fortsetzen; denn die Wurzeln 

&1, 09, . . . @„ erfüllen die Reihe von Gleichungen 

re) 0a) = 

Bat man in irgendeine dieser Gleichungen für x die Werte @,,@,...@, 

ein’und addiert die so erhaltenen Gleichungen, so resultiert eine Kälstion 

zwischen Potenzsummen. 

Man erhält auf diese Weise nachfolgendes System von Relationen, 

welche dasselbe Gesetz wie die Relationen (6) zeigen, wenn man nur be- 

merkt, daß die Koeffizienten a,;1, @n+2, - - - nicht vorhanden sind, also 

= 0 zu setzen sind: 

5 + A sn-ı F Aesn-a Ft: 4 0,15 t 0a, =0O 

(7) Sarı Ft 4 Gin -ı tn ts 0) 

Sn+2 + AıSnzı + Aesn + + An_153 + AuSa = 0 

Aus den Newtonschen Gleichungen berechnen sich nun folgende Werte 
für die Potenzsummen: 

1 =—4 

5 = 0a — 20, 

(8) Ss = — a + 30,0 — 30; 

Ss = a —4ala, + Aaıaz + 2a? — 4m, 

s=—-a +50, —5ala;— 5(a! — a,)a, + 5(a,a;, — a,) 
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Da in den Rekursionsformeln (6) die höchste Potenzsumme s immer den 

Faktor 1 hat, ergeben sich in den Formeln (8) nur ganze Zahlenkoeffi- 

zienten. Ist also in einer Geleichung ,=1 und sind alle an- 

dern Koeffizienten ganze Zahlen, so sind auch alle Potenz- 

summen ihrer Wurzeln ganze Zahlen. 

Um die Gleichungssysteme (6)... (8) auf die Gleichung 

Ag" + a," "+ ..-+a,=0 

anzuwenden, in welcher a, nicht der Einheit gleich ist, hat man in den- 
Ag [63 [07 . 

selben 5 rc = statt @), da, - . . Q„, zu setzen. Dann werden dieselben 
(} 0 ; o 

homogen in den Koeffizienten a, und man erhält für die Potenzsummen 

die Ausdrücke 
a Se—- 1 rn 

ae ee 24, % 

(8°) a a 
es a? + 3491: — 3A Ag 

Sg FR 

DR N ED A N 

Es wird mithin s, eine homogene Funktion der Koeffizienten a vom :-ten 

Grad, dividiert durch aj. Außerdem ersieht man, daß die i-te Potenz- 

summe zur Berechnung nur die Koeffizienten a,, Qı, . . . a, beansprucht. 

Sind also in zwei Gleichungen die Koeffizienten a,, @ı,.... a, gleich, so 

sind auch die Summen der : ersten Potenzen ihrer Wurzeln, bis zur i-ten 

Potenz inkl., gleich. 

4. Zweite Methode für Potenzsummen. Man kann zur Berechnung der 

Potenzsummen auch noch ein anderes Verfahren anwenden. Es ist für 

jeden Wert von a,, 

NEBEN) TR EIN 
fr) ıs—a. 1—-, 1—% E— On 

2 1 il a a? 
Nun ist ee Pe 

also erhält man sogleich 

IE le er, 38a ee +a+ate oder auch 

L» Ti (z£) Sı | Sg a 

9) a 

Ordnet!) man also & - f(x) und f(x) nach fallenden Potenzen von z, so er- 

hält man durch Division unmittelbar die Potenzsummen’s, , DS 

1) Die so erhaltenen Reihen konvergieren nach den Prinzipien der Funktionen- 

theorie für genügend große ||. 
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Man kann auf diese Weise auch die Potenzsumme der reziproken Werte 

der Wurzeln 
1 1 1 d' 
_—— 2 = ar A — DR De tt Bet am 

ne ie Hu 

erhalten. Denn man hat auch) IR } 

ıl il % Re 

u" -Gt tat) 

und hiermit ergibt sich 

Ordnet man also f’ (x) und f(x) nach steigenden Potenzen von z, so erhält 

man durch Division die Potenzsummen s_1,85_3, - - - 

Übrigens lassen sich die Potenzsummen s_, auch mittels der Newton- 

schen Gleichungen berechnen. Es reicht dazu hin, aus f(x) = 0 die Glei- 

chung f(2) — (0 zu bilden, welche die Wurzeln = = ... - hat, und 
1 

für diese die s, zu suchen.!) 

5. Formalsymmetrisch und wertesymmetrisch. Wir haben bisher nur 

Funktionen derVariablen «a, ...«„ betrachtet, dieformalsymmetrisch waren, 

bei der also die Summanden nur ihre Plätze vertauschen, die Faktoren 

nur umwechseln, wenn man die Variablen vertauscht. Etwas anderes ist 

zunächst begrifflich, die Forderung, daß eine Funktion einen unveränder- 

ten Wert hat, wenn man ihre Variablen vertauscht. Z.B. ist u 
2 

in diesem Sinne wertesymmetrisch, ohne formalsymmetrisch zu sein. So 

1) Einen expliziten Ausdruck für die Potenzsummen hat schon Waring gegeben 
(Meditationes algebraicae, Cambridge 1782). Die Formel lautet 

Be): ER Aıtdat: Ay(hı Ar Ber An —i)! An 5—=V >” 1b) v A! Br 1a RUN 

wo die Summe 2 auf alle A (A = 0 eingerechnet) zu erstrecken ist, für welche 

A,+2, 43, +. +nl,=i 

ist. Eine andere Formel für die Berechnung der Potenzsummen s. „Trait6 de la 
resolution des &quations num6riques“ par Lagrange. An. VI Note XIp.248. Für 
die Summe der nten Potenzen der Wurzeln der quadratischen Gleichung 

© —bz+a=0 findet Lagrange daselbst 

A nm) (n—5) un a ) 8b +... 

(die Reihe fortgesetzt, so lange die Potenzen von b positiv bleiben), eine Formel, 
die sich übrigens auch aus der Waringschen Summe entnehmen läßt. 

ar + Pr —= bn — nabr- 24 - a2bn — 
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ist (&) — @,)(&) — &,) wertesymmetrisch, ohne formalsymmetrisch ge- 

schrieben zu sein. Ist aber f(a,...«,) wertesymmetrisch, so ist 

Zfla,ı a 475) 

n! = pl... %n) 
formalsymmetrisch, wenn man die Summe über alle n! Permutationen 

der «erstreckt. Da aber dabei sich f seinem Wert nach nicht ändert, so ist 

T = p. Esgenügt also, die formalsymmetrischen Funktionen zu betrachten. 

Ist eine gebrochene rationale Funktion 

Halkekvoc An) 

Te(Qır...dn) 

wertesymmetrisch, und sind Zähler und Nenner nicht symmetrisch, so 

erweitere man den Bruch mit allen den Funktionen, die aus f, bei Vertau- 

schung der « gewonnen werden können. Danach sind Zähler und Nenner 

symmetrisch , so daß also jede symmetrische rationale Funktion Quotient 

von zwei ganzen rationalen symmetrischen Funktionen ist. 

6.Der Hauptsatz. Jede ganze rationale symmetrische Funktion 

fer -..@,) ist eine ganze rationale Funktion der elementar- 

symmetrischen Funktionen der «a, deren Koeffizienten jedem 

Körper angehören, der die Koeffizienten von f enthält. Nach 

(3, 1,5) darf man annehmen, daß f formal symmetrisch ist. Zum Beweis 

bedienen wir uns des Prinzipes der lexikographischen Anordnung. Dieses 

fassen wir so. Unter der Höhe eines Gliedes Aat!.... «’* verstehen wir die 

Zahlenfolge (v,,..., »„)-. Wir nehmen an, daß nur ein Glied gegebener 

Höhe vorkommt, d.h. daß wir alle Glieder gleicher Exponentenfolge in 

in Zeichen (u, ...u,) < (v1... v„), wenn die erste nicht verschwindende 

Differenz u,— v;, negativ ist. Ordnen wir dann die Glieder nach absteigender 

Höhe an, so sagen wir, wir hätten sie lexikographisch geordnet. 

Bei den elementarsymmetrischen Funktionen sind a, , &ı@&g, ...&ı... m 

die höchsten Glieder. Die höchste Form eines Produkts ist das Produkt 

der höchsten Form der Faktoren. Ist nämlich 

ae ee rev.) 

(Be re 20) 

so ıst (Inh+ Ah... +4)> (tr... m tm): 

Denn es ist sowohl die erste nichtverschwindende Differenz u; — v; > 0, 

als auch die erste nichtverschwindende Differenz ,—n,>0. Ist 

(u1.-.4n) die Höhe des höchsten Gliedes einer formalsymmetrischen 

Funktion, so ist a 
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Denn wegen der formalen Symmetrie kommen alle die Höhen vor, die 

sich aus (1 - - - 4n) durch beliebige Permutation der u, ergeben. Also muß 

im höchsten Glied u, das Maximum aller u, sein, denn sonst gäbe es ein 

Glied, in dem «a, zu einem höheren Exponenten vorkommt, und dies wäre 

höher. Aus dem gleichen Grund muß im höchsten Glied x, das Maximum 

der Zahlen u, .. . u, sein. 

Ist nun Aatı ... a“n das höchste Glied einer formalsymmetrischen 

Funktion, so hat nach den vorausgegangenen Bemerkungen 

Un Mn-i- Fenı MıHa 
A Be 

77 az 1 

dasselbe höchste Glied. Dabei ist e, = Iaı, ee = Da1az... m 41: -An- 

Zieht man also diese symmetrische Funktion von der gegebenen 3x 2 

bleibt eine symmetrische Funktion mit niedrigerem höchsten Glied übrig.” 

Für seine Höhe kommen aber nur endlich viele Folgen (v,.... v„) in Be- 

tracht, deren Elemente alle kleiner sind als u,. Fortsetzung des ein- 

geschlagenen Verfahrens muß daher nach endlich vielen Sehritten zur 

Darstellung der gegebenen Funktion als ganzrationale Funktion der 

elementarsymmetrischen führen. 

Man mag noch bemerken, daß die Koeffizienten dieser ganzen rationalen 

Funktion der elementarsymmetrischen sich ganz und rational aus den 

Koeffizienten der gegebenen rationalensymmetrischen Funktion f(a...«,) 

darstellen. Das ergibt sich ohne weiteres aus dem grade zu Ende geführten 

Beweis. 

Eine ganze ganzzahlige (d. h. mit ganzzahligen Koeffizienten versehene) 

symmetrische Funktion ergibt sich also z. B. als ganzzahlig, jedesmal dann, 

wenn die elementarsymmetrischen Funktionen ganzzahlige Werte haben. 

Beispiel. Es sei da?a?a, zu berechnen. Das höchste Glied ist 20? 03a;. 
Das gleiche höchste Glied besitzt: 2e,-e,. Es ist 

202 ae 2,2 
SU U, — 20,6, — 20,050, + 201030, 

+ 203030, — 20,0,05(0,0 + @,0;+ a 4 Mh: 
An= U 20% 

Kap begann Melle Ir She 
Also ist Duo.0, == 26,63. 

7. Grad und Gewicht. Die Berechnung der symmetrischen Funktionen 

führt meistens zu langen Rechnungen. Aber mittels der folgenden zwei 

Theoreme, die man Öayley und Brioschi verdankt, läßt sich im voraus 

erkennen, welche Glieder allein in dem Resultat vorkommen können und 

welche aus demselben verschwinden müssen. Diese Theoreme lauten 

Ist Dat alaz.-- = DCahakak. 
N 
nn 
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so ist der Grad des letzteren Ausdrucks dem größten der Ex- 

ponenten p,q,r...gleich, und die Summe der Indizesin jedem 

seiner Glieder ist konstant, indemin jedem Gliede 

A+24, +3, +. -=p+qyH+tr--- 

gleich dem Grade der symmetrischen Funktion ist. 

Um den ersten Satz zu beweisen, darf man nur bemerken, daß die 

Koeffizienten ‚a lineare Funktionen sind in bezug auf irgendeine der 

Wurzeln a,,&, ...@,. Ist «, eine dieser Wurzeln, so ist also /; Suflr n=# 
„ A204 - (ar t%a) 

a,=MVa,+N®, a, = ala, 20,) +40, 7020, #03 0y 
pe i My = (0-00) NK y 

wo M%, N“ Funktionen der anderen Wurzeln sind, aber «, nicht ‘ent- 

halten?) Insbesondere ist M® +0. Damit wird 

Zudga = ICMia + NP (M}a, + N?) (Ma, + N. 
Ist nun p der größte der Exponenten p, q,r..., so ist der höchste Grad, 

in welchem «, in der symmetrischen Funktion vorkommt, = p; folglich 

2 AtAat+At+:-=p 

sein, womit der erste Satz erwiesen ist. ) ch Halte Bil Ähen y446 

Ebensoleicht beweist man den zweiten Satz. Denn läßt man die 

Wurzeln @&,, &,,... a, übergehen in ka,,ka,,...ka,, so erhält die sym- 

metrische Funktion den Faktor kP*?+"+"", Zugleich aber gehen die 

Koeffizienten über in ka,, k?a,, k’a,,..., damit erhält aber das Glied 

Cahakab... den Faktor k4+?%»+3%+-, Da nun aber k ganz will- 
kürlich ist, so muß es auf der rechten und auf der linken Seite ın der 

gleichen Potenz auftreten, so daß es ganz hinausfällt. Es muß also 

jedes Glied der Summe SC alalza ... denselben Faktor in k haben, und 
für jedes Glied muß 

)ı +27, +3, +°'=pH+tgqg+r... sein. 

Diese Summe A, +27; + 83%; +, welche gleich ist der Summe 

der Indizes, nennt man das Gewicht des Gliedes und sagt demnach, 

der Ausdruck N Cahakai... sei von gleichem Gewichte oder 
isobarisch. 

Sind die «,-Wurzeln einer Gleichung, deren höchster Koeffizient a,-+ 1 
. . [03 

ist, so muß man bei den vorausgegangenen Betrachtungen a, durch = 
o 

ersetzen. Dann würde sich ergeben 

PR: PR nA Cahoalı 2 
Serajay = ap > 

Ü) 
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immer vorausgesetzt, daß p der größte der Exponenten p,q,r ist. Die 

Summe auf der rechten Seite (in welcher C ein Zahlenfaktor ist) ist 

dann eine homogene Funktion von a,qa,... vom Grade p und vom 

Gewichte Rn einen 

Man kann mit Hilfe obiger Theoreme angeben, welche Glieder in der 

Darstellung durch die elementarsymmetrischen Funktionen wirklich vor- 

kommen können. So muß os 
em Da 050; 

von der Form Ce3e; 

sein. Denn der Grad muß 2 und das Gewicht muß 5 sein. Den 

Koeffizienten C kann man dann dadurch ermitteln, daß man ein beson- 

deres Beispiel heranzieht. Sind nämlich z. = alle a; = 19 so wird ed) 3, 

es Lund Nalala, = 6. Alsoist O=2, 7° a a ee A 7 A et 

8. Zweiter Beweis des Hauptsatzes. Für den Hauptsatz der Theorie der 

symmetrischen Funktionen möge noch ein zweiter Beweis!) von Cauchy?) 

auseinandergesetzt werden, welcher zugleich auf sehr sinnreiche Weise 

zeigt, wie die Darstellung berechnet werden kann. 

Es sei f(x) = 2° + a, 2 1 200? 7. —=V0 

die gegebene Gleichung, a,, @&,..... @„ ihre Wurzeln und U eine gegebene 

ganze symmetrische Funktion derselben. 

Nehmen wir an, man habe auf irgendeine Weise die Funktion U so 

umgewandelt, daß sie nur noch eine Wurzel « enthalte und für dasselbe 

das Polynom erhalten 

dr m + Dong: .E Deo 2 -. en .. Des 

WO Po» Pı> +»: Pm Konstante sind, rational aus den Koeffizienten der Glei- 

chung zusammengesetzt. Dies vorausgesetzt, dividiere man diesen Aus- 

druck mit f(«e), dann hat man, wenn Q der Quotient der Division, R der 

Rest ist, 
U=-Q fo) +R 

oder, da f(e) = 0, A Ur, 

Dieser Rest R kann nur vom (n — 1)-ten Grade sein; die Gleichung ist 
also von der Form 

U = Ga®1 ey RR + N: + An-2% + An-ı: 

1) Einen solchen hat auch Gauß gegeben in seinem zweiten Beweis des Funda- 
mentalsatzes der Algebra „‚Demonstratio nova altera ete.‘‘ (Werke Bd. III p. 36). 

2) Anciens exercices de Math&matiques, 4me anne, 1829, und (Euvres de Cauchy 
II. Ser. Tome IX p. 132 $ VI. 
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Da aber U symmetrische Funktion der n Wurzeln «,,@s,...«,„ ist, so 

kann man die Wurzel mit irgendeiner andern vertauschen, und da hier- 

bei sich die Koeffizienten q nicht ändern, so muß die Gleichung 

EIN tg na U—0 

durch alle Wurzeln «,, «3, ...«, erfüllt werden. Sie muß folglich iden- 

tisch sein, d.h. es muß 

= hl "m, 0 

sein und Ug21: 

Es ist also q„_, der gesuchte Wert von U. 

Auf der wiederholten Anwendung dieses Satzes beruht nun die Berech- 

nung von U. Zu diesem Zweck bilde man die Gleichungsreihe 

Ka)=0, [<= ER 0... 2% — (a 

In .(2) ——— ee fell) > 0. 
TC An-ı In-1(2) 26 

Die Divisionen vollziehen sich nach der Formel in (1, 5, 1)! Es treten hier- 

bei die Wurzeln nach und nach in die Koeffizienten der Gleichungen ein; 

fı(z) enthält «, in den Koefffizienten, hat aber nur noch die Wurzeln 

&g,&gy...&n; f2(X) enthält «, und a, in den Koeffizienten, hat aber nur 

noch die Wurzeln @;,,...«, usf.; f„_2(x) hat nur noch die Wurzeln 

&,_ı und a,; fn-ı(2) = 0 ist nur noch vom ersten Grade, von der Form 

Li Ad 2 et, 

und hat nur noch die Wurzel £ = «,. Man entnimmt daraus 

"= - trat. +1 +) 

und substituiert diesen Wert in U; dann enthält U nur noch eine der 

Wurzeln von f„_z(x), nämlich @„_,, und die Division mit f„_g(@„_ı) läßt 

nach obigem Satze einen Rest frei von «„_,. Dieser Rest ist die Funktion. 

Da U nun nurnoch die Wurzelna,,@&,...«,_, enthält, also nur noch eine 

der drei Wurzeln &,_3, &„_ı, @„ der Gleichung f„_3(&) = 0, so kann nun 

diese Wurzel«„_, durch Division mit f„_s(@„_s) aus U entfernt werden usf. 

Schließlich enthält U nur noch eine Wurzel «, und die Division mit f(«,) 

gibt sodann U als Rest der Division frei von Wurzeln als Funktion der a. 

Es kann bei diesen Divisionen der Fall eintreten, daß zugleich mit der 

zu eliminierenden Wurzel «, noch eine andere «, und, da diese irgendeine 

der noch übrigen Wurzeln sein kann, alle übrigen Wurzeln zugleich aus U 

verschwinden, wodurch die Operationen wesentlich abgekürzt werden. 
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Ferner ist zu bemerken, daß die Methode nur Divisionen erfordert und 

alle Divisoren die Einheit als Koeffizienten ihres höchsten Gliedes haben. 

Daraus ergibt sich der schon früher ausgesprochene Satz. 

Beispiel. Gegeben die homogene symmetrische Funktion 

U=-(e+MB+y)y te) 
der drei Elemente «a, ß,y. Dieselben seien Wurzeln der Gleichung 

Kk)=- +: ++, =. 

Dann ist ei, = )= ?+(a + a)2 +07 00-7 0, 

BO <p()=a+a+ß+ a. 
fı(z) = 0 hat die nt ß,y; fa(x) = O nur noch die Wurzel y. Also ist 

NE la Pal) 
Damit wird Ja Bry=B=u-B-A, =-[ Bi =-[A,:ß) 

U= («+ Bß)(aı + ß)(a ars“ yon a +g) +4 
(a) ff BR RUN Fk Ar Be SI, Hl )— für ae a)la%a)' 
Dies divi nit {8 15Bt uE Rest ala ve nh von ” 3 Y“Ul=0 

pad U=— (a, +) (a? + a,) = — a? — 0,0? — A, — A412. 

Dieser Wert dividiert mit f(«) liefert als Rest den gesuchten Wert von U: 

U=4a,— 410, 

9. Rationale Funktionen der Gleichungswurzeln. Mittels der Theorie der 

symmetrischen Funktionen läßt sich folgendes Theorem beweisen: 

Jede mit Koeffizienten aus einem Körper K gebildete ra- 

tionale gebrochene Funktion einer Wurzel« einer Gleichung 

f(x) =0 vom n-ten Grade läßt sich durch eine ganze Funk- 

tion des « von niedrigerem Grade als dem n-ten darstellen, 

deren Koeffizienten demselben Körper K angehören, wofern 
auch die Koeffizienten von f dem Körper K angehören. 

Bs seien p(x) und p(x) ganze rationale Funktionen ohne gemeinsamen 
Teiler; &),&,,...«, die Wurzeln der gegebenen Gleichung f(x) = 0; so 
hat man identisch!) 

1 plaı) _ Y(a2) y(az). ..Ylan) 
(1) Teens 
Der Nenner y(a,)»(a;)...y(a„) ist aber eine rationale symmetrische 
Funktion der Wurzeln mit Koeffizienten aus K und kann mithin rational 

u Es werde vorausgesetzt, daß y und f keinen gemeinsamen Faktor haben, als9 
y(a) für keine Wurzel a verschwinde. 
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mit Koeffizienten aus K durch die Koeffizienten der Gleichung f(x) = 0) 
ausgedrückt werden, gehört also selbst zum Körper K. Was den Zähler, 

ed 

Y(a) Y(a5) -.. y(a„) betrifft, so ist derselbe ebenfalls eine rationale sym- 

metrische Funktion der Wurzeln a,,@&,...«&,, d.h. der Wurzeln der 

Gleichung el 

— a 

mit Koeffizienten aus K und ergibt sich also als ganze rationale Funktion 

der Koeffizienten dieser Gleichung, welche selbst ganze Funktionen der 

einen Wurzel «, sind.) Alle diese Funktionen besitzen Koeffizienten aus K. 

Damit erhält man folglich 

(2) MEER IOLICR 
wo ö(«) eine ganze Funktion von « mit Koeffizienten aus K ist. Die ge- 

+0) 
y.(@) 

mit Koeffizienten aus K ersetzt; und zwar gilt diese Gleichung für jede 

Wurzel « der Gleichung f(x) = 0, da man in (1) die Wurzel «, mit einer 

beliebigen andern vertauschen kann. 

brochene Funktion ist demnach durch eine ganze Funktion o (e)-&(«) 

Ist das Produkt o(e) -@(«) vom n-ten oder höheren Grade, so kann 

man es durch einen Ausdruck von niedrigerem Grade als dem n-ten er- 

setzen. Denn dividieren wir es mit f(«), so wird 

p(a)öle) =Q fa) + R 
oder, da f(e) = 0, o(e)- le) =R, 

wo R höchstens vom (n — 1)-ten Grade ist. 

Die allgemeinste rationale Funktion einer Wurzel einer 

Gleichung vom n-ten Grade ist mithin eine ganze Funktion 

vom (n—1)-ten Grade. 

Eine andere Methode, eine gebrochene rationale Funktion einer Wurzel 

durch eine ganze Funktion zu ersetzen, ergibt sich aus einem in (1,5,6) p.2y 

gefundenen Satze. Wir haben dort gesehen, wie sich, wenn f(x) und y(x) 

zwei ganze Funktionen sind, welche keinen gemeinsamen Teiler haben, 

immer zwei ganze Funktionen X, Y so bestimmen lassen, daß 

Xfla) + Yylo)=R,, 
wo R, eine Konstante ist, die rational aus den Koeffizienten von f und y 

zusammengesetzt ist. Setzen wir in dieser Gleichung x = «, wo « eine 

Wurzel der Gleichung f(x) = 0, so wird { Ya +/a\= O4W) 

R,= y(a): Y(e), 
Bieberbach, Algebra. 8 
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P, 1% y «) M, 
wo Y(«) eine ganze Funktion von « und hiermit »« a. 

Ha) _P- Ya), 8 
va) 5, 

Da R, von « unabhängig ist, so stimmt diese Gleichung mit Gleichun 

(2) A Ir KAP): Kr) = y-3) > 

er 
Beispiel. Ist « eine Wurzel der Gleichung nr R, 

232 — 2 +3=0, (R): u-xn)2-2=0, 

und y()=ar+l, ee ea: 
so ergibt das Euklidische Teilerverfahren 

(— 4a? + 2) (a) = 10. SR 2a, 4700)8, 

uk an Jerh waet N 

Also, wenn o()=a—1, R- La) = Un olfe ef 

pa) _ a1 _U-NARr+MNR +) a (u 
yvca) +1 10 

Klde Be les Aka 2 1-4 (oT 
oder, reduziert, ) TE ın® as ee ) LE 

Dasselbe Resultat hätte man nach der ersten Methode erhalten müssen. 

Da die Wurzeln der gegebenen Gleichung«e = — 1, + 1, + 3 sind, ist die 

Übereinstimmung der zwei Formeln für jede der drei Wurzeln sofort zu 

prüfen. 

Wenn die gebrochene Funktion * außer der Wurzel « noch eine zweite 

Wurzel 8 der Gleichung f(x) = 0 enthalten würde, so könnte man zu- 

nächst die gebrochene Funktion durch eine ganze Funktion in bezug auf « 
in der Form Ananı 14 02 

ersetzen. Die Wurzel $ würde dann rational in die Koeffizienten A ein- 

gehen. Ergeben sich dieselben als gebrochene Funktionen von ß, so können 
dieselben wieder nach obigen Methoden durch ganze Funktionen von ß 
ersetzt werden. Mithin kann auch jede gebrochene Funktion von 
mehreren Wurzeln einer Gleichung durch eine ganze Funk- 
tion dieser Wurzeln ersetzt werden. 

Es kann bei der Umsetzung der gebrochenen Funktion 2) in eine 

ganze Funktion vorkommen, daß die zwei Methoden verschiedene ganze 
Funktionen liefern; dann bleibt überhaupt eine Unbestimmtheit, und es 
gibt unendlich viele solche Funktionen vom (n — 1)-ten oder niedrigerem 
Grade, welche die Aufgabe lösen. Dies läßt sich aus den obigen Methoden 
nicht unmittelbar ersehen. Der Fall tritt dann ein, wenn die Gleichung 
f(x) = 0 im Körper K reduzibel ist. Ist z.B. f‚(x) ein in K irreduzibler 
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Faktor von f(x), für den f(«) = 0 ist, so ist f, von höchstens (n — 1)-tem 

Grad. Hat f(x) z. B. r gleiche Wurzeln, so kann man, wie wir (1,5,7) y.»5 

sahen, eine Gleichung f,(x) = 0 bilden, welche nur die verschiedenen 

Wurzeln von f(x) = 0 enthält, und jede nur einmal. Wenn nun &(«) 

eine ganze Funktion (n — 1)-ten Grades ist, welehe der Aufgabe genügt, 

so genügt ihr auch die Funktion 

o(«) + Mfı(e), 
wo .M eine beliebige Zahl aus K ist. Denn der Ausdruck ist vom (n — 1)-ten 

Grade und, da für « die Gleichung fı («) = 0, ist er= w(«e) für jede Wurzel 

der Gleichung f,(x) = 0. Hat insbesondere f(x) nur mehrfache Wurzeln, 

so kann man nach S. 36 f, (x) so wählen, daß ihm sämtliche Wurzeln von 

f(x) genügen. Dann besteht die gleiche Unbestimmtheit für alle « zu- 

gleich. 

Man kann dies auch so darlegen: Wenn man schon die Wurzeln von 

f(x) = 0 kennt, so setze man dieselben nacheinander in die Gleichung 

PA 14 Arar? tr hAn-ı 
ein; so läßt sich für jede Wurzel berechnen, und man hat dann n Glei- 

chungen zur Bestimmung der Koeffizienten A. Hat aber f(x) = 0 gleiche 

Wurzeln, so hat man weniger Gleichungen zur Bestimmung der A, und 

mehrere derselben bleiben unbestimmt. 

Ist z. B. die Gleichung 

—422 +57 —2=0 

gegeben, deren Wurzeln 1, 1,2 sind, und 

1 

@+a+1l 

als ganze Funktion zu berechnen, so ergibt sich nach der zweiten der 

obigen Methoden: 1 7 2 1 

ee naeh 

Setzt man nun aber 

73 = (a) = Ana? + Ara + 4; 
und hierin für « die Wurzelwerte 1, 2 ein, so hat man die zwei Gleichungen 

rn = 3=4+4 +4, +=44 +24 4A, 
ara+i 

woraus A=—834—4, 4,=24A+5 

Mithin o(c)=A(®—3a +2) +4— da. 
8 
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A bleibt völlig willkürlich; «@—3« +2 = 0 ist eben die Gleichung 

fı(«) = 0 mit den einfachen Wurzeln 1,2. Für A = 4 hat man obiges 

Resultat. 

10.Algebraische Zahlen. Untereiner algebraischen Zahl versteht man eine 

Zahl, die Wurzel einer algebraischen Gleichung a92° + a2""!+ +4, =0 

mit ganzen rationalen Koeffizienten sein kann. Die Menge dieser Zahlen 

ist abzählbar, woraus die Existenz nichtalgebraischer, sog. transzendenter 

Zahlen folgt. Hier mag es sich um die Feststellung handeln, daß eine 

rationale Funktion r(a},...«,„) von algebraischen Zahlen wieder eine 

algebraische Zahl ist. Der Beweis folgt leicht aus dem Hauptsatz über 

symmetrische Funktionen. Wir dürfen annehmen, daß a,...a, die 

sämtlichen Wurzeln einer algebraischen Gleichung mit rationalen Koeffi- 

zienten sind: 
m — et ar? +. +1, =). 

Eventuell bekommt man diese Gleichung durch Multiplikation der 

Einzelgleichungen, welchen die « genügen. Die Schreibweise r(a@,...«,) 

verlangt ja auch nicht, daß sämtliche «,...«, in r wirklich eingehen. 

Nun bilde man die n! Funktionen r, =r,r,,..., diesich ausr durch die 

sämtlichen Permutationen der « ergeben. Das Polynom 

He-r) 
wird dann für aller, zu Null. Seine Koeffizienten sind symmetrische Funk- 

tionen der r,, und daher symmetrische Funktionen der «, drücken sich 

also rational durch die e aus, sind also wie diese rational. Multipliziert 

man das Polynom //(z2—r,) noch mit dem Generalnenner seiner Koeffi- 

zienten, so erhält man das gesuchte Polynom mit ganzen rationalen Koeffi- 

zienten. Seine Nullstelle r ist also eine algebraische Zahl. 

11. Resultanten. Schon auf S. 33 haben wir im Euklidischen Teiler- 

verfahren ein Mittel kennengelernt, um festzustellen, ob zwei gegebene 

Polynome einen gemeinsamen Teiler und damit auch, ob sie gemeinsame 

Nullstellen besitzen. Die Theorie der symmetrischen Funktionen lehrt ein 

weiteres Kriterium. Sind nämlich A(x) und B(x) zwei Polynome, deren 

höchste Potenzen den Koeffizienten 1 besitzen, und sind @,...«, die 

Wurzeln von A,ß}....ß„ die Wurzeln von B, so ist 

AB)AB) .-- ABm) = (-MrrBla)... Ban); 
wie man sofort aus der Linearfaktorzerlegung ersieht./ Jedes der beiden 
Produkte nennt man Resultante von A und B. Ihr Verschwinden ist 
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die notwendige und hinreichende Bedingung dafür, daß A und B gemein- 

same Nullstellen besitzen. Die Resultante 
ien 

i=m } mn” ee 

R=JJA(ß) =fFf Ir IR 
i=1 A=] 

ist eine symmetrische Funktion der und natürlich auch der «. Zu ihrer 

Berechnung kann man folgendes Verfahren einschlagen. Nehmen wir an, 

essein > m > (0, so gibt es zwei Polynome Q und R so, daß 

A OR 

und so, daß R, einen niedrigeren Grad hat als B. Dann ist 

i=m i=zm 

Rz IE (B) = UN R,(ß.). 

Ist R, konstant, so ist damit die Berechnung der Resultante schon er- 

ledigt; es ist ja dann R= R,”. Ist aber R, nicht konstant, so ist 

ITR,(ß,) die Resultante von Bund R,, so daß die Berechnung der Resul- 

tante von A und B auf die Berechnung der Resultante zweier Polynome 

niedrigeren Grades, nämlich B und R, reduziert ist. Man kann so durch 

Fortsetzung des Verfahrens zum Ziele kommen. 

12. Diskriminanten. Die Resultante eines Polynoms f(x) und seine Ab- 

geleiteten f’(x) nennt man Diskriminante von f(x). Ihr Verschwinden 

liefert die notwendige und hinreichende Bedingung für das Vorhandensein 

mehrfacher Wurzeln von f(x). Sind «,...«, die Wurzeln von f(x), und 

ist f(x) = 2° + a,2” "+ --- + Q„, So ist auch 

f(®) = Je — 4,) 

und la) >SH,® 5 ER 

#z123 

2 

wo Il;(£ — «,) aus II(« — «„) dadurch hervorgeht, daß man den Faktor 

x — a, streicht! Daher ist die Diskriminante ( Nero, Alyaben Y.163 
lc; =: -0,)-/: 0). ), (a, & 

a Te 
1) ® D-IIf@W=II Il - 

n(n—1) art { a re 
ee A2(—1) 2 k P. 9 a. Mk / 

6 (8-06, )( x, )(®, 1 

wo A= &; — (Or). ir: i i 7] Ber ee 
ı/ \ - Auf 

jo ER! i ) el Ge (0-0) (0-0 “ —+ 
/ f LH = MM . (&,-04) (0%) (= 9) 

7 a r (A, ni 
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Nun aber bemerkt man, daß 
n-i1 110419%@107 
—A 150,2...2.0% 

AN= 

1 Run 

Man ziehe nur die erste Zeile von allen folgenden ab. Dann wird 

1eı ah eg 2 » a: 

N n—1 = u) ea us et A et 
nl Ran... % ei = (0-4 |: ns b 

een 4 +0 x, + to 2 an 

# a Vs a 

= (0, — @,)(8s — %)...- (@ Awaa N Ar 

oa: an- un ae 
1b u dan 2 

= (9, — 0)... (&n — 0ı) . |. 

Ka De 

Man sieht die letzte Umformung ein, wenn man die «a,-fache vorletzte 

Kolonne von der letzten abzieht, wenn man ebenso alsdann die @,-fache 

vorvorletzte Kolonne von der vorletzten abzieht usw. Bei der nun ver- 

bleibenden Determinante nehme man wieder nacheinander alle Opera- 

N tionen vor, die an der Determinante A vorgenommen wurden. So kommt 

"| man zur Einsicht, daß A durch die Determinante dargestellt wird. Die 
var T. Mrsch | Diskriminante wird dann 

+4 
L Nelke| 

N 2 DS Auluilers fe we Ü “ Luf { li O1 Busse a, z 1? wo Sj a) Sn-1 

(1) 1) EN . . . ie e ER 61 >} A N Sn 

—i Ian |Sn-ı1Sn - » - San-2 

Hier ist wieder) Yo) — = a se + af 

die k-te Potenzsumme. Man sieht die en ein, indem man bei der 

Determinantenmultiplikation)Kolonnen und Kolonnen multipliziert. 

Mit Hilfe der von $. 104 bekannten Newtonschen Relation zwischen 
vu: 

den Potenzsummen der Wurzeln 

tms tt: ti, —=0 

kann D als ganze homogene Funktion der Koeffizienten a berechnet 
werden. Man wird dabei in der Weise ‚verfahren, daß man die letzte 

abe ders mit a, multipliziert, GgSn_15 Agsn>.». Mittels der 
Relation? Dr RR, Fotengen zanen elefos die vorhergehenden 

vun anf 3) um 0 +1 
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Reihen mit a,,q,,... multipliziert, sodann zu der letzten addiert und 

diese Operation wiederholt. Z.B. fürn = 8 ist {« ob Ay uf Fon mund T) Io 

SR en 55 24 bg 

I a a — 245 —303 

Is, Sz Sa 15 Ss —Az5ı| 82 —AgSı —IAz — AzSı 

3a, 2a, | 309 2a, Ag 

—4y — 24, E =! — (41 — 24 — 3a; 

— A151 — 2A — Ays1— 3A — os) Ita: — 24949 Agdı— IAzdy Agdı 

34, 24, Og 

= 222 3a, | par lba00, Haie 
| N IAzdo + A>Qdı 2dıQs 

13. Verallgemeinerung. Die Determinantenformel 

| SE HH 

D = [I — &)? = 
i>k 

Sn-1*'"S2n-2 

ist nur das Glied einer Reihe von ähnlichen Formeln. Gehen wiır z. B. 

von der Matrix 
ern el 

661 0 0 On 

Pete 2 2 2 A, rc a 

ee Ei Kal 

aus. Multiplizieren wir diese nach Horizontalreihen mit sich selbst, so er- 

halten wir die Determinante 

An 

SPbSNHNIS, 

SS es 

Sp-1°% + +» » Sak-2 
GER 

Diese so erhaltene Determinante ist aber (nach (2,3,3)) Aston der Summe 
der Quadrate aller Determinanten, die sich aus je k Vertikalreihen der 

Matrix A, bilden lassen. 
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Es ist somit, für irgendeine Zahl k<n, 

Let: IT m 
So S1- ++» Sk-ı 

0 1023 3 

SSR 2 
Se . 2a Bag 

23) a1 gb-1 ak-1 SER, 

(9) = 4-9 (4 m). . (ri ar). 

Hierin bezeichnet s,; immer die i-te Potenzsumme der n Wurzeln 

C1,@gy...,@,; die Summe auf der rechten Seite erstreckt sich auf alle 

Kombinationen der n Wurzeln zu je k. So ist z. B. 
un Aah = 

nr (= 06%) |50 51 | eh 
ı 1% 

PAR, i 6 So Sı Sy | 5 e 

(a 2 
ed fo a Ru Pl. 108g 

.[n- 4) ne 

51 52 53, = I(aı — 92)’ (aı — 95)’ (a (a, — 95)” us. > 
| 2) dur amd PA | bt Pe | 7 er ko Ay -Aur -h ‚da ie 

| malte +1[n-2) = n-m- Dada en 

14. Berechnung der Diskriminante in einigen besonderen Fällen. De 

Diskriminante(1) von $.118 ist in bezug auf jedes «, vom Grade 2(n — 1)? 

Sie ist weiter als Funktion aller «; vom Grade n(n — 1)! Drückt man sie 

also durch die elementarsymmetrischen Funktionen aus, so wird sie nach 

T.109 (3,1,7) vom Grade 2(n —1) "und vom Gewicht n(n — 1);) 4 

So wird für die Gleichung zweiten Grades #\!aA,tA,7 At Zp=t In) « 

2 +2 +0, FORD ELDER LE Pr sptäyAate. 

: | 

= (4, — 0)? = a, —40,. au in ) 
0 . + . bla I1.!.3-1)-N 

Für die Gleichung dritten Grades UP 
Y) »/>-1)=6b 

+ ,0®°+0rt +4; 
a 4 a 7 x 
ist D vom Grade 4 und vom Gewicht 6. Daher ist D von der Form 

5 2 
D= Aa: + Ba,a,a, + Ca,a? + Da? + Eada? 

Die et der A, B... gelingt durch Anwendung auf konkrete 

Beispiele®)'Man findet b) Re; rt 
Me: 

D=--2a+ ee 1a, An ta. hd 0009 
3 " Kr 37 6b fe v04 

Liegt insbesondere die Gleichung PR -T 4,0 4,= —3 6 

> +GE+A —=O D= Hastamı DE nal ee 
vor, int also a, = 0, so wird Aa Sn 
0 1)D: re rs Hort - 3hÄA- I ER 

FRE ur Vom 3 > 
Ara A Ag: ER K k .D= — 210 — 4a). Azıtrrro>1 R 

Be. Rp 
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Zweites Kapitel. 

Die Transformation von Gleiehungen. 

1. Beseitigung des zweiten Gliedes. Unter Transformation einerGleichung 

verstehen wir die Operation, durch welche wir aus einer gegebenen Glei- 

chung eine andere ableiten, deren Wurzeln in einer bestimmten algebrai- 

schen Beziehung zu den Wurzeln der gegebenen stehen. Wir haben die 

einfachsten dieser Transformationen schon früher $. 29 unmittelbar aus 

der Zerlegung einer ganzen Funktion in ihre linearen Faktoren geschlossen. 

So haben wir gesehen, daß man sofort aus der gegebenen Gleichung eine 

andere ableiten kann, deren Wurzeln um k größer sind. Man hat zu diesem 

Zwecke nur > u Vflx)= Y= S/art/x +al: 
y=ı+k aso =y-—k, tx-a) (X- be6, nt 

zu setzen. Ist also die Gleichung gegeben | F/K- R) a (a +R), f- N x =/ br 

(X) = X" + a ar 14,0? +. +, —h, 

so genügt die neue Variable y der Gleichung 

fy—h) = a(y— hr + a (y— Art + a (y— hr? +... 
oder, nach Potenzen von y geordnet, 

| 
+) — (n—1)a, 

+43 

Die Wurzelwerte dieser Gleichung in y sind um k größer als die Wurzel- 

werte der Gleichung in x. Wir können nun k so bestimmen, daß ein Koeffi- 

zient der Gleichung verschwindet. Am einfachsten ist es, den Koeffizienten 

von y"-1! verschwinden zu machen, da derselbe linear in k ist. 

also_ a a ae 
Ki —— — - 

. DO = Yy PO 4 

Ay" — nayk | yr- az se a ) a, y"T insel 

a 
| 

so geht die Gleichung f(x) = 0 über in eine Gleichung der Form 

U 2 en Ye 

in welcher das Glied in y”-! fehlt, und welche mithin die Eigenschaft hat, 

daß die Summe ihrer Wurzeln = 0 ist. 

Diese einfache Transformation findet sehr häufig Anwendung, um ge- 

wisse Rechnungen zu vereinfachen. Wenden wir sie an auf die Gleichung 

vom zweiten Grade 
++ =(, 
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so führt sie sogleich zur Auflösung der Gleichung. Es ist hier zu setzen 
/y-83 En 

. Dann wird „Ao/Y re 1-7 /rAr, = = Y- 5, 28 

0%? eo . +%=0 

ee ai — 84249 
Y An  * 

— 0, + Val —Aasa, 
2do 

also, wie bekannt, = 

2. Tschirnhaus-Transformation. Tschirnhaus hat eine Methode an- 

gegeben, eine Gleichung so zu transformieren, daß mehrere Glieder zu- 

gleich aus derselben verschwinden.!) Es sei 

(1) ar Ha, zit. ..-+,= 

die gegebene Gleichung. Transformieren wir dieselbe, indem wir 

af A Pe AA E- rn A = 0 
setzen, so kann man, wie wir Aa RG in der Po in y das Glied 

A 
in y”-1 verschwinden machen; man hat hierzu nur = — zu nehmen. 

1 

Die Tschirnhaussche Methode besteht nun in einer Verallgemeine- 

rung dieser Substitution, indem man die neue Variable y an x durch die 
Relation 

(2) y=A+A,2 +4,22: -- +A,ar 

gebunden annimmt. Es handelt sich darum, die Gleichung in y darzu- 
stellen. Da jedem der n Werte von x ein Wert von y entspricht, so hat y 
ebenfalls n Werte 31, %5,... y„, und die gesuchte Gleichung ist ebenfalls 
von n-ten Grade, nämlich 

Yay)ıy %... Wen 0 oder 

(8) UT my Dune 

wo pı =—- 2, P2 = ZYyıYa, 

Um nun die Koeffizienten p zu berechnen, bilde man aus (2) die zweite, 
dritte, .... n-te Potenz von y und bemerke, daß eine ganze Funktion einer 
Wurzel der Gleichung (1), wenn sie vom n-ten oder höheren Grade ist, 

1) Acta eruditorum. Leipzig 1683. 
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Yo I TRT, & : Sn ; , 

immer auf den (n— 1)-ten Grad reduzierbar ist/(weshalb auch r immer 

< n sein wird); wir erhalten so: 

IZAFARH Am hm Az! 
y>=B+ Bin + Ba? +... + B,_,ar-t 

(4) P=0+Ca+ 0,24... +0,.,0r-1 

"=G + + Ga +... 4,1087, 
wo die B homogen vom zweiten Grade, die Ü homogen vom dritten Grade 

in den Koeffizienten A sind usf. Zugleich enthalten sie rational die Koeffi- 

zienten der Gleichung (1). 

Diese Gleichungen (4) gelten für jede Wurzel der Gleichung (1). Be- 

zeichnet man die Potenzsummen der Wurzeln &x? mit s, und die Potenz- 

summen der entsprechenden Werte von y mit o,, so erhält man die Glei- 

chungen nis A ee ads 

og=nB+ Bsı + Bas, ++ Ba-15n-1 

Da sich die s, mittels der Newtonschen Formeln aus den a berechnen 

lassen, so sind auch die o, bekannt, und man kann dann aus diesen wieder 

mittels der Newtonschen Formeln die Koeffizienten p berechnen. Es 

ergibt sich nämlich aus denselben {“ MRLLERTNZ) ;; 

Oz 

%=Ppi —2P: 

0% =—P} +3PıP2 — 9P3 

ltalts in tler Zreth)  I35 Felkie 

Da o, ein homogener Ausdruck ?-ten Grades in den A ist, so ersieht man, 

daß auch p, eine homogene Funktion s-ten Grades in den A ist. 

Ist so die Gleichung (3) in y gefunden und ist ihre Auflösung gelungen, _ 

so kann man nach dem Verfahren des größten gemeinsamen Teilers, die 0.3 

zu einer ihrer Wurzeln gehörige Wurzel x ermitteln. Denn dann müssen ja 

nat, =0 

und y—A— Az... A, = 

eine gemeinsame Wurzel haben, und zwar nur eine, wenn man annimmt, 

daß (3) keine mehrfachen Wurzeln hat. 
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3. Beispiele. Mittels dieser Transformation kann man nun, da die Koeffi- 

zienten A willkürlich sind, hoffen, r Koeffizienten der Gleichung in y ver- 

schwinden zu machen. Will man z. B. die Glieder y*-! bis yr-” zum Ver- 

schwinden bringen, so muß man setzen 

pr = mp=0...mr—0, 

und aus diesen homogenen Gleichungen in den A, A,,... 4A, vom Grade 

1,2,...r müßte das Verhältnis dieser Größen berechnet werden. 

Die Gleichung dritten Grades läßt sich auf diese Weise auf die Auf- 

lösung einer Gleichung zweiten Grades zurückführen durch die Substi- 

tution A 

Man hat dazu in der transformierten Gleichung pı = 0, p, = 0 zu setzen, 

also eine quadratische Gleichung zur Bestimmung der A zu lösen Dann 

reduziert sich die Gleichung (3) auf 

Ya Ds), 

woraus sich durch Wurzelausziehen die drei Werte von y ergeben. Die 

entsprechenden Werte von & finden wir aus den Gleichungen (4) 

y=4A+A,2+ 4,2? 

P=b OB.22ıh.0 

durch Wegschaffung von x? in der Form 

T=gtrmYy rg. 
Ebenso liefert diese Methode auch eine Auflösung der Gleichung vierten 

Grades mittels der Substitution 

y=4A+ 4, + 4,28, 

indem man in der Gleichung in y die Koeffizienten p, und p, zu Null macht. 
Die Auflösung dieses Systems führt zu einer Gleichung dritten Grades in 
den A. Dann wird die Gleichung (3) in y von der Form 

Y+tpy+pm=0, 
deren Auflösung, wenn man y?=z setzt, auf die einer quadratischen 
Gleichung sich reduziert. 

Immer kann man bei einer Gleichung von beliebigem Grade 
nach der Methode von Tschirnhaus das zweite und dritte 
Glied mittels der Auflösung einer Gleichung zweiten Grades 
wegschaffen. Aber um mehr Glieder wegzuschaffen, hat man im all- 
gemeinen eine Gleichung von höherem Grade als die vorgelegte aufzulösen. 
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4. Jerrards Transformation. Indessen hat der englische Mathematiker 

Jerrard gezeigt!), daß man immer das zweite, dritte und vierte Glied 

mittels der Auflösung quadratischer Gleichungen und einer Gleiehung 

dritten Grades wegschaffen kann, indem man die Substitution 

y=4A+A,2 +4,22 +4,20? + A, 

anwendet, in welcher man eine überschüssige Konstante A hat, die dazu 

dient, durch passende Verwendung die Gleichung sechsten Grades, auf 

welche das System der Gleichungen p, = 0, p, = 0, p, = 0 führt, zu ver- 

meiden.?) 

Man kann hierzu folgenden Weg einschlagen (Serret, Alg. Sup. I 4 

ed. p. 429). Zunächst erinnern wir daran, daß eine homogene quadratische , 232 

Funktion von n Variablen x&,,&,... x, Immer in eine Summe von 

Quadraten umgesetzt werden kann (vgl. (2,4, 6)). 
Dies wenden wir auf die Aufgabe an, mittels der Substitution 

y=4A+ 4,2 + 4,0? + 4,0%? + Aut 

in der Gleichung (3) zugleich p,, Ps, ps zum Verschwinden zu bringen. 

Mittels der linearen Gleichung p, = 0 entferne man ein A aus den Glei- 

chungen p5 = 0, p3 = 0; dieselben enthalten sodann noch vier Koeffi- 

zienten A. Die Gleichung p, = 0 bringe man sodann auf die Form 

„RP +%Pı4P=0, 

wo die P lineare Funktionen der A und die A von A unabhängig sind. Nun 

bestimme man die A so, daß 

u ern e0, BPFHANP=( 

wird. Diese zwei Gleichungen sind erfüllt, wenn die linearen Gleichungen 

VYhPı=V—- AP, VhP;=YV— AP, 
erfüllt sind. Man bestimme daher aus denselben A, und A, und substi- 

tuiere sie in 9, = 0; so hat man eine Gleichung dritten Grades homogen in 

Asa, A,. Eine dieser Konstanten kann man beliebig wählen, dann sind 

die andern A sämtlich bestimmt. 

1) Mathematical Researches Part II (1834). Geschichtliches s. F. Klein, „Über 
das Ikosaeder‘‘ (1884), II. Abschnitt, S. 142. 

2) Das Verfahren läßt sich nicht anwenden auf eine Gleichung vom 4. Grade, da 
die allgemeinste rationale Funktion einer Wurzel der Gleichung vierten Grades 

y=A+ A,c+ 4,22+ 4;2° 

ist, also obige Form für y nur scheinbar eine überschüssige Konstante enthielte. Man 
kann daher auch die Gleichung vierten Grades mittels dieser Methode nicht auf die 
Form z-+ p = 0 reduzieren. 
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Man sieht, daß man auf dieselbe Weise p,, ps und p, verschwinden 

machen kann, mittels der Auflösung einer Gleichung vom vierten Grade. 

Mittels dieser Methode läßt sich mithin eine Gleichung fünften Grades 
auf die Form 

Y+pRYy+tm—0 

oder auch auf die Form P-+-py --9, = 0 

bringen. Man kann dann noch, indem man y = oe setzt und o passend 
bestimmt, einen der Koeffizienten auf die Einheit reduzieren, so daß die 
erste Gleichung ee 

wird, also nur noch einen Parameter q enthält. Eine Auflösung der 
Gleichung ist damit jedoch nicht gegeben. 

5. Verallgemeinerung. Wäre nun die allgemeine Aufgabe gestellt, aus der 
Gleichung f(x) = 0 eine andere abzuleiten, deren Wurzeln y rationale 
Funktionen der einzelnen Wurzeln x sind, so hätte man zwischen x und Yy 
eine Relation derart 

M ya)’ 
wo p und y rationale ganze Funktionen. 

Nun haben wir aber gesehen, daß, wenn f(z) = 0 vom n-ten Grade ist, 
jede rationale Funktion eines Wurzelwertes x der Gleichung ersetzt 
werden kann durch eine ganze Funktion (n — 1)-ten (oder niedrigeren) 
Grades. Berechnen wir diese ganze Funktion (3,1, 8), so ist die Relation 
ersetzt durch eine Beziehung von der Form 

(2) Art Aha + Am Id 

und man ersieht, daß die Herstellung der Gleichung in y auf die Tschirn- 
haussche Transformation hinauskommt. 

Man kann aber auch aus einer gegebenen Gleichung f(x) = 0 eine andere 
ableiten, welche die Werte einer rationalen Funktion von mehreren Wur- 
zeln der gegebenen Gleichung zu Wurzeln hat. Sei f(x) vom n-ten Grad 
und es seien &,,@,,...«, die Wurzeln der Gleichung f(x) = 0. Ferner sei 

(3) Yız Ol ae) 

eine ganze Funktion von k Wurzeln «. Es handelt sich dann darum, die 
Gleichung in y aufzustellen, deren Wurzeln die Werte sind, welche & 
annimmt, wenn man darin k Wurzeln « in beliebiger Ordnung einsetzt. 
Da dien Wurzeln « Ben es a Bu) Kombinationen zulassen und ( 1.2.83 

TA. 

m 
K 
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in jeder Kombination die @« auf 1-2...% Weisen permutiert werden 

können, so gibt es im allgemeinen 

nn—1)n—2)...n—k+1) 

verschiedene Werte der Funktion o, d.h. so viele, als es Variationen 

'k-ter Klasse ohne Wiederholung von n Elementen gibt. Jenach der Natur 

der Funktion kann aber auch diese Anzahl eine weit geringere sein. 

Nehmen wir an, sie seiu und Yı, Ya, . . . Y, seien die u Werte von p; dann 

ist die Gleichung in y, welche diese Werte zu Wurzeln hat, 

Y-y)Yy—y)...Yy-y)—d oder 

(4) u ON en, 
wo Gy typt+y=2Yyı 

+9 = yıy + = Zyıya 

— (0; = ZyıYyaYs 

— C, = YıYyaysa ee Yı- 

Nun sind diese Koeffizienten C symmetrische Funktionen der Werte 

Yı> Ya» -- Y„. Bei einer beliebigen Vertauschung der « vertauschen sich 

aber nur die %,, 45, ... y, nach der Voraussetzung. Also ändern sich die 

Koeffizienten C nicht bei einer Vertauschung der « und sind mithin selbst 

symmetrische Funktionen derselben, welche direkt aus den Koeffizienten 

von f(x) berechnet werden können. Die Methode bleibt übrigens die- 

selbe, wenn g alle Wurzeln enthält (k = n) oder nur eine (k=]). 

Beispiel 1. Um dies an einem sehr einfachen Falle zu erläutern, sei 

die Gleichung dritten Grades gegeben: 

I)= Hu? +? ++, =0, 

die Wurzeln derselben seien «, BY; man sucht die Gleichung, deren 

Wurzeln die Produkte von a, ß,y zu je zweien sind. Hier ist also 

y=»(a,P) = aß. 

Die Anzahl der Variationen ist 3-2 = 6. Da aber je zwei Produkte aß 

und fa immer gleich sind, reduziert sich die Anzahl der verschiedenen 

Werte von g auf drei: 

Yyı=aß,Yy=ay,Y=Py, 

und die Gleichung in y wird wieder vom dritten Grade: 

yP+oyP+Oy+G=0. 
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Nun ist -G,=-ytyp+%-aßtay+br= 

+0, = Yıya + Yıya+ Yays = By + aß?y + apy? 
A1Qz 

F a ne 
2 

ur} — 0, = Yyıyıla = Apry! — 

Die gesuchte Gleichung ist mithin 

ay— 1 Y + a y—az —0. 

Diese Gleichung erhält man übrigens auch unmittelbar, wenn man be- 

merkt, daß n 
aßy =—— 

Die drei Werte von y sind also gegeben durch die Gleichurg 

e on al 

Ye? 

wenn x eine Wurzel der gegebenen Gleichung ist. Setzt man mithin in 

derselben ae 
= — :-— TE 

so erhält man die Endgleichung in y. \ 

Beispiel 2. Setzen wir 

y=-plaPß)=a+2ß, 
so gibt es sechs Variationen der Wurzeln, 

a+2ß,ß+20; a +2y,y+2a; B+2y,y-+2B, 

und die Gleichung in y wird vom sechsten Grade. 



Vierter Abschnitt. 

Numerische Auflösung der Gleichungen. 

Erstes Kapitel. 

Näherungsweise Ermittlung der reellen Wurzeln. 

1. Obere Schranke der Wurzeln. Es sei eine algebraische Gleichung mit 
reellen Koeffizienten vorgelegt: 

(1) ar La,ar +... + 0,=|. 

Zuerst fragen wir nach den Grenzen, zwischen welchen die reellen 

Wurzeln liegen müssen, wenn die Gleichung überhaupt solche besitzt. 

Nun haben wir schon in (1, 3, 1) gefunden, daß, wenn h der größte der 

absoluten Werte der Koeffizienten der Gleichung (1) ist, der absolute 

Wert von x” größer ist als der absolute Wert der Summe aller übrigen 
Glieder, wenn |x]| 21 -+ h. Es liegen also alle (reellen und komplexen) ar 

Wurzeln der Gleichung in dem Kreis |x] < 1 + h der Zahlenebene. in 

nn innen 

ten negativen Koeffizienten ist, x” jedenfalls größer ist als die Summe 

der negativen Glieder der Gleichung, sowie x den Wert 1+H erreicht. 

Für jeden Wert von x, der diese Zahl überschreitet, hat das Gleichungs- 
polynom f(x) folglich einen positiven Wert, und es ist mithin 

(2) s=-1+H 

eine obere Grenze der positiven Wurzeln. 

Diese Grenze ist jedoch meistens viel zu hoch. Wenn nicht schon a, 

negativ ist, läßt sich durch dieselbe Überlegung, die zu dem eben ge- 

nannten Ergebnis führte, eine niedrigere Grenze finden. Ist nämlich a, 

der erste negative Koeffizient und wieder H der absolute Betrag des ab- 
Bieberbach, Algebra. 9 



130 Erstes Kapitel: Näherungsweise Ermittlung der reellen Wurzeln 

solut größten negativen Koeffizienten, so wird f(x) jedenfalls 2 posi- 

tiven Wert erhalten, wenn x so bestimmt wird, daß RI: g a 

an 5 H (art + gr-i-lt...+]) Y- 1 

an TL—T 
N — oder also eh 

Dieser az wird (x > 1 vorausgesetzt) genügt, wenn 

ENT i+1 

NEN: —, mithin lc —-1)>H 

genommen wird, und um so er wenn 

(1) U(c—1))SH,dı (a HH 

gesetzt wird, woraus gSE1+VEi Es ist mithin auch 

(3) j = 1 a yH 

eine obere Schranke der positiven 'n Wurzeln. 

2.Cauchys Methode. Eine andere Regel hat Cauchy gegeben. Es seien 

A,,Qs,Qy,... die absoluten Beträge ‚der negativen Koeffizienten in f(x) 

und k die Ash derselben. Dann gibt die größte der Zahlen 

1 1 1 

(4) (k0,) yulka,)*, (Ka) 

eine obere Schranke der positiven Wurzeln. 

Denn ist g eine Zahl größer als die Zahlen (4), so ist 

9° >%0,,0. Kka,,0 ua 

folglich 7 ka, 7,0" > 10,003, Gerz. ge en 

und, wenn man diese Ungleichheiten addiert und bemerkt, daß k die An- 

zahl derselben ist, so folgt 
g” >= a,g"=" + SOSE En a,g%-8 4 iele 

Es wird mithin für & = g das erste Glied in f(x) größer als die Summe aller 

negativen Glieder. g ist daher eine obere Schranke der positiven Wurzeln. 

3. Newtons Methode. Eine wesentlich andere Methode, eine obere 

Schranke der positiven Wurzeln zu bestimmen, hat Newton angegeben. 

Ist f(x) = 0 die gegebene u: (1) und setzen wir 2=y-+ a, so 
geht dieselbe über in ( HI 16) 

url) + vH Dr EN pri yr= 0, 
Bestimmt man nun eine positive Zahl « so, daß alle Polynome 

(5) fo, (9. 
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positiv werden, so ist dieses @ eine obere Schranke der positiven Wurzeln. 
Denn wenn alle Koeffizienten der Gleichung in y positiv sind, kann die- 

selbe durch keinen positiven Wert von y erfüllt werden, und folglich kann 

auch © = y + «den Wert « für keine Wurzel von (1) nicht erreichen. 

4. Untere Schranke der reellen Wurzeln. Auf dieselbe Weise, wie wir eine 

obere Schranke der positiven Wurzeln bestimmen können, läßt sich auch 

eine untere Schranke der negativen Wurzeln bestimmen, d.i. eine negative 

Zahl, über welche hinaus keine negative Wurzel liegen kann. Man hat 
hierzu nur in der Gleichung — «statt x zu setzen. Eine obere Schranke der 

positiven Wurzeln der Gleichung f(— x) = 0 ist offenbar eine untere 

Schranke der negativen Wurzeln der Gleichung f(x) = 0. 

Man könnte mit denselben Mitteln auch eine untere Schranke der posi- 

tiven und eine obere Schranke der negativen Wurzeln, d.i.eine positive Zahl 

kleiner als die kleinste positive Wurzel, oder eine negative Zahl absolut 

kleiner als die kleinste negative Wurzeln, auffinden. Man hat zu diesem 

Zwecke nur aus der Gleichung f(x) = 0 die Gleichungen r(-) = 0) oder 

r- =) —=(0 zu bilden und für diese eine obere Grenze der positiven 

Wurzeln zu ermitteln. 

Beispiel. Es sei gegeben 

f&) = # — #2 —92° + 108° —-112+9=(0. 

Hier liefert (2) und (8) dieselbe Schranke der positiven Wurzeln, nämlich 

1+11=12. 

Die Cauchysche Regel (4) gibt, dak = 3, die größte der drei Zahlen 

971.78.9, V3-1l, 

d.i. BED 

also 5,2 als obere Schranke der positiven Wurzeln. 

Nach dem Newtonschen Verfahren (5) haben wir zu bilden: 

I) = — 2:— 92° +10 — 112 +9 

fa) It 4° —- 21.2 +207r—11 

— 102° — 62° — 27.2 +10 

g* 
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und eine Zahl x zu suchen, für welche alle diese Polynome einen positiven 

Wert annehmen. Man findet leicht, daß x = 4 dieser Bedingung genügt, 

also ist x = 4 eine obere Schranke. 

Um eine untere Schranke der negativen Wurzeln zu finden, suchen wir 
u p SEHE a 

eine obere Schranke der positiven Wurzeln von !/y- x -x + x roxX"+/fy4I=0, 

I )= 08 + M-9- 10 —-112—9. 

Die Formel (3) gibt IV 

Die Cauchysche Regel (4) gibt die höhere Schranke 6 als größte der Zahlen 

ne) 4:9, Y4-10, Y4-11, Y4-9. 

Man kann bemerken, daß man oft durch passende Zusammenfassung 

der Glieder von f(x) sofort eine obere Schranke der Wurzeln ersehen kann. 

Schreibt man z. B. die obige Gleichung in der Form 

(2 — 2 —-9N)+102r(c —H)+9I9=0, 

so bemerkt man sogleich, daß für x > 4 die beiden Klammerausdrücke 

positiv sind und folglich x = 4 eine obere Schranke der positiven Wur- 

zeln ist. 

Wollteman auch eine untere Schranke der positiven Wurzeln bestimmen, 

so hätte man die Gleichung 

der 2 — Nr +22 — 2 —Ire+4=0 

zu bilden. Eine obere Schranke der positiven Wurzeln ist hier 2, folglich ist 

x= 3 eine untere Schranke der positiven Wurzeln der vorgelegten Gleichung 

fd) =. 
5. Prinzip der Vorzeichen. Um die reellen Wurzeln einer Gleichung, die 

wir uns von mehrfachen Wurzeln befreit denken, aufzufinden, kann man 
zunächst Schranken für die einzelnen reellen Wurzeln der Gleichung auf- 
suchen, ein Verfahren, welches man das „Lrennen“ der Wurzeln nennt. 
Hierzu kann folgende einfache Überlegung dienen. Da die ie Koeffizienten 
der Gleichung als reell vorausgesetzt werden, so zerlegt sich das Gleichungs- 
polynom f(x) in n lineare Faktoren © — 0,2—ß,2—Yy,..., die den reellen 
Wurzeln «a, ß,y,... entsprechen, und in reelle een: Faktoren von 
der Form (x — a)? + b2, welche einem Paar konjugiert imaginärer Wur- 
zeln a + bi entsprechen!) Läßt man nun x reelle Werte durchlaufen, so 
ändern diese quadratische Faktoren ihr Zeichen nicht, da sie für keinen 
reellen Wert von x Null werden, hingegen wird, wenn x einen reellen 
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Wurzelwert « überschreitet, der entsprechende Faktor 2 — a und folglich 
auch f(x) das Zeichen ändern. Hieraus folgt: 

Sind p und q reelle Zahlen und haben f(p) und f(g) ver- 
schiedene Zeichen, so liegt zwischen p und q jedenfalls eine 

reelle Wurzel der Gleichung f(x) =0, oder um eine gerade 

Anzahl mehr; haben aber f(p) und f(g) gleiches Zeichen, so 

liegt zwischen p und q entweder keine Wurzel oder eine ge- 

rade Anzahl derselben. 

Übrigens folgt dies Ergebnis sofort auch aus der von 8.17 her bekannten 

Stetigkeit des Polynoms f(x) als Funktion x. Denn ein bekannter Satz 

über stetige Funktionen!) besagt, daß zwischen zwei Stellen p und q, wo 

/(p) und f(q) verschiedene Vorzeichen besitzen, eine ungerade Zahl von 

Nullstellen von f(x) liegt. 

Aus dem eben gewonnenen Resultat ergeben sich einige weitere Sätze: 

Eine Gleichung ungeraden Grades hat immer mindestens 

eine reelle Wurzel, deren Zeichen dem Zeichen des konstan- 

ten Gliedes entgegengesetzt ist. 

Ist nämlich in der Gleichung 

Ko=ar +. +0, 
a„ negativ, so ist f(0) = a, negativ, setzt man aber für x einen hinreichend 

großen positiven Wert ein, so ist f(x) nach 8. 14 positiv. Ist hingegen’a,, 

positiv und n ungerade, so wird f(x), wenn man darin einen hinreichend 

hohen negativen Wert von x einsetzt, selbst negativ, während f(0) = a, 

_ positiv ist. Die Gleichung hat also en Q negativ, eine ‚positive, / 

/ wenn a, positiv, eine negative Wurzel. PR m ) 

Eine Gleichung geraden Grades, de konstantes Glied 

negativ ist, hat jedenfalls eine positive und eine negative 

Wurzel. dei 

Denn ist n gerade, so hat f(x) für hinreichend große positive/oder)nega- 

tive Werte von x das positive Zeichen, während f(0) = a, negativ ist. 

er! 

6. Trennung der Wurzeln. Um nun aber obigen Satz zum Trennen der 

reellen Wurzeln zu verwenden, wird man in das Gleichungspolynom f(x) 

für x eine Reihe von Werten, etwa die ganzen Zahlen, welche innerhalb 

der Grenzen der Wurzeln liegen, substituieren. Ein Zeichenwechsel in 

zwei aufeinanderfolgenden Substitutionsresultaten wird sodann das Vor- 

handensein von wenigstens einer reellen Wurzel zwischen den für x sub- 

stituierten Zahlen anzeigen. 

1) Vgl. z.B. Bieberbach, Leitfaden der Differentialrechnung. 3. Aufl. (1927) 

8.60. 
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Ist z. B. die Gleichung 

fa) =®R—-6r+2=0 

gegeben, so findet man sogleich, daß die Wurzeln zwischen + 3 liegen; 

wir berechnen demnach 

9) =+1,9) =-23,7)=-370)- 72 

(= HrHT ers NIT 

und ersehen hieraus, daß eine reelle Wurzel zwischen + 3 und + 2, eine 

zwischen + 1 und 0 und eine dritte zwischen — 2 und — 3 liegt. Die drei 

Wurzeln der Gleichung sind reell. 

Als zweites Beispiel nehmen wir die schon früher betrachtete Gleichung 

fa) =? "—92?+108—-112+9=0, 

deren Wurzeln zwischen + 4 liegen. Wir erhalten dann 

fd = + 317,78 =—-15, 72%) =-29, 71) =-170)=9, 

ft-1)= +37, 4-9 =-+%f(-3) = +51, f(-49 = — 49. 

Die Gleichung hat also jedenfalls eine reelle Wurzel zwischen + 4 und 

+ 3, eine zweite zwischen + 1 und 0, und eine dritte zwischen — 3 und 

—4. 

Man könnte nun die Wurzeln genauer bestimmen, indem man durch 

Einschalten neuer Werte von x die Grenzen enger zieht. So kann man in 

dem zweiten Beispiel, um die Wurzel zwischen + 1 und 0 genauer zu be- 

stimmen, & = # in f(x) einsetzen und erhält f($) = + 4,..., woraus zu 

ersehen, daß die Wurzel zwischen 1 und % liegt, usw. Auf diese Weise 

könnte man für jede der einzelnen Wurzeln einen hinreichend genäherten 

Wert finden, um mittels desselben nach später auseinanderzusetzenden 

Methoden die Wurzel mit beliebiger Genauigkeit berechnen zu können. 

7. Graphische Verfahren. Zur Auffindung von Näherungswerten für die 

Wurzeln, d.h. von möglichst engen Intervallen, in welchen mit Sicherheit 

Wurzeln liegen, bedient man sich jedoch mit Vorteil verschiedener zeich- 

nerischer Methoden, von denen wir jetzt einige auseinandersetzen wollen. 

Außer Betracht bleibe dabei, das allzu primitive Verfahren einer Auf- 

zeichnung der Kurve y = f(x) in reehtwinkligen Koordinaten durch Be- 

rechnung einiger Punkte (x, y) der Kurve und Verbindung derselben nach 

Augenmaß. Wenn auch dies Verfahren zu brauchbaren Ergebnissen führt, 

so wird es doch dadurch zu umständlich, daß die Rechenarbeit groß ist 

und zunächst die Werte von f(x) an Stellen liefert, die gar kein Interesse 
für die Auflösung der Gleichung bieten. 
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An die Spitze stelle ich ein Verfahren, das die geringsten Vorarbeiten 

und Hilfsmittel verlangt: das Lillsche Rechtwinkelverfahren. Zu 

seiner Darlegung beschreibe ich zunächst, wie man nach dem sog. Horner- 

schen Schema am raschesten den Wert y berechnet, den ein Polynom 

y= f(x) einem gegebenen Wert x zuordnet. Sei das Polynom 

y=f(&X) = a2" + a2"! + ..:+0,, 

so berechnet man erst a,%, fügt a, hinzu, multipliziert die so erhaltene 

Summe a,2 + a, wieder mit x, fügt a, hinzu usw. 

Folgendes Beispiel möge zeigen, wie man die Rechnung am besten 

schematisch anordnet. Es sei #— 22— 92°+102— 11x+9 für =4 
zu berechnen at A IHN 3 

1 23 
ÜL,X Ü, X dt Y+ Arblr 41,4 - ab, 

ea IO N Sao P-Bon re I) 

3 3 22 TI 

Dies Verfahren ist für die Verwendung des 

BRechenschiebers bequem, weil man dabei für 

jedes x nur eine Schieberstellung nötig hat. 

Das Verfahren ist aber auch für die graphische 

Rechnung bequem. Soll man nämlich eine H 

Zahl £ mit einer Zahl 7 multiplizieren, so wird 

man &n aus der Seen Figur 7 ablesen 

(ähnliche Dreiecke). 

Um auch die | richtig zu bekommen, wird man noch ver- 

abreden, daß positive € nach rechts, negative £ nach links, positive Ä 

nach oben, negative n nach unten 

abgetragen werden. Das Produkt wird Ei 

dann gleichfalls durch eine gerichtete | 

Strecke (Vektor) dargestellt, die im 1 

Endpunkt der & darstellenden Strecke = 

beginnt. Das Vorzeichen des Produktes 

ist dann positiv oder negativ, je nach- 
dem der das Produkt darstellende 

Vektor mit der positiven Achse der 

Figur gleich oder entgegengesetzt ge-- H 

richtet ist. Wir können diese Figur munzuEaG 

verwenden, um dem Hornerschen | Euun 

Schema entsprechend a,2 zu be- Fig.8. 
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stimmen. Wir wählen dazu &=qa,n= x. Es liegt nahe, in der Figur 

gleich a,x + a, zu bestimmen, indem man a, an den aux darstellenden 

Vektor anfügt. Es ist zweekmäßig, diese Anfügung am Fußpunkt des 

Vektors vorzunehmen. (Fig. 8.) 

Um nun wieder mit x zu multiplizieren, denken wir uns die Konstruk- 

tion von vorhin wiederholt, und dazu die Zeichenebene entgegen dem 

Uhrzeigersinn um 90° gedreht. Man erkennt, daß man zur Ausführung 

2 ZEBErTEBEOIDEIE 
BEDBERRT aIEZIEENREDRRaEB 

-} ZERREERIEREBEZIETEBESER 
[= QEABERERREETREEZETTEEH 

SEE NETTE 
ganaz ZZBRATEIEEEREZRDEOTENE 
ag BIXNSgEDDEO Ermaace 

Senzsiam 

a [Ey gaaa 
DELLITELTCCOLC, 

der Multiplikation (a,2 + a,)x nun auf OP im Punkte P ein Lot zu er- 
richten hat (ähnliche Dreiecke). (Fig.9.) Nun übersieht man schon, wie das 
Verfahren fortzusetzen ist. Als Gerippe desselben verzeichnet man sich in 
einem Rechtwinkelzug das Koeffizientenbild der Gleichung. Nach Wahl 
einer festen Längeneinheit trägt man Strecken von den Längen |a,|, 
|aı|, usw. aneinander an, derart, daß man beim Übergang zu der 
folgenden stets eine Drehung um 90° vornimmt Diese Drehung erfolgt 
im Uhrzeigersinn, wenn der folgende Koeffizient dasselbe Vorzeichen 
hat, wie der vorhergehende, erfolgt aber entgegen dem Uhrzeigersinn, 
wenn die beiden Koeffizienten verschiedene Vorzeichen besitzen. So 
sind die folgenden die Koeffizientenbilder der darunter geschriebenen 
Gleichungen. (Fig. 10a— 10f.) 

Wenn also ein Koeffizient Null ist, so entspricht ihm eine Strecke der 
Länge Null, und es ist einerlei, ob man die ihm entsprechende Drehung im 
oder gegen den Uhrzeigersinn vorgenommen denkt, wie der Vergleich 
von b, e, f lehrt. 
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BAR eakmzmaemnmemeafaen 
nras RazEarnaaamaagangeR 
anam HH HH HH 
|| ZEEERRERDODEDZEREITe® 
an nee) 
3 
| 
a 

= BEREEETERE = 
BEODTTEEmE |] 

ErIememaryEn [21 
11 
BE 

Fig. 10c. 

Die Bestimmung von 

y=22?+0—37 +3 

für 20,9 verläuft dannz.B. 

so. (Fig.11.) 

y ist hier positiv. Man über- 

sieht sofort, daß für x-Werte BEEENEER un 

größer als 0,9 noch größere HH] - Eu 
y-Werte herauskommen, daß HHH----HHTTEH - Be i SWETTLEFELDr ee = also jenseits 0,9 sicher keine EBENEN NEnEEnEnEnBEREnEnEEnNnE = 

zus u positiven Wurzeln der Glei- 

chung liegen. Die oben be- 

schriebenen Verfahren hätten Fig. 10e. 

sämtlich eine größere obere 

Schranke für die positiven 

Wurzeln ergeben. Hier sieht 

man sogar sofort die Möglich- 

keit einer weiteren Verkleine- 

rung der oberen Schranke 

der positiven Wurzeln. Man EEE Eu 

sieht auch bei weiterem Pro- +etrrer HH 

bieren nach dem Augenmaß, ee 

EEE HH 2 
HENENEREENEBEREENENENEEEREENDEREEEEN 
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daß positive Wurzeln bei 

. unserer Gleichung über- 

haupt nicht auftreten 

können. Dies wäre nur 

möglich, wenn der letzte 

Koeffizient statt 3 einen 

genügend kleinen posi- 

tiven — oder einen nega- 

tiven Wert hätte. Man 

sieht auch, daß zu ge- 

nügend kleinen positiven 

|Werten des letzten Koeffizienten zwei positive Wurzeln gehören, daß es 

einen möglichen Wert des letzten Koeffizienten gibt, wo diese beiden 

Wurzeln zusammenfallen. Für negative Wurzeln findet man aus dem 

Anblick der folgenden Figur 12 Aufschluß. 

Der Anblick lehrt deutlich, daß nur eine negative Wurzel vorhanden 

ist, die ungefähr bei x —= — 1,65 liegt. Man merkt bei Durchführung 
der Zeichnung deutlich, daß die Wurzel sicher zwischen — 1,6 und 
— 1,7 liegt. 

8. Kritisches. Der Wert solcher zeichnerischen Verfahren beruht in der 
Raschheit, mit der sie die Ausrechnung von f(x) für die einzelnen x-Werte 
gestatten. Man wird so sehr rasch auf recht enge Intervalle geführt, in 
denen allein die Wurzeln liegen können. Man wird aber nieht immer zur 
vollen Klarheit darüber gelangen, ob Wurzeln in dem verdächtigen Inter- 
vall wirklich liegen, und wieviele es sind, oder ob keine Wurzeln darin anzu- 
treffen sind. Man wird auch die auf Wurzeln verdächtigen Intervalle 
nicht aus der Zeichnung mit solcher Kleinheit ermitteln können, daß man 

- 71 

ass] EEE LER arm 
EEEERERERERESEEEREFEREEEEFREFEFERE 

Fig. 11. 

sagen kann, man he ie Oichunge FEEHEEEEETEETSEREEEEESSFEFFFEFESEEEFFFE) wurzein mit einer PR ee KEeFFEHEFH SBEBN \annEnanunEnnBanEEEnHBEEE L\BESEEBEE den gerade vorliegen- ENEEEKEENANENEE Eunnulunn EENHENEENA Es EINE! RER ee BERTENEENE den Bedürfnissen 1 — BEBN 
entsprechenden Ge- HH 
nauigkeit ermittelt. FEN 
Sind doch auch dem H-Y 

Maßstab, in d HH 2) 1 emman BEEB 
Bi eine Zeichnung aus- 

[1 
führen kann, Gren- FH ERREEEHESHERREEHE r er EH EEBEEELHEEEEEEEFEEEEEHEFEFFEREFE 
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Es bleiben daher weiter folgende Aufgaben zu lösen. 1. Wie kann man 

die Wurzeln wirklich trennen, d. h. Intervalle ermitteln, in denen ge- 

nau eine Wurzel liest. 2. Wie kann man bereits gefundene Näherungs- 

werte weiter so verbessern, daß die Wurzeln mit jeder erwünschten Ge- 

nauigkeit ermittelt sind. i 

Zur Lösung der ersten Aufgabe darf man sich nach früheren Ergebnissen 

aufGleichungen mit nur einfachen Wurzeln beschränken. Wenn man dann 

den Maximalwert d des absoluten Betrages der Differenz zweier reellen 

Wurzeln kennt, so ist man sicher, daß in einem Intervall der Länge d 

nur höchstens eine Wurzel liegen kann. Dies d ermittelt man dadurch, 

daß man diejenige Gleichung bestimmt, deren Wurzeln die Quadrate der 

Differenzen der Wurzeln der eigentlich zu untersuchenden Gleichung sind. 

Die Theorie der symmetrischen Funktionen lehrt, wie man diese Gleichung 

aufschreiben kann, ohne die Wurzeln selbst zu kennen. 

Ein anderes Verfahren zur Lösung der Aufgabe ist dieses: Man gibt ein 

allgemeines Verfahren an, die Anzahl der reellen Wurzeln in einem ge- 

gebenen Intervallzu ermitteln. Solche Verfahren werden wir bald (S. 146ff.) 

kennenlernen. Lehrt dann diese Methode, daß in einem wurzelverdäch- 

tigen Intervall wirklich mehrere Wurzeln liegen, so wird man das Inter- 

vall durch sukzessives Halbieren so zu zerlegen suchen, daß schließlich in 

jedem Teil nur noch eine Wurzel liegt. Bei Gleichungen ohne mehrfache 

Wurzeln muß man so — theoretisch — zum Ziel kommen. 

Zur Lösung der zweiten Aufgabe, Verbesserung der gefundenen 

Näherungen dienen verschiedene Verfahren, z. B. regula falsi oder New- 

tonsche Methode, die wir bald kennenlernen werden. 

9. Die Nomographie. Schließlich sei noch darauf hingewiesen, daß die 

Nomographie Hilfsmittel bereitstellt, die für gewisse oft vorkommende 

Gleiehungstypen die Näherungswerte der Wurzeln unmittelbar aus dem 

Nomogramm abzulesen gestatten. Die Nomographie liefert nämlich gra- 

phische Darstellungen des Funktionszusammenhangs zwischen den Koeffi- 

zienten und den Wurzeln der Gleichungen. Ich begnüge mich, als Bei- 

spiel das fertige Nomogramm der Gleichungen dritten Grades nebst Ge- 

brauchsanweisung hierherzusetzen. (Fig.13.) Die Tafel ist der Enzyclopädie 

der mathematischen Wissenschaften Bd. I S. 1044, Artikel Mehmke ent- 

nommen. 

Sie bezieht sich auf 2 -+am®+bır+c=(. 

Jedem c entspricht eine krumme Kurve. Die Werte von a und b liest 

man auf der vertikalen Achse ab. Jedem Wurzelwert entspricht eine der 
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mit Nummern versehenen Parallelen zu den Koordinatenachsen. Soll i 

z. B. die oben schon behandelte Gleichung Icc+x2=3 X +3: we Ex e 3 X + =D: 

x + 0,522 — 1,52 +0,75 '= 

gelöst werden, so verbindet man die Punkte a=0,5undb=—1,5 der Achsen 
durch eine gerade Linie. Diese bringt man mit der Kurve zum Schnitt, 
an der 0,75 steht. Durch die Schnittpunkte gehen Vertikalgeraden, an 
deren Enden die gesuchten Wurzeln angeschrieben sind. In der Tafel 
sind nur die positiven Wurzeln so unmittelbar abzulesen. Zur Bestim- 
mung der negativen suche man die positiven Wurzeln von 

x — 0,52? — 1,52 — 0,75 

auf. So wird man wieder zu dem früheren Ergebnis geführt. 

10.Verbesserung der Näherungswerte. HatmanzweiN äherungswertevon 
Gleichungswurzeln gefunden und wünscht man, bessere Werte der Wur- 
zeln zu gewinnen, als es diegraphischen Mittel erlauben, so kann man durch 
Probieren weiterkommen, indem man in passenden Punkten des Inter- 
valles, dem die Wurzel angehört, die Polynomwerte ermittelt, und sich 
wieder darauf stützt, daß in einem Intervall sicher dann Wurzeln liegen, 
wenn am Anfang und Ende das Polynom verschiedenes Vorzeichen hat. 
Ein solches Probieren wird man planvoll anlegen müssen, wenn es nicht 
unnötig viel Mühe verursachen soll. Der Gedanke an das Kurvenbild 
y = f(&) in rechtwinkligen Koordinaten legt es nahe, die Kurve in dem 
Intervall, in dem eine Wurzel gesucht wird, durch eine Sehne oder durch 
eine Tangente zu ersetzen. Die Approximation durch eine Sehne führt zur 
regula falsi, die durch eine Tangentezum NewtonschenVerfahren. (Fig. 14 
8. 142.) 

11. Die Regula falsi. Ist /(x) = 0 die zu lösende Gleichung und ist das Vor- 
zeichen von f(a,) ein anderes als das von /(a,), so liegen zwischen a, und Ge 
eine ungerade Zahl von Wurzeln von f(z). Die Gleichung der Sehne ZW. ,) 
schen den beiden Punkten a, , /(a,) und a,, f(a,) der Kurve y=f(e) ist alt 

\ 2: f(a2) — f(a,) 3 WE GE TI HT eo ea NVA Ben MEET, 
Der Gedanke der regula falsı ist es, den Schnittpunkt dieser Geraden mib\ >. y= 0, also )f(a,) 

N Ä hi - = (Ag TG) (Ch) 

= j a a (a1) — f(a,) 

als neuen Näherungswert einzuführen. Er ist auf alle Fälle besser, als der 
eine der beiden bisherigen. Es wird auch vernünftiger sein, ihn zu ver- 
wenden, als etwa den Mittelpunkt n “2, weil beider regula falsia, unda,. 
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Fig. 13. Tafel zur Auflösung vollständiger kubischer Gleichungen. 

Bieberbach, Algebra. 
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mit gewissen Gewichten behaftet sind und so berücksichtigt wird, in- 

wieweit /(a,) und f(a,) der Nullnahe kommen. 

Bei der Verwendung der regula falsi genügen ganz grobe Näherungen 

als Unterlage. 

Beispiel. Die Gleichung 

I))=-0°+2—5=0 

hat genau eine reelle Wurzel zwischen 1 und 2, wie man durch eine ganz 

oberflächliche Betrachtung des Lillschen Verfahrens erkennt. Um die- 

selbe besser zu bestimmen, setzen wir als erste Annahme 

Mala) 

a, = 2, }(a) = +5. 
Damit erhalten wir als einen der Wurzel näheren Wert 

a=14+ 2 ,-18. 

‘Wir nehmen der leichteren Rechnung wegen dafür 1,4 und setzen nun 

a, = 1,4, (1,4) = — 0,86 

ee en 
0,6. 0,86 Wil) 

Daraus berechnetsich x = 1,4 + OB 5 

Bei der noch rohen Annäherung nehmen wir 1,5 statt dieses Wertes von & 

und setzen De 

4; = 1,5, f(1,5) = — 0,125. 

Hiermit!) liefert die regula falsi 

= 1,5170. 

Nun sei 4=1,5, 1,5) = — 0,125 

= I»1T, 1519) = 20,008. 

Hieraus als neue Näherung z = 1,51598. 

Dieser Wert eingesetzt in f(x) gibt 

f(z) = — 0,000002. 

Der Wert x = 1,515979 gibt in die Gleichung eingesetzt 

f(x) = — 0,008. 

1) Eine etwas sorgfältigere Verwendung des Lillschen Verfahrens hätte erlaubt, 
erst hier weiter zu rechnen. 
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Der wahre Wurzelwert liegt also zwischen 

1,51598 und 1,516 

und könnte nun mittels dieser beiden Werte, für a, und a, genommen, 

leicht auf 10 Stellen genau berechnet werden. 

12. Die Newtonsche Näherungsmethode. Bei ihr wird die Kurve y=f(x) 

durch eine Tangente statt durch eine Sehne approximiert. Schon ein Blick 

r. . auf die beistehende Figur 14 
lehrt, daß man so nicht immer 

zu einem besseren Näherungs- 

wert gelangen wird. 

Während die Sehne, welche 

die Kurvenpunkte B, und B, 

verbindet, einen Näherungs- 

wert E für die Wurzel C lie- 

fert, der A, und A, verbessert, 

liefert die Tangente in B, 

zwar einen besseren Wert D, 

während aber die Tangente 

in B, einen schlechteren Wert 

vermittelt. 

y=f(a) + f(a)(®— 4) v 
Fig. 14. 

wird die Gleichung der Tangente. Ihr Schnitt mit der z-Achse liegt bei 

Ze. f (a1) 

Seren 
Dies ist also der neue Näherungswert der Newtonschen Methode. 

Beispiele. 1. Es sei wieder die Gleichung gegeben 

Id)=? +: -5=0. 

Wir nehmen a, = 1,5; dannist f(a,) = — 0,125, f (a) = 3a? +1 = 7,75. 

Oo Damit wird Elaee mn 1,5 + 0,016 = 1,516. 

2. Die Gleichung 

a) = —4rt +32 — a +90, 

hat, da ’)=-879)=—1}0)=+6,. 
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ist, eine Wurzel zwischen 1 und 2 und eine zwischen 2 und 8. Nehmen wir, 

um letztere zu berechnen, als Näherungswert a = 2,5, so ergibt sich 

f(a) = — 5,21, (a) = + 0,56 und damit 

ee ne =25 I, =118... 

Wir erhalten mithin für x einen Wert, der weit über die Grenzen der Wur- 

zeln hinausfällt. Um die Newtonsche Formel mit Sicherheit anzuwenden, 

müßte man von einem viel mehr genäherten Wert a ausgehen; ein solcher 

ist hier leicht zu ersehen; denn da f(2,5) = — 5,2, f(8) = + 6, so ist an- 

zunehmen, daß der wahre Wurzelwert etwa in der Mitte liegt, und man 

würde mithin von a = 2,75 ausgehen. 

Wir verzichten hier darauf, näher die Bedingungen aufzusuchen, die 

erfüllt sein müssen, wenn die Newtonsche Methode bessere Näherungs- 

werte liefern soll. In den Anwendunges hat man doch stets Intervalle zur 

Verfügung, in denen die Wurzeln liegen, und wird daher die regula falsi 

bevorzugen. Beim Newtonschen Verfahren bliebe ja doch immer die Frage 

noch zu beantworten, wie genau die gefundenen Näherungen sind. Sie 

wird ja eben durch Angabe eines Intervalles beantwortet, in dem eine 

Wurzel liegt. Das darüber hinausgehende Interesse an der Konvergenz 

des Newtonschen Verfahrens gilt keiner algebraischen Frage. Seine 

Befriedigung mag daher hier durch einen Literaturnachweis angebahnt 

werden: 

G. Faber, Über die Newtonsche Näherungsformel. Journal für die 

reine und angewandte Mathematik, Bd. 138 und Bd. 146. 

13. Methode von Lagrange. Eine weitere Methode, die Wurzeln einer Glei- 

chung durch sukzessive Annäherung zu bestimmen, hat Lagrange ge- 

geben. Er benutzt hierzu eine Kettenbruchentwicklung. 

Es seien a und a + 1 zwei aufeinanderfolgende ganze Zahlen, welche 

eine Wurzel, und zwar nur eine Wurzel der Gleichung f(z) = 0, ein-/ ‚„»y-ay 
v 

schließen. Man setzenunz=a-+ FE so wird die resultierende Gleichung N [ y-a)= 1 

in y, fı(y) = 0 eine positive Wurzel größer als 1 haben, und zwar nur eine, 4= —_, 

weil sonst f(x) = 0 gegen die Voraussetzung mehrere Wurzeln in dem 

Intervall a bis a + 1 besäße. 

Man kann daher durch Substitution von ganzen Zahlen bestimmen, 

zwischen welchen Zahlen dieser Wert von y liegt. Er liege zwischen den 

ganzen Zahlen b und b +1; dann setze man y=b+ n und bilde die 

Gleichung in z, f,(2) = 0. Diese Gleichung wird wieder eine, und nureine, 
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positive Wurzel haben, welche größer als 1 ist. = liege zwischen den gan- 

zen Zahlen ce undc +1. Man setzeez=c — und bilde die Gleichung 

in u, fs(u) = 0. Indem man auf diese Weise fortfährt, erhält man x aus- 

gedrückt durch einen Kettenbruch 

aha za Ein RE 
u d-+. 

welehen man so weit berechnen wird, bis die verlangte Genauigkeit er- 

reicht wird. Ist die Wurzel rational, so bricht der Kettenbruch von selbst 

ab. 

Als Beispiel berechnen wir die Wurzel der Gleichung 

fa) =? —-217—-5=(, 

welche zwischen 2 und 3 liegt. Setzt man in die Gleichung n-ten Grades 

e)=0,2=0+ y ein, so erhält man 

y 1 1m i\ = Bi 
fa+f GR ey Verena 

oder 

’ m Al [7 n= Kay +ry + lt ayrtt +) 0. 
In unserm Falle wird, wenn man =? + r setzt, die transformierte 

Gleichung 

hy) = yP 10% —6y—1=0. 

Diese Gleichung hat nur eine positive Wurzel; dieselbe liegt zwischen 

10 und 11. Wir setzennuny= 10 + = dann wird 

1.) = 612? — 42 —%02—1=0. 

Die positive Wurzel liegt zwischen 1 und 2. Fürz=1+ . wird 

fs(u) = 54u? + 23u? — 89u—61=0. 

Wieder liegt eine positive Wurzel zwischen 1 und 2. Fürru=1+ 22 

wird ; 

I.) = 71v? + 198302 — 1870, — 54 —=0. 

Eine Wurzel liegt zwischen 1 und 2. Fürv=1+ I wird 
w 

k(w) = 47w3 — 272 w — 33 vr —A1=0. 
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Eine Wurzel liegt zwischen 6 und 7. Bleiben wir hier stehen, so erhalten 
wir für x den Wert 

il 
| 

ren a 
a ga 2 

6-L., 

Hieraus ergeben sich die Näherungswerte 

9 21 23 44 67 446 — 9,09389. 

or 82 718 

Ist ne der s-te Näherungsbruch, so ist nach der Lehre von den Ketten- 
Sg 

brüchen ser Fehler, den man begeht, wenn man diesen Bruch statt x 

nimmt, <m ;. (Vgl. Anhang 8.317ff.) Der Fehler des letzten Näherungs- 

wertes in unserm Beispiel ist mithin < Sr oder kleiner als2 in der fünften 

Dezimale. 

Wir haben vorausgesetzt, daß zwischen a und a + 1 nur eine Wurzel 

der Gleichung f(x) = 0 liegt. Liegen aber z. B. zwei Wurzeln in diesem 

Intervall, so wird die Gleichung f, (y) = 0 zwei Wurzeln, positiv und größer 

als 1, enthalten. Liegen dieselben zwischen den ganzen Zahlen b und 

&+1,b’ undb’+1,so wird man, indemmany=b+ - setzt, auf dem 

angegebenen Wege die eine Wurzel erhalten, wennman abervon y=b’+ = 

ausgeht, die andere. kann aber auch in diesem Falle anders verfahren. 

Setzt man nämlich x = = 

sämtlich kmal so groß, und man kann nun k so wählen, daß in dieser 

Gleichung nicht zwei Werte von x’ zwischen zwei aufeinanderfolgende 

ganze Zahlen fallen. 

so werden die Wurzeln der Gleichung Ir z) =() 

Diese Lagrangesche Methode, so einfach in ihrem Prinzip, hat jedoch 

den großen Nachteil, daß die wiederholten Transformationen der Gleichung 

sehr ermüdend sind. 

Man wird daher im allgemeinen eine der vorigen Näherungsmethoden 

vorziehen.t) 

1) Es sei hier auf eine Arbeit von Vincent, in dem von Liouville gegründeten 
Journal de Math&matiques pures et appliqu6es, t.1. (1836) p. 341, aufmerksam ge- 
macht. Vincent beweist, daß, wenn man von irgendeiner Zahl a ausgehend die 

1 1 
Lagrangeschen Transformationen = a-+ Tl b+ Fi usf. macht, man not- 

wendig auf eine Gleichung kommen muß, welche entweder nur noch einen Zeichen- 
wechsel hat, oder aber gar keinen Zeichenwechsel, also auch keine positive Wurzel 
hat (vgl. hierzu S. 146). Er zeigt sodann, daß diese Eigenschaft in Verbindung mit 

Bieberbach, Algebra. 10 



146 Zweites Kapitel: Anzahl der reellen Wurzeln in einem Intervall 

Zweites Kapitel. 

Anzahl der reellen Wurzeln in einem Intervall. 

1. Die Cartesische Zeichenregel. Schon 8.139 stießen wir auf die Frage 

nach Methoden zur Bestimmung der Anzahl der reellen Wurzeln in einem 

gegebenen Intervall: Dieser Frage wenden wir uns jetzt zu. 

Zwei nebeneinander stehende Koeffizienten einer Gleichung bilden eine 

Zeichenfolge, wenn sie gleiche Zeichen, einen Zeichenwechsel, wenn 

sie ungleiche Zeichen haben. Wir nennen ferner eine “Gleichung 

Zr + aa 1 90024. = 0 „vollständig“ ‚wenn keiner ihrer Koef- 

fizienten a Null ist. 

Die Cartesische Zeichenregel lautet: I. Jede Gleichung mit 

reellen Koeffizienten hat so viele positive Wurzeln als 

Zeichenwechsel, oder um eine gerade Anzahl weniger. 

Beweis. Wir legen der Betrachtung eine Gleichung 

u 000 el 

mit reellen Koeffizienten zugrunde. 
Wir zerlegen das Polynom auf der linken Seite in Abschnitte 

fa) hl) + Flo) ++ Frl®) 
derart, daß jeder Summand aus der Zusammenfassung aufeinanderfolgen- 

der Glieder von f(x) besteht, derart, daß in jedem f,(x) alle Koeffizienten 

gleiches Vorzeichen haben oder verschwinden, und daß stets f„(z) und 

fr+ı(x) Koeffizienten von verschiedenem Vorzeichen enthalten. Es liegen 

also bei f(x) genau r — 1 Vorzeichenwechsel vor. Ist dann « eine positive 

Zahl, so weist 
(@— e)f(®) 

r Vorzeichenwechsel auf, oder eine gerade Anzahl mehr. Denn es seien 

en 2 
TVo UT 

‘2 

die Glieder höchster Ordnung in den f.(x), also a,+ 0. Endlich sei 
ae x" "?r+1 das Glied niedrigster Ordnung in f. (x), also Ge +0. Dann 

kommen in (2 — a)f(x) die Glieder 

n+1 n—A,+1 n—/.+1 n—i 
A, ad, — aa Tl ld r _ ( ‚2 22.) s EIER) EU RE 

r+1 

dem Fourierschen Theorem (8.151) die Wurzeln immer zu trennen gestattet. Läßt 
nämlich die Fouriersche Folge beim Übergang von z= aaufz= a- 1 durch den’ 
Verlust von zwei Zeichenwechsel Zweifel, ob in dem Intervall reelle Wurzeln liegen, 
so werden diese Lagrangeschen Transformationen entweder zu einer Gleichung 
mit einem Zeichenwechsel oder ohne Zeichenwechsel führen. Im ersten Falle sind 
die Wurzeln \im/ reell ‚‚zweiten imaginär. 
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vor. Diese haben abwechselnde Vorzeichen. Denn z. B. ist a, <0, 

@,-ı Z0 usw. Also kommen mindestens r Zeichenwechsel vor. Zwischen 

zweien der angeschriebenen Glieder verschiedenen Vorzeichens kann noch 

außerdem eine gerade Zahl von Vorzeichenwechseln vorkommen. 

Nun kann man f(x) so zerlegt denken: 

(2) = «(8 — aı) ...(8—a)P(%) 

derart, daß «a, > 0,...«,> 0 und so, daß (x) nur negative oder kom- 

plexe Wurzeln hat. Da die Multiplikation mit &* die Vorzeichen der 

Koeffizienten nicht beeinflußt, so führt die l-malige Anwendung der 

vorausgegangenen Bemerkung zur Cartesischen Zeichenregel, wenn man 

noch beachtet, daß in (x) eine gerade Zahl von Zeichenwechseln vor- 

kommt. Denn hier haben der erste und der letzte Koeffizient gleiche Vor- 

zeichen. Sonst hätte ja p(x) positive Nullstellen. 

Setzt man in die Gleichung f(x) = 0 statt x ein — x, so ändern alle 

Wurzeln das Zeichen. Daraus kann man mittels des ersten Satzes 

schließen: 

II. Die Gleichung f(x) =0 hat so viele negative Wurzeln, 

als die Gleichung f(— x) =0 Zeichenwechsel enthält, oder 

eine gerade Anzahl weniger. 

Ist f(x) = 0 eine vollständige Gleichung, so entspricht jedem Zeichen- 

wechsel in f(x) eine Zeichenfolge in f(— x) und jeder Zeichenfolge in f(x) 

ein Zeichenwechsel in f(— x). In diesem Falle vereinigen sich die Sätze I 

und II in folgenden: 

III. Eine jede vollständige Gleichung hat höchstens so 

viele positive Wurzeln als Zeichenwechsel und höchstens so 

viele negative Wurzeln, als Zeichenfolgen in der Gleichung 

vorkommen. 

Ist die Gleichung nämlich vollständig und vom Grade n, und enthält 

sie p Zeichenwechsel und q Zeichenfolgen, so ist, da die Anzahl ihrer Glie- 

dern + list, genaup-+qg=n. Sie kann dann p positive Wurzeln haben 

oder eine gerade Anzahl weniger, q negative Wurzeln oder eine gerade 

Anzahl weniger. Sind alle Wurzeln der Gleichung reell, dann muß sie 

gerade p positive Wurzeln und q negative besitzen, d.h.: 

Eine vollständige Gleichung, deren sämtliche Wurzeln 

reell sind, hat ebenso viele positive Wurzeln, als Zeichen- 

wechsel, und ebenso viele negative Wurzeln, als Zeichen- 

folgen vorhanden sind. 
10* 
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1. Beispiel. Die schon früher behandelte Gleichung 

Ha) = 8 #—9+1022—-112+9=0 

hat vier Zeichenwechsel (nämlich zwischen dem ersten und zweiten, dritten 

und vierten, vierten und fünften, fünften und sechsten Gliede) und nur 

eine Zeichenfolge (nämlich zwischen dem zweiten und dritten Glied). 

Da sie eine „vollständige‘‘ Gleichung ist, so kann sie nach Satz III 

höchstens vier positive Wurzeln haben und höchstens eine negative; 

letztere hat sie gewiß. [ uud. 1%%) 

2. Beispiel. Die Gleichung 

fa)= et —ıt+ +32 —-1=0 

ist nicht vollständig; sie enthält drei Zeichenwechsel; 

!- = +2 32-10 

enthält auch drei Zeichenwechsel; also hat die Gleichung nach den 

Sätzen I, II drei reelle positive Wurzeln oder nur eine und drei negative 

oder nur eine. Eine positive und eine negative hat sie jedenfalls. [+ 113) 

3. Beispiel. een 

hat zwei Zeichenwechsel, 

f-)=-P+8re+1=0 

hat einen Zeichenwechsel. Die Gleichung hat demnach zwei reelle positive 

Wurzeln oder keine und eine negative Wurzel. Daß aber die zwei positiven 

Wurzeln vorhanden sind, ersieht man daraus, daß für 

2 02 

f(x) die Zeichen hat ++. 

Es liegt also eine Wurzel zwischen 0 und 1 und eine zwischen 1 und 2. Die 

Gleichung hat mithin ein Paar imaginäre Wurzeln. 

4. Beispiel. ' 
I)=- 232° +70 —-1=0 

hat drei Zeichenwechsel, f(— x) = 0 gar keinen. Die Gleichung hat mit- 

hin drei oder nur eine positive Wurzel, keine negative. Sie hat mithin 

jedenfalls imaginäre Wurzeln. Man kann hier bemerken, daß, wenn in 

einer Gleichung zwischen zwei Gliedern mit gleichem Zeichen + ar, 

+ x”? das mittlere Glied fehlt (wie in der letzten Gleichung zwischen 

— 22% und — 322), die Gleichung notwendig imaginäre Wurzeln hat. Denn 

soll die unvollständige Gleichung n-ten Grades nur reelle Wurzeln haben, 
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so muß die Summe der Zeichenwechsel in f(x) und f(— x) den Maximal- ”" 

4,2, 2. Der Satz von Rolle 

wert n erreichen. Im gegebenen Falle ist aber diese Summe höchstens 

n— 2; denn man überzeugt sich leicht, daß, wenn man zwischen die zwei 

Glieder ein mittleres Glied + x”-1 mit dem positiven oder negativen 

Zeichen einfügt, immer entweder in f(x) oder in f(— x) zwei Zeichenwechsel 

gewonnen werden, also die Summe der Zeichenwechsel in f(x) und f(— x) 
sich um 2 erhöht. 

2. Der Satz von Rolle. (Rolle war ein französischer Mathematiker, 

Zeitgenosse Newtons). Es seien a und b zwei reelle Wurzeln der Gleichung 

/(z) = 0, zwischen welchen keine andere Wurzel der Gleichung liegt, und 
es werde a < b vorausgesetzt. Dann ist 

fa) = @—-a)(e—b)F (a). 
Bilden wir auf beiden Seiten den Logarithmus, so wird 

logf(x) = log(x — a) + log(x —b) + logF(x) 

und daraus durch Differentiation ' 

Fey ei a ) 
fe) 2—a 5 s—b ' Fix)’ 

eine Formel, die man übrigens auch aus der Partialbruchzerlegung ab- 

leiten kann. Daraus folgt weiter 

yoga AO Aal RE anne: @- a) (a) IM -@-)+@-a+@-n@-.4E 
Setzen wir hier € =a, so nimmt die rechte Seite den negativen Wert 

a—b an/wird £=b eingeführt, so erhält man rechts den positiven 

Wert b—a. Der Ausdruck auf der rechten Seite muß also einmal oder 

eine ungerade Anzahl mal durch Null hindurchgehen, wenn x von a bis b 

variiert. Auf der linken Seite ändern sich aber dabei die Ausdrücke 

(2 — a) (ce — b) und f(x) ihrem Vorzeichen nach überhaupt nicht ?/also muß 

f(x) eine ungerade Anzahl mal durch Null hindurchgehen. Dies ist nun 

der Satz von Rolle: 

Zwischen zwei aufeinanderfolgenden reellen Wurzeln der 

Gleichung f(z&)=0 gibt es wenigstens eine reelle Wurzel der 

Gleichung f(x) =0 oder überhaupt eine ungerade Anzahl. 

Sind a oder b oder beide zugleich mehrfache Wurzeln von f(x), so 
daß f(x) für diese Werte zu Null wird, so läßt sich der obige Beweis ganz 

in der gleichen Weise durchführen, und der Satz bleibt auch in diesem 

Falle richtig. 

Man kann sich leicht von der Richtigkeit des Satzes durch die geo- 

metrische Anschauung überzeugen. Denn an den Stellen x, an welchen 
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die Kurve vom Steigen in das Fallen übergeht oder umgekehrt, hat f(x) 

ein Maximum oder ein Minimum. An diesen Stellen aber wechselt f(x) 

das Zeichen und geht dabei durch Null hindurch. Den Maxima und 

Minima von f(x) entsprechen mithin die Wurzeln der Gleichung f’ (x) = 0, 

und man sieht leicht, daß die Kurve y =f(x) zwischen zwei aufeinander- 

folgenden Wurzeln von f(x) = 0 eine ungerade Anzahl von Maxima und 

Minima haben muß. 

Der Satz von Rolle läßt sich nun auf folgende Art zum Trennen 

der Wurzeln von f(x) = 0 verwenden. Es seien @,ß,...,% die reellen 

Wurzeln der Gleichung f(x) = 0, nach ihrer Größe geordnet, so daß 

a<ß<y<:---<x. Da zwischen zwei aufeinanderfolgenden Wurzeln 

von f(x) = 0 wenigstens eine dieser Zahlen «, ß,.... liegen muß, so kann 

höchstens eine Wurzel von f(x) = 0 kleiner als « sein, höchstens eine in 

jedem Intervall (a, ß), (B,y), . . . liegen und höchstens eine größer als x 

sein. Substituiert man also in f(x) nacheinander die Werte 

0:0, BD Vor rg dr 

wo g und g’ zwei beliebige Zahlen sind, zwischen welchen die Wurzeln 

von f(x) = 0 liegen müssen, so wird man am Zeichenwechsel der Sub- 

stitutionsresultate erkennen, zwischen welchen dieser Größen eine 

Wurzel von f(x) =0 liegt. Man kann also die reellen Wurzeln von 

f(x) =0 trennen, wenn man die reellen Wurzeln der einfacheren Glei- 

chung f(x) = 0 finden kann. 

Sollten in der Reihe der Wurzeln «,ß,y,... sich gleiche befinden, 

so hindert dies die Anwendung dieses Satzes nicht; liegt eine zweifache 

Wurzel zwischen a und b, so liegt jedenfalls noch eine nächste Wurzel 

der Reihe in diesem Intervall. 

Es sei z. B. die Gleichung gegeben 

Id) = —-3+22° 3 =(0. 
NE ER N Er 

Nach dem Descartedschen Satze kann die Gleichung drei oder nur eine 

positive Wurzel, zwei oder keine negative enthalten. 

Nun ist et >92 +4: 

Die Gleichung f(x) =0 hat die vier reellen Wurzeln Bun‘. RR 

+0,5,...,1; setzt man diese Werte für x in f(x) ein, und dazu die 

zwei Grenzwerte & = +2, zwischen welchen die reellen Wurzeln von 

f(x) = 0 liegen, wie leicht zu sehen, so erhält man. 

für = — 2, — 15, . el 0, 

He en 
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Es geht mithin f(x) zwischn = —2 und x =—1,5... vom Nega- 

tiven ins Positive über, hat bi = —1,5... ein positives Maximum, 

geht sodann wieder vom Positiven ins Negative, hat bei x = 0 ein nega- 

tives Minimum, bei @=0,5... ein negatives Maximum, bei 2 =1 

wieder ein negatives Minimum und geht sodann ins Positive zurück, 

Die Gleichung f(x) =0 hat mithin zwei negative Wurzeln, die eine 

zwischen 2 =—2 und 2 =-—1,5..., die andere zwischen — 1,5... 

und 0 gelegen, eine positive Wurzel zwischen 2=1 und x =2 und 
dazu ein Paar imaginärer Wurzeln. 

Sind a,b,c drei reelle Wurzeln der Gleichung f(x) =0 und ist 

a<b<c, so liegt nach dem Satze von Rolle zwischen a und b und 

zwischen b und ce mindestens je eine Wurzel von f’(x) = 0; zwischen 

a und ce liegt dann aber wenigstens eine reelle Wurzel der Gleichung 

f'(z) =0. So weiter schließend erkennt man, daß das Theorem von 

Rolle auch aussagt: 

Sind a,b,c,...,%k reelle Wurzeln der Gleichung f(«)=(0, ran 

der Zahl, so liegen in dem Intervall zwischen der größten 

und kleinsten dieser Wurzeln wenigstens r— 1 reelle Wurzeln 

der Gleichung f(x) =0, wenigstens r—2 reelle Wurzel der 

Gleichung f’(x) =0 usf. und wenigstens noch eine Wurzel der 
Gleichung f’-!(2) =. 

Zusatz. Sind alle Wurzeln der Gleichung f(x) =0 reell, so 

hat auch die Gleichung f’(a)=0 "nur reelle Wurzeln. Dann 

sind aber auch die Wurzeln der Gleichungen 

P@)=0, "=... 
sämtlich reell, und alle liegen in dem Intervall der Wurzeln 

der Gleichung f(x) =. 

3. Der Budan-Fouriersche Satz.!) Sei f(x) = x" +-- ein Polynom n-ten 

Grades und betrachten wir die Folge der Funktionen, die von f(x) und 

seinen Abgeleiteten gebildet wird, 

(1) ka), Po,’ (@, (m. 
Substituieren wir in diese Folge einen hinreichend großen negativen Wert 

von z, so haben diese Funktionen offenbar abwechselnde Zeichen; für 

einen hinreichend großen positiven Wert von x werden sie sämtlich posi- 

tiv. Wenn also x die ganze Zahlenreihe von großen negativen zu großen 

positiven Werten durchläuft, so geht in der Reihe (1) n Zeichenwechsel 

verloren, d.i. so viele, als der Grad von f(x) beträgt. 

1) Der schon 1811 von Budan der französischen Akademie vorgelegte Satz 
findet sich wieder in Fouriers Analyse des öquations; publ. par Navier 1831. 

Inswards AfA, Pur 137 
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Nun kann bei Änderung von x die Zahl der Zeichenwechsel in dieser 

Folge (1) sich nur ändern, wenn eine der Funktionen, aus denen sie be- 

steht, das Zeichen wechselt, also durch Null hindurchgeht. Nehmen wir nun 

zunächst an, die erste Funktion f(x) werde Null, dadurch daß x, indem es 

| wächst, durch einen einfachen Wurzelwert x = a hindurchgeht. Wir wer- 

den dann immer eine positive Zahl h so klein annehmen können, daß 

innerhalb des Intervalls «— h bis « + h weder eine andere Wurzel von 

f(x) noch eine Wurzel von f’(x) fällt. Letztere Funktion behält also in 

diesem Intervall ein konstantes Zeichen und je nachdem dasselbe + oder 

— ist, bilden die Zeichen der zwei ersten Glieder der Reihe (1) das eine 

oder das andere der folgenden Schemata: 

io te) fo Fa 
z=a—h — + oder + 2 

(a) = 0 + 0 — 

s=e+h + + — — 

Ist nämlich f’(x) positiv, so wächst f(x) bei zunehmendem x, und geht 

folglich vom Negativen durch Null ins Positive über; das Umgekehrte 

findet statt, wenn f’(x) negativ ist. In beiden Fällen haben mithin 

f(x) und f(x) entgegengesetztes Zeichen, bevor x den Wurzel- 

wert « erreicht, und gleiches Zeichen, nachdem & den Werte 

überschritten hat. N 

- Nehmen wir nun aber an, « sei eine ns Wiikzel von f(x) = (0, so 

wird auch f'(@) = 0, während f’’ («) nicht Null ist. Ist h hinreichend klein 

gewählt, so daß keine Wurzel von f(x) zwischen a—hund« + A fällt, 

so hat f’’(x) in diesem Intervall konstantes Zeichen, und folglich bieten 

f(x) und f’’(x) nun dieselben Zeichenschemata dar wie Br EN: und 

f(x). Da ferner nach der Taylorschen Entwicklung X ee (a 7 

fa th = flo) F(d-h+f"()- 54. Bee 2 

so haben f(@ + h) und f(e—h) dasselbe Zeichen wie f’’(«@). Es ergeben 

sich demnach für diesen Fall folgende zwei Schemata: 

fa) Fo) Fa) oder Fr) Fl) F’@) 
zs=a—h + E= + oder — = 2 

(b) E—.0 0 0 = 0 0 = 

z=-a+h+ + + - 000.00 - 
Geht also x, indem es wächst, durch eine zweifache Wurzel « hindurch, so 

gehen zwischen f(x), f'(«) und f’’(z) jedenfalls zwei Zeichenwechsel verloren. 
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Wäre aber « dreifache Wurzel von f(x), mithin noch zweifache von 

f (x) = 0 undeinfache von f” (x) = 0, so würden f’ (x), f” (x), f”’ (x) in dem 

Intervall © = «a —h bis © = «+ h dasselbe Zeichenschema zeigen, wie 

eben f(x), f(x), f(x). Zugleich würde, wie aus der Entwieklung 

fath)=+"();,+ 
zu ersehen, f(« + h) dasselbe, f(« — h) das entgegengesetzte Zeichen von 

f' («) besitzen. Dies ergibt folgendes Zeichenschema: 

I) fo Fo) F"@) I) Fo) Fe) Fk) 
z=a—h — + —_ + oder + _ -F u 

Or: 0 0 0 + 0 0 0 

z=a+h+ ai in 2 ze Fr Zu 7 

Es gehen also, wenn x durch eine dreifache Wurzel a von f(x) = 0 hin- 

durchgeht, drei Zsischenwechsel verloren. So weiter schließend erkennt 

man, daß, wenn & durch eine r-fache Wurzel von f(x) = 0 hindurchgeht, 

zwischen den r +1 ersten Gliedern der Reihe (1) f(x), f’(x),... f(x) 

r Zeichenwechsel verlorengehen. 

Das letzte Glied der Rabe (1) ist eine Konstante, kann also nicht ver- 

schwinden. Es bleibt dahethur der Fall zu untersuchen, daß eine Funk- 

tion oder mehrere aufeinanderfolgende Funktionen aus der Mitte der Reihe 

(1) verschwinden, ohne daß zugleich die vorhergehende Funktion ver- 

schwindet. Nehmen wır an, daß x = « eine einfache, zweifache, dreifache, 

. Wurzel von fi" (x) sei und mithin für x = « entweder fi" (x) allein, oder 

9% (2) und fe+d(x), oder fr (x), rt’ (x), f+®d(x) zugleich verschwinden 

usw., so werden diese Funktionen mit der nächstfolgenden Funktion, 

welche nicht verschwindet, die Zeichenschemata (a), (b), (c),. .. zeigen. 

Die vorhergehende Funktion f®-»(z) verschwinde nicht zugleich mit 

f”(z). Sie behält mithin in dem Intervall «@—h bis «+h ein kon- 

stantes Zeichen + oder —. Setzen wir dieses den obigen Schematen 

vor, so ersehen wir aus (a), daß, wenn nur eine Funktion aus der Mitte 

verschwindet, kein oder zwei Zeichenwechsel verlorengehen; verschwin- 

det zugleich f® (x) und f*+")(x), so ergibt sich aus (b), daß immer zwei 

Zeichenwechsel verlorengehen; verschwinden drei aufeinanderfolgende 

Funktionen, so gehen zwei oder vier Zeichenwechsel verloren usw. Durch 

das Verschwinden von Funktionen in der Mitte der Reihen geht mithin 

kein Zeichenwechsel oder eine gerade Anzahl von Zeichenwechseln ver- 

loren. Hieraus folgt nun der Satz: 
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Wenn x von —oo bis + co wächst, so gehen in der Reihe 

(1) sämtliche n Zeichenwechsel nach und nach verloren, ohne 

daß je ein Zeichenwechsel wiedergewonnen wird. Ist q>p 

und hat die Reihe ö Zeichenwechsel weniger für x =q als für 

x=p, so liegen zwischen =p und © =q ö reelle Wurzeln 

der Gleichung oder um eine gerade Anzahl weniger. 

Nur wenn alleWurzeln der Gleichung reell sind, entspricht 
By ne 

jedem Zeichenverlust der Reihe (1) eine reelle Wurzel. Dabei 

ist angenommen, daß bei p und q selbst Wurzeln nicht liegen. 

Man kann den Satz noch etwas anders fassen. Da nämlich 

2 n 

fa+n=IW+r@ec+rW + + a. 
so kann man auch sagen: 

Die Anzahl der reellen Wurzeln der Gleichung f(x) = 0, welche zwischen 

x = pund x = qliegen, ist gleich der Differenz der Anzahl der Zeichen- 

wechsel in den Gleichungen 

fe+p)=-09, fHarg=o0 
oder um eine gerade Anzahl geringer. 

Beispiel. Die gegebene Gleichung sei 

fa) = #8 3° +2 —5=(, 

dann wird f(e) =5— 922 + 4x 

(a) = 02? —18x +4 

(2) — 602218 

fIV(x) = 120% 

(a) = 1%. 

I) Fe Fo Fa IE) Fo 
ı=—2 matt ZA ur MA 

2m. u a a 
EN) _ 0 _ a 0 au 

»= 1 nn MORE Re Er: 
ee 

Zwischen —2 und — 1 gehen zwei Zeichenwechsel verloren, ebenso zwi- 

schen <= 0 und x =1. Der Verlust von einem Zeichenwechsel zwischen 

z=1 und x = 2 zeigt, daß in diesem Intervall eine reelle Wurzel liegt. 
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Hingegen wissen wir bereits (Beispiel zum Satze von Rolle), daß nur 

zwischen —2 und —1 wirklich zwei reelle Wurzeln liegen, zwischen 

O und 1 keine. 

Andere, dem Fourierschen T'heorem ähnliche Sätze zur Bestimmung 

einer oberen Schranke für die Anzahl der reellen Wurzeln, welche zwischen 

zwei Zahlen p und q liegen, hat Sylvester aufgestellt.!) Die Methode 

besteht darin, daß zu der Reihe (1) der Abgeleiteten von f(x) noch eine 

zweite Reihe von Funktionen aufgestellt wird und nun die Zeichen- 

wechsel und Zeichenfolgen in den beiden Reihen verglichen werden. 

Eine einfache Bemerkung von Jacobi mag hier noch angeführt wer- 

den.?) Setzt man 
y= DEN, 

I 
so entsprechen den Werten von x, welche zwischen p und q liegen, posi- 

tive, den Werten von x, welche außerhalb dieser Grenzen liegen, negative 

Werte von y. Die Anzahl der Zeichenwechsel in der Gleichung für y gibt 

mithin nach dem Satze von Descartes eine obere Grenze für die Anzahl 

der Wurzeln x, die zwischen p und q fallen. Sind alle Wurzeln von f(x) = 0 

reell, so ist die erstere Anzahl der letzteren gleich. 

4. Der Sturmsche Satz. Die vorhergehenden Sätze geben nur eine obere 

Grenze für die Anzahl der Wurzeln, welche zwischen zwei Zahlen pundgq 

fallen. Der Satz von Sturm hingegen gibt genau die Anzahl dieser 

Wurzeln. Durch ihn wird erst die S. 146 gestellte Aufgabe wirklich ge- 

löst. Zu diesem Resultate gelangt man dadurch, daß statt der Reihe der 

Abgeleiteten von f(x), welche man bei dem Fourierschen Satze betrach- 

tet, eine andere Reihe von Funktionen zugrunde gelegt wird. 

Wir nehmen zunächst an, daß die Gleichung f(x) = 0 keine mehrfachen 

reellen Wurzeln habe; es sei f(x) wieder die erste Abgeleitete von f(x). 

Wir stellen das System von Polynomen her, das sich ergibt, wenn man I: fan 

größten gemeinschaftlichen Teiler von f(x) und f’(x) sucht. Sind dann 

R,, R,,... die Reste der aufeinanderfolgenden Divisionen mit entgegen- 

gesetztem Zeichen genommen, so hat man folgendes System von 

Gleichungen: f(&) = f()Qı — Rs 

(©) = RQ2— Rs 
(1) R, = RQ — Bu 

ee RO Su 
ä - Am? 

in, 
1) On an improved form etc. Philos. Mag. March. 1866, p. 214. 
2) CrellesJourn.Bd.13.Observati unculae ad theoriamaequationum pertinentes,$IV. 

IV 
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Da nach der Voraussetzung f(x) = 0 keine mehrfachen Wurzeln hat, 

haben f(x) und f’(x) keinen gemeinsamen Faktor, und der letzte Rest R,„, 

ist mithin eine Konstante, von Null verschieden. Betrachten wir nun die 

Folge von Funktionen 

(2) Fa), f(@), Ra, Bas. - Bm- 
Dieselbe hat folgende Eigenschaften. Das letzte Glied der Folge kann 

nicht verschwinden. Ferner zwei aufeinanderfolgende Glieder der Folge 

können nicht zugleich verschwinden,’ denn sonst müßten sie einen ge- 

meinsamen Teiler haben und derselbe müßte vermöge der Gleichungen (1) 

auch zugleich Teiler von f(x) und f’(x) sein, was gegen die Voraussetzung 

ist. Sehen wir nun zu, wie sich die Zeichen der Funktionen dieser Folge 

ändern, wenn x sich ändert. /Geht x, indem es wächst, durch einen Wurzel- 

wert « der Gleichung f(x) = 0 hindurch, so geht, wie wir bei dem Fourier- 

schen Satze Pag (Schema a), ein Zeichenwechsel zwischen f(x) und 

f(x) verloren. "Nehmen wir aber an, daß x durch einen Wert £ hindurch- 

gehe, der eine der mittleren Funktionen R, verschwinden macht, so werden 

für diesen Wert x = ß die beiden benachbarten Funktionen R,_,, Rızı 

entgegengesetztes Zeichen haben, da für R, = 0 aus den Gleichungen (1) 

R;_ı = — R,,ı sich ergibt; und da, wie wir schon saherf; R,_, oder R,,;ı 

nicht mit R, gleichzeitig verschwinden können. Wir können dann immer 

ein hinreichend kleines Intervall 6—h bis # + h abgrenzen, innerhalb 

welchem weder R,_, noch R,,.ı verschwinden und folglich ihre entgegen- 

gesetzten Zeichen behalten. Dann folgt aber, daß, wenn x das Intervall 

ß— h bis 8 + h durchläuft, zwischen den drei Funktionen R;_,,R;, R;,ı 

immer ein Zeichenwechsel besteht, es mag nun R,, indem es durch Null 

hindurchgeht, von einem positiven Wert zu einem negativen übergegangen 

sein oder umgekehrt. Verschwindet also eines der mittleren Glieder der 

Folge (2), so wird dadurch weder ein ’Zeichenwechsel in der Reihe ge- 

wonnen noch verloren. Es kann dadurch nur eine Verschiebung des 

Zeichenwechsels erfolgen. 

Fassen wir diese Resultate zusammen, so ergibt sich der Satz von Sturm. 

Sind p und q zwei beliebige reelle Zahlen und ist q>p, 

und hat f(2)= 0 keine mehrfache Wurzeln zwischen pund g, 

so kann die Folge (2) für = g jedenfalls nicht mehr Zeichen- 

wechsel haben als für c=p. Die Anzahl der Zeichenwechsel, 
welche in der Folge bei dem Übergange von z=p zu z=q 

verlorengehen, ist genau gleich der Anzahl der reellen Wur- 

zeln von /(x)=0, welche zwischen p und q liegen. Dabei ist 

(pP) +0, f(Q) =0 angenommen. 
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Um die ganze Anzahl der reellen Wurzeln der Gleichung zu erhalten, 

hat man nur sehr große positive oder negative Werte von x in die Folge 

statt p und q einzusetzen. Die Zeichen der Funktionen sind dann durch 
die Zeichen ihrer ersten Glieder gegeben. 

Man ersieht, daß, wenn die Gleichung f (x) = 0 vom n-tenGrade ist und alle 

ihre Wurzeln reell sind, die Folge (2) für & = — oo n Zeichenwechsel haben 

muß; dies bedingt, daß sie aus n + 1 Funktionen besteht, die Reste R 

mithin bis R,„ laufen, also immer um die Einheit im Grade abnehmen, und 

zweitens, daß die höchsten Glieder der Funktionen alle gleiches Zeichen 
haben. 

Die Anwendung des Sturmschen Satzes leidet an dem wesentlichen 

Übelstande, daß man bei der Herstellung der Reste R meistens auf über- 

aus große, kaum zu bewältigende Zahlen geführt wird. Um die Rechnung 

zu erleichtern, kann man bei den Divisionen beliebige konstante Fak- 

toren einführen, da es nur auf die Zeichen der Funktionen ankommt; nur 

müssen diese Faktoren positiv sein. 

Tritt einmal der Fall ein, daß ein Rest R, innerhalb des zu betrachtenden 

Intervalls x = p bis x = q nicht Null werden und folglich auch sein Zei- 

chen nicht ändern kann, so kann man bei diesem Rest die Folge abbrechen 

und die Berechnung der folgenden Reste ersparen. Denn der Beweis des 

Satzes erfordert nur, daß das letzte Glied der Folge sein Zeichen nicht 

ändere. Der weggelassene Teil der Folge 

Rirı, R;ra, Er R, ‚ 

kann innerhalb des Intervalls dann überhaupt keine Änderung in der An- 

zahl der Zeichenwechsel erfahren, da das erste und letzte Glied ihr Zeichen 

nicht ändern. fi): Pl u-%8- ee =d,,m 

Beispiel. Ist —=Tr, ar 4 x En X- 

fa)= A328 +22 +5=0, if Rn REN 

so wird f(e) =5t—40°—922 +2 fi \By+’ yo) 4: 

R, = 342? + 922 — 402 — 127 5 4-181-0, meter 
1156 

R; — 1975 x? — 14350 x + 20675 en ee ri 19350 2, 

Rene tz 
oder mit 25 dividiert 1156 3 

BR, = 19x22 — 574 + 827, 
ı_R.- 7131336 

damit wird R, = — 98717 x + 118803 PR ‚ir at K- 

a y fe x 

R ah nd 2312: 
5 

Eu fr 

NE nz Ne 

ZIEL Zee 19751" 143 50x +20 

1132 
7 
“ 
' 

) ve 

ERy= 3953147578 
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Von R, reicht es hin, das Zeichen zu kennen. „ee kann daraus bestimmt 

werden, daß R, verschwindet für2= + iv “ und für diesen Wert R, 

positiv ist. Es muß mithin R, das ee Zeichen haben, mit- 

hin negativ sein. 

Aus denersten Gliedern der Funktionen erkennt man, 2 vnt=—o 

bis x = + oo drei Zeichenwechsel der Reihe verlorengehen,) die Gleichung 

also drei reelle und zwei imaginäre Wurzeln hat. Um genauer zu sehen, 

wie die reellen Wurzeln liegen, setzen wir in die Reihe die ganzen Zahlen 

zwischen den Grenzen + 8 der Wurzeln ein, dann ergibt sich 

ka) Fo) RB R; R, RB; 

e—=—3 —_ -F — u + = 

=—?2 = Jr ur 2 ar = 

a er, 

z= 0 ei + a tin T Z3 

= 1 = EN a a5 — 

=, 2 Ar Zw = = -— > 

en a 
Die Gleichung hat also eine reelle Wurzel zwischen —2 und — 1, und 

zwei Wurzeln liegen zwischen 1 und 2; zwei Wurzeln sind imaginär. 

5.MehrfacheWurzeln. Wir haben bisher vorausgesetzt, daß die Gleichung 

f(x) = 0 keine mehrfachen Wurzeln habe. Hat aber die Gleichung mehr- 

fache Wurzeln, so wird man in dem System (1) zu einem Rest R, kommen, 

der genau ein Teiler der vorhergehenden Funktion R,_, ist. R, ist dann 

der größte gemeinschaftliche Teiler von f(x) und f’(x) und zugleich in 

jeder der vorhergehenden Funktionen der Folge enthalten. Dividieren 

wir daher alle Funktionen durch R,, so erhalten wir statt der Folge (2) 

eine neue Folge UNDERU 

in welcher U, eine Konstante ist und U alle Linearfaktoren von Hekan! 

hält, aber jeden nur einfach. Es ist nun leicht zu beweisen, daß für diese 

Folge der Sturmsche Satz gilt in bezug auf die Wurzeln der Gleichung 

U=0. Denn die Funktionen dieser Folge genügen dem Gleichungs- 

system 

x)626 



4,2, 6. Modifikation des Sturmschen Verfahrens 159 

welches aus (1) durch Division der Gleichungen mit R, resultiert, woraus 

hervorgeht, daß nicht zwei benachbarte Funktionen der Folge zugleich 

Null werden können, da sonst U und U, einen gemeinsamen Faktor haben 

müßten, und daß, wenn eine Funktion der Folge U, verschwindet, U,_} 

und U, , , entgegengesetzte Zeichen haben müssen. Der einzig wesentliche 

Unterschied zwischen der Folge U, U,,...und der Folge (2) besteht darin, 

daß U, nicht die Abgeleitete von U ist. Aber aus 

> RU 

7 = R,U, = R,U’+ R,U 

folgt, daß an einer Nullstelle von U die Funktion U, dasselbe Vorzeichen 

wie U’ hat, und dies genügt nach einer in 4. vor dem Beispiel gemachten 

Bemerkung dazu, daß für die Kette der U der Sturmsche Satz gilt: 

Der Sturmsche Satz bleibt daher gültig, wenn man die Kette f(x), 

f (&),... Rıdurch die Kette U, U,,... U,ersetzt. Es ist aber nicht nötig, 

die Funktionen U zu bilden. Denn die Funktionen f(x), f'(x),... Rı 

unterscheiden sich von den Funktionen U, U,,... U,nur durch den Fak- 

tor R,. Folglich werden sie für einen bestimmten Wert von x entweder 

alle dieselben Zeichen haben wie dıe Funktionen U, oder alle haben die 

entgegengesetzten Zeichen, je nachdem R, für diesen Wert von & positiv 

oder negativ ist. Es folgt mithin: 

Die Sturmsche Kette 

Ka), f(@), Rz,...Rı 
gibt durch die Differenz in der Anzahl der Zeichenwechsel 

fürz=p und x=q die Anzahl der zwischen p und q liegen- 

den reellen Wurzeln der Gleichung, aber ohne Rücksicht auf 

ihre Multiplizität an. Es ist f(p)+0 und f()=+0 angenom- 

men. 

6. Modifikation des Sturmschen Verfahrens. Statt bei Herstellung der 

Sturmschen Kette die Funktionen f(x), f(x), ... nach absteigenden Po- 

tenzen von x zu ordnen, kann man auch, wie Sturm selbst angedeutet 

hat, f(x), f(x), ... . nach steigenden Potenzen von x ordnen und erhält so- 

dann ein Gleichungssystem von der Form 

(2) = (a1 + Bı@)f' (a) — @*f2(®) 

(2) = (a, + Ban)fe(e) — @rfs(®) 
N LEN We BE lits je a ee Eee szene 

Die Reihe der Funktionen f(z), f(x), f2(&), . . ., welche mit f„ abschließt, 

besitzt ebenfalls die Eigenschaft, daß die Differenz der Anzahl der Zeichen- 
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wechsel in den zwei Reihen f(p), f (p), fa(p), - . . und f(Q), F(@s fa (D» Re 

die Anzahl der reellen Wurzeln der Gleichung f(x) = 0, welche zwischen 

x = pund x = qliegen, angibt. er Kı= 3,018. 

So ergibt sich z. B. für Be Bi 

f(a) = ® Te T=0 is 

Ha) = -T-Te+8, f)=--7438 = -3 +26 44. 

DO: 

s=1 + — — + 

v2 4 not 

Es liegen also zwei Wurzeln zwischen 1 und 2.!) 

7. Erweiterung. Der Sturmsche Satz läßt eine, von Sturm selbst ge- 

gebene Erweiterung zu. Der Satz gibt die Anzahl der in einem Intervall 

liegenden reellen Wurzeln vermöge der Eigentümlichkeit der Abgeleiteten 

f(x), die darin besteht, daß sie, bevor x den Wurzelwert « erreicht, ent- 

gegengesetztes Zeichen, nachdem x aber den Wert « überschritten hat, 

gleiches Zeichen mit f(x) hat. Man kann dies auch kürzer ausdrücken, in- 
f(&) 
f(@) } En 

wachsendem x Null wird, vom Negativen ins Positive über. 

Wählen wir nun aber statt der Abgeleiteten f’(x) eine beliebige andere 

ganze Funktion a (2) v von niedrigerem Grade als f 2 welche I keinen reellen 

dem man sagt: Der Quotient geht immer, wenn f(x) bei 

bitte — fear —R 

8) v(2) = RQ,— RB; 
ee har ba ee ante 

Are 

ere.s Die) ıleor leer lee 

die Folge der Funktionen 

(4) f@), v(@), Rz, Rz,... Rn. 
Sie hat folgende vier Eigenschaften: 1.Fürp <x <S q verschwinden /.156 

nie zwei aufeinanderfolgende Funktionen der Kette. 2. Es ist f(p) +0, 

f(d)+0. 3. Es ist R„(&) +0 fürp<sxr<g. 4. Falls ein inneres Glied 

der Folge verschwindet, so haben die beiden benachbarten Glieder ent- 
gegengesetztes Vorzeichen. Eine Folge mit diesen vier Eigenschaften 

1) Im allgemeinen dürfte diese Methode, eine Sturmsche Reihe herzustellen, 
keine sy teile bieten. Jedoch hat Stern sie mit Nutzen angewandt, in einem Falle, 
wo f(z) eine transzendente Funktion bezeichnet, die in ori einer unendlichen Reihe 
gegeben ist. Crelles Journ., Bd. 33, S. 363. 
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Bet 
nennen wir eine Sturmsche Kette. Immer wenn auf irgendeinem 

Wege — z. B. durch das Teilerverfahren — eine Kette (4) mit diesen vier 

Eigenschaften vorliegt, gelten die folgenden Überlegungen: 

Es wird, wie bei Folge (2), kein Zeichenwechsel verlorengehen oder ge- 

wonnen werden können, außer wenn x durch eine reelle Wurzel von f(x) 
Ta) PERzE 

T 
hindurchgeht. Dabei kann nun aber entweder vom Positiven zum 

Negativen übergehen) oder umgekehrtalso ein Zeichenwechsel gewonnen 

werden oder verlorengehen. Liegen zwischen p und g genau r einfache 

Wurzeln der ersten Art und s der zweiten Art’so hat sieh bei dem Über- 

gang von = p auf x =g die Zahl der Zeichenwechsel in (4) um r—s 

geändert. Hat f(x) mehrfache Wurzeln, so ändert sich das Zeichen von 

ER wenn x durch eine Wurzel von ungerader Multiplizität hindurch- 

geht, hingegen ändert ie ir 2 sein Zeichen gar nicht, wenn x durch eine 

zweifache, vierfache, ... Wurzel hindurchgeht, weil in diesem Falle f(x) 

dasselbe Zeichen vor a nach dem Durchgang von x durch den Wurzel- 

wert besitzt. In jedem Falle also gilt der allgemeine Sturmsche Satz: 

Die Anzahl der reellen Wurzeln der Gleichung f(x) =0, 

welche zwischen pundg liegen, ist wenigstens gleich dem 

absoluten Betrag der Differenz in der Anzahl der Zeichen- 

wechsel, welche die Reihe (4) fürzx=p und x =qg besitzt. Ist 

die Anzahl der Wurzeln zwischen p und q größer als diese 

Differenz, so ist sie es um eine gerade Zahl. /Sie ist genau 

gleich der Differenz, wenn y(x) in jeder Nullstelle von f(x) 

dasselbe Vorzeichen wie f’(x) hat. 

8. Legendresche Polynome. Folgen von Funktionen,welche diegenannten 

vier Eigenschaften besitzen, bieten sich häufig dar. Kennen wir die Werte 

derselben für zwei Werte von x, «= p und & = q, so können wir mittels 
des vorigen Satzes auf die Anzahl ihrer reellen Wurzeln, die in diesem 

Intervall liegen, schließen. 

Ein Beispiel dieser Art bieten die Legendreschen Polynome 

(‚„Kugelfunktionen‘ einer Variablen). Bezeichnen wir diese Polynome 

ersten, zweiten, ...n-ten Grades mit X,,X,,--:.X,„, so besteht das 

Gleichungssystem 

a a ee a Ver 5 en et N Are na 5 

Bieberbach, Algebra. 11 

Yıst 
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aus welchem mit Hilfe der Anfangswerte 

X = 4: NT —ı 5% 

X, berechnet werden kann. Es ergibt sich 

Bayer es X,=30—4, X, =307° 37 usw. 

Die Reihe dieser Funktionen 

NN ER EN RN, 

hat nun vermöge des Gleichungssystems, dem sie genügen, und vermöge 

des Umstandes, daß X, eine Konstante ist, alle vier Eigenschaften 

der Sturmschen Kette (4). Außerdem weiß man, daß für =1 alle 

Polynome den Wert 1 annehmen, für — —1 aber abwechselnd = +1 

oder = — 1 sind, was aus dem Gleichungssystem leicht zu verifizieren ist. 

Die obige Reihe hat also für = —1 n Zeichenwechsel, für = +1 

keinen. Wir schließen mithin wieder daraus, wie in dem vorhergehenden 

Beispiele, daß die Gleichung 

0 

nur reelle Wurzeln hat und daß dien Wurzeln zwischen +1 und — 1 liegen. 

9. Zweites Beispiel. Ein anderes Beispiel sei der analytischen Geo- 

metrie entnommen. In der Determinante 

Q1ı @12 - - - Aın 

QAgı Qaa .. - Aon 

D,(&) = 

Anı Anz: + «+ Ann 

seien die 9,;—=0,;+ &%. Hier seien die a,, Zahlen, &,.= +1, und zwar 

seien r davon + 1 und s derselben gleich — 1. Endlich seien die a;, und 

4,; Stets konjugiert imaginär.!) Die Gleichung 

Date) 0 

besitzt dann mindestens |s—r| reelle Wurzeln. Ein wichtiger 

Spezialfall ist der der Säkulargleichung. Hier sind alle e;= +1. Dann 

sind alle Wurzeln reell. Einen anderen Beweis dieser Folgerung aus unserer 

allgemeinen Aussage findet man auf S. 9. 

1) Ordnet man D, nach Potenzen von x, so bekommt das entstehende Polynom 
reelle Koeffizienten, weil die Determinante D, bei Vertauschung von Zeilen und 
Kolonnen in ihr konjugiert imaginäres übergeht, aber doch unverändert bleibt. 
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Zum Beweis!) der Behauptung über D,(x) = 0 zeigen wir zunächst, 
daß di Ei Be 

eine Sturmsche Kette bilden. Wir nehmen dazu zunächst an, 

daß nie zwei aufeinanderfolgende Glieder der Kette zu- 

gleich verschwinden. Nun sei A,, der zu a,, gehörige Minor von D,. 
Dann ist 

A, n— 2% 5 

4-|," Be i E nee: Ann 1,n— ı—\An- le 

| | 
KR En ID A A,ı 

a er De 
| Me ? | WORA me, 

era I AmE 

41 5 5 ARE 00 

Ri Pe NT) D! 
= == n—-2'On 

|dn— 3,1 Da An-2,n—2 0 0 
| 

An—1,1. + >» On-1,n-2 2,0 

en A IB): 

Daher gilt für die Polynome D, die Relation 

2u ö D.-2 > Dr = Ayo: nm — Is Ar n—1,n* 

Analog findet man Relationen der Form 

D® ıDr2 s = D.- 2Pn-2 7 v_ 2 

N se 

D,D, =D,9- 

wo die 9,, y, gewisse Polynome bedeuten. 

Daher haben für D, = 0 stets D,_,, und D,,, verschiedenes Vorzeichen. 

Die Betrachtungen von S. 155ff. lehren aber die Richtigkeit unserer Be- 

hauptung. Wenn nämlich x eine Nullstelle von D, bei wachsenden x 

passiert, so wird in der Folge D„D„_ı ein Vorzeichenwechsel gewonnen 

oder verloren. Passiert x eine Nullstelle eines D,(k + n), so bleibt die 

1) Vgl. dazu J. Pierpontin Bull. Ann. math. Soc. Bd. 33 (1927) S. 294f. 

118% 
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Zahl der Vorzeichenwechsel unverändert. Für große positive x haben 

wir s Vorzeichenwechsel in der Folge der D. Denn dann hat die Folge 

I, 0, Holen rer rende 

genau s Vorzeichenwechsel. Für große negative x hat diese Folge genau 

n—s=r Vorzeichenwechsel. Daher hat D, mindestens |s—r | reelle 

Nullstellen. Denn jede Änderung in der Anzahl der Wechsel rührt von 

einer reellen Nullstelle her. 

Es bleibt nun der Fall zu erörtern, daß für gewisse x- Werte mehrere auf- 

einanderfolgende der D, verschwinden. Es mögen z.B. D,_ı und D, keine 

gemeinsame Nullstelle besitzen. Es möge aber eine gemeinsame Wurzel 

von D, und D,,, vorhanden sein. Dann kann man die in D, nicht vor- 

kommenden Elemente der Determinante D,,,, also die a, „,1,@ #k +1) 

@%+1,r4+10abändern, daß dasneu entstehendeD), , zuD,„teilerfremd wird. 

Man kann dazu noch vorschreiben, daß die Differenzen entsprechender 

Elemente von D,,, und D}, ‚ihrem absoluten Betrag nach eine gegebene 

Schranke e nicht überschreiten sollen. Zum Beweis dieser Bemerkung be- 

achte man, daß jedenfalls D,,, und D, für gewisse Werte der qa,.;1; 

@x+1,r+1 teilerfremd sind. Man setze nur a; 741 = 0 fürıe=1.. 1 

und @,,,1 +0. Dann wird Dy41 = Ar+ır+1 Dr — Arr+ı@der+ı Dr-1- 

Eine gemeinsame Nullstelle von D, und D,,, wäre somit auch Null- 

stelle von D,_,. Aber D,_, und D, sind teilerfremd. Daraus folgt, daß es 

auch in beliebiger Nähe der ursprünglichen Werte der 4,241, @&x+ız+1 Werte 

dieser Elemente gibt, für die D,. und D,.ı teilerfremd sind. Man denke 

sich nur bei unbestimmten Q,4.1, &r+ırzı die Resultante von D, und 

D;,+ı gebildet. Diese ist nach 5.116 eine ganze rationale Funktion der 

eben genannten Elemente. Wenn sie nun für alle Werte jener Elemente 

verschwände, die sich von festen Werten a}, ,,‚@&;ı,.,.ı um weniger als 

e unterscheiden, so denke man sie sich nach Potenzen von a;241—@°;; > 

Ar+ırzı —&rır,ı geordnet. Man schließt dann, daß sämtliche Koeffi- 

zienten der so geordneten ganzen rationalen Funktion Null sein müssen, 

daß diese also im Gegensatz zum vorhin Bemerkten für alle Werte jener 

Elemente verschwände. Um dies einzusehen, denke man sich die Funk- 

tion nach Potenzen von A241 —a,,,—=Yyı geordnet: by, + byı + :--- 

+ b,y, = f(yı). Die Koeffizienten b, sind dann Funktionen der übrigen 

Differenzen. Soll nun f(y,) für alle genügend kleinen y, verschwinden — 

bei beliebiger aber fester Wahl der anderen Differenzen —, so ist — für %, 

—=0 — auch b,—= 0. Daher ist 

ylbı + by 4er by) = 0 
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für alle genügend kleinen y,-Werte. Also ist 

rbb ter oyı- 

für alle genügend kleinen von Null verschiedenen y,-Werte. Also ver- 

schwindet diese Summe wegen ihrer Stetigkeit auch für y, = 0. Also ist 

db, =0 usw. Alsdann denke man sich jedes der b, nach Potenzen von 

Ya — Agxıı — Ay; ,ı geordnet und wiederhole den Schluß usw. 

Es muß also durch beliebig kleine Abänderungen der @;,541>@r+ır.ı ZU 

erreichen sein, daß D, und D,,, teilerfremd werden. Durch mehrfache 

Anwendung dieses Verfahrens kann man nun die Kette D,...D, in eine 

andere D,,D/ ...D’, verwandeln, bei der je zwei aufeinanderfolgende 

teilerfremd sind. Da nämlich D, = 1 und D, teilerfremd sind, kann das 

Verfahren starten. Man ändert wenn nötig D, zu D) ab. Dabei ändern 

sich die andern D, usw. mit. Danun D,D) teilerfremd sind, kann man das 

Verfahren erneut ansetzen usw. Die so schließlich erhaltene neue Kette 

lehrt, daß D,, mindestens |r — s| reelle Wurzeln besitzt. Denn die Vor- 

zeichen der D), und D,. stimmen für genügend große positive und negative 

x mit dem von 1,&,%...e,x* überein. Nun betrachte man eine Folge von 

möglichen Wahlen der D/. D.h. man denke sich auf viele verschiedene 

Weisen durch immer kleiner werdende Änderungen der Elemente Funk- 

tionen D, hergestellt. Man bekommt so eine Folge solcher Funktionen, 

die gegen das ursprüngliche D, konvergieren. Da jede dieser abgeänderten 

Funktionen mindestens |r— s| reelle Wurzeln besitzt, so hat auch D, 

mindestens |r — s| reelle Wurzeln. Dies folgt aus der S. 25 besprochenen 

stetigen Abhängigkeit der Wurzeln von den Gleichungskoeffizienten. Man 

denke sich um sämtliche Nullstellen von D, kleine Kreise gelegt, die nur 

für die reellen Lagen der Nullstellen von D,, die reelle Achse treffen. Sind 

dann die Abänderungen der Elemente hinreichend klein, so hat jedes D/, 

in jedem dieser Kreise genau ebenso viel Nullstellen als D,,, also namentlich 

höchstens so viele reelle Nullstellen wie D,. Also hat D, mindestens so 

viele reelle Nullstellen, wie jedes D/,, also mindestens |r — s|. 

10. Lösung des Sturmschen Problems mit Hilfe der Theorie der quadra- 

tischen Formen. Es seien &,... &,„ die n Wurzeln einer Gleichung n-ten 

Grades mit reellen Koeffizienten und s, = & +...4 &. Dann be- 

trachte man die quadratische Form 
ken 

(1) F(&ı ... %) = I (z, > Er Lg u Erz ap Es 
k=1 

wo die £,... x, unabhängige Variable bedeuten. Die Ausrechnung lehrt, daß 

(2) He>s, 91000 
a,y=l-..n 
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ist. Wenn die Wurzeln &,... &, alle reell und voneinander verschieden 

sind, so ist nach $. 118 die Determinante der Substitution 

Yatıd ab ner Bean 

(3) wa ARE a Pe 

Yn = I = En 21 es en 

von Null verschieden, und daher ist (8) eine reelle Transformation, dureh 

die die Form F auf eine Summe von lauter positiven Quadraten trans- 

formiert wird. Daher gilt der Satz: 

Die notwendige und hinreichende Bedingung dafür, daß 

eine Gleiehung n-ten Grades mit reellen Koeffizienten 

lauter reelle voneinander verschiedene Wurzeln besitzt, ist 

die, daß die quadratische Form (2) positiv definit ist, ıLch3 

nach 8.89, daß die Hauptunterdeterminanten der Matrix 

Er A 

51 89 Sn 

A BE alle positiv sind. 

Sn-ıSn + S2an-2 

Der Ansatz (1) gibt aber auch die Möglichkeit, allgemeiner die Bedingun- 

gen dafür anzugeben, daß eine Gleichung n-ten Grades » verschiedene 

Wurzeln besitzt, und daß davon o reell und verschieden sind. 

Zu dem Zwecke nehme ich an, daß &,...&, die reellen verschiedenen 

Wurzeln sind, und &,,1 ++ -&, die komplexen verschiedenen Wurzeln be- 

deuten. Ferner trete die Wurzel &, genau p,-mal auf. Bei den komplexen 

Wurzeln, sollen konjugiert komplexe Wurzeln jeweils unmittelbar hinter- 

einander geschrieben sein. 

Dann ist 
k=V 

(4) F Sp (Eee le 

Nun setzen wirnoch Ku=di=-n +0 = 

Baer 

« s 
En > en N - WR — er 

BO Eee wo u= Keen. 
v u Nu Li MT Cu: 2 
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Fassen wir nun je zwei konjugiert imaginäre Summanden in (4) zu- 

sammen, für die ja jeweils p, denselben Wert hat. Dann ist 

Grant Hatte Het)? 
- lt H+iE) + Hamlet veren]: 

ltd — ve) nein (Er _gEr2)] 

= + [+ Rd + OO) +... + 2m + 9R-D)]. 

a N) Be] 
= 2 + Wat + (N er), 

k= 

Also wird F  Iprla, +50 +... + E12) 

1=u . 

0) +2 perl + at tanz)? 
i=u 

e- DD Pers: (2,0) +...4+ ): 

vet 

Nun wollen wir eine reelle lineare Transformation angeben, durch die 

die Form (2) in die Gestalt (5) übergeführt wird. Eine solche ist 

Yr = +8 4... +82, k=1,220 

(6a) Yaz.ı —I ea) I=1,2 ad Bee Oi tr  HORTDz, B) Sees . 

Da dies erst 0 + 2u = v neue Variable sind, so fügen wir noch hinzu 

(6b) Y=ıtb +. +, a=l,...n—v, 

wobei die t, reelle Zahlen sind, über die noch so verfügt werden soll, daß 

die Determinante der Transformation nicht verschwindet. Dazu ist, wie 

wir gleich sehen werden, nur nötig, die 7, von den p reellen &, und unter- 

einander verschieden anzunehmen. Denn die Determinante wird 

1) A RE TE RR; 1rE7. else 

- - 1 1, Dar We ES Ber 
'‘ı) (n-1) eich) (n-1) a | ara 3.7 na. 1% e 

Bao ...0 a 17%, a 

A or |: -(3) £ > ; zen 
ee. een > 

Er 0 a N Sk IN en 

a A he Te ae ST ur age rn 

ee 1 ara am. Tuer 
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Hier wurden die folgenden Umformungen vorgenommen. Es wurden die 

9-Zeilen und — i multipliziert und zu ihnen die n-Zeilen gleicher Nummer 

zugefügt. Um diese Multiplikation mit — iwauszugleichen, wurde die Deter- 

minante mit (#)“ multipliziert. Alsdann wurden die halben Z-Zeilen von 

den n-Zeilen gleicher Nummer abgezogen. Dadurch entstehen die halben 

£-Zeilen. Diese u-Faktoren 4 werden vor die Determinante genommen. 

Die so entstandene Determinante ist aber nach 8.118 von Null ver- 

schieden, wenn die &, £, alle untereinander verschieden sind. Dazu aber 

ist es nur nötig, die 7 reell, untereinander und von den £ verschieden anzu- 

nehmen. 

Die Darstellung (5) der Form F lehrt nun: 

Die Anzahl der verschiedenen Wurzeln einer Gleichung n- 

ten Grades mit reellen Koeffizienten ist gleich dem Rang 

der quadratischen Form (2). Die Anzahl der verschiedenen 

reellen Wurzeln ist gleich der Signatur der Form (2). (Vgl.8.87.) 

Auch die Anzahl der verschiedenen in einem endlichen Intervall ge- 

legenen reellen Wurzeln läßt sich mit den gleichen Mitteln bestimmen. 

Man betrachtet dazu die quadratische Form 

ken 

Fi => HH) + Hm + +)? 

m Wera — 8g+#-1) Latg, Wu reell. 

Nach ähnlichen Überlegungen wie vorhin fasse man wieder alle Glieder 

gleicher &, zusammen und gehe zu reellen Quadraten über. Zwei konju- 

giert komplexe Wurzeln geben dann wieder zu je einem positiven und einem 

negativen Quadrat Anlaß. Der Rang von F,, wird daher wieder gleich der 

Anzahl der verschiedenen Wurzeln, wenn man annimmt, daß a keine 

Wurzel ist. Es seien dann wieder » verschiedene Wurzeln vorhanden, 

während op reelle verschiedene 9, sind, 0, Wurzeln seien kleiner als a, 

0, seien größer alsa. Dann hat F,, nachdem man als Summe reeller Qua- 

drate geschrieben hat 0, + E positive und 9, + - negative Qua- 

drate. |oı — oz] ist also die Signatur der Form. 

Man nehme nun nacheinander für a zwei Werte a, und a,, die beide nicht 

Wurzeln sind, mit der Absicht, die Anzahl der zwischen a, und a, gelegenen 
verschiedenen Wurzeln zu ermitteln. Diese seio. Es seia, <a,. Ferner 
seien 0, Wurzeln kleiner als a, und oe, Wurzeln größer als a,. Dann ist die 
Signatur von F, : |eı —0— g3|, die von F,:|eı +0 —.o5|. Also ist o 
gleich der halben Differenz der beiden Signaturen. | 
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Drittes Kapitel. 

Anzahl der Wurzeln in einem Bereich. 

1. Das Verfahren von A. Cohn. In seiner Disssertation (Math. Ztschr. 
Bd.14) hat A. Cohn ein rekurrentes Verfahren ermittelt, um die Anzahl der 

Nullstellen zu bestimmen, die eine Gleichung in einem Kreis besitzt. 

Wegen einer leicht auszuführenden linearen Transformation genügt es, 

den Kreis als Einheitskreis anzunehmen. Dieses Verfahren entspricht dem 

Sturmschen Verfahren für die Anzahl der in ein Intervall fallenden reellen 

Wurzeln. Die Bestimmung der Anzahl der Wurzeln in einem Kreis er- 

laubt es dann, analog wie bei den reellen Wurzeln näherungsweise auch 

die komplexen Wurzeln zu ermitteln. Das Verfahren erlaubt auch die An- 

zahl der Wurzeln in andern Bereichen zu ermitteln. Die von Herrn Cohn 

gefundene Regel entspringt aus dem schon $. 25 herangezogenen funk- 

tionentheoretischen Satz von Rouche&. Sie unterscheidet vier Fälle. Dies 

ist die Regel: 

Vorgelegt sei das Polynom 

fz) = WE" + a +. +0, m. 

Man setze f*(z) = x” f() = ++ + 

wo durch Überstreichen das konjugiert Komplexe gekennzeichnet ist. 

I. Es sei |a,| > |a„|. Man bilde 

ale) — anf* (a) = afıl®). 
Das Polynom f, (x) ist von höchstens n — 1-tem Grade. f(x) hat eine Null- 

stelle mehr im Inneren des Einheitskreises wie fı (&). 

II. Es sei |a,| < |a„|. Man bilde 

Anf(&) — af* (a) = fıl@). 
Dies Polynom f,(x) ist von höchstens n— 1-tem Grade und besitzt im 

Inneren des Einheitskreises ebenso viele Nullstellen wie f(x). 

Bumis 20,000 80.00. in ee k<|5|, 

aber a. #Ed,_x- 5] ist die größte ganze Zahl, die 7 nicht übertrifft. 

Man setze dann sen — b und wende auf das Polynom 

(a* + 2.) 

die in II. vorgeschriebene Regel an. Man erhält dann eine unter I ge- 

hörige Gleichung n-ten Grades, die im Inneren des Einheitskreises ebenso 

viele Nullstellen wie f(x) besitzt. 
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IV. ,=.,,,=0,1...nlel = 1). Dann hat 

re) —— a) == On + Da Nr AL NG, 

im Innern des Einheitskreises ebenso viele Wurzeln wie /(2). 

Man sieht also, daß man in jedem Falle die für ein Polynom n-ten Grades 

zu lösende Aufgabe auf die entsprechende Aufgabe für ein Polynom 

n— 1-ten Grades zurückführen kann. 

Das Verfahren erlaubt es, auch die Anzahl der Wurzeln von f(x) zu be- 

stimmen, die auf die Peripherie des Einheitskreises fallen. Es ergibt sich 

folgende Regel: 

Ist f,(x) das erste unter IV. fallende Polynom, auf das man nach o- 

maliger Anwendung des Cohnschen Verfahrens stößt, und hat dann 

fl) = tl). 
wo s der Grad von f, ist, 1 Wurzeln im Inneren des Einheitskreises, so be- 

sitzt f(x) — wie f,(2) — ti = s— 21 Wurzeln vom Betrag. 

2. Beweis der Cohnschen Regeln. Der Beweis beruht, wie schon bemerkt, 

auf dem funktionentheoretischen Satz von Rouche: 

Sind p(x) und y(x) zwei Polynome und ist am Rande des Einheits- 

kreises überall |p(x)| > |y(&)|, so besitzen (x) und (x) + y(x) gleich- 

viele Wurzeln im Inneren des Einheitskreises. 

Nun besitzen f(x) und /* (x) (vgl. die Def. auf $. 169) dieselben Wurzeln 

a,...a, vom Betragel. Setzt man G (x) = //(x— «,), und f(x2)=G(z)F(«), 
H 1 

so ist f*(x) = I] @)G(a)F* (x), wo F*(x) = rn). Daher ist für 
1 

lz2|=1[|F(x)| = |F*(«)|. Ist also || < 1, so ist auf |x| = 1 durchweg 

IF(x)| > |AF*(x)|. Daher haben F(x) und F(x) + AF*(x) gleichviel 

Nullstellen im Inneren des Einheitskreises. Multipliziert man mit G (x), 

so hat man f(x) und f(x) + uf*(«) 

haben für jede Zahl |«| < 1 gleichviel Nullstellen im Inneren des Einheits- 

kreises. | Dabei ist ui: Ile | 

Hieraus ergeben sich unmittelbar die in der vorigen Nummer unter I 

und II angegebenen Regeln. Ist aber |a,| = |a,|, so multipliziert man 

f(x) erst mit einem Faktor, der im Einheitskreis nicht verschwindet, um 

so ein unter I oder II fallendes Polynom zu bekommen. Diesem Vorsatz 

entspricht die Angabe unter III, deren Richtigkeit man durch direkte 
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Rechnung nachprüfen kann. Wegen des etwa mühsameren Beweises der 

Regel IV vgl. man die Arbeit von Cohn in Math. Ztschr. Bd. 14. Zu der 

ganzen hier behandelten Frage lese man noch die Arbeit von Herglotz, 

Math. Ztschr. Bd. 19, nach. 

3. Ein Kriterium von J.Schur für Gleichungen, deren sämtliche Wurzeln 

dem Inneren des Einheitskreises angehören. Der erste Teil der Cohn- 

schen Regel führt unmittelbar zu dem Schurschen Kriterium: 

Dafür, daß 

(2) = 98" + ar 1 +... 40,0 + 0 

nur Wurzeln aus dem Inneren des Einheitskreises besitzt, 

ist notwendig und hinreichend, daß |a,| > |a,| ist und daß das 

Polynom n—1-ten Grades 

ho)=- (Mila) er (2)) 
nur Wurzeln aus dem Inneren des Einheitskreises besitzt. 

Da nämlich das Produkt der Wurzeln (— 1)r“* ist, so ist |a,| > |a,| 
0 Gy 

notwendig und daher ist nach dem ersten Teil der Cohnschen Regel auch 

die Aussage über f, (x) notwendig. Daß die Bedingungen hinreichend sind, 

lehrt Cohns Regel I unmittelbar. 

4. Ein Satz von Kakeya. Als ein Beispiel zum Vorstehenden werde der 

folgende Satz von Kakeya bewiesen. f(x) = ag2" ++ a, besitzt 

sicher dann nur Wurzeln aus dem Inneren des Einheits- 

kreises, wenn die a, alle reell sind, und wenn 

ee a 

Setzt man nämlich 
( — (1) — (1) fi(e) = a ar It aarn? +. Hana, 

7 (ben so wird 0 = 9, —Andnoys 

und hier gilt wieder a ren. 

Da aber der Satz von Kakeya für Gleichungen ersten Grades trivial 

ist, so ist er auf Grund des Schurschen Kriteriums hiernach durch voll- 

ständige Induktion bewiesen. 

Man kann ihn auch direkt ohne Beziehung zu Cohn und Schur be- 

weisen. Zu dem Zweck formulieren wir ihn erst so: 

Pe)=, + +::-+ 4,2" 

mit em > m > dl 

hat nur Wurzeln von einem absoluten Betrag größer als 1. 
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Es ist nämlich: 

(1-2)P(a) = [m — a) + (1 — m) +: + (In-ı — An) 2" 

+ a„erri. 

Also 

d-9)Po)| 2@- (ale —a)lel.--anlalrt, 
wo das Gleichheitszeichen nur für 2>0 steht. Für |x| <1, außer 

x=0 und x =1 ist also 

|1—z)P(a)| > a — (o— 4): — 4, = 0. 

Da ferner P(0) +0 und P(1) +0 ist, so ist für |x| < 1 überall P(x) +0. 

Folgerung. Wennay +42 +: + a," positive Koeffizienten hat, 

so liegen sämtliche Wurzeln zwischen Maximum und Minimum der Zahlen 

ee Fe 
An Mm-ı" 1 

Zum Beweis mache man in dem Polynom die Substitution x = Ay. Die 

Koeffizientenverhältnisse werden dann 

Man wähle A so, daß sie alle kleiner als 1 ausfallen und wende den Satz von 

Kakeya an, oder aber man wähle A so, daß sie alle größer als 1 ausfallen, 

ersetze & durch und wende dann den Satz von Kak eyaan. 

Zusatz betreffend reelle Wurzeln. 

n sei gerade. In 

fe) = - TI + 08° — --- + 0,8” 

seien alle a, > 0. Esseim die kleinste unter den Zahlen 

I a aa I An 
4’ 0’ Am—ı 

und M die größte unter den Zahlen 

Gı As et, 

d? (n” Ay 

Dann liegen alle reellen Wurzeln von f(x) zwischen m und M, und für 

m = M ist keine derselben reell. 

Denn es ist 

ao (« — AR ans 2E (« = a nr 

Daher kann keine reelle Wurzel größer als M sein, aber auch keine gleich 

M. Ferner ist 
&ü 

f(&) = An” — One (« Fe =) Be an_zart(z 
04) Er 

An-ı Anz 
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und daher kann keine Wurzel kleiner als m sein. Hier sieht man auch, 

daß keine Wurzel = m sein kann. 

Beispiel. x —22° +52 —37+6=0 

hat keine reellen Wurzeln. Denn hier stm =M =2. 

5.Gleichungen, deren sämtlicheWurzeln negativen Realteil besitzen. Ich 

will mich bei dieser für viele Anwendungen wichtigen Frage auf Gleichun- 

gen mit reellen Koeffizienten beschränken. Zunächst sei bemerkt: 

Hat I) =. + ME H:- + „ER 

nur Wurzeln mit negativem Realteil, so ist 

<< IR] für Re) <o 
0=<|f—a)|<Ife@)| für Re) > 0 

0<@I = ID] für Re) = 0. 
Denn dann ist fa) =] I(® — «). 

a 

Da nun Re, < 0 ist, so treffen die drei angegebenen Aussagen zu, wenn 

man sie für jeden einzelnen der Faktoren nachprüft. Daher treffen sie auch 

für f(x) selbst zu. 

Sind weiter « und ß zwei reelle Zahlen und ist Ja| > ||, 

so sind dann und nur dann alle Wurzeln von f(x) mit nega- 

tivem Realteil versehen, wenn g(x) =ef(xz)—Pf(—x) diese 

Eigenschaft besitzt. 

Denn hat f(x) nur Wurzeln mit negativem Realteil, so ist für R(x) > 0 

lef(@)| > If 9). 
Daher ist für ein solches x nie g(x) = 0. Es habe nun umgekehrt g(x) nur 

Wurzeln mit negativem Realteil. Aus 

9(2) = af(a) — BF(— %) 

9(— 2) = af(— x) — Bf(&) 

folgt (2) = fi (@) + er Ten 2), 

I a 
und da Ve | BE | 

ist, so folgt nach dem gleichen Schluß, daß auch f(x) nur Wurzeln mit 

negativem Realteil besitzt. 

Ist nun & < 0, so wird nach dem ersten Satz dieser Nummer 

IK-91>1fAl: 
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Daher haben nach dem zweiten Satz dieser Nummer dann und nur dann 

alle Wurzeln von f(x) negativen Realteil, wenn dies für 

r-Htr@ MAT 2) 

zutrifft. Da dies Polynom aber für = 8 verschwindet und & < 0 ist, 

so folgt: 

f(«) hat dann und nur dann lauter Wurzeln mit negativem 

Realteil, wenn dies für das Polynom 

zutrifft. Hier ist &<0 eine sonst beliebige Zahl. 

f(x) hat einen niedrigeren Grad als f(x) und so hat man hier ein rekur- 

rentes Verfahren, um die Frage zu entschieden. 

Ich füge noch hinzu, daß man aus diesem Verfahren heraus noch das 

folgende von Hurwitz herrührende Kriterium gewinnen kann: 

Das Polynom n-ten Grades 

fd) =o FUEH+ 4 Ant” 

mit reellen Koeffizienten hat dann und nur dann nur Wur- 

zeln mit negativem Realteil, wenn die Determinanten 

Dee, Aydo Da D 4 0% 0 N 

SET el 19 3; re 
|@sQy | Qs2ı | ee Bi) 

AzQ4Q3| un Dnc 

alle positiv sind. 

Wegen des Beweises vgl. man eine Arbeit von J. Schur in Bd. I der 

Ztschr. für angewandte Mathematik und Mechanik. Zur ganzen Frage 

lese man noch Hurwitz, Math. Ann. Bd. 46, und Herglotz, Math. 

7tschr. Bd. 19, nach. 

Viertes Kapitel. 

Das Graeiiesche Verfahren. 

1.Das Graeffesche Verfahren. Falls es sich darum handelt, diesämtlichen 

Wurzeln einer Gleichung zu ermitteln, ist das von Graeffet) angegebene 

Verfahren zweckmäßig. Dasselbe erfordert nämlich keinerlei vorläufige 

Kenntnis über die Wurzeln, keine Bestimmung der Grenzen derselben, 

keine Trennung der Wurzeln, keine Untersuchung, ob und wie viele 

1) Graeffe, „Auflösung der höheren numerischen Gleichungen“. Zürich 1837. 
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imaginäre Wurzeln vorhanden. Es gibt alle Wurzeln zugleich. 

Der Astronom Encke!) hat diese Graeffesche Methode noch verbessert 

und zugleich alle Kunstgriffe angegeben, welehe dem Rechner von 

Vorteil sind. 

Das Prinzip des Verfahrens von Graeffe besteht darin, aus der ge” 

gebenen Gleichung eine andere abzuleiten, deren Wurzeln so hohe Po- 

tenzen der Wurzeln der gegebenen sind, daß in derselben die Potenz der 

kleineren Wurzel im Verhältnis zur Potenz der größeren verschwindet. 

Nehmen wir zuerst an, die Gleichung f(x) = 0 habe nur reelle Wurzeln, 

deren absolute Beträge voneinander verschieden sind, es sei also 

fa)=atale+b)a to). =0, 
oder, wenn sie vom n-ten Grade ist, 

(1) an oa + Zaban? L...=0, 

woa,b,c,...reell. Ist m eine beliebige ganze Zahl, so läßt sich die Glei- 

chung herstellen 

(2) (@+a”r)(c+b”)(c+c”)..-=ar + Lamari+ Kambman2+..—(. 

Die Potenz m können wir beliebig hoch annehmen. Esseien nuna,b,c,d,... 

nach ihrer absoluten Größe geordnet, so daß |a| > |b| > |c| > |d| usf., 

so wird für hinreichend hohe Werte von m d” gegen c”, c” gegen b”, 

b” gegen a” und zuletzt auch br + c® + d” + - - - gegen a” verschwin- 

den und mithin 
bm Mm 

Zr arten tn lt ntmt)=ertlta), 
wo |«, | desto kleiner wird, je größer m ist, und beliebig klein werden kann. 

Ebenso wird 

Zarb” = arb® 4 ame” -ardm - breon 4... 
en em am em em dam ers 

= a"b It tat tat) bl +0), 

wo |a,| beliebig klein werden kann, wenn m hinreichend groß usf. Aus 

dieser Gleichung erhält man sodann durch Division jedes Koeffizienten 

mit dem vorhergehenden näherungsweise die m-ten Potenzen sämtlicher 

Wurzeln. 

Um nun zu der Gleichung (2) mit sehr hohen Potenzen m zu gelangen, 

geht man schrittweise vor, indem man zuerst nur die Gleichung bildet, 

deren Wurzeln die zweiten Potenzen der Wurzeln sind, und sodann diese 

1) Encke, Allgemeine Auflösung der numerischen Gleichungen. Crelles Journ. 

Bd. XXII, 1841, S. 193. 
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Operation wiederholt anwendet. Bo steigt man von der zweiten zur vier- 

ten, achten, sechzehnten Potenz auf. Die Gleichung mit den zweiten 

Potenzen aber läßt sich leicht bilden. Ist 

an + Aa ı4+ Aa? + A ar ih let a)(a +b)(e +0). —=0 

die gegebene Gleichung, und ändert man das Zeichen des zweiten, vierten, 

sechsten, .... Gliedes, so erhält man die Gleichung 

on — A,arı + A,an2— Azur? +. = (Ra) — b)(@—c)--- 

Das Produkt der beiden Gleichungen ist 

(8) (er A,er 2 Aa) Are A, PL. 

Dies ist die Gleichung 

(22 — a2) (0? — 52) (ee — 2). --—(. 

Setzt man also in derselben x statt x2, so erhält man die Gleichung mit den 

Quadraten der Wurzeln 

(«—- a) (Ed) — e)---—=0. 

Da in dieser die Wurzeln sämtlich positiv sind, so kommen in derselben 

nur Zeichenwechsel vor. Dies erschwert etwas die Rechnung. Man ändere 

daher wieder das Zeichen des zweiten, vierten, sechsten, ... Gliedes; so 

erhält man die Gleichung 

(+) +) +). —=(0, 

in welcher nun alle Glieder positiv sein müssen, wenn die Wurzeln reell 

sind. Macht man in (4) diese Veränderungen, so erhält man 

ar , er + di a ee il) 

9, oA Ann DAN or I ASAN 

un ee iz! 

—2 As N 
+24, | 

deren Faktoren 2 + a2, x +b2,... sind. Die Bildung der Koeffizienten 

ist leicht zu übersehen. Von dieser Gleichung bildet man sodann ebenso 

die Gleichung, deren Wurzeln a?, b?,... sind usf. 

Nach ein paar Operationen werden gewöhnlich die Koeffizienten so 

groß, daß es notwendig wird, zu ihrer Berechnung Logarithmen anzu- 

wenden, und man vollführt am zweckmäßigsten die Addition und Sub- 

traktion mittels der Tafeln der Additions- und Subtraktionslogarithmen 

mit 5 oder 7 Dezimalstellen, je nach dem Grade der Genauigkeit, der 
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gefordert wird. Sind die Koeffizienten Brüche, so wird man eben von An- 

fang an die Koeffizienten durch ihre Logarithmen ersetzen. Man kann 

sich statt dessen mit Vorteil auch einer Rechenmaschine bedienen. 

Die Grenze der Gleichungsbildung ist erreicht, wenn in jedem Koeffi- 

zienten die folgenden Glieder gegen das erste, das Quadrat, verschwinden. 

Am längsten macht sich das dem Quadrat nächststehende Produkt gel- 

tend. Denn ist man bei der m-ten Potenz der Wurzeln angelangt, so er- 

sieht man, daß z.B. 43 sich zu 24,4, nahezu verhält wie cr: 2d”, 

während 4} sich zu 24,4, verhält wieb” er : de". Ist etwa n = Saibh 

so wird, wenn man mit fünfstelligen Logarithmen rechnet, der dritte Koeffi- 

zient sich wesentlich auf A} reduzieren, indem die folgenden Glieder auf 

die letzte Dezimale von A? keinen Einfluß mehr ausüben. Man berechnet 

daraus leicht, daß, wenn die zwei Wurzeln c, d so nahe liegen, daß z m 

ist, man höchstens bis zur Potenz m = 128 = 2° zu gehen hat, damit dies 

eintrete. 

Haben sich sämtliche Koeffizienten mit genügender Genauigkeit auf 

das Quadrat reduziert, so erhält man sämtliche Wurzeln bis auf 5 oder 

7 Dezimalstellen genau, je nachdem man mit 5- oder 7-stelligen Log- 

arithmen gerechnet hat. 

Da man bei jeder Operation die Wurzeln ins Quadrat erhebt, ver- 

schwinden schon bei der ersten Operation die Zeichen der Wurzeln. Man 

wird also schließlich noch zu ermitteln haben, welches Zeichen jeder Wur- 

zel zukommt, was z. B. durch Einsetzen von Grenzen, zwischen welchen 

die Wurzel liegt, in die Gleichung geschehen kann. 

2. Komplexe Wurzeln. Wir haben bisher vorausgesetzt, daß alle Wurzeln 

reell sind. In diesem Falle müssen alle Koeffizienten der Gleichung (7) 

positiv sein. Wird in irgendeiner der zu bildenden Gleichungen ein Koeffi- 

zient negativ, so muß die Gleichung imaginäre Wurzeln haben. Aber das 

Vorhandensein imaginärer Wurzeln zieht nicht notwendig das Auftreten 

negativer Zeichen nach sich. 

Um zu sehen, wie sich imaginäre Wurzeln in den aufeinanderfolgenden 

Gleichungen mit den zweiten, vierten, ...... Potenzen der Wurzeln verhalten, 

seien g(cos @ + isin p) ein Paar imaginärer Wurzeln; dieselben erzeugen 

in dem Gleichungspolynom den reellen quadratischen Faktor 

2? — 2900898 + 9° 

oder 2? +f2+9, 

wenn wir — 290089 =f, cp = — ı 

B eberbach, Algebra. 12 
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setzen. Da die m-te Potenz dieser Wurzeln g”(cos mp + sin mg) wird, 

so geht dieser quadratische Faktor in der Gleichung mit den m-ten Po- 

tenzen der Wurzeln über in 

x? + 2g7 cosmp- x + g?” 

oder a un 

wo Im = 29” cosmp. 

Ist mg ein Vielfaches von x, so wird f„ — 2g” und wird dann diesen 

Wert auch behalten, wenn man zu höheren Potenzen der Wurzeln über- 

geht. Die zwei imaginären Wurzeln würden in diesem Falle sich wie zwei 

gleiche reelle Wurzeln verhalten. Schließt man aber diesen besonderen 

Fall aus, so wird f,, für verschiedene Werte von m schwanken, bald zu-, 

bald abnehmen, vielleicht das Zeichen wechseln, aber immer zwischen den 

Grenzen + 29” und — 29” sich ändern. 

Hat nun die gegebene Gleichung die reellen Faktoren 

(+) +b)(e +0)... +f2 +9), 

mithin die Gleichung mit den m-ten Potenzen der Wurzeln die Faktoren 

(Fam) (ce + bri(e Lem)... (ee jr ıg 2), 

und vollführt man die Multiplikation und reduziert jeden Koeffizienten 

auf das durch seine Größe ausschlaggebende Glied, so ergibt sich, daß ein 

Koeffizient wesentlich von dem zwischen + 29” schwankenden f„ be- 

stimmt wird und deshalb selbst schwankend bleibt. Derselbe kann bei 

dem Übergang von der Gleichung mit den m-ten Potenzen auf die nächste 

bald wachsen, bald abnehmen, vielleicht sein Zeichen wechseln, während 

die übrigen Koeffizienten sich immer mehr den Quadraten 47, 43,4}, -- 
der Koeffizienten der vorhergehenden Gleichung nähern (Gleichung 4). 

Ist z.B.|a| > |b|>g> Je| > ---, so wird die m — n-te Gleichung: 

ar Zar -a)au in oa oe na 

(5) L are Es 4) gn—4 .e Rbag ca] + Q5) gen—5 

Me), 

wo die «, mit wachsendem m gegen Null streben und wo (f) den von f ab- 

hängigen schwankenden Koeffizienten darstellt. Läßt man diesen Koeffi- 

zienten aus und dividiert jeden Koeffizienten mit dem vorhergehenden, 

so erhält man der Reihe nach näherungsweise die m-ten Potenzen von 

a,b, 9%,c,... Immer gibt der Koeffizient, der nach dem schwankenden 

folgt, das Quadrat des Moduls g des imginären Wurzelpaares. 
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Wäre noch ein zweites Wurzelpaar g’ (cos p’ -- isin p’) vorhanden, wel- 
chem in dem Polynom der Gleichung der Faktor 

x — 2g’cosp'-x+g”? oder fr + g” 

entspricht, und wäre g> |a| > g’ > |b| > Je|..., so würde die m-te 
Gleichung lauten 

2° + Mari + gm(l +a)ar? + gEman(l + a)ar-® 
+ Part + gmangam( + a)ar-° + gemamgambm(l + a)ar-t 
+ gramgambmcm(]| — ,)ar tt... 

Wäre aber Ja|>g>g' > |b|....,so würde die m-te Gleichung die Form 

annehmen 
ar + a -— ee — (f) gen—2 -. RE -L &5) gen—3 

(6) eure ag gell a)an 
u organ gemhm(] air &) OO An oc 

Immer bleibt in diesem Falle außer dem schwankenden Koeffizienten (f) 

noch ein zweiter Koeffizient (f') schwankend, welcher von der Größe f,. 

abhängt, die selbst zwischen den Grenzen + 2g’” sich mit m ändert. 

Die Rechnung zeigt also immer von selbst die imaginären 

Wurzeln an. So viele Koeffizienten schwankend bleiben, so 

viele Paare imaginärer Wurzeln hat die Gleichung. Läßt 

man in der Endgleichung diese schwankenden Koeffizienten 

unberücksichtigt und dividiert jeden der andern Koeffi- 

zienten mit dem vorhergehenden, so erhält man die m-ten 

Potenzen der sämtlichen reellen Wurzeln und der Quadrate 

der Moduln der imaginären Wurzelpaare, und zwar gibt im- 

mer der Koeffizient, der nach einem schwankenden kommt, 

das Quadrat eines Moduls. 

3. Wurzeln vom selben absoluten Betrag. Ausnahmen treten ein, wenn 

mehrere reelle Wurzeln gleich sind (oder auch nur absolut gleich ohne 

Rücksicht auf die Zeichen der Wurzeln). 

Ist z. B.d = c, so werden in der m-ten Gleichung die aufeinanderfolgen- 

den Koeffizienten arbrer(1 + a,), a"b”erd”(1 + «,) geändert in 

Lambrmem(| + 0,),,a"bream(] +0,), 

wie leicht zu sehen; wären aber drei Wurzeln gleich, e=d=c, so 

entstehen in der m-ten Gleiehung drei aufeinanderfolgende Koeffizienten 

der Form 

Sambmem(1 + a,),3arbrem(1 + a,), arbmrem(] + a,), usf. 
12* 
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‘ Es kann ferner eine reelle Wurzel g dem Modul eines imaginären Paares 

gleich sein. In diesem Falle hat die Gleichung die Faktoren 

++ erde trersgtrMerg, 

wodurch in der m-ten Gleichung Glieder der Form 

on ta) + Mari + Dar tongm(l + aa te 
entstehen, d. h. zwei Koeffizienten nacheinander bleiben schwankend, der 

nächste durch den vorhergehenden dividiert gibt g?”. 

Endlich können auch die Moduln zweier imaginärer Wurzelpaare gleich 

sein, 9—=g’; in diesem Falle bleiben in der Endgleichung drei aufein- 

anderfolgende Koeffizienten schwankend, der nächste liefert mit dem 

vorausgehenden festen g*”. 

Treten bei der Bildung der Gleichungen solche Unregelmäßigkeiten ein, 

so werden wir daraus zunächst nur schließen, daß die hier als gleich an- 

genommenen Größen ungewöhnlich nahe beisammen liegen. Bei dem Auf- 

steigen zu höheren Potenzen heben sich dann diese Unregelmäßigkeiten 

gewöhnlich von selbst, indem sich die nahezu gleichen Wurzeln trennen. 

Nötigenfalls könnte man sie auch als gleiche betrachten, nach dem Vorigen 

berechnen und den erhaltenen Wert sodann als gemeinsamen Näherungs- 

wert für zwei Wurzeln zur gleichzeitigen Berechnung derselben mittels der 

Newtonschen Methode benutzen. 

Es ist nun nur noch anzugeben, wie man, falls die Gleichung Paare von 

imaginären Wurzeln hat, in den quadratischen Formen, die denselben ent- 

sprechen, 
5 + fa +2, arte 49%. 

die Koeffizienten f, f,... bestimmen kann. Da man aber die sämtlichen 

reellen Wurzeln a,b,c,... und die Moduln 9, g’,... der imaginären Paare 

bereits gefunden hat, so liefert immer die Vergleichung des Produkts 

(«— a) —b)...+fe +9) +fr+g2%). 

mit dem gegebenen Gleichungspolynom mehr Gleichungen zur Bestim- 

mung der Unbekannten f, f’, ... ., als notwendig sind. 

Ist nur ein Paar imaginärer Wurzeln vorhanden und 4, der erste Koeffi- 

zient der gegebenen Gleichung, so ist 4, =— 2a + f. Damit ist f be- 

stimmt und zugleich der Winkel @ der imaginären Wurzeln g(coso 
+ isino), da 

f= --2gcoso. 

Sind zwei Paare imaginärer Wurzeln vorhanden, soist A, = — a + f+f. 
Der vorletzte Koeffizient der gegebenen Gleichung A,„_, ist ebenfalls linear 
in f und f’ zusammengesetzt. Aus dem Wert A, und A„_, berechnet sich 
mithin f und f’ auf einfachste Weise. 
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Sind drei Paare imaginärer Wurzeln vorhanden, so ergibt sich aus A, 

und A„_,, welche linear f, f’, f’’ sind, das f und f’ linear in f”. Setzt man 

diese Werte in die Koeffizienten A, und A„_, ein, so erhält man zwei qua- 

dratische Gleichungen in f”’, die mithin einen gemeinsamen Faktor haben 

müssen. Derselbe liefert f’’ und damit f und f’ usf. 

4. Beispiele. Es folgen nun einige Beispiele.t) Dieselben werden zeigen, 

daß diese Methode nicht nur praktisch ist, wenn es sich um möglichst ge- 

naue Berechnung der Wurzeln handelt, sondern auch, wenn man nur Ein- 

blick gewinnen will in die Natur und Lage der Wurzeln oder sich rohe 

Näherungswerte derselben verschaffen will. 

ans ER ACT Bear ers Beasspiel LI u ur al. 

Setzen wir u? = x und schreiben statt der Koeffizienten ihre Logarithmen 

an, so kommt 

— 0,1760913, + 9,829303 8, — 9,007 6869, + 7,3740279. 

Um bei der folgenden Rechnung nicht immer mit negativen Logarithmen 

rechnen und immer beachten zu müssen, welches Vielfache von 10 ab- 

zuziehen ist, machen wir die Wurzeln 10mal so groß, indem wir 1lxz=2z 

setzen und addieren also zum ersten Logarithmus 1, zum zweiten 2, zum 

dritten 3, zum vierten 4 hinzu, so wird 

— 1,1760913, + 1,8293038, — 2,007 6869, + 1,3740279. 

Wir berechnen nun die Gleichungen mit den Potenzen m = 2!,2?,2°,...nach 

Gleichung (4), indem wir uns der 7-stelligen Additions- und Subtraktions- 

logarithmen bedienen und immer an Stelle der Koeffizienten ihre Logarith- 

men setzen. Auf das beigesetzte Zeichen der Koeffizienten A ist bei Bildung 

der Gleichung (4) wohl zu achten. Wir schreiben immer nur die Koeffi- 

zienten der dritten, zweiten, ersten und nullten Potenz der Unbekanntenan: 

Potenz m = 2! 

+ 1,9542421, + 3,1903316, + 3,8552852, + 2,7480558. 

Potenz m = 2? 

+ 3,6989687, + 6,0467772, + 7,6956399, + 5,4961116. 

Potenz m = 2? 

+ 7,3574089, + 11,8716902, + 15,3911566, + 10,9922232. 

Potenz m = 2% 

+ 14,7135695, + 23,6451644, + 30,7823132, + 21,9844464. 

1) Weitere durchgeführte Beispiele siehe: Encke a. a. O0. Wegen weiterer Einzel- 
heiten der Methode, namentlich bei Wurzeln gleichen absoluten Betrages siehe auch 

C. Runge, Praxis der Gleichungen. 
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Alle Koeffizienten nähern sich bereits dem Quadrate der entsprechenden 

Koeffizienten der vorhergehenden Gleichung. Der Koeffizient von 2 ist 

bereits ein reines Quadrat, d.h. das Produkt — 24,4, hat auf A} keinen 

Einfluß mehr bis auf die siebente Dezimale (Gl. 4). Er bleibt also auch 

Quadrat in den folgenden Gleichungen. Alle Wurzeln sind reell und posi- 

tiv, da die Gleichung keine negative Wurzel enthalten kann 

Potenz m = 2% 

+ 29,4271376, + 47,2761567, + 61,5646264, + 43,9688928. 

Potenz m = 2% 

+ 58,8542752, + 94,5520744, + 128,1292528, + 87,9377856. 

Alle Koeffizienten sind jetzt reine Quadrate, außer dem von 2°, und auch 

dieser würde bei der nächsten Operation nun in das Quadrat übergehen, 

indem das Glied — 24,4; keinen Einfluß mehr ausüben würde. 

Also gibt 

1. Koeffizient log a — 58,8542752 

2. B — 1. Koeffizienten log b = 35,6977992 

8. PB — 2. > log c* = 28,5771784 

4. ” —8. ” log d — 28,8085328 — 64. 

Hieraus, da 2 = ne ‚ mithin log x = log2 — 1 ist, 

log x, = 9,9195980;, log u, = 9,9597990, 

log &, = 9,5577781 log u, = 9,778889 0, 

log x, = 9,4465184 log u; = 9,7232592, 

log x, = 8,4501333; - log u, = 9,2250666, 

u, = 0,9115888 
Wurzeln der Gleichung, 

ü, = 0,601 0202 RR 
alle positiv und negativ 

uU; = 0,5287607 

U, = 0,1679062 

Diese Werte, zur Probe in die Gleichung f(u) = 0 eingesetzt, ergeben (mit 

10-stelligen Logarithmen gerechnet) 

(u) = — 0,0000000;, (u) = — 0,0000000,, 

(us) = + 0,0000000,, , (us) = + 0,0000000s%.- 

Die Wurzeln sind mithin so genau, als sie mit 7-stelligen et 

tafeln zu erhalten sind. 

genommen. 
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Beispiel II. 

oe — 3° +02 +22 +5=0 

Potenz 2 25 + 72+4+132° +22? +47 +3 

„2 25 +93 + 14903 + 25022 — 84 + 625 

» 2 © + 2312 + 1053383 + 1162820? + 305444 + 6258. 

Das Auftreten eines negativen Zeichens zeigt, daß imaginäre Wurzeln vor- 

handen sind. Von jetzt an werden die Logarithmen statt der Koeffizienten 

angeschrieben und wird mit fünfstelligen Additions- und Subtraktions- 

logarithmen gerechnet 

+ 2,36361, + 4,02255, + 5,06551, — 5,48493, + 5,5916. 

Potenz 2%: 

+ 4,50913, + 7,75289, + 10,30398, + 9,88930, + 11,18352. 

Potenz 2%: 

+ 9,96835, + 15,27968, + 20,607 67, — 21,78811, + 22,367 04. 

Potenz 2°: 

+ 17,93478, + 30,45819, + 41,21540, + 43,..., + 44,734.08. 

Potenz 2°: 

+ 35,86956, + 60,90124, + 82,43080, + ---, + 89,46816. 

Der Koeffizient von & bleibt schwankend. Die Gleichung hat die Form 

@ +ar(l +0) +arb”(1 +0,)2 + a”brer(l +0; 

+(N-z+arbrergr(l +.,). | 

Da man den schwankenden Koeffizienten schließlich ausläßt, da ferner 

derselbe schon bei der Bildung der vorletzten Gleichung auf die Bildung 

des Koeffizienten von x? nur noch in der letzten Dezimale Einfluß hatte, 

also in der letzten gar keinen, auf den Koeffizienten von x° ebenfalls 

keinen, so wurde er gar nicht mehr berechnet. In der letzten Gleichung 

sind nun alle Koeffizienten Quadrate, außer dem von &°; dies läßt darauf 

schließen, daß die Wurzeln b und c sehr nahe beisammen liegen. 

Potenz 28: 

+ 71,738912, + 121,80221, + 164,86160, + - - -, + 178,93632. 

Die Korrektion — 24,4, betrug in dem Koeffizienten von x? nur noch 

— 0,00027 und würde nun vollkommen verschwinden. Die Operation ist 
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also jetzt geschlossen, und wir erhalten aus der letzten Gleichung, da 

22256, 

log a5° — 71,73912, loga = 0,280231, a = 1,906474 (+) 

]og b3° — 50,06309, logb = 0,195559, b = 1,568769 (+) 

lose = 48,05939, logc = 0,1682007, ce = 1,472993 (—) 

log gi? — 14,07472, log g? = 0,054979, g = 1,065343. 

Da, wenn f(x) = 0 die vorgelegte Gleichung ist, 

fa) = + 1,/(1,9) = — 0,04, 11,5) = + 04 1-D = +4 M-9=-, 
so ist a und b positiv, c negativ. 

Zur Prüfung der Rechnung ist, mit 7-stelligen Logarithmen berechnet, 

f(a) = + 0,00000,, f(b) = 0,00000,. 

Da unsere Gleichung von der Form ist 

(.—-a)(« be) +fe+)=-0=- RP +lf—Zae+--, 

so ist {— 2a = —1, woraus f= + 1,00250 sich berechnet und aus 

el o = 180° — 6105438”. 
Wäre man bei der Potenz 2% stehengeblieben, zu deren Berechnung 

noch keine Logarithmen nötig sind, so hätte man schon das Vorhanden- 

sein des imaginären Wurzelpaares und seine Lage erkennen können und 

hätte dann folgende Werte erhalten: 

a = 281, a —y231 = 1,9 
b8 — 10538 — 45,60, b = Y45,60 = 1,6 
= 162% _ 11,04, c = 11,04 = 1,35 
ge N 34, al u 

9=YV1,15= 1,07. 

Diese Näherungswerte sind fast alle auf weniger als 0,1 genau. 

Beispiel III. 

— 22 +32°—- 2 +2 —1=0 

Potenz! #5 — 2 492° -72?+9c +1 

en 22 8 — 142 457.22 +92 18.2 +1 

2.288 + 82. 22 + 3537,22 — 1999-22 + 806-2 +1 

„2 8 — 350.2% + 12987217. 22 + 4690321. 2? + 98834-2 +1. 
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Die Koeffizienten von x? und von x? würden bei der nächsten Gleichung 

wieder negativ. Sie bleiben schwankend. Also sind zwei Paare imaginärer 

Wurzeln vorhanden. Die Gleichung hat schon nahezu die Form 

ed + (De ı- 98? .. 03 an () 2 s = .,g'32 a g92 A g’32als, 

Wollte man weiter rechnen, so würde man statt der Koeffizienten ihre 

Logarithmen einsetzen. Aber der Koeffizient A, von x? würde in der näch- 

sten Gleichung schon sich auf A3 reduzieren bis auf 5 Stellen, der Koeffi- 
zient A, von x auf 47 bis auf drei Stellen. Wir bleiben hier stehen. Dann ist 

g®— 12937 217, = 2,792 85. 

De g’?—= 0,78730. 

al a = 0,487 82 (-L). 

Da f(0) =—1,f(1) = + 2, so ist a positiv. Die Gleichung hat die Zu- 
sammensetzung 

mer nerg)er] 20) 

also Koeffizient von x? I+f-a=-—2, 

Koeffizient vonz gg?—-af®—-afg= +2. 

P 2+a(a — 2)9’—g?g’* _— 2,10342 ze) 
Hieraus f 

a(?—g’?) -0,99683 

f' = 0,597 42. 

Hiermit sind die quadratischen Faktoren 2 + f 2 +9, 2+f'x+g'"* 

und mithin auch die imaginären Wurzelpaare bestimmt. 

Was die Genauigkeit der erhaltenen Werte anbetrifft, so dürfen wir nach 

dem oben Gesagten den für g? gefundenen Wert als auf 5 Dezimalen genau 

annehmen; hingegen werden die Werte von g’? und a, und hiermit auch 

die Werte von fund f’,nur auf 3 Dezimalen genau sein. Wenn erforderlich, 

können wir die Wurzeln nach der Newtonschen Näherungsmethode noch 

verbessern. Für die Korrektion der reellen Wurzel a erhalten wir, wenn 

wir a = 0,4873 annehmen und diesen Wert in die vorgelegte Gleichung 

F(x) = 0 einsetzen, 

F (0,4873 = — 0,00101478 

F' (0,4873) = + 2,51377239 

und damit den verbesserten Wert der reellen Wurzel 

F (a) — za) = 94873 + 0,0003102 = 0,4876102. 
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Fünftes Kapitel. 

Sätze über die Lage der Gleichungswurzeln. 

1. Der Satz von Gauß. Falls die sämtlichen Wurzeln einer Glei- 

ehung f(x) = 0 auf einer Seite einer Geraden der komplexen 

Zahlenebene liegen, so liegen die Wurzeln der abgeleiteten 

Gleichung f(x) =0 alle auf derselben Seite dieser Geraden, 

und zwar in dem strengen Sinn, daß auf der Geraden nur dann Nullstellen 

von f’(x) sich befinden, wenn daselbst auch Nullstellen von f(x) 

liegen. 

Sind nämlich x, . . . x, die Nullstellen von f(x), wobei jede so oft notiert 

ist, als es ihrer Vielfachheit entspricht, so ist die logarithmische Ableitung 

von f(«) an 
fa)" 2—a Bean 

Liegen nun alle x; z. B.linksvon einer gerichtetenGeradeng und liegt zrechts 

von g, oder auf, so sind die Differenzen &— x, durch Vektoren dargestellt, 

die von Null aus abgetragen, alle nach der rechten Seite einer parallel zu g 

durch den Ursprung gelegten Geraden g’ weisen. Die Zahlen = = zeigen 

daher auch alle nach der rechten Seite einer Geraden, die man aus g’ durch 

Spiegelung an der reellen Achse erhält. Ihre Summe kann daher nicht 

Null sein. 

Korrolar: Gehören alle Wurzeln von f(x) einem konvexen Polygon, 

oder einer anderen konvexen Figur an, so gehören dieser auch alle Wurzeln 

von f(x) an. 

Man wende zum Beweis den Satz von Gauß auf jede Stützgerade des 

konvexen Bereiches an, d.h. auf jede den Rand desselben treffende Ge- 

rade, die keinen inneren Punkt des Bereiches enthält. 

Als Spezialiall ergibt sich aus dem Satz von Gauß: 

Hat eine Gleichung f(x) = 0 nur reelle Wurzeln, so hat auch die ab- 

geleitete Gleichung f’ (x) nur reelle Wurzeln. 

Dies ergibt sich aber auch aus dem. Satz von Rolle. 

2. Der Satz von Rolle. (Vgl.auch (4, 2, 2).) Zwischen je zwei reellen 

Nullstellen einer Gleichung f(x) mit reellen Koeffizienten liegt mindestens 

eine Nullstelle von f’(x). Die Richtigkeit der Behauptung lehrt unmittel- 

bar der Mittelwertsatz der Differentialreehnung 

ka) Ia) = (ma) (u + 9m) 0<A<I, 

falls f(2,) = (2) = 0 ist. 
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Nimmt man noch hinzu, daß in jeder mehrfachen Nullstelle von f(x) 

auch f’(x) verschwindet — mit einer um eins kleineren Vielfachheit — 

so ergibt sich als Folgerung sofort das am Schluß der vorigen Nummer 

Gesagte. 

3. Der Satz von Poulain. Ist f(x) ein Polynom n-ten Grades mit 

reellen Koffizienten. Ist ferner 

g(R) = Er + car + +0,00, +0 

ein Polynom mit lauter reellen Wurzeln, so besitzt 

h(a) = of) Ha ID) + + ne) + nee) 
mindestens so viele reelle Nullstellen wie f(x). Eine gleiche 

Aussage gilt für die Anzahlen der verschiedenen reellen 

Wurzeln. Jede mehrfache Wurzel von h(x) ist zugleich mehr- 

fache Wurzel von f(x), falls auch f(x) nur reelle Nullstellen hat. 

Ich beweise den Satz zunächst für den Fall eines linearen g(x): 

ga)=1+ar FI. 

Nun hat e“”f(x) dieselben Nullstellen wie f(x). Also hat 

1, To) = en (mfte) + F'@) 
höchstens eine reelle Nullstelle weniger. Da aber «,f(x) + f(x) wegen 

&, = 0 denselben Grad hat wie f(x), da es weiter wegen der Realität von «, 

reelle Koeffizienten hat, und da also die komplexen Wurzeln paarweise 

auftreten, sohata, f(x) + f'(x) mindestensso vielereelle (und verschiedene)t) 

Nullstellen wie f(x). Setzt man nun 

(a) = fa) + F(®) 
und betrachtet für @, +0 

d ‚ 

75 le) = e** (arfı + fh) 

= er (uf + (+ af +f)» 

so hat auch a,a,f + («ı + a,)f' + f'’ mindestens so viele reelle. (und ver- 

schiedene) Nullstellen wie f(x). Damit ist der Satz von Poulain für 

9) = un? + +ta)a +1 

und damit für alle g(z) zweiten Grades bewiesen. 

1) Um die Behauptung über die Anzahl der verschiedenen reellen Wurzeln einzu- 
sehen, beachte man noch, daß jede mehrfache Nullstelle einer Funktion auch 
Nullstelle der ersten Ableitung mit einer um 1 kleineren Vielfachheit ist. 
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Man sieht nun leicht, wie der Beweis durch vollständige Induktion zu 

Ende zu führen ist. 

Man hat nun noch zu zeigen, daß eine mehrfache Wurzel von h(«) 

zugleich mehrfache Wurzel von /(x) ist, falls auch f(x) nur reelle Null- 

stellen hat. Nach dem Mechanismus des Beweises genügt es wieder zu 

zeigen, daß eine mehrfache Wurzel von 

4 il. ur 0 

zugleich mehrfache Wurzel von f(x) ist. Ist nun 

fo)=o+m@-d)+-- 
sowrd af+tf=ah tur (2,4, + 2) @ —a)+ 

Sollnun x = « eine mehrfache Wurzel von a,f + f’ sein, so ist 

Hl +4 = a +2, =. 

Daher ist auch a? — 209, = 0. 

Ist also a, = 0, so ist auch a, = 0 und «a ist mehrfache Wurzel von f(2). 

Wäre aber a, + O und sind &, .. . die Wurzeln von f(x) = 0, so ist 

Qa,\? 20, 1 1 

2 er Go Go 

Also wäre dann a — 29Q; > 0 

entgegen unserer Kenntnis, daß a) — 2aya, — 0 ist. 

Das Beispiel 

fa)= +1 g)=c+l, K)=?+1+22= (+41) 

lehrt, daß die Behauptung über die mehrfachen Wurzeln von h(x) und 

f(x) tatsächlich ohne die Annahme, daß f(x) nur reelle Wurzeln hat, 

falsch ist. 

4. Beispiele. 

1. Hat eine algebraische Gleichung nur Wurzeln mit negativem oder 

nur Wurzeln mit positivem Realteil, so kann keiner ihrer Koeffizienten 

Null sein. Andernfalls gäbe es nämlich eine durch hinreichend oftmaliges 

Differenzieren zu gewinnende Gleichung mit einer verschwindenden Wur- 

zel im Gegensatz zum Satz von Gauß. 

2. =s1+345+..4% n! 
hat bei geradem n keine, bei ungeradem n genau eine reelle Wurzel. 

Es ist nämlich I -f@o)=%- 
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Also lehrt der Satz von Poulain für g(<)=—x-+1, daß x” mindestens so 

viele reelle und verschiedene Nullstellen hat wie f(x). Da aber x" nur bei 

xt =) verschwindet, so kann auch f(x) nur an höchstens einer reellen Stelle 

verschwinden. Mehrfache Wurzeln von f(x) könnten aber wegen f(x) — f’(x) 

— = nur bei x = 0 liegen, wo f(x) nicht verschwindet. Also hat f(x) 

nur einfache Nullstellen, und unsere Behauptung ist bewiesen. 

3. Ist f(x) vom Grade /, so hat 

F(a)=f(a) taf(@) +---+af”(@), (areell) 
höchstens so viele reelle Wurzeln wie f(x). Denn es ist 

F(x) — aF' (x) = f(x). 

4. Dasn— k-te Legendresche Polynom 

el gar 

PAUL 

hat n reelle Nullstellen zwischen — 1 und + 1. 

Beweis durch den Rolleschen Satz. 

P3@) = (2? — 1)" 

5. Ein Satz von Laguerre. Ist f(x) ein Polynom höchstens n-ten 

Grades (mit beliebigen komplexen Koeffizienten) und ist « eine be- 

liebige Stelle der x-Ebene, für die f(aJ+0 und f(@)=0 ist, 

so liegt im Inneren oder am Rande eines jeden Kreises durch 
f(a) 
f(a)’ 

stelle von f(x). Liegen nicht alle Nullstellen von f(x) auf der 

Peripherie eines solchen Kreises, so gehören auch seinem 

Äußeren Nullstellen von f(x) an. 
Den Beweis führen wir nach Fejer in mehreren Schritten. 

a) 21... 2, seien die Nullstellen des Polynoms 

(1) A A a ae ar 

so daß 3 +23 +:::+ 2%, = list. g sei eine beliebige Gerade durch den 

Punkt z=1 der komplexen 2-Ebene. d sei der Abstand derselben von 

z=(. Man betrachte eine Parallele g’ zu g, die vonz2=0 den Abstand 

die beiden Punkte «@ und a—n mindestens eine Null- 

£ - hat, derart, daß z = 0 nicht zwischen g und g’ liegt. g’ geht also durch 

den Punkt z = 2 hindurch. Dann liegen entweder alle z, auf g’ oder aber 

es liegen auf beiden Seiten von g’ einzelne der Wurzeln. 

Man kann nämlich eine jede komplexe Zahl 2, auf genau eine Weise 

als Summe zweier anderer z, und z/ darstellen, derart, daß der 2, dar- 

stellende Vektor zu g parallel, der z; darstellende Vektor dagegen auf g 

senkrecht steht. 
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Es ist also Rear, 

und esseil = d’-+d’, so daß 

©) Kr + nd 
sein muß. Ist nun 2) < = ‚so bedeutet dies, daß z, und 0 auf derselben 

a” 

Seite von g’ liegen. Ist 2, = g ©, go liegt z, auf g’; ist endlich 2) > 7 80 

liegen g und 2, auf der BE Seite von g’. Aus (2) folgt aber, daß 95 

weder für alle k stets 2) = = gilt, oder daß für einzelne k das 2; —. 

für andere k aber z/ > . ale Das somit gewonnene Ergebnis er- 

innert schon durchaus an den Satz von Laguerre. Dieser wird sich in 

der Tat aus dem eben abgeleiteten durch einige Transformationen er- 

geben. 

b) Wir machen in (1) die Substitution 2 = = 

(1) nach Multiplikation mit £” in 

(3) ne en 
über, das höchstens den Grad n hat. Die Gerade g’ aber geht in einen Kreis 

durch die Punkte © = 0 und = nüber. So haben wir den Satz: 

Man betrachte einen beliebigen Kreis durch die beiden Punkte & = 0 

und &=n. Entweder liegen alle Wurzeln von (3) auf diesem Kreis, oder 

aber es finden sich sowohl ım Inneren u im Äußeren desselben Null- 

Dabei gilt das Polynom 

stellen von (3). (Bei der Abbildung 2 = + gehen nämlich die beiden von 

g’ bestimmten Halbebenen in das Innere und das Äußere des erwähnten 

Kreises über.) 

c) Macht man in (3) die Substitution & = — a und multipliziert mit 

Ay, So geht (3) in ein Polynom 

(4) + 4 + A +. - + 4,0" = fee) 

mit ag=+ 0, a, + O über und wir haben das Ergebnis: Man betrachte einen 

beliebigen Kreis durch die beiden Punkte = 0 unde = — ae Ent- 

weder liegen alle Nullstellen von (4) auf der Peripherie desselben, oder es 

gibt sowohl im Inneren wie im Äußeren desselben Nullstellen von (4). 

d) Macht man in (4) die Substitution y= x —«, so geht (4) in ein Polynom 

fe) + F(e)y+ 
über und für jeden Kreis durch y = 0 und y= Se (e) 5 gilt das vorige 

Ergebnis. D.h. also entweder liegen alle Nullstellen von f(x) auf diesem 
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Kreis oder sowohl im Inneren wie im Äußeren desselben sind Nullstellen. 

Der Kreis geht aber durchzx =aundz =« — ” 5 ‚womit der Satz von 

Laguerre bewiesen ist. 

6. Ein Satz von Fejer. Fejer hat im Jahresbericht der Deutschen Mathe- 

matikervereinigung Bd. 26 eine Verallgemeinerung bewiesen, bei der statt 

des Grades n die wirklich auftretende Gliederzahl eine Rolle spielt. Sein 

Satz lautet: 

Eine (k + 1)-gliedrige algebraische Gleichung 

Go +2 + Q2” +. + ar = 

l<y <n<..<u;+0,a +0) 
hat mindestens eine Wurzel im Inneren oder am Rande eines 

kdo 
beliebigen Kreises, der durch die Punktez=0 undz2 = z 

geht. 

Es genügt, den Beweis für eine viergliedrige Gleichung auseinander- 

zusetzen. 

a) Die Gleichung 

(1) a — 21a. +b=0, r>2s+9, s>]1 

hat mindestens eine Wurzel in derjenigen Halbebene, die z = 0 nicht ent- 

hält und die von einer beliebigen Geraden durch den Punkt 2 = # be- 

grenzt wird. 

Der Beweis beruht auf dem Gaußschen Satz von 8.186. Diesem kann 

man nämlich folgendes entnehmen. Wenn eine Gerade g durch eine Wur- 

zel der Ableitung f’(z) eines Polynomes f(z) geht derart, daß die Wurzeln 

von f’(z) durch g nicht voneinander getrennt werden, also alle einer durch 

g bestimmten Halbebene oder deren Rand angehören, so liegen auch Null- 

stellen von f(z) auf g oder in der anderen durch g bestimmten Halbebene. 

Befreit man nun die Ableitung des Polynoms (1) von den nach 2 = 0 

fallenden Wurzeln, so erhält man das Polynom 

(2) ra-®— (r— 1)a’°-1-+as. 

Durch nochmalige Differentiation und Beseitigung der nach 2 = 0 fallen- 

den Wurzeln kommt 

(3) r(r— s)2— (r—1)\(r—s—]). 

Die einzige Wurzel dieses Polynoms ist 
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Das ist eine reelle positive Zahl > 4, weillr 23, r—s 22 ist. Legt man 

also durch z = } eine beliebige Gerade y, so liegen entweder alle Null- 

stellen von (2) auf derselben, oder es liegen auf beiden Seiten von ihr Null- 

stellen von (2). Wir betrachten eine derselben, die auf der 2 = 0 abge- 

wandten Seite von y in möglichst großer Entfernung von y liegt und legen 

durch diese eine Parallele y’ zu y. Entweder liegen dann alle Nullstellen 

von (1) auf y’ oder auf beiden Seiten von y’ liegen Nullstellen von (1). 

Jedenfalls also liegen Nullstellen von (1) auf y oder aufder 2 = 0 abge- 

wandten Seite von y. 

b) Man mache in (1) die Substitution z = 1 Dann geht (1) in 
T 

(4) 1—- x + ce" + de® 

über, om > 2,n > m,c,d Zahlen sind. Aus der Geraden durch 2 = 4 

wird dabei ein Kreis durch @=0 und z=3, der in seinem Inneren 

oder an seinem Rande Wurzeln von (4) trägt. 

c) Hier mache man endlich die Substitution 2 = — 22, wodurch man 
0 

zum Beweis des Fejörschen Satzes geführt wird. 

Annalen 65 hat Fejer weiter gefunden, daß ein jedes Polynom 

At mE + a8" + - + au, 

wo 0<»,<9; <-:-< 9,4) #0, mindestens eine Wurzel £ besitzt, 

für die a) an 
Bar N 

en<( | | &ı 

ist. Jahresbericht 26 hat er diesen Satz noch verschärft. 

Einen weiteren hierher gehörigen Satz hat endlich Montel (Ann. ec. 

norm. (3), 40 (1923) bewiesen. Dieser Satz lautet: 

Sind die Koeffizienten a, .... a, des Polynoms 

1+02 +---+0,2°? + --- + 4,2” 

gegeben und ist k die Anzahl der auf a,x? folgenden Glieder mit von Null 

verschiedenen Koeffizienten, so gibt es mindestens eine Wurzel £ des 

Polynoms, für die leier<M 

ist. Dabei bedeutet M eine Zahl, die nur von a,...a,, p und k abhängt. 

Montel hat außerdem bemerkt, daß die Fejersche Schranke nicht ver- 

bessert werden kann, daß sie vielmehr bei gewissen Polynomen erreicht 

wird. Montel vermutet weiter, daß es sogar immer im Fejörschen Fall 

v, Wurzeln £ gibt, die der Fejerschen Abschätzung genügen. Diese Ver- 
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mutung ist aber noch nicht bewiesen, wenn schon ihre Richtigkeit durch 

die Untersuchungen von Fejer, Jahresbericht 26 (1917), E.B.van Vleck 

(Bull. soc. math. Fr. 53 (1925)) sehr wahrscheinlich gemacht wird. 

7. Der Faltungssatz von Grace. 2,...2„ mögen Zahlen eines Kreis- 

bereiches k sein. Es bezeichne S,(2,...2,) fürk=0 die l für 

k=1,2...n die elementarsymmetrischen Funktionen der 2.. 

Die Gleichung 

(1) + (7)ae+(Z)Rr + ta =0, in der 

(2) + m ++, = 0 

sei, hat dann mindestens eine Wurzel, die dem Kreisbereich 

k angehört. Unter Kreisbereich wird dabei entweder das In- 

nere samt Rand, oder das Äußere samt Rand eines Kreises, 

oder eine Halbebene samt Rand verstanden. 

Da der Satz fürn = O0 und n = 1 trivial ist, so liegt es nahe, seinen Be- 

weis durch vollständige Induktion zu versuchen. Ich nehme also an, für 

n=u—.1 sei der Satz richtig, und willzeigen, daß er dann für n = u gilt. 

Wir werden uns dabei auf den Satz von Laguerre (4, 5, 5) stützen. 

Wir setzen in (1) und (2) n = wein. Setzt man 

fd=m+a(lt)2+ + ar, so wird 

2) — uf(e) - ua + PN) ms +.--+0.1972). 

Also wird die aus dem Satz von Laguerre bekannte Größe 

er 

1a 

(3) z—u 1@ mt ) er Laueıe 5 

’@ + at Haan 

Ich betrachte nun die Gleichung 

+ ine 12° au-ızu 1 

u=- 
ur ante) 2 +. auzumi 

oder anders geschrieben 

(4) (0 + a2.) + (re) ta) + ty ta)et=0. 

Dies hat die Form der Gleichung (1) fürn = u—1 und falls a, durch 

A. + Qp+12, ersetzt wird. Auch die Relation (2) gilt, wenn mann = 4u—1 
Bieberbach, Algebra. 13 



194 Fünftes Kapitel: Sätze über die Lage der Gleichungswurzeln 

setzt und die $, nur auf 21... 24-1 bezieht. Diese S, sollen dann mit $, 

bezeichnet werden. Nun aber ist 

— (+ Aı2u) S=— (Ay ur 412) = 08, +4,92 4° Au Su — Ar2u 

= a(S/ + 2.80) + a2 (83 + 2481) +++ Qu-ı (Su-ıt Zußu-) 

+ auSu—12u — Ar2u 

= (aı+ A, 281 + (@g ie 0g2,)83 + + (ui TE Au Nee! . 

D.h. für Gleichung (4) ist Relation (2) erfüllt. Daher liegt eine Wurzel Z 

von (4) in K. Nun ersetzen wirim Laguerreschen Ausdruck (3) das z 

durch Z, wodurch der Laguerresche Ausdruck den Wert z, bekommt. 

Dann betrachten wir denjenigen Kreis durch Z und z,, der die Ver- 

bindungsstrecke dieser beiden Punkte zum Durchmesser hat. Da 2, und 

Z dem Kreisbereich K angehören, verläuft dieser Kreis ganz in K und 

entweder sein Inneres oder sein Äußeres gehören völlig zu K. Daher 

liegt nach Laguerre mindestens eine Wurzel von (1) inK, falls n = u ist, 

Damit ist der Faltungssatz bewiesen. Der hier vorgetragene Beweis 

stammt von dem Amerikaner D. R. Curtiss (Trans. Am. math. soe. 24). 

8. Kompositionssätze. Ich beginne mit einer ein weniganderen Formulie- 

rung des Faltungssatzes. Man setze S,_.—= (— 1)r 2 (= . Dann läßt 
() 

sich der Faltungssatz so aussprechen: 

Vorgelegt sind die beiden Gleichungen 

Ay=n+a(1)e+a(z)e + +mar= 0 

und Bea)=b+b(1)a + ld) + Hart 0, 

und es besteht die Relation 

Ag0n — (T)abaı+ (5) Gin ++ (1a. 0. 

Wir sagen dann, A(x&) und B(x) seien apolar. Wenn dann die 

sämtlichen Wurzeln der einen Gleichung einem Kreisbereich 

K angehören, so liegt in diesem auch mindestens eine Wur- 

zel der anderen Gleichung. 

Es seien ferner A(x) und B(x) zwei beliebige Polynome und £& eine 

Wurzel der komponierten Gleichung 

C(z)= agb, + (a bc + +0. 
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Es sei ad, +0 und a„b„ +0, so daß auch die Wurzeln ß, von B(x) = 0 

alle von Null verschieden sind. Dann sind A(x) und a" B(— =) apolar. 

Die Wurzeln der zweiten Gleichung sind — 5 RN = Sind dann die 

Wurzeln von A(«) alle in einem Kreisbereich K gelegen , so gehört 

diesem auch mindestens eine Wurzel der zweiten an. D.h. also: Ist k 

ein geeigneter Punkt aus X, so ist &= — ß,k für ein passendes go. Diese 

Aussage bleibt nun offenbar auch noch richtig, wenn wir auf die Voraus- 

setzung a,b, #0 und a„b,„ + 0 verzichten. Denn dann rückt ein & nach 

0 oder oo, aber gleichzeitig rückt auch entweder eine Wurzel von A (x) 

oder von B(x) nach O0 oder unendlich. Also gilt der Satz: 

Ad=a+(T)uar +. +0 

und B@)=bb+(T hat: + bnar=0 

seien zwei Gleichungen. Die Wurzeln von A(x) mögen einem 

Kreisbereich K angehören. Die von B(x) seien ß,...ß,. Dann 

hat jede Wurzel &E der komponierten Gleichung 

C(2)= ab + (T)abız 12... 2° =0 

die Form &=—ß,k, wo o eine geeignete Nummer und k ein 

passender Punkt aus K& ist. 

Man muß sıch zum Verständnis des Wortlautes noch merken, daß beı 

@„ = 0 zu den Punkten von K auch k = oo gehört, und daß für b, = 0 

zu den Wurzeln ß, auch oo gerechnet wird. 

Gehören also auch die Wurzeln von B(x) einem Kreisbereich K’ an, so 

liegen die von CO (x) in einem Kreisbereich K’’, dessen Punkte man erhält, 

wenn man in— aß das« den Bereich K und das ß den Bereich K’ durch- 

laufen läßt. Insbesondere gehören also die Wurzeln von O(x) dem Ein- 

heitskreis oder seinem Rand an, wenn für A(x) und B(«) das so ist. Eine 

gleiche Aussage gilt auch für das Äußere und die Peripherie. Liegen also 

die Wurzeln von A (x) und B(x) auf dem Rand des Einheitskreises, so gilt 

das gleiche auch bei C (x). Denn dann gehören ja die Wurzeln von C'(x) 

ebenso wie die von A(z) und B(«) gleichzeitig dem abgeschlossenen Inne- 

ren und dem abgeschlossenen Äußeren an. 

Analoge Schlüsse gelten auch, wenn die Kreisbereiche Halbebenen sind. 

Insbesondere gilt also der Satz: 

Sind die Wurzeln von A(xz) und B(x) reell, so sind auch die Wurzeln 

der komponierten Gleichung O(x) reell. 
12* 
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Hier aber kann man noch zu einer etwas schärferen Aussage gelangen 

und zwar auf folgendem Wege. Gehören die Wurzeln von A (x) einer Halb- 

ebene H an, welche den Nullpunkt enthält und sind alleß,reell und zwisch
en 

(— 1,0) gelegen; dann liegen die Zahlen —ß,h auch in H, wenn h die Halb- 

ebene H durchläuft. Gehören also alle Wurzeln von A(z) einer konvexen 

Punktmenge & an, die den Nullpunkt enthält, so gehören auch alle Zahlen 

— ß,k zu 8, wenn k die Menge $ durchläuft. Also gilt der folgende Satz: 

Es seien Aa)=+(})aı2 4..ta,0"=0 

B(a)=bo+ (7 )dız a 

Cea)=ab+ () 461% +++ a,6,2"—= 0 

drei algebraische Gleichungen. Die Wurzeln von A(«) sollen 

einem konvexen Bereich 8 angehören, die von B(«) im Inter- 

vall—1<xz<0 liegen. ® enthalte den Punkt z=0 als inne- 

ren oder Randpunkt. Dann liegen auch die Wurzeln von C(x) 

alle im Inneren oder am Rande von. 
Insbesondere sei $ ein Intervall des Reellen. Dann gilt namentlich der 

folgende Satz: 
Wenn die Wurzeln von A(x) im Intervall (—a,a) liegen, 

wenn die Wurzeln von B(«) alle von einerlei Vorzeichen sind 

und entweder dem Intervall (—b,0) oder (0,b) angehören, 

dann liegen die Wurzeln von C(x) alle im Intervall (— ab, ab). 

Nun seien a) =, +MT + :--+ a,2* 

b(a)=b, +b,% +. + bi 

zwei Polynome mit lauter reellen Nullstellen, deren zweites dazu noch 

lauter Wurzeln von einerlei Vorzeichen besitzt. Dann sei n irgendeine 

ganze Zahl, die sowohl k wie l übertrifft. Komponiert man dann die beiden 

Gleichungen n-ten Grades 

a"a(,) = at... +b0r—=0 

2b (-) = bar-i4... +bar=0, 

ersetzt noch darin x durch n und multipliziert mit n”, so erhält man das 

Polynom 
Abox” +1! bar ti — 21a,b,2"72+..- 

n N n 

—— MM! Andmet”, 
I none 
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wo m die kleinere der beiden Zahlen k und l ist. Die Wurzeln dieses Poly- 

noms sind nach dem vorausgegangenen Satz wieder alle reell. Nach $. 25 

sind daher auch die Wurzeln der Gleichung, die man durch den Grenz- 

übergang n — oo erhält, alle reell. Sohaben wir den Kompositionssatz 

von J.Schur: Sind die Wurzeln von + a2 +: +a,0t= 0 

alle reell und sind die von bs, +b,2+:--+b,2!= 0 alle reell 

und von nicht verschiedenem Vorzeichen, so sind auch die 

Wurzeln von a5, + 1!a,b12 + 2la,b,22? +: - + mla.bmE”, wo 

m = Min (k, I), allereell. 

Daraus wieder fließt der Kompositionssatz von Malo. 

Sind die Wurzeln von 

fe) = + ET ++ a,0% 

alle reellund die von 

ga)=b +bir+- + 

alle reell und von einerlei Vorzeichen oder Null, und be- 

deutet m die kleinere der beiden Zahlen k und, so hat auch 

die Gleichung 

hı(z) = ad + bi CE ++ mim 0 

lauter reelle Wurzeln. Fürk<I und a5, =0 sind die Wurzeln 

von h,(z) alle verschieden. 

Man gewinnt diesen Satz vonMalo folgendermaßen aus dem vonSchur: 

Mit f(x) = 0 zugleich besitzt auch 

Ge + at tr" Qot 

lauter reelle Wurzeln. Da die Wurzeln von 

+ =14+ (at +a 

alle reell und negativ sind, so hat nach dem Satz von Schur 

A, + ka, 1% +. + klauı* 

lauter reelle Wurzeln. Daher hat auch 

477 OR_-ı k 

ce 

4% 
A undalsoauch %+W2-+'''+ Em a1 

lauter reelle Wurzeln. Hierauf und auf g9(x) wende man nun den Satz von 

Sehuran. Dann erhält man den von Malo. 
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9. Der Satz von Grace-Heawood. Eshandelt sich um eine Übertragung des 

Rolleschen Satzes ins komplexe Gebiet. Das im Reellen gültige Rolle- 

sche Theorem sagt ja aus, daß die Ableitung f’(x) stets zwischen zwei 

Stellen verschwindet, an denen f(x) den gleichen Wert hat. Nun haben 

wir schon oben im Gaußschen Satz eine Ausdehnung des Rolleschen 

Theorems kennengelernt. Der Satz von Grace-Heawood hält sich aber 

erst eng an die vom Reellen geläufigen Voraussetzungen. Nun kann 

man aber nicht erwarten, daß es für beliebige analytische Funktionen 

einen solchen verallgemeinerten Rolleschen Satz gebe. Denn z. B. e* 

wird doch nirgends Null, während doch z.B. e’”—= e® = ist. Aber für 

Polynome gibt es eine solche Erweiterung. Der Satz von Grace-Hea- 

wood lautet nämlich so: 

Ein Polynom m-ten Grades nehme füre=—lundsz=+1 

denselben Wert an. Dann verschwindet die Ableitung In 

einem Kreis vom Radius cotg um x =0 als Mittelpunkt. 

Der Beweis fließt aus dem Faltungssatz. Die zu Beginn der vorigen 

Nummer gegebene Formulierung desselben wollen wir erst noch ein wenig 

anders fassen. 

Es seien ßoßı---ßn gegebene Zahlen, die nicht alle ver- 

schwinden. 
e()=ny tr ++. +," —0 

sei eine algebraische Gleichung. Es gelte die Relation 

Leo. + ua et N. 

Dann liegt wenigstens eine Wurzel von a(2)=0 in jedem 

Kreisbereich, der sämtliche Wurzeln der Gleichung 

Bl) =Bo—(T)Bız + (2) 1)" Anz" 0 enthält. 

Es leuchtet unmittelbar ein, daß diese Formulierung mit der zu Beginn 

der vorigen Nummer gegebenen übereinstimmt. 

Wir fügen aber jetzt noch die Bemerkung hinzu, daß das Polynom 

ß(z2) aus der Linearform L entsteht, wenn man zur Bildung von 

L statt der Koeffizienten von «(x) die von (2 — 2)” verwendet. 

Wir wenden diese Sätze jetzt an unter der Annahme, daß «(x) die Ab- 

leitung des im Grace-Heawoodschen Satz gegebenen Polynoms m-ten 

Grades ist. Esseialsn = m — 1. Die Bedingung, daß das Polynom selbst 

beix= +1 den gleichen Wert annimmt, bedeutet, daß 
+1 

2 
froa=- Dr i0a= Da sahak u N 

le 0s2ksm—L 
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ist. Diese Relation ist die im Satze mit L bezeichnete. Das im Satze mit 

ß(z) bezeichnete Polynom wird daher nach der ihm zugefügten Bemerkung 

+1 

Ba = | k-ar-ıa - Leiter, 
Mm 

—1 

“ Die Wurzeln von diesem ß(z) sind 

Z,—=iootg, v=1,2...m-—]) 

wie man sofort nachrechnet. Daher lehrt der Faltungssatz, daß in jedem 

Kreis, der alle Z, umschließt, mindestens eine Nullstelle von «(x) liegt. 

Ein solcher Kreis ist aber z. B. der um x = 0) mit eotg — als Radius ge- 

legte. Aber auch jeder andere Kreis durch die beiden Punkte + i cotg 

hat diese Eigenschaft, Nullstellen von «(x) zu enthalten. Das gleich gilt 

auch für das Äußere und den Rand eines Kreises, der durch die beiden 

veotg-- und üi cotg !EY geht 
Mm Mm 

Wegen weiterer Folgerungen aus dem Faltungssatz vgl. man nament- 

lich eine Arbeit von Szegö in Math. Ztschr. Bd. 13, sowie Arbeiten von 

Walsh ın Am. Trans. Bd. 24. 

10. Ein Satz vonWalsh. Der amerikanischeMathematikerW alshhateine 

interessante Verallgemeinerung des Satzes von Gauß gefunden, für den 

Fall, daß die Wurzeln einer Gleichung sich auf zwei Kreisscheiben 

verteilen. Sein Satz lautet: 

g(z) sei das Polynom 

@- 2)" (@— 2) 
und m®:m®(n=1,2%...m) seien die Verhältnisse, in welchen 

: e dk 5 
die m verschiedenen Wurzeln von Ta =0 die Strecke (2,25) 

My 

teilen. In den Kreisen C, und (©, mit den Mittelpunkten a,,« 

und den Radien r, und r, mögen m, bzw. m, Wurzeln eines 

Polynoms f(z) vom Grade m, + m, liegen. Dann besteht der 
def 

geometrische Ort der Nullstellen von „; aus m Kreisen c”, 

deren Mittelpunkte m a, + mim, 

mm 
mS®"rı + mr; 

m{"’ + m$” 

sind. (Vgl. Am. Trans. Bd. 24 S. 175.) 

und deren Radien 
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Der Beweis wird folgendermaßen geführt: 

1. Der Satz von Gauß ($. 186) lehrt, daß die Wurzeln von f"”(z) in dem 

kleinsten konvexen Bereich liegen, der alle Wurzeln von f(z) enthält. 

Wenn also die Wurzeln von f(z) insbesondere dem Inneren oder dem 

Rande von zwei Kreisscheiben in der angegebenen Verteilungsweise an- 

gehören, so gibt es somit einen abgeschlossenen Bereich, dem die Wurzeln 

von f”(z) angehören. Es handelt sich um seine Bestimmung. 

2. Es seien nun @,)... 4 ,dı +... dm, die Wurzeln von f(z2). Dann sind 

dieNullstellen von f"”(z) analytischeFunktionen von a,,...0„, und bj,...Om,. 

Insbesondere kann also nach dem funktionentheoretischen Satz von der 

Gebietstreue!) eine Wurzel z von f®(z)nur dann dem Rand ihres geometri- 
schen Ortes angehören, wenn a,...qa,„, am Rande von C, und b...b, 

am Rande von (, liegen. Man überzeugt sich ja leicht, daß es keine von 

den a und den b unabhängige Wurzel z von f(z) = 0 gibt. 

3. Wir zeigen, daß man ohne den Wert einer solehen Wurzel z von f”(z) 

abzuändern, diea, und dieb, auf diesen Kreisperipherien noch so verschieben 

kann, daß allea und daß alle b zusammenfallen. Es ıst nur dann ein Beweis 

dieser Behauptung nötig, wenn mehr als ein a oder mehr als ein b vor- 

handen ist. Nehmen wir z.B. an, es seien mehrere a vorhanden. Dann 

erteilen wir allen b und allen a mit Ausnahme von zweien derselben feste 

Werte an der Peripherie ihrer Kreise, und ebenso z einen festen Wert am 

Rande seines geometrischen Ortes. Wir nennen die beiden nach 2. auf C, 

noch beweglichen Nullstellen a, und a,. Dann bedeutet f(z)=0 eine 
algebraische Beziehung zwischen a, und a,, die sowohl in a, wie in a, linear 

ist. Man bekommt so a, als lineare Funktion von a,, es sei denn, daß der 

Koeffizient von a, für dies z und alle a, verschwindet. Dann ist aber die 

Beziehung für dies z und mindestens ein a,, aber für alle a, erfüllt, und 

man kann a, und a, zusammenlegen. Man habe also nun a, als lineare 

Funktion von a, dargestellt. Wenn dann a, auf C, wandert, dann beschreibt 
Q, einen Kreis, der durch die Anfangslage von a, hindurchgeht, der aber 
keinen inneren Punkt von (, treffen kann. Denn dann könnte für solche 
Lagen von a, und a, die Wurzel z von f”(z) nicht dem Rande ihres geome- 
trischen Ortes angehören, wie wieder der Satz von der Gebietstreue lehrt. 
a, und a, beschreiben also beide die Peripherie C,, aber im umgekehrten 
Sinn. Denn sonst würde der Satz von der Winkeltreue lehren, daß mit 
a, zugleich auch a, ins Innere von (, einrückt, was wieder nach dem Satz 
von der Gebietstreue der Lage von z widerspricht. Also kann man a 
und a, zusammenfallen lassen. Man sieht außerdem aus der angestellten 

1) Vgl. z.B. Bieberbach, Lehrbuch der Funktionentheorie Bd. I 8. 187. 
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Überlegung, daß wenn A, und A, zwei mögliche Lagen von a, und a, 

sind, das Zusammenfallen von a, und a, auf jedem der beiden durch 

A, und A, bestimmten Bogen von CO, bewerkstelligt werden kann. 

Die Überlegung zeigt auch, daß man sie, ohne sie zusammenfallen zu 

lassen, auf dem Bogen A,4, beliebig nahe beieinander anbringen kann. 

Ich behaupte nun, daß es möglich ist, eine Zahl a auf C, so zu finden, daß 

bei gegebenem z die Beziehung f®(z; a,...a,)=0 durch ,=afi=1...n) 

befriedigt wird. Ist nämlich a”@=1...n;v=1,2...) eine Folge von 

Zahlen auf C,, für die 

12.00... a) 0 

ist, und ist ima” =a,ß=1...n), so ist auch le; ıı...,)=0. 
v‚>o© 

Wäre es nun nicht möglich, eine Zahl a auf C, zu finden, so daß 

MP; a...a)=0 ist, dann gäbe es ein e>0 derart, daß man auf 
einem passenden Bogen von C, vom Zentriwinkel e Zahlen a, ... a, 

finden kann, für die f”(z; a, ....a,) = ist, daß man aber auf keinem 
Bogen von kleinerem Zentriwinkel solche Zahlen finden kann. Dies 

aber widerspricht den früheren Feststellungen. Denn numeriert man die 

a, so, daß a, und a„ den Bogen vom Zentriwinkel e begrenzen, so kann 

man entweder a, auf a, legen, oder aber a, und a, aufeinander zu rücken 

lassen. 

Durch eine jede dieser Maßnahmen wird der Zentriwinkel e verkleinert, 

falls die Nullstelle a, einfach ist. Ist aber ihre Vielfachheit k, ist also 

z.B.a, =q4;=---=a;,, so hat man unter Heranziehung von a,,, den 

eben erwähnten Prozeß kmal auszuführen, um zu einer Verkleinerung 

von e zu gelangen. Daher kann es kein solches e>0 geben. Man kann 

also ein a auf C, so finden, daß ”(z;a...a) = 0 ist. 

4. Hiernach ist die Aufgabe der Bestimmung des geometrischen Ortes 

der Wurzeln z von f”(z) auf den Spezialfall des Polynoms 

9) = @- a) eb)" 
reduziert, wobei a und b zwei Kreisperipherien CO, und (©, durchlaufen. 

Sind aber a und b zwei verschiedene feste Zahlen, so liegen die Wurzeln 

von g’”(z) entweder beia und b oder auf der Verbindungsstrecke (a, b). Dies 

lehrt der gewöhnliche Rollesche Satz, weil man durch eine Koordinaten- 

transformation a und b auf die reelle Achse legen kann. Auf der Ver- 

bindungsstrecke liegen keine mehrfachen Wurzeln von g”(z), wieman dem 

Rolleschen Theorem selbst leicht entnehmen kann. Lassen wirnuna undb 

auf, und C, wandern, so müssen nach dem in 3. Gesagten die m Wurzeln 

von g”(z) unter anderem den Rand des gesuchten geometrischen Ortes 
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beschreiben, soweit er nicht auf C, und (0, fällt. Seine Feststellung ist nun 

aber zu einer rein geometrischen Aufgabe geworden: 

Zwei Punkte a und b beschreiben zwei Kreisflächen CO, und (,. Man teilt 

ihre Verbindungsstreeke stets im Verhältnis m, :mz. Welchen geome- 

trischen Ort beschreibt der Teilpunkt? Ich behaupte: 

Sind «, und «, die Mittelpunkte, r, und r, die Radien von C, und (,, 

so beschreibt der Teilpunkt eine Kreisfläche vom Mittelpunkt. 

na mal 
m, + m, 

ru und vom Radius 
mı + Ms 

Es genügt für unseren Zweck, zu zeigen, daß die Teilpunkte alle diesem 

Kreis angehören. Ist aber |, — «| <r,, |a— «| < r,, so ist für den 

Teilpunkt 

VER ÜENE L 
m + m; 

m 

mı + m, 2). 
LER 

Mı—+ Me Mı + Ma 

Daher jet wirklich | 7. Bemnaı S aa 
mtm |: mı + mM; IA 

Daher gehören also die Wurzeln z von f”*(z) wirklich den m im Satz ge- 
nannten Kreisscheiben an. 



Fünfter Abschnitt. 

Algebraische Auflösung der Gleichungen. 

Erstes Kapitel. 

Algebraische Auflösung der Gleichungen 

dritten und vierten Grades. 

1. Begriff der algebraischen Auflösung. Unter der algebraischen Auf- 

lösung der Gleichung 

a) = +4. +, =0 

versteht man die Bestimmung de rn Werte der Unbekannten x durch end- 

lich_oftmalige Anwendung_d der rationalen _Rechenoperationen und der 
Wurzelziehung. 

Es ist bekannt, daß die Gleichung zweiten Grades (quadratische 

Gleichung) en 

eine solche algebraische Lösung zuläßt, nämlich 

== + Va} FR 4AgQ, 

PAR , 

und wir haben gesehen, daß man zu derselben unmittelbar gelangt durch 

Wegschaffung des zweiten Gliedes (3, 2,1). 

2. Die Gleichung dritten Grades. Die Gleichungen dritten Grades (ku- 

bische Gleichungen) gestatten ebenfalls eine algebraische Auflösung; denn 

vermöge der Tschirnhausschen Methode kann mit Hilfe der Auflösung 

einer Gleichung zweiten Grades das zweite und dritte Glied weggeschafft 

werden und die Gleichung auf die (‚‚binomische‘‘) Form 

(1) KA gebracht werden (3, 2, 3). 

Diese einfachste Form einer kubischen Gleichung liefert aber sofort die 

drei Wurzeln; denn 172 A hat drei Werte, welche man erhält, wenn man 

einen derselben mit den drei Werten von Y1 multipliziert (1,2,7). Diese 
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sind dort in trigonometrischer Form gegeben. Man erhält sie aber auch 

leicht in arithmetischer Form aus der Gleichung, welche Yı definiert: 

(2) e—=l—0. 

Dieselbe zerfällt in zwei Gleichungen /»“ 12-1) R+ ')} 

«—1l=0 und ae 108 

woraus sich die drei Wurzeln ergeben 

@) ER er u, Beer 
un Tr ern ne 

Dies sind die drei Werte von Y1. 

Ist A reell und nehmen wir für YA den reellen Wert, so sind mithin die 

drei Wurzeln der Gleichung (1) 

(4) VA,aVA,BVA. 
Es ist gut zu bemerken, daß zwischen den zwei Größen be ß folgende 

Relationen bestehen, die sich sogleich aus (2) ergeben: KHK AR +dy=0 

a+ß+1=0, aß=1, ee, eltern) 0 

also auch az), Beet, 4 

Um die Auflösung der Gleichung dritten Grades tz 

(5) 2? +? +, + —=0 

durchzuführen, kann man statt die Reduktion auf die Form (1) vorzu- 

nehmen, einen anderen kürzeren Weg einschlagen. Wir reduzieren zu- 

nächst die Gleichung auf die Form 

(6) EP get, 
in welcher das zweite Glied fehlt. Dann setze man 

(7) z=y+2, 
wo y und 2 zwei neue Unbekannte sind. Damit nimmt (6) die Form an 

Yrzrıylyt)toy+2)+g=0 
Yrrrgatßyetny+td)=0. 

Diese Gleichung wird erfüllt, wenn y, 2 bestimmt werden aus den zwei 
Gleichungen 

(8) 3yp2=—p 
(9) Yu ad; 
Die Gleichung (8) ersetzen wir durch 

(10) y323 NEE p® 5 
27 
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Da wir nun das Produkt und die Summe der zwei Größen y3, 2? kennen, 

so läßt sich sogleich die quadratische Gleichung bilden, welche diese zwei 

Größen zu Wurzeln hat." Dieselbe ist 

R s u. _Yy+l & BL 
(11) es MM en rn 

ee 2 a I ern p3 

also ı,y& is Bm ar und 

nn Tu tbıı 
an) | 7 +V VE VE+?: = yrz fe 1) anf" 

Da nun En jede dritte Wurzel drei verschiedene Werte hat, so u diese 

Formel 9 Werte für & statt 3. 

Dies kommt daher, daß wir die Gleichung (8) durch (10) ersetzten. 

Die Gleichung (10) bleibt aber unverändert, wenn wir p durch ap oder ßp 

ersetzen, wo «a, ß die in (3) angegebenen dritten Wurzeln der Einheit sind. 

Die Formel (12) in ihrer vollen Allgemeinheit gibt also zugleich die Wur- 

zeln der vorgelegten Gleichung (6) und der Gleichungen 

2 Heps+gq= 0, +ßBps+tg=I. 

Um nur die Werte von x zu haben, welche der Gleichung x? i ps+q=0 

entsprechen, müssen wir yund zso bestimmen, daß ya=— -—: Verstehen 
ne 

wır also unter 
z > ar 

091: VOHHVErG= aa V-4-VErR-> 
zwei dieser Bedingung genügende Werte dieser dritten Wurzeln, und sind 

y=4,aA,ßA 

eg er oe 

die Werte von y und z, so sind (da «aß =1) die drei Wurzeln unserer 

Gleichung 

(14) M=-ATB,. nn =aA+ßB, % =PA-taB,. 

Die Gleichung (12) heißt die Cardanische Formel); die quadratische 

Gleichung (11), mittels welcher die Lösung ermöglicht wurde, die Resol- 

vente der kubischen Gleichung. 

1) Nach Libri, ‚Histoire des Sciences Mathömatiques en Italie‘‘, Qme &d., Bd. III 
p. 150, wurde die Auflösung der kubischen Gleichung in der ersten Hälfte des 
16. Jahrhunderts zuerst von Scipio Ferro, dann wieder von Tartaglia (Venedig) 
gefunden und des letzteren Lösung von Cardanus (Mailand) publiziert. Um dieselbe 
Zeit fand Ludovico Ferrari, ein Schüler von Cardanus, die Auflösung der Glei- 

chung vierten Grades. — Obige Darstellung rührt von Hudde (1639) her. 
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3. Diskussion der Auflösung. Wenn die Koeffizienten a und also auch p 

undg reellsind, was wir hier voraussetzen, so knüpft sich die Frage nach der 
2 3 r 2 3 

Realität der Wurzeln an die Größe T un I die in der Lösung (12) unter 

der Quadratwurzel steht und, wie aus (3,1, 14) zu ersehen, nur durch einen 

Zahlenfaktor von der Diskriminante D der Gleichung verschieden ist. Ist 

a) 2 + E >0,so sind A und B reell, also x, reell, die zwei andern 

re sind konjugiert imaginär. 

b) 4 — a = —=0; also auch D= 0. Es müssen mithin zwei Wurzeln 
3 

gleich werden. In der Tat ist in diesem Falle A=B = — . ; folglich 

wird, da +ß=-—IJ, 
3 = 3 q 

m=—2V4, = u-Vf, 

also sind die drei Wurzeln reell, und zwei davon gleich. 

e) 2 + z < 0, was notwendig P negativ voraussetzt, bietet den eigen- 

tümlichen Fall dar, daß die drei Wurzeln (14) in imaginärer Form er- 

scheinen. Aber eine Gleichung von ungeradem Grade mit reellen Koeffi- 1.43% 

zienten muß wenigstens eine reelle Wurzel haben, da sie die imaginären 

Wurzeln nur paarweise enthält. Es läßt sich nun leicht erweisen, daß 

in diesem Falle alle drei Wurzeln reell und verschieden sind. Denn in A ., 

und B stehen in diesem Falle unter // konjugierte komplexe Größen, und 

folglich sind A und B selbst konjugiert komplex 

A=g+hi, B=g9-hi, 

daja3AB = — preellist. Damit werden aber die drei Werte von x 

(+ A) + (g—hi) 

Br a, 

EZ) + - me) 
oder also 29, -gIhyB, go nl 

mithin sämtlich reell. Sie ‚sind auch verschieden, denn h kann nicht 

—=( sein, und setzt man 29 — =—g+hy3, so wäre 8gg=+hY8 und 

damit’ oh a also 2=-— 7, ae Virn=-er x 

d.ı. reell, was nicht möglich. 
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Da man hier das Imaginäre auf alge braischem Wege, ohne Reihen- 

entwicklungen, nicht aus den Formeln eln wegschaffen kann?) nannte man 

diesen Fall den irreduziblen Fall. 

Wohl aber lassen sich in diesem Falle die Wurzeln reell durch trigono- 

metrische Formeln darstellen. Nimmt man aus dem Ausdruck 

den Faktor V=: — N: und setzt 

a sich für @ ein reeller Winkel ergibt, da p negativ und % 

T + zn 2 0 ist, so erhält man für = (12) 

Spa (a + tsin * a) 

wen 'z Ik 

ar VE (cos — N) sın — =) e 

Hier hat jedes der zwei Glieder drei verschiedene Werte, welche man er- 

hält, indem man für k und k’ irgend drei aufeinander folgende Zahlen, 

z.B. —1,0, +1 setzt) Je zwei entsprechende Werte von k und k’ 

müssen aber so bestimmt werden, daß die Gleichung yz = ze erfüllt 

ist. Das Produkt der zwei Glieder ist aber 

>? (cos? an een 

also muß k = k’ genommen werden. Damit sind die drei Wurzelwerte x 

in der Formel gegeben 

en 2V-, a 

die drei Werte zuläßt, welche man erhält, wenn mans Bk=—1,0, +1 

Setzt. 

1) Daß dies in der Tat kein Mangel der Methode ist, sondern auf keine Weise ge- 
leistet werden kann, hat Hölder exakt bewiesen: „Über den casus irreducibilis bei 

der Gleichung 3. Grades.‘‘ Math. Annalen. Bd. 38. 1891. S. 307. 

q q a 
ll: 5 7] Ir 1% + 

ia 5 

a ‚ =[e 
z=yt+z=Vr( Ang)“ +)? (os —ising)” 
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Einen ähnlichen Übelstand wie in dem Falle c) zeigt übrigens die Car- 

danische Formel auch in dem Falle a), indem sie, wenn die Gleichung eine 

rationale Wurzel hat, dieselbe in irrationaler Form gibt. Ist z. B. 

+32 —-144=0 

3 = Te 
gegeben, so wird A =Vr EV50, 2B= Vr — 50; 

' | „Ach „a B-J7-51 
aber Vr +yV50=1+Y2;” v 145N na L 3 2 

2/1231) =(1 hr 
folglich werden die drei Wurzeln 

Dee 

4. Die Gleichung vierten Grades. Die Auflösung der Gleichungen vom 

vierten Grade (biquadratische Gleichungen) kann durch dieTschirnhaus- 

sche Methode geleistet werden, indem sich dieselben mittels der Auf- 

lösung einer Gleichung dritten Grades auf die Form 

24 + P,22+ pP, = 0 reduzieren lassen. 

Wir befolgen hier eine andere von Euler (1738) gegebene Methode, 

welche derjenigen ganz ähnlich ist, die uns zur Auflösung der kubischen 

Gleichung diente. 

Durch Wegschaffung des zweiten Gliedes sei die Gleichung vierten 

Grades zunächst auf die Form gebracht 

Wir führen nun drei neue Unbekannte
 y, z, v ein, indem wir setzen 

5, 
2. Y122 19: 

Hiermit wird 

2=y22+2+v+2%lyze+yvo+ 2) 

ty +2 +92 + Age + Rh on (yet yo + ze) 
+4(y2? + yo? + 220) +8yzvV(y+2-+v) 

und die Gleichung (1) 

(tz to + apa yore) Hp tt) Hr 
8) +2 + yo +20) (d(y’ + 2° + 0%) + 2p) 

+(y+2+v)[B8yzv+g =. 



5,1, 5. Diskussion der Auflösung 209 

Man bestimme nun y, 2, v so, daß 

(4) Pıae+t--Z 

© te 
dann reduziert sich Gleichung (3) auf 

(6) ya + ya + an Fr, 

Ersetzen wir noch Gleichung (5) durch 

? 

m) yau-l, 
so geben uns die Gleichungen (4), (6), (7) das Mittel, die Gleichung zu 

bilden, deren Wurzeln die Ir auaurabe y®, 22, v2 sind. Diese Gleichung 

ist [AH yr)-[ M-2°)- Hd 

&) Be 16 -5=0. 

Sie ist die kubische Resolvente der biquadratischen Gleichung. Sind 

U, Us, U; Ihre Wurzeln, so ist mithin 

Ma u zus ne und 

(9) ©—= Yu +Yu+ Vu. 

Diese Formel gibt durch Kombination der Vorzeichen der Wurzeln 8 

Werte; dies rührt daher, daß wir die Gleichung (5) durch Gleichung (7) 

ersetzt haben, wodurch das Zeichen von q verwischt wurde. Die Formel 

(9) gibt mithin nicht nur die Wurzel der vorgelegten Gleichung (1), son- 

dern auch die der Gleichung 

“+p®—ge+r=)0. 

Um also aus (9) die richtigen Wurzelwerte x der Gleichung (1) zu erhalten, 

müssen wir die Zeichen der Wurzelgrößen so wählen, daß 

Var: Vin Vin — 4 
5.Diskussion der Auflösung. Aus der Resolvente (8) ersieht man, daß das 

2 

Produkt der drei Wurzeln « immer positiv ist, nämlich = Er - Essind also 

entweder die drei Wurzeln u,, u,, %, sämtlich reell und positiv; oder eine 

der Wurzeln u, ist reell positiv, u, und u, reell negativ; oder u, reell, u, 

und u, konjugiert imaginär; da das Produkt zweier konjugiert imaginärer 

Größen immer positiv ist, so muß mithin in diesem Falle u, positiv sein. 

Eine Wurzel u, der Resolvente ist also immer positiv. 

Bieberbach, Algebra. 14 
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Wir haben demnach folgende drei Fälle: 

a) U, Us, U, positiv; Yur, Vu, Vus reell. Dann gilt für die Werte 

von x das erste oder zweite der Schemata 

+ Yu + Vür — Vus + Yu, — Yu, — Vu; 

+ Yu — Vur + Vus — Yu + Vu, — Vu; 

— Vin + Vi + Yu  — Vin — Vu + Vüs 

— Vin — Vür — Vs + Yu, + Vu, + Vus, 

je nachdem q positiv ist oder negativ. 

Alle Wurzeln x der Gleichung (1) sind reell. 

b) u, positiv, u,, u; negativ. Mithin Vu,» Vu, von der Form ki, ki. 

Also sind die Wurzeln x imaginär, es müßte denn u, = u,, alsoh=k 

sein, in welchem Falle zwei von den vier Werten von & sich auf Yu, redu- 

zieren und mithin gleich werden. 

Ferner ist in diesem Falle (+ Yu,)(-+ Yu,) (+ Yu;) = — hkYu,, also 
negativ. Ist mithin q positiv, so gilt das zweite Schema. Ist q negativ, so 

gilt das erste. 

e) 4, positiv, u, und u; konjugiert imaginär. Dann sind auch Vu,» Vus 

konjugiert imaginär, also von der Form @« + fiund «e— Pi. Zwei von den 

vier Wurzeln x sind reell und zwei imaginär. Ferner ist das Produkt 

2 Vu) (+ Yu) (+ Vu,) = (a2 -+ ß?) Yu, positiv wie in a). 

6. Lagranges Kritik der Methoden. Lagrange?!) suchtenach allgemeinen 

Prinzipien, welche den verschiedenen bekannten Auflösungen der Glei- 

chungen dritten und vierten Grades zugrunde liegen, und erkannte, daß 

dieselben darin bestehen, eine Funktion der Wurzeln aufzustellen, welche 

bei der Permutation derselben weniger Werte annimmt, als die Zahl der 

| Wurzeln beträgt. Die Werte dieser Funktion werden dann durch eine Glei- 

chung von niedrigerem Grade als die vorgelegte Gleichung bestimmt 

werden. Kann dieselbe aufgelöst‘ werden, so bleibt nur noch die Aufgabe 

übrig, mit Hilfe dieser Funktionswerte die einzelnen Wurzeln zu bestimmen. 

Ist eine Gleichung vom dritten Grade vorgelegt, und sind z,, &,, &, die 

Wurzeln derselben, so hat eine rationale Funktion derselben, p(&, , %;, &s), 
im allgemeinen sechs Werte, entsprechend den sechs Permutationen von 
%, %, %;. Die Gleichung, welche diese sechs Werte zu Wurzeln hat, läßt 

1) „Reflexions sur la resolution algsbrique des equations.‘“‘ Nouveaux. M&- 
moires de l’Acad. de Berlin 1770 et 1771. Ges. Werke t. III, p. 205. 
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sich aufstellen (3, 2, 5). Sie wird aber vom sechsten Grade und wird mit- 

hin nur zur Auflösung der Gleichung dritten Grades nützlich sein, wenn 

sie sich auf eine Gleichung zweiten Grades reduzieren läßt. 

Als eine Funktion, welche dieser Bedingung genügt, findet Lagrange 
die lineare Funktion +1, -1+4) —i 

>) - 

(1) Y =—— I + [12023 —+ Dres 2 

deren Koeffizienten 1, «, «* die drei Werte von yı sind (6,1,2). Diese 

Funktion y hat sechs Werte, aber ihre dritte Potenz hat nur zwei Werte. 

In der Tat ist 

Put +2 + 60,02 +3a(mja, + 230 + 28) 

+302(0,23 + 225 + %2}) 

und hat offenbar nur zwei Werte, indem jede Vertauschung der Wurzeln 

nur der Vertauschung von « und a? gleichkommt. Nennen wir also y}, y; 
die zwei Werte von y°, so ist die Gleichung, welche die zwei EG von y? 

und mithin auch die sechs Werte von y gibt, 4 = Y; , = 

2) 

(8) Yy-YtWy typ. 
Nehmen wir die Gleichung dritten Grades in der reduzierten a ILL 

(4) a +pc+g=0, u a 
so wird die Berechnung der symmetrischen Funktionen sehr vereinfacht, 

indem z&, + £, + &; = 0 ist. Bemerkt man, daß yin x, + &, + x, über- 

geht, wenn man « = 1 setzt, so ergibt sich 

ytyzytn at 8% + 28) 

= 9, +. d +, ++ + m) | 

= 9m +) +.) = Van = 2. (n Bi Sa 

Femerit Yy= (2 +02, + a2z,)?(z, + ax, + a2;)? 

= + + B—- 1% — 1% — Lot5)® 

= [—-38(2,0, + 21%; 4 %8;)]? = — 21p°. 

Mithin wird die Gleichung (8), die Resolvente der kubischen Gleichung, 

(5) y+27yg PP —21.P=(. 

Sind u,, u, die zwei Werte von y?, die sich aus dieser Gleichung ergeben, 

so ist Kl 
Ib —= Yu =t+aR% + az, 

PR 
Ya = Yus = Lı FH De -F fg, 

14* 
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und mit Hilfe der Relation x, + &, + 2; = 0 erhält man sofort (& Punk Untgeh) 

ae @yatayam __elutayo 
See 3 wu 3 (6) & 

Man kann hier für Yu, irgendeinen der drei Werte 1% U, ayu,, a2y U 

nehmen; dann ist der Wert von Vu, dadurch bestimmt, daß das Produkt 

9 2 3 

(7) Vu. - Vu; = (1 tax, + az) (+ az + ar) = —3p wird. 

Vermöge dieser Relation können die drei Wurzeln auch durch eine 

Wurzel der Resolvente ausgedrückt werden, nämlich 

(8) =>] a =... ee: = am = 

Man bemerkt, daß, wenn man in den Gleichungen (5) und (6) 3 - y statt y 

setzt, und demgemäß auch 3%u statt u, dieselben in die früher gefundenen 

Formen in (6, 1,2) (11) und (14) übergehen. 

Ist eine Gleichung vom vierten Grade gegeben mit den Wurzeln 

X, &g, %y, %ı, So hat eine ganze Funktion p(t,, %,, £z, £,) derselben im 

allgemeinen 1-2-3-4 = 24 verschiedene Werte bei Vertauschung der 

Wurzeln. Ist g symmetrisch in bezug auf ein Paar derselben und auch 

symmetrisch in bezug auf das andere Paar, so reduziert sich die Anzahl 

der Werte von g auf 1-2-3=6; und wenn der Wert von überdies 

ungeändert bleibt bei Vertauschung der zwei Paare, so hat die Funktion 

Y nur drei verschiedene Werte, und ihre Berechnung führt auf eine Glei- 

chung vom dritten Grad, welche als Resolvente der biquadratischen Glei- 

chung dienen kann. Solche Funktionen sind leicht zu bilden, wie z. B. 

1% + Lada 

(21% — L324)° 

(&ı + %— 1% — U)*. 

Ist die Gleichung vierten Grades in der Form 

(1) een 

gegeben und benutzen wir die Substitution 

(2) Y=(H+%— 2 — u), 

so erhalten wir auf bekanntem Wege durch Berechnung der symmetri- 
schen Funktionen die in 42 kubische Gleichung 

(8) y° + Spt + 16(pP — An)? — 64: = 0 
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als Resolvente der biquadratischen Gleichung. Sind %,, u,, u, die drei 

für y? aus dieser Gleichung sich ergebenden Werte, so ist 

+9 -%—- = 

(+ %—-%— 2)? = U, 

(Lı 4% — %g — 25)? = ug. 

Nimmt man hierzu noch die Gleichung 

u 6 rt I u =0, 

so erhält man unmittelbar 

2 = Vu+ a + Vus i 1, = Va = ne — Yu g 

(4) 
— Vu + VYw— Vus — Yu —Vw+ Vus } 

4 In 4 ’ Lu = 

Zur Bestimmung der Zeichen der Wurzelgrößen hat man 

Vu, : Vu; : Vu; = (%) 4%, — 23 — 2%) (dı + 23 — %— %,) (tu — 8 — 85) 

oder, wie sich aus der Entwicklung dieser symmetrischen Funktion ergibt, 

(8) Vu - Vu; Vu = — 8. 

Sind die Vorzeichen von zweien der Wurzelgrößen willkürlich gewählt; so 

ist durch diese Gleichung das Vorzeichen der dritten bestimmt. 

Man sieht, daß diese Formeln mit den in (6, 1,4) gegebenen überein- 

stimmen, wenn man in Gleichung (3) 4y statt yund mithin auch 16u statt 

u setzt. 

Übrigens lassen sich auch hier, wie bei den kubischen Gleichungen, die 

sämtlichen Wurzeln durch eine Wurzel der Resolvente (3) darstellen. 

Denn es ist 

Vu, a Vu; = == Vu, + ar us +2 Vu, Vu; 

oder, da ut + U =—8p 

2 16 
und vermöge (5) Yu; + Vu; = + = 89 Ir 

Hiermit sind die in 9 dargestellten vier Werte von & in der Formel 

©) +4 Vu V-pu-32-2B 
enthalten, wo u, irgendeine der drei Wurzeln u,, u,, u; sein kann und die 

Zeichen von Yu, sich entsprechen. 
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Zweites Kapitel. 

Reziproke Gleiehungen. Binomische Gleichungen. 

1. Reziproke Gleichungen. Unter einer „reziproken Gleichung‘ versteht 

man eine Gleichung, deren Wurzeln paarweise die Relation 

N! 

erfüllen, so daß jeder Wurzel x der Gleichung eine Wurzel e entspricht. 

Nehmen wir zunächst an, zwei Wurzeln einer Gleichung n-ten Grades 

/(z) = 0 seien durch die Relation 

I 07) =» 

aneinander gebunden, wo v eine gegebene Konstante, dann ist 

7 E v — fir) 0er, a vB 

Ist D der größte gemeinschaftliche Teiler der zwei Gleichungspolynome 

f(x) und a" r(&), so wird D = 0 die Wurzel x, und zugleich, da man in 

den beiden Gleichungen x, und x, vertauschen kann, auch die Wurzel x, 

enthalten. Wären mehrere Wurzelpaare vorhanden, deren Produkt = », 

so müßte die Gleichung D = 0 diese Wurzelpaare sämtlich enthalten. Be- 

sitzt die Gleichung f(x) = 0 auch eine Wurzel x,, für welche x, = y» ist, so 

müßte dieselbe auch Wurzel der Gleichung D = 0 sein. Die Division von 

f(x) mit D würde sodann die Gleichung liefern, welche die übrigen Wurzeln 

enthält. 

Wenn aber alle Wurzeln der Gleichung f(x) = 0 paarweise durch die 

Relation x, &, = v verbunden sind, so hat x”f N) — (0 offenbar dieselben 

Wurzeln wie f(x) = 0, und das eben angegebene Verfahren, die Gleichung 

auf einen niedrigeren Grad zu reduzieren, ist unmöglich. Bezeichnen wir 

aber in diesem Falle mit 2 die Summe x + —, so wird die Anzahl der 

Werte von z nur die Hälfte der Anzahl der Wurzeln x sein und mithin die 

Lösung der gegebenen Gleichung auf die einer Gleichung von halb so 

hohem Grade reduziert werden. 

Setzen wir Y» - x statt x, so genügen die Wurzeln der neuen Gleichung 

= Relation &, x, = 1, so daß, wenn x eine Wurzel ist, der reziproke Wert 

— 2 ebenfalls Wurzel ist. Daher der Name „reziproke Gleichung“. 

A 

FR) = Mar + mar tar? ++ —0 
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fa(£}.it 3 eine Gleichung, welche diese Eigenschaft besitzt, so muß ie )= =0,d.ifjl; =) 

Gt E40 +. 4 Q,_32"772 4 a,_,ar 1 ra, = 0, 

dieselbe Gleichung sein.’ Also wenn o ein Te me ist, SO R 
AFh 

muß : = 0= Öl zir PET. 

A = OAn, Ar = OAn-17 +++ (An = 00 gr ts 

sein, worauso®=1,0e = + 1folgt. Es ist also entweder 

nn, Ar =Nn-1, Ag = An-9°:» 

oder Het, Kenn Kamen 

d.h. die Koeffizienten der gleichweit von den Enden entfernten Glieder 

haben den gleichen absoluten Betrag und haben entweder gleiches Zeichen | 
oder entgegengesetzte Zeichen. ] 

Die allgemeine Form reziproker Gleichungen ist also RL 
STR 21. 

$; 

- KR 
1 n ni ar a re 0,02 + De =.) ar A, 

(1) Agt” + 41% 2 2 Q %—=V, 

wo durchweg entweder die obern oder die untern Zeichen im zweiten Teile 

des Polynoms gelten. Im letzteren Falle muß, wenn n gerade, der mittlere 

Koeffizient a,, Null sein, weil a,, = — a,,, sein müßte. 

Die Gleichung kann auch die Wurzeln + 1 besitzen, da diese die Rela- 

tion 2-2 = 1 erfüllen. Man ersieht sogleich, daß, wenn n ungerade, die 

Gleichung immer die Wurzel + 1 hat, wenn die untern Zeichen gelten,2) 

hingegen die Wurzel — 1, wenn die obern Zeichen gelten. Ist ferner n ge- 

rade und gelten die untern Zeichen, so hat die Gleichung zugleich die Wur- 

zel+ 1 und — 1, und das Gleichungspolynom hat den Faktor &2 — 1.: LE > ) (X +1)? 4? 
A lau 

Schafft man daher allenfalsige Wurzeln + 1, die sich sofort zu erkennen % Barıfuon {u 

geben, aus der Gleichung weg, so erhält man immer eine reziproke Glei- (2 ie BR 

chung von geradem Grade, und in welcher der zweite Teil des Polynoms fan 

dieselben Vorzeichen hat wie der erste Teil, also eine Gleichung der Form 

(2) AgE2m + a, ar 1 4... Han” + ++ m =. 

Durch Division mit x” geht diese Gleichung über in 

1 
(8) ao (e” + m) + (am +) + tm lat) tm 0. 

Setzen wir nun 

T 
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i ı il E 
so kann man sämtliche Binome der Form x” + — rational durch 2 dar- 

stellen und damit die Gleichung 2m-ten Grades in x auf eine Gleichung 

m-ten Grades zurückführen. Es ist nämlich 

1 il 1 

(8) a ne ned 

Setzt man hierin r=1,2,3,... und bemerkt, daß 2+4,=2, so er- 

gibt sich 

4% +4=: 

2 1 
% 22 

3 1 3 el, — 32 

(6) i 
er ne 

+54 

a6 = —64492—2 

Es wird also 2 + rn ein Polynom m-ten Grades in 2, und durch Sub- 

stitution dieser Polynome von z in Gleichung (3) erhalten wir mithin eine 

Gleichung m-ten Grades. Lassen sich die Wurzeln derselben finden, so er- 

geben sich für jeden Wert von z die zwei entsprechenden Werte von x und 

= aus der Gleichung 

a+l=z, d.. 2 —r2+1=0 

(7) „EZ. 

Beispiel. Gegeben sei die reziproke Gleichung 

a — 2a — #t— 2? —23c+1=0. 

Die Gleichung hat die Wurzel <= —1. Wird diese durch Division mit 

x + 1 weggehoben, so kommt 

x — 32° +3 —-42° +32 —-I3c+t1=0 

als Gleichung der Form (2). Dieselbe läßt sich schreiben 

(®+,)-3 (@+4)+3(@+ 4) —4=0. 
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Wird hierinz2= cr + = eingeführt, so erhält man nach (6) die kubische 

Gleichung 

2—32+2=0. 

Die Wurzeln derselben sindz2= +1,2=1-+ Y3. Diese Werte von 2 in 

(7) eingesetzt liefern die sechs übrigen Wurzeln der vorgelegten Gleichung. 

Aus den Formeln (6) kann man nicht ersehen, nach welchem Gesetz 

dieselben gebildet sind. Der allgemeine Ausdruck für 2* + = in 2 läßt 

sich dadurch finden, daß man die Summe der n-ten Potenzen der Wurzeln 

T, = der Gleichung 2 — zz +1=0 berechnet. Hierzu kann die in 

(3, 1,4) (Fußnote) angegebene Formel für die Summe der n-ten Potenzen 

der Wurzeln einer quadratischen Gleichung dienen. Setzt man dort b=2 
und a =1, so ergibt sich far xx r+1=0 

. 1 N Aue gn- any mu, a 

er nee Pen a 

ee or 

Eine andere Herleitung dieser Formel soll nun n nachgetragen werden. 
A „ 66-0 

Es sei dazu bemerkt, daß, wenn man — —_ % x AT ® 

tz = 0850 + 51n 9 
eo 

setzt, — = 6080 — Tsın® aA, rue 
T per \ i 

wird, also 2= 041 =2c0s0. = 

Ferner ıst dann aber 

1 a. 
zr —cosnd +rsinn®, zum = vosnd — sinn, 

mithin ar + = —9cosnd. 

Die Formel (8) ist also dieselbe, welche die Entwicklung von 2 cos nd nach 

Potenzen von 2 cos gibt. 

2. Binomische Gleichungen. Binomische Gleichungen nennt man Glei- 

chungen von der Form 

() m—A=0, 
Die Wurzeln dieser Gleichungen sind in der Form A 4 alte Setzen wir 

f 
anf 

\- / Ö bh 
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so reduziert sich die Gleichung (1) auf 

(2) "—1=0, 

deren Wurzeln die n Werte von Yı sind. Wir haben dieselben früher 

) schon in trigonometrischer Form gefunden. Danach sind die n Wurzeln 

Y der Gleichung (2) Ä 

2krı 3.0, le 
(3) 2= 008) tn 

(v0) 

k = 0 entspricht dem Wertez = 1; ist n gerade, so gehört zuk = n der 

Wert 2= —1, die übrigen Wurzelwerte sind imaginär. Man erhält dem- 

nach auch die n Wurzeln der Gleichung (1), wenn man irgendeinen Wert 

von YA mit denn Werten von Y1 oder z multipliziert. 

Setzen wir 

(4) A=r(cosd + sind), 

dann sind die n Wurzeln der Gleichung (1) 

Ben 2kn +0 . . 2kn +6 
(5) &=Yr (cos a ) 

Kelsar zn 

r ist hier der absolute Wert von A, also eine positive Größe, Yr der reelle, 

positive Wert der n-ten Wurzel aus r. 

Ist A imaginär, so ist 6 weder = 0 noch ein Vielfaches von x, und folg- 

lich sind auch sämtliche Wurzeln (5) imaginär. 
Al 

Ist A reell und positiv, so istr = 4,6 = 0; die Wurzeln der Gleichung 

sind mithin 

(6) = YA (cos IE +tsin >) 

Darunter ist, wenn n ungerade, nur eine reelle Wurzel, nämlich x = YA R 

k = 0 entsprechend; wenn n gerade ist, so ergeben sich zwei reelle Wur- 

zen = + VA, den Wertenk=0undk = 5 entsprechend. 

Ist A reell negativ, so istr=— A,9=n. Setzen wir in diesem Falle 
nn 

— A statt A, so geht die Gleichung (1) über in 

(7) et A=(. 
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Ist nun in derselben A reell positiv, so sind deren Wurzeln. 

RN 
a; 

(8) z= VA (cos en 1)z +isin 
er rDm) 

k=0,1,2,,.0n 71). 

Ist n gerade, so enthält die Gleichung keine reelle Wurzel; ist n ungerade, 

so =. a reelle Wurzel vorhanden = — YA, dem Wert 2k +1 = n, 

k= l entsprechend. 

Für a — 1 erhält man 

(9) 
gr 4 1 en ; 

(10) 2 = 608 (2k+ ln 

RE 0.1,2. nal), 

Diese sind mithin die n Werte von V — 1. Man ersieht, daß man die sämt- 

lichen Wurzeln der Gleichungen (7) erhält, wenn man den reellen, posi- 

tiven Wert von YA mit denn Werten von Y—1 multipliziert. 

3. Einheitswurzeln. Wir betrachten nun speziell die zwei Gleichungen 

1-0 und + I=0, 

auf deren Lösung, wie wir sahen, die Auflösung der Gleichungen 

x” — A = 0 hinauskommt, indem wir absehen von der trigonometrischen 

Darstellung ihrer Wurzeln. 

— Man erkennt sofort, daß diese Gleichungen reziproke Gleichungen sind. 

/ / Nehmen wir zunächst an, n sei ungerade = 2m + 1. Dann hat 

(1) ve gm+1_1—0 

die reelle Wurzel + 1, die übrigen sind imaginär. Die Division mit 

x —1 gibt 

\ Kane 

gem 4 g2m-11..+ 5 +1=0 

(am +) + (am 4.) N 

2 1 £ 
worınnunz + AZU setzen ıst. 

Fürn=3;, 2 —1.=0 

- kennen wir bereits die Wurzeln; sie sind 

—1+Yy-3 Ser 
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Fürn=5;: : —1=0 

folgt nach Entfernung der reellen Wurzel + 1 

Er 1) 

il (er) Her) time 
(2—2)+2+1=0 

2+2—-1=0 2=-5 ER 

my 
ri lit se 

hiermit aus der Gleichung & — zz +1=0 4” Get ie Te 

= 5 10+2Y5 . eh Ka an nn 

Mat das Zeichen von Y5 beidemale dasselbe ist. 

| Die Gleichung #2”+! +1 = 0 hat nur die reelle Wurzel —1; wird 

diese nasechahen) so ergibt sich die reziproke Bas Be CM h) r ua) 

Bam — m-— ie - 12% EZE gem _ gem-1 1 g2m-2_...11 = | Er 1 

Man kann aber auch bemerken, daß, wenn man Ei statt a z Me die 

Gleichung x2”+1 + 1 = 0 übergeht in @2m+?— 1 = 0/ Es hat also 

(2) ha a Li) 

dieselben Wurzeln wie Gleichung (1), nur mit entgegengesetzten Zeichen. 

So sind z. B. die Wurzeln von 2 +1 =0 

En 1, +1 ale 3 x 

| 
[ J Ist n eine gerade Zahl 2m, so hat die Gleichung 

ye A) zm_1-0 
die zwei reellen Wurzeln +1 und — 1; die übrigen sind imaginär. Man 

kann nun mit &°— 1 dividieren und gelangt sodann zu einer reziproken 
Gleichung vom Grade 2m — 2. Aber .da 

am _1= (am —1)(em +1), 

so. zerfällt die Gleichung (3) sogleich in die zwei einfacheren 

21 — (er 0: 

So ergeben sich die Wurzeln von @—1=0 aus den Gleichungen 
@@—1=0und2?+1= (;sie sind mithin 

rl, en +YV-1, —Yy-1. 
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eu 
Die Wurzeln n von x — 1 = 0 sind nach obigem 

ei VEH ee FV 
> 18 ; 5 2 =r se ge gi L < 

nr 
nn 
Na > er 

ni 

Die Gleichung 
} 

(4) 4 el =.0 

endlich hat gar keine reellen Wurzeln. Bringt man sie auf die Form 

m 1 — am m 

so erhält man sofort die Gleichung in z vom m-ten Grade. 

EB ED 

EB 

er (2 Ä 

a, Pt dag = ne + = 5 = ist, so ergeben sich die vier Wurzeln - ı® 11 
-_ Ar kHHr) 
a7 = x Br e— un “ ER 

A r n Ir sr -R-ın -R 
1 A-Alr,x,= Hl IN ara Br a u 
F mahf, urn Lruefenen 

e-, w 
Man wird bemerken, daß die Gleichungen in z, auf welche die Auflösung “7° Bei 

der Gleichungen x" +1 = 0 führt, nur reelle Wurzeln haben. Ist nämlich *, - - 
z= «+ fi eine Wurzel einer dieser Gleichungen, so ist x = «— rauch F Z 

Wurzel derselben Gleiehung; mithin («a + Bi)" (a — Pi)" = (a + Pr = 1 W/ı \ IV 
; 3 und folglich «® + 8? = 1, d.h. der absolute Wert der Wurzel ist = 1, wie 2 

auch schon aus der trigonometrischen Darstellung der Wurzeln zu er-_ Wi fer) 

sehen. Dann folgt aber 

en Stine 
en ER 

en ist also die konjugierte Wurzel und mithin 2= x ne 96, tolet 

lich reell. 

Drittes Kapitel. 

Von den Einheitswurzeln. 

1. Primitive Einheitswurzeln. Von hervorragender Wichtigkeit unter den 

binomischen Gleichungen ist die Gleichung 

—1=0, 

deren Wurzeln die verschiedenen Werte der n-ten Wurzel der Einheit 

geben. Wir haben die Eigenschaften dieser Einheitswurzeln zu unter- 

suchen. 



lt fan Wi F ,, ra 

ale e R 7 da 

2933 Drittes Kapitel: Von den Binheityuln 

t 
wniiv A = 7, 

Zunächst ist klar, daß, wenn « eine Wurzel ist, auch am, wo m irgend- 

eine positive oder negative Zahl ist, ebenfalls Wurzel ist. Denn da a” = 1% 

so 1st (am)n = (an)m 1. 

Alle Glieder der Reihe 

(1) DOOR 
m+1 er 

sind also Wurzeln der Gleichung. Da aber «" = 1 ist, so ist KK = A 
In 
K.a= RK 14 

ne n+2 — 2 ; ad DER Ent 
“05h = 

et= ari Verzennn: 

Folglich kann die Reihe (1) höchstens n verschiedene Zahlen enthalten, 

nämlich 

(2) | 0 al Saga u: 

Setzt man diese Reihe (2) nach der einen oder andern Richtung fort, so 

wiederholt sich dieselbe Reihe der Werte. 

Um nun aber zu erkennen, ob diese Reihe (2) die sämtlichen n Wurzeln 

enthält, betrachten wir die zwei Gleichungen 

(8) | a 1=0, ar 1=0, 
wo m wie n eine positive ganze Zahl und m < nist. Beide haben den Fak- 

tor e—1) "also die Wurzel + 1 gemein. Um zu sehen, ob sie noch andere 

Wurzeln gemein haben, muß man den größten gemeinschaftlichen Teiler 

von @®— 1 und <=” —1 suchen. Nun gibt die Division von 2° — 1 mit 

x” —1 die aufeinanderfolgenden Reste a" — 1, 2-2” —1,..., so daß, 

wennn=qm-+r,r <m, der letzte Rest 2” — 1 ist. Dividiert man nun 

mit diesem Rest 2 — 1 in 2” — 1 und ist m = qır + ra, so ist ebenso der 

letzte Rest der Division @®— 1 = 0, usf. Man hat also nur den größten ge- 

meinschaftlichen Teiler von n und m zu suchen, indem man durch auf- 

einanderfolgende Divisionen das System von Relationen 

(4) 

OL lusr ie kiefifen jeukte 

bildet. Ist der letzte Rest = 0 und s der letzte Divisor, so ist s der größte 
gemeinschaftliche Teiler von n und m; es haben 2 — 1 und x” — 1 den 
gemeinsamen Teiler 2°—1 und die zwei Gleiehungen (8) mithin alle 
Wurzeln der Gleichung 

(5) x:—1=0 gemeinsam. 
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Ist aber der letzte Rest in dem System (4) =1, sohaben m und n keinen ge- 

meinsamen Teiler außer der Zahl 1; man sagt dann, m und n seienrelative 

Primzahlen. Die Gleichungen (3) haben in diesem Falle keinen andern 

Faktor als 2&—1 und keine andere Wurzel als die Einheit gemeinsam. 

Kehren wir nun wieder zu der Reihe der Potenzen der Wurzeln (2) zu- 
rück und nehmen wir an, n habe den Faktor s, so kommen unter denn Wur- 

zeln von &® — 1 = 0 auch die s Wurzeln der Gleichung 2° — 1 = 0 vor. 

Nehmen wir für « eine dieser letzteren, so wird in der Reihe (2) schon «® 

der Einheit gleich, und es wiederholen sich dann immer nur die Wurzeln 

a,a®?,...a°. Soll also die Reihe (2) der n Potenzen von « dien Wurzeln 

von z2"—1=0 darstellen, so muß man für « eine Wurzel nehmen, 

welche keiner Gleichung niedrigeren Grades angehört oder m. a. W. 

nicht Einheitswurzel niedrigeren Grades ist. Solche Wurzeln nennt man 

primitive Wurzeln der Gleichung. Es wird sich zeigen, daß für jeden 

Grad n solche primitive Einheitswurzeln vorhanden sind. Ist n eine 

Primzahl, d. i. eine Zahl, welche mit keiner kleineren einen ın Faktor 

Sn hat, außer der Einheit, so sind alle Wurzeln der Gleichung 

— 1 = 0, ausgenommen die Einheit, primitive Wurzeln. 

Seiz.B.n=6, «eine Wurzel der Gleichung 2° —1=0 und bilden 

wir die Reihe a, a2, a8, 0A, 08, 0°(= 1). 

Die Wurzeln der Gleichung sind (6; 2, 3) (1.221 ed 
v1, io +14+Yy=8 

. 2 

Setzt man « = —1, so gibt die Reihe der Potenzen nur —1,-+]1,..., 

da —1 Wurzel von 7? —1 = 0 ist; setzt man « = = ve ‚so wird 
2 

ae® = 1, und es wiederholen sich nur die Wurzeln von 2 —1=0(0; hin- 

ein Se gegen die gehören keiner niedrigeren Gleichung an; 

denn @—1=0 hat nur die Wurzeln von 2 —1= 0’ mit a — = 0 

gemein, und 2 —1 = 0 hat außer der Einheit überhaupt keine Wurzel 

mit 2° — 1 = 0 gemein. Diese zwei Wurzeln sind also primitive Wurzeln 

und sie liefern, für @ in die Reihe a, «2, .... «® eingesetzt, die sechs Wurzeln 

der Gleichung. 

2. Näheres über primitive Wurzeln. Nehmen wir nun an, n zerfalle in die 

zwei Faktoren p, q, so sind die sämtlichen Wurzeln der zwei Gleichungen 

ee 
auch Wurzeln der Gleichung 

x» —] = 97 —-]I=0. 
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Dies geht schon aus dem Früheren hervor, ergibt sich aber auch unmittel- 

bar. Denn ist ß irgendeine Wurzel von 2? —1 = 0, so ist ß$P = 1, also 

auch ß?@ = 1; und ist y irgendeine Wurzel von 2 — 1 = 0, ‚so ist y =], 

also auch y?? = 1. Zugleich ist aber auch 

Bypr—=1. 

Da ß p Werte, y q Werte hat, so repräsentiert das Produkt 8y mithin 

»q Werte, die sämtlich Wurzeln von ©" — 1 = 0 sind. 

Sind p und q relative Primzahlen, so sind die pg Werte 

von ßy sämtlich verschieden, und es geben also dann alle 

_ Wurzeln ß mit allen Wurzeln y multipliziert die sämtlichen 

I Wurzeln von an = 0. 0,9 

In der Tat, es seien ß’, 8” zwei re ß und y’, y’’ zwei Werte von y. 

Wäre nun en De 
a, 

so müßte auch (8’y’)? = (ß’’y’')? sein, Kr da. (P.)? = 1ß. #12, 

(y')? = (y”’)?, mithin 

sein. Nun ist aber (y’)@ = (y’’)® = 1, also auch 

ee 

Es würde demnach folgen, daß 1 ‚sowohl Wurzel der Gleichung 2 — 1 =0 

als auch der Gleichung &? — 2 = 0 ist. Da aber p und q relativ prim zu- 

einander sind, so haben die zwei Ian nur die Einheit als gemein- 

same Nup): ep; müßte mithin 2, 2 = et d. 1. == = 7%. gen felgen auch 
PR Yale 

DER sein. Damit ist obiger Satz orfiesen. de a 

Man kann nun noch weiter behaupten: 

Sind £ und y primitive Wurzeln ihrer Gleichungen «=? —=1 

und z?=1, so ist auch das Produkt 8y primitive Wurzel der 
Gleichung @#«=1. (Wen Y.308) 

Denn man bemerke, daß, wenn « primitive Wurzel von x” = 1 ist, nach 

der Definition «* die niedrigste Potenz ist, welche = 1 wird, und es sind 

dann überhaupt nur die Potenzen @", a2”, a®*,... der Einheit gleich. Wäre 

nun (8y)” = 1,r < pq, so müßte auch (ßy)"? = 1, also auch y’? = 1 sein.” 
Da aber y primitive Wurzel der g-ten Potenz ist, so müßte rp ein Viel- 

faches von q sein. Ebenso würde auch fölgen (By) =1, also Pre =1, 
und da ß eine primitive Wurzel der p-ten Potenz ist, so müßte auch rq 
Vielfaches von p sein. Da nun aber p und q nach der Voraussetzung 

ud tlım 
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an Faktor gemein haben, „go müßte r zugleich Vielfaches von p und 

von q, also Vielfaches von pgq ‘sein. Es ist also ßy primitive Wurzel von 

x’ —] = 0, wenn ß und y primitive Wurzeln ihrer Gleichungen sind. 

Ist aber in dem Produkt $y auch nur eine der Wurzeln ß, y nicht pri- 

mitiv, so ist auch das Produkt £y nicht primitive Wurzel von z#° = 1. 

Denn wäre z. B. $ nicht primitive Wurzel, indem 8° = 1,s < p, so wäre 

auch ($y) = 1, wo sq < pg; also ßy nicht primitiv. 

3. Anzahl der primitiven Wurzeln. Läßt man nun p und q wiederin Fak- 

toren zerfallen, so ersieht man, daß sich obiger Satz zu folgendem Theo- 

rem erweitert: 

Sind p,q,r,... die Primzahlen, aus welchen n gebildet ist, 
sodaßn= = pigtn".. ‚wo A,u,»,... positive ganze Zahlen sind, 

so reduziert sich sn Auflösung ee Gleichung 

r— 1=0 

auf die Auflösung der N 

a Br en er 

Ist nämlich $ irgendeine Wurzel der ersten, y irgendeine 

Wurzel der zweiten, ö irgendeine Wurzel der dritten Glei- 

chung usf., so geben die p‘q“r"...=n Werte des Produkts 
I Be} TE N AG n Kurt 

By... vn Dich, Yl Ye 

dien Wurzeln der Gleichung @«®—1=(. 

Sind ferner ß, y, öd... sämtlich primitive Wurzeln ihrer 

Gleichungen, so ist auch das Produkt ßyö... primitive Wur- 

zel von @<®—1=(, und zwar nurin diesem Falle. 

Kennt man demnach die Anzahl der primitiven Wurzeln von «” —1=0, 

so läßt sich auch die Anzahl dieser Wurzeln für «—1=0 leicht bestim- 

men. Nun hat p” keine andern Faktoren als p, p?, p®, . . . p?=!. "Also ent- 

hält die Gleichung 2°” — 1 = O alle Wurzeln der lichen 1) Bayl wi 2 

ie lte0.. et iet, u 
und hat sonst keine Wurzel mit einer niedrigeren Gleichung gemein. Aber 

alle Wurzeln dieser Reihe von Gleichungen sind in der höchsten 

mie) l 

enthalten. Die Gleichung x’ — 1 = 0 hat also p*-! Wurzeln, welche nicht = 

primitiv sind; die übrigen Mi 
1 5 Ar ee > . pP —p p ( 2) sind primitiv 

Bieberbach, Algebra 15 

Fehl, [je vr Van nf I | , Par 
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Ebenso hat also auch 2" — 1 =0 ra = 2) primitive Wurzeln usw. 

Folglich hat ar —1=0 

ne 90-9) 
primitive Wurzeln. Diese Zahl soll in der Folge mit p(n) bezeichnet 

werden. ER 

Ist z. B. gegeben «et —1=0, 

so läßt sich die Lösung, da 60 = 22-3 - 5, zurückführen auf die Lösung 

der Gleichungen 

22? _1=0, 2 -1=0, 2-1=0, 

und unter den Wurzeln sind 

601 -5)(1-3)(1-5)=16 primitive. 

4.Algebraische Bestimmung derEinheitswurzeln. Man ersieht, daß, wenn 

n nur aus den Faktoren 8,5, 7,9,2* (k eine positive ganze Zahl) zu- 

sammengesetzt ist, die Gleichung x” — 1 = 0 immer algebraisch, durch 

Wurzelgrößen lösbar ist; denn die Gleichungen #=1,# =1, 2°” =1, 

x? = 1 sind als reziproke Gleichungen lösbarund die Gleichung 

2*—1 

erfordert zu ihrer Lösung nur das wiederholte Ausziehen von Quadrat- 

wurzeln. So ist z.B. 

a N ne, 

Dabei wird man Ausdrücke der Form Va + bi nach der früher gegebenen 

U) Formel (1,1,5) immer durch Auflösung quadratischer Gleichungen zurück- 
führen auf komplexe Zahlen @ + Bi. 

Auf ähnliche Weise, wie sich 2° — 1 = 0 auf die wiederholte Auflösung 

von quadratischen Gleichungen zurückführen läßt, kann man auch die 

Auflösung der Gleichung AN 

auf einfachere Gleichung zurückführen. 

Man nehme eine beliebige Wurzel 8, von 

a 
dann eine beliebige Wurzel ß, von 

N = Yoß.=\ N, 
e—=ß,, Bau is a A 
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sodann eine beliebige Wurzel 8, von 

xD — Ba ad PB, = N 

usf., endlich eine beliebige Wurzel ß, von b 

Heßi- in. 
=... X PA -Ba-4 

Jedes Produkt ßı*'Ps--.f, gibt ine W Wurzel der Gleichung 

x —1=0. Denn es ist ff Pr: MP Ra Par Pr j 

(Pıßz - BP = Bıßz- - -Br-ı 

Bıßz-- Br = (Bıßa---Bi-1)?” = Pıßa.- - Pı-3 

(Bußz--- BF = hı 

(Bıßz--- Br’ =]. 

Dabei läßt sich erkennen, daß, wenn man für ß, die Einheit nimmt, das 

Produkt ß,...ß, eine nicht primitive Wurzel ist, da schon die p?"!-te 

Potenz = 1 wird. Nimmt man aber für 8, irgendeine andere Wurzel der 

Gleichung &?— 1 = 0, so ist das Produkt primitive Wurzel. 

Die Auflösung der Gleichung &” —1 = 0 kommt also immer auf Glei- 

chungen der Form x? = ß, wo p Primfaktor von n ist, zurück. Später 

wird uns die Frage nach der Auflösung dieser binomischen Gleichungen 3.0 H 

noch weiter beschäftigen. 

5. Bestimmung von p(n). Kennt man eine primitive Wurzel« der Glei- 

chung 2 —1=0, so kennt man auch alle Wurzeln; denn die Reihe der 

Potenzen von « a RT 

enthält die n Wurzeln. Es entsteht nun die Frage: welche unter diesen 

Potenzen sind die primitiven Wurzeln ? 

Ist eine dieser Wurzeln «” keine primitive Wurzel, so muß sie einer 

Gleichung £” = 1 angehören, wom < n; es muß mithin (e)"=a’"=]1 

sein. Da aber « primitive Wurzel ist, so sind nur die Potenzen a", «®*,... 

der Einheit gleich. Folglich muß rm = kn sein, wo k eine positive ganze 

Zahl, d.h. Pe 

n m 

Da nun m < n, so müssen r und n einen gemeinsamen Faktor haben. 

In der Reihe «,a?,...c"” sind mithin nur diejenigen Poten- 

zen primitive Wurzeln, deren Exponenten prim zu n sind. 

Die Anzahl der Zahlen aus der Reihe wen en 

1,2, 9, 

ri. os 

fi "2 

de 2200. 

\ 
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+1 Au 
ya 

“/ "welche prim zu n sind, ist von großer Wichtigkeit i in der Zahlentheorie. 
DONE ERBER._ 7 

"Man bezeichnet diese Anzahl gewöhnlich mit 9 (n n). Dasie gleich ist der An- 
zahl der primitiven Wurzeln der Potenz n, so kennen wir sie bereits; sie 

} ‚ist, die Einheit mitgerechnet, wenn n = p gerr...ist, Sa 

5 wi ’ 1 (1 ) = [ Gplar / 22 

N run al rin) -n(1 — Bi Mi Fa a Es ; pl2)=1 | 

PB) = 2 L JRR 

„ Namg 6, Die Kreisteilungsgleichung. Aus der Aa hune A , I: 

y. er — 1-0 12)=4 58 

fe läßt sich immer die Gleichung bilden, welche nur die primitiven Wurzeln 

derselben enthält?) Ist n eine Primzahl p, so ist dieselbe, da alle Wurzeln 

außer der Einheit in diesem Falle primitiv sind, 

() 
pP —1 
md P- Be Ab +T mn 20-2 1207 

® Ebenso, wenn n die Potenz einer Primzahl, n = p/, ist, wird die gesuchte | 

Gleichung, da alle Wurzeln primitiv sind, außer denen der p‘"!-ten Potenz, | 43: 

ap —1 

a1 _ 
— g(P-12P» I gie- 2) p IL ge-3)P!- N ar* ee 

£) Um zu sehen, wie die Gleichung zu bilden ist, wenn n mehrere Primzahlen 

enthält, nehmen wir als Beispieln = 12 = 2?-3 an. Wir haben dann aus 

x1® — 1 alle Faktoren wegzunehmen, welche den Teilern von 12 entspre- 

chen, also 2 — 1,2 —1,2°?—1,2?—1,2—1! Da aber die zwei höch- 

sten 2° —1,x*—1 allein schon alle Wurzeln enthalten, welche diesen 

Faktoren entsprechen, reicht es hin, diese beiden wegzuheben. Dieselben 

enthalten aber beide den gemeinschaftlichen Faktor x? — 

nicht zweimal wegzuheben, muß er einmal wieder beigefügt werden. Die 

gesuchte Gleichung der primitiven Wurzeln ist also ' 

oder 

(a —1) (® —1) er 
(2? —1) (1) 241 

rei: 
L 4 s 78 ng 

woraus xe4l 0) We 

haben aber wieder den Faktor ar’ "!a“-1__ 
der primitiven Wurzeln wird mithin 

(9 (ar? u) (zp} 5: 

1'/ Um diesen 

t Fon art. seta fa+bı)“, 

u) vr Su Te“ 

v4. fr YekT. 7 + (5 #4) 

Es ist nun leicht zu sehen, wie sich die Gleichung gestaltet, wenn allgemein 

n = p’q“, wo p und q Primzahlen. Die höchsten Faktoren von ar — 12.333 4 
die alle andern enthalten, sind &»°"14* — 1 und a1 _ 1. ) Diese beiden ge i. 

Tqu=1227) 0 

(zpi —1 EN 1) ij) 

1 gemeinsam. Die Gleichung 
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1 RR 
Die Gleichung hat den Grad n (1 _ n) (1 — ak wie es sein soll. Diese 

Betrachtung kann leicht verallgemeinert werden für den Fall, wenn n 

drei oder mehr Primzahlen enthält. Der Grad der Gleichung der primi- 

tiven Wurzeln ist natürlich gleich der Anzahl dieser Wurzeln, also = o(n). 

Ferner zeigt ihre Herleitung, daß es Gleichungen sind mit ganzzah- 

ligen Koeffizienten, deren erster =1 ist. 

“ Wir nennen diese Gleichung die Kreisteilungsgleichung, wegen der 

naheliegenden Beziehung der n-ten Einheitswurzeln zur Teilung der Kreis- 

peripherie in n gleiche Teile. Es ist die Gleichung, der ai an primitiven 

n-ten Einheitswurzeln genügen. =» rg | er 

Die Kreisteilungsgleichungen haben een für Sn n die Eigen- 

schaft, daß sie im Körper der rationalen Zahlen irreduzibel sind, also 

nicht in rationale Faktoren mit rationalen Koeffizienten zerlegt werden 

können. Diese Eigenschaft ist zuerst von Gauß in seinen „‚Disquisitiones 

arithmeticae‘ art. 341 (Werke Bd. I) für die Gleichung (1) (n = p) be- 

wiesen worden, seitdem von Kronecker, Eisenstein u. a. nicht nur 

für die Primzahl p, sondern auch für irgendeine Potenz n.!) 

Hier folgt der. Beweis für die Irreduzibilität der Gleichung (1) nach 

Eisenstein.?) g dr 

7. Ein Satz von Gauß. Zunächst sei der Satz von Gauß vorausgeschickt: 

Wenn eine ganze Funktion f(x) mit ganzzahligen Koeffi- 

zienten in zweiFaktoren mitrationalen, gebrochenen Koeffi- 

zienten zerlegbar ist, so ist sie auch als Produkt von zwei 

ganzzahligen Polynomen X,,X, darstellbar. 

Betrachten wir vorher zwei Funktionen 

®, (2) er + NELBEHH u 

D, (x) n b»+bhsrbrr+
 

n 
5 

wo diea,,b,,m, n ganze Zahlen sind und weder die a, noch die b, einen 

gemeinsamen Faktor haben. Wir wollen zeigen, daß nicht alle Koeffi- 

zienten des Produktes ®,(z) -D,(x) mit der Zahl mn denselben von 1 

verschiedenen Teiler gemein haben. 

Es sei p eine beliebige Primzahl und p“ die höchste in m, p* die höchste 

in n vorkommende Potenz derselben. Es mögen ferner 

Ag y,...., und dbu,bj,...b,_; 

1) Mehrere dieser Beweise findet man in Bachmanns „Lehre von der Kreis- 

teilung‘, 5. Vorlesung $. 33ff. 
2) Crelles Journ., Bd.39,1850, S. 166. 
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durch p teilbar sein, a, und b, den Faktor p aber nicht enthalten. Dann 

wird in dem Produkt ®, (x) ° ®, (x) der Koeffizient von a**® 

CE LE LE en b,4ı tr %-3 DE N 
MW 

Nun ist aber a,b, durch p nicht teilbar, die beiden Klammerausdrücke 

aber enthalten nach unsern Voraussetzungen den Faktor p; demnach 

muß p“*” im Nenner stehenbleiben. Das gleiche kann man von jeder in 

m oder in n vorkommenden Primzahl beweisen, folglich muß überhaupt 

mn als Nenner auftreten. 

Ist nun I) = 9(2)- 9:8), 

wo 91, 9, Faktoren sind, deren Koeffizienten Brüche enthalten, so bringe 

man die Koeffizienten von 9,(x) auf den kleinsten gemeinsamen Nenner, 

verfahre ebenso mit 9,(x); dann wird, wenn d,, d, diese Nenner sind, 

a 
wo nun 9, und 9, ganzzahlige Polynome sind von der Form 

Manta tat. 

Bbr+batbiart- 
Es seinun A der größte gemeinschaftliche Teiler der Koeffizienten a’; und 

relativ prim zu d,, ferner B der größte gemeinschaftliche Teiler der b! und 

relativ prim zu d,; dann können wir schreiben 

wo op, und 9, die entsprechenden Polynome nach Ausscheidung der Fak- 

toren A bzw. B sind. Die Ausdrücke 2 und A > genügen dann aber den für 
d, dy 

die Funktionen ®, und ©, gemachten Voraussetzungen, und auf ihr Pro- 
dukt kann man den soeben bewiesenen Satz anwenden, daß der Nenner 
d,d, sein muß. Soll nun aber f(x) ganzzahlig sein, so muß AB durch d,d, 
teilbar sein, und da A relativ prim zu d,, B relativ prim zu d,, so folgt 
notwendig 

A=0:d, Beßrd, 

wo a und ß ganze Zahlen. Dann wird aber 

fa) = aßp1p; 
und damit ist f(x) auch in ein Produkt ganzzahliger Faktoren zerlegt. 
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8. Eisensteins Irreduzibilitätskriterium. Wenn eineGleichung f{a)=0 4 h lern 
ganzzahlige Koeffizienten hat, und wenn der erste Koeffi- 

zient=1, der letzte zwar durch p aber nicht durch p? teilbar 

ist, während die übrigen durch p teilbar sind, so ist, p als 

Primzahl vorausgesetzt, die Gleiehung irreduzibel. 

Es ist dann f(x) von der Form 

Br pxp(%) er P On» 

wo «, eine nicht durch p teilbare ganze Zahl ist. It n=r+s, und 

soll dies Polynom in die zwei Faktoren 

(2 + a2 +... +a,)(@ + b,2t+...+b, 

zerfallen, so können wir nach dem vorigen Hilfssatz die a, b als ganze 

Zahlen annehmen. Da das konstante Glied a,-b, gleich p-«, sein muß 

und p Primzahl ist, so muß eine der Zahlen a,, b, durch p teilbar, die 

andere zu p teilerfremd sein. Es sei a, zu p teilerfremd, b, durch p teilbar. 

Dann wird, wenn wir die mit b, multiplizierten Glieder in das Glied px p(x) 

einbeziehen, 

are pad) (a tr mEt + +0) Het +bı2). 
Da das Glied a,b,_,x das einzige Glied seines Grades auf der rechten Seite 

ist, so muß b,_, Vielfaches von p sein; begreift man sodann die mit b,_,% 

multiplizierten Glieder wieder in pg,(&) ein, so kann man dasselbe von 

b,_,2? sagen; es muß mithin auch b,_, und ebenso jedes andere b durch p 

teilbar sein, und folglich ist schließlich 

grt+s — a + a Lin.» 4.) 765 

durch p teilbar. Dies ist aber unmöglich, da das Glied in x° den Faktor, 

a, hat, der zu p teilerfremd ist. Damit ist der Satz erwiesen. ' 

9. Die Irreduzibilität der Kreisteilungsgleichung. Der eben bewiesene 

Satz nun läßt sich auf die Gleichung (1) 

ee —1 — ie gP=2 ı...— c-H+ 1 —( 

z—1 

@+1P—1 1) 
2 ’ anwenden. Denn setzt man 2-+1 statt x, so geht a überin 

und dieser Ausdruck ist von der Form 

EDEL) ID 
. . . . . 2 f, f ef ij vr 

und mithin irreduzibel; also gilt dasselbe von = er 

Dieser Beweis läßt sich auch auf die Gleichung (2) ausdehnen. Bequemer 

führt aber hier ein jetzt darzulegender anderer Beweis zum Ziel. 

Mill K Tor ze 
. 
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10. Späths Beweis für die ‚ Irreduzibilität” ‘der Kreisteilungsgleiehung. 

(Math. Ztschr. Bd.26 S.442.) Er setzt einige elementare zahlentheoretische 

Tatsachen und Begriffe voraus. Diese werden im folgenden Kapitel im 

Zusammenhang mit einigen anderen hergeleitet werden. 

a) Hat F,(& u = (va a) (a). ei (EL @&r) 

ganze rationale Koeffizienten, so hat nach dem Hauptsatz über symme- 

trische Funktionen (8.107) auch 

P,(e) = (a) ) (8 @,) 
für jedes ganze k > 1 ganze rationale Koeffizienten. Ist überdies k = p 

eine Primzahl, so ist!) 

F,(e) = Fı(«) mod p 
(d.h. die entsprechenden Koeffizienten beider Polynome unterscheiden 

sich nur um Vielfache von p).Denn nach dem pelynunmzen Lehrsatz 

ist für die i-te elementarsymmetrische Funktion der ar 

22... = (20. pr 

weil nach diesem Satz in der p-ten Potenz eines Polynomes, alle Koeffi- 

zienten mit Ausnahme der der p-ten Potenzen durch p teilbar sind. Der B 

Koeffizient von a... x in (& + :-- + z,)? ist nämlich fe. Wicberd 

el kt b=-D u 0.u 12 

Weiter ist nach dem kleinenFermatschen Satz für jedePrimzahl p (8.250) 

(Za,...0) = 2a,...a,modp. 

Also ist auch Z0b 02 =80,.22,0, mod, 

wodurch F,(&) =F,(x) mod p bewiesen ist. 

b) Sind a 

n-te Einheitswurzeln, so ist für k = hmodn, stets «* = «a, also ist Ü121 ch 

Fa) = Fı(@) 
fürk = hmod nundalle x. d.h. beide Polynome sind identisch. 

c) Ist dann p = k mod n und p Primzahl, so ist nach a) und b) 

F,(&)=F,(&) =F,(x) mod p. 

d) Nun seien a, ...a, primitive n-te Einheitswurzeln. Wir fassen 
diejenigen zun ans Zahlen k in der Klasse X zusammen, für die 

ERTL 5 Fı(@) = Fı(@) 
1) Vgl. 8.240 über Kongruenzen. 



5,3, 10. Späths Beweis für die Irreduzibilität der De nunzeleichuzg 233 

ist für alle x. Wir wollen zeigen, daß es keine anderen gibt. Ist As be- 

wiesen, so folgt daraus, daß F, (x) mit der linken Seite der Kreisteilungs- 

gleichung' identisch ist. Denn jede k-te Potenz von «, genügt dann für 

(k,n) =1 der Gleichung F', (x) = 0. Da aber durch Potenzierung einer 

primitiven n-ten Einheitswurzel mit Hilfe einer zu n teilerfremden Zahl 

alle primitiven n-ten Einheitswurzeln gewonnen werden ($. 227) und diese 

die Gesamtheit der Wurzeln der Kreisteilungsgleichung ausmachen, so 

muß jeder Faktor ihrer linken Seite, der rationale und damit nach $. 229 
ganze rationale Koeffizienten besitzt, mit der linken an identisch sein. 
Also ist die Kreisteilungsgleichung irreduzibel. N N) = Tr, (x) 

e) Um zu zeigen, daß für (k, n) = 1 stets 

F,(«) = Fı(8) 

ist für alle x, fassen wır alle zu n teilerfremden Zahlen, für die dies nicht 

stimmt, in einer Klasse B zusammen. Gehört k, zu X und gehört k, zu 

U, so gehört auch k,k, zu. Denn es ist 

Far) = (Pr)r,(2) für alle © 

(P)x,(&) — Fr,(&) „ „» 

F,(®) — F,(«) ” » 8 

Ist also k eine Zahl aus B, so kommt unter ihren Primfaktoren eine B an- 

gehörige Primzahl vor. Sind p,...p, Primzahlen aus B, so ist auch 

k=np...-M-ıt 
Pi 

eine Zahl aus ®. Denn esist k=p, mod n 

and daher F,(2) = F,,(e) für alle x. “" 16) 0.292 

Unter den Primfaktoren von k kommen aber p, ... p, nicht vor. Also 

gibt esaußer p,...p,noch weitere Primzahlen in ®. Es gibt deren also 

unendlich viele. Unter diesen Primzahlen gibt es unendlich viele, die 

mod rn kongruent sind. Denn als Reste derselben mod n kommen höchstens 

n— 1 Zahlen in Betracht. Sind dann 

Pı>P2- 

unendlich viele mod n kongruente Primzahlen, so ist für alle diese 

F,,(®) 

dieselbe Funktion F(x) für alle x nach b). Ferner ist nach c) 

Fp,(z) = Fı(x) mod p,. 
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D. h. die Kongruenz F(x) = F,(x)modp besteht für unendlich viele 

Primzahlen. Dann müssen aber beide Polynome identisch sein und p, 

gehört zu A statt zu ®. Also gibt es in ® keine Zahlen. Damit ist nach 

d) der Beweis vollendet. 

11. Potenzsummen der Einheitswurzeln. Ist « eine primitive Wurzel von 

2° —-1=0(, also 

une wenden 

die Gesamtheit der n Wurzeln dieser Gleichung, so wird die Summe ihrer 

k-ten Potenzen 

5; =1l+ot+o2t +... 4 0a@-Dk 

Sr ank —1 
=. 

Ist nun % weder Null noch ein Vielfaches von n, so ist «® — 1 nicht Null, 

hingegen der Zähler «** — 1 ist immer = 0. Mithin ist s, = 0. Nur wenn 

k = 0 oder ein Vielfaches von n ist, werden alle Glieder der Summe =1 

und folglich die Summe selbst = n. 

Nennen wir also «@,ß,y,... die Wurzeln der Gleichung in 

irgendeiner Reihenfolge, so ist 

mat + ty... —0 

für jedes k, das nicht ein Vielfaches von n ist. Wenn k ein 

Vielfaches vonn,its,=n | 

Dieser Satz geht auch aus den Newtonschen Formeln hervor, welche 

s" aus den Koeffizienten a der Gleichung berechnen lassen, indem für die 

Gleichung &° — 1 = 0 alle Koeffizienten a,,a,,... Null sind, außer a,, 

welches = — 1 ist. Es ist daher auch Fa = 0, Faß = 0, Zaßy = 0%). $ 
und app... J=il. 

Aus obigem Satze folgt aber noch weiter, daß irgendeine 
symmetrische Funktion dieser Wurzeln 

Zarßayr... 

immer = 0 ist, außer wenn der Grad derselben p+g+tr-+-... 
ein Vielfaches von n ist. Denn die Berechnung derselben durch 
die Potenzsummen ergibt nur Glieder der Form s;s;s,..., in welchen 
Ib tI+..- -p+tgtrt..n 

Ist also der Grad von & nicht teilbar durch n, so können auch die 
Indizes ,k,l,... nicht alle durch n teilbar sein, und das Glied ver- 
schwindet. 
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12. Eine Anwendung. Die symmetrischen Funktionen der Wurzeln der 

Einheit finden auch Anwendung, um aus Gleichungen, welche Wurzel- 

größen enthalten, dieselben zu entfernen, d.h. „‚die Gleichung rational zu 

machen“. Wir haben bei einer irrationalen Form die Mehrdeutigkeit, 

welche die Mehrdeutigkeit der Wurzelgrößen mit sich bringt, in Betracht 
zu ziehen. Hat man die Gleichung 

a=VP+VQ+VYR+--, 
so hat YP p verschiedene Werte, welche man erhält, wenn man einen 

Wert von YP mit den p Werten von Y1 multipliziert, YQ hat q Werte 
usw. Der irrationale Ausdruck hat mithin pgr... möglicherweise ver- 

schiedene Werte. Die rational gemachte Gleichung liefert alle Werte von 

x, die den Kombinationen der Werte von YP, VORV entsprechen, 

und muß mithin vom Grade pqr... werden, wenn nicht besondere Be- 

ziehungen zwischen den Wurzelgrößen bestehen. Um diese rationale Form 

zu erhalten, bilden wir das Produkt aller Ausdrücke 

«—(VP+YQ+YVR). 
Das Produkt wird eine symmetrische Funktion in bezug auf die Einheits- 

wurzeln und wird daher eine rationale Funktion (die „Norm“ der irra- 

tionalen Form). i 

1. Beipiel. e=YVp+YVg-+Vr. 

Rational gemacht wird die Gleichung vom achten Grade werden, da der 

Ausdruck auf der linken Seite die 8 Werte +Yp+ Yq+Yr Yopräsen- 
tiert. Man erhält sofort durch Quadrieren 

®=p+g+r+2(Vpg+ Vor + Var). 
Setzen wir der Kürze wegen 

BI gar 0, 99a 9er ET 0, pr — 

so folgt durch nochmaliges Quadrieren 
+tPp \ de 

(© + m)? = 4[pq + ar # 2Vpar(Vp + Va+ Vr)] 
—! la, 0 V- az. x] ol (+ a )-tA = 8-2; ‘ 

oder endlich [(x? + a)? — 4a,]? + 64a,2? = (0. 

Dies ist die gesuchte rationale Form. Sie ist nichts anderes als die Glei- 

chung 4 = 2 
: H{e—(+Yp+YVa+Yyr)=®, 

wo J/ das Produkt der 8 Faktoren darstellt, und könnte auch unschwer 

aus diesem Produkt berechnet werden. 
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2. Beispiel. r+VYp+YVq=0. 

Sind «, 8, y die drei Werte von 1, so hat Vp die drei Werte @/p, 

BVp, yVp, während Yq die zwei Werte + yq darstellt.‘ Um die rationale 

Gleichung zu erhalten, bilde man daher die Gleichung 

I(r+Va+aVp. Hr VataVp)=0, 
wo sich das Produkt // auf die drei Werte «, ß, y von Y1 bezieht. In bezug 

auf diese Wurzel ist /7 symmetrisch, und da 22 =2aß=0, epy=i 

ist, so reduziert sich die Gleichung auf * 

[r + va? + pl [er Va? +p]=0. 
Hieraus ergibt sich die rationale Form 

(19) DAR pr er N. 

3. Beispiel. r+Yp+YVg=0. 

Hier haben wir die Kombination der drei Werte von Y p mit den 3 Werten 

von Vq. Die rationale Form ergibt sich aus dem Produkt 

Ik+Yg+eVYp)r+Va+BVo)(r +Ya+rVD), 
das Produkt ausgedehnt auf die drei Wertevon‘/g. Da a = 0, Zaß =0, 
aßy = 1, reduziert sich dieses Produkt auf 

Te +Vo®+ol, 

di (r+aya)®+p)-((r+BVa®+P)(e+YVa)® + pP): 
Der einzelne Faktor ist 

+p+g)+3rayg(r+aYg). 

Die drei Faktoren multipliziert liefern dann unschwer, da a = 0, 

Zaoß=0,202ß?=(0,0oßy=1 und Laß? = —3aßy = — 3 ist, die ra- 

tionale Form der Gleichung 

M+p+g°—2Mrpg=0. 

Man erhält diese Form übrigens auch durch Elimination von %, z aus dem 
Gleichungssystem 

Y=P9,?=gr+y+2=N. 

Diese Beispiele werden hinreichen. Es sei nur noch erwähnt, daß eine 
Gleichung der Form 

&=Vp+VP+Yp +4 Vp* 
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nur auf eine rationale Form vom n-ten Grad in x führt, da Vp' — (Vp)' 

ist und mithin nur eine irrationale Größe Yp in der Gleichung enthalten 
ist. 

Aus demselben Grunde wird z. B. die Gleichung 

z=yp+ayp 
nur auf eine rationale Form sechsten Grades führen, da Yp = (Vp)?, usf. 

Viertes Kapitel. 

Zahlentheoretisches. 

1. Die Funktion y(n). Die Zahlentheorie, auf deren Gebiet wir hier ab- 

schweifen, hat es nur mit den ganzen Zahlen zu tun und mit den Be- 

ziehungen derselben zueinander. 

Wir wollen zunächst die Frage: Wie viele unter den Zahlen 

1,2, 8 .M, 

sind relativ-prim zu M, eine Frage, welche sich schon früher (k, 3,5) 

darbot und dort aus den Eigenschaften der primitiven Einheitswurzeln 

beantwortet wurde, auf ganz elementare Weise untersuchen. 

Wir nehmen an, M enthalte die Primzahlen PgIr... und sei mithin 

von der Form an pigtr KEN 

Fragen wir nun zunächst, wieviel Zahlen es in der Reihe von 1 bis M gibt, 

welche durch p nicht teilbar sind, so ergibt sich die Antwort unmittelbar. 
Denn als Zahlen, welche in dieser Reihe durch p teilbar sind, ergeben sich 

M 
DD DD ee abe 

Solcher Zahlen gibt es also 4 und mithin ist die Anzahl der Zahlen, die 

nicht durch p teilbar sind, 

Bee "(1 —2). 
pP p 

Unter den Zahlen der Reihe von 1 bis M sınd ferner 

M 
0,29,080,...% ne 

durch gq teilbar. Um zu ermitteln, welche von diesen Zahlen nicht durch 

p teilbar sind, hat man nur zu sehen, welche von den Koeffizienten 

152,9. .Z nicht durch p teilbar sind (da p und q Primzahlen sind). Y% y 

ML -M(1-7\ 
4 d- % 0 J ) 

— 
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Die Anzahl derselben ist aber nach dem Vorigen n (1 — 2). So viel 

Zahlen gibt es demnach unter allen Zahlen von 1 bis M, welche durch g, 

aber nicht durch p teilbar sind. Mithin gibt es in der Reihe 

uhr 
Zahlen, welche weder durch p noch durch q teilbar sind. 

Auf dieselbe Weise findet man, daß es 

wa-h6-h6-h 
Zahlen in der Reihe von 1 bis M gibt, welche weder durch p, noch durch q, 

noch durch r teilbar sind usf. 

Dehnt man diese Schlußfolge auf alle Primzahlen aus, welche in M ent- 

halten sind, so erhält man die Anzahl der Zahlen, welche in der Reihe 1 

bis M vorkommen und keinen Faktor mit M gemein haben, die also rela- 

tive Primzahlen zu M sind. Da diese Anzahl häufig vorkommt, wird si sie 

gewöhnlich abgekürzt mit 9(M) bezeichnet. Dieselbe ist also 

() a =M(1-1)(1- 1) ,)-- 

Aus unserer Definition folgt ferner, daß wir 

(2) o(l) =1 setzen müssen. 

Es soll nun die Eigenschaft der Zahl @(M) bewiesen wer- 

den, daß, wenn d’,d’,d’”’,... die sämtlichen Teiler von M 

sind, unter diesen 1 und M inbegriffen, 

(3) ol) + gl) + gpl@”)+---=M ist. 

Um diesen Satz zu beweisen, bemerke man, daß jede Zahl der Reihe 1 

bis M einen der Teiler von M zum größten gemeinschaftlichen Teiler mit M 

hat. Zählt man also, wie viele Zahlen in der Reihe einen dieser Faktoren 

d’,d’’,d'”,... zum größten gemeinschaftlichen Teiler mit M haben, so 

muß die Gesamtanzahl = M sein. 

Nun sind alle Zahlen in der Reihe, welche d zum Faktor haben, 

M 
d,2d,3d,....7d. 

Unter diesen gibt es so viele, welche d zum größten gemeinschaftlichen 

Teiler mit M haben, als es unter den Zahlen 

M 
1,2,3,...7 
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relative Primzahlen zu —- "gibt, also & (4 )- Es RR also 

EI DE EI DE EEE 
sein. Es ist aber klar, daß = linke Gleichungsseite identisch ist mit 

o(d’) + p(d’’) + o(d’”) + ---; nur stehen die Glieder in anderer Reihen- 

folge. Der obige Satz ist tt bewiesen. Unter den Gliedern der linken 

Seite kommen, da 1 und M unter die Teiler d inbegriffen sind, auch »(7) 

= p(M) vor und p(y) = P)=1. 
Beispiel. Es si M =30. Die Teiler sind 1,2, 8, 5, 6,10, 15, 30. 

Nun ist 

e(l)=1, ea, on =2 00) 4,290, 2 

e(10)=4 g(l5)=8, (80) = 8; 

also Zo=1+1+2+4+2+4+83+8=30. 

Eine weitere Eigenschaft der Funktion @ besteht darin, daß wenn M=g-h, 

wobei g und h relativ prim zueinander sind, 

Cu N = 9:7) 
ist. In der Tat enthält g die Primzahlen p,q,...,h die Primzahlen 

EI OR 

= ,)(i-,)- > Pm=r{l-,)(1- 5); also 
ew=ul-,)l-) ll) =rQ 

Man sieht, wie sich dieser Satz sofort verallgemeinern läßt, wenn M sich 

in mehrere untereinander relativ prime Faktoren spaltet. 

Speziell ergibt sich, da (2) = 1 ist, für eine ungerade Zahl M (also 

rim zu 2 an em) = gm). 
So ist in obigem Beispiel (30) = »(15). 

2. Kongruenzen. Es seien a,b,k ganze Zahlen. Dann sagt man: «a ist 

kongruent mit b nach dem Modulk, wenn «— b durch k teilbar, ist. 

Gauß!) hat dies in der Form geschrieben r 

a = b (mod. k) 

1) Disquisitiones arithmeticae, 1801. Gesammelte Werke Bd. I. 
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und diese Gleichung als eine Kongruenz bezeichnet. Sie sagt mithin 

aus, daß a: 

oder a—b=mk, 

wo m eine passende ganze Zahl. Man kann die Kongruenz daher auch 

schreiben el 

Die Zahlen a und b können hierbei positiv oder negativ sein. 

20 un. BIT mode 

—83=7(mod.5), denn7+3=2°5. 

Bleibt der Modul in einer Untersuchung derselbe, so ist es nicht nötig, den- 

selben jedesmal beizusetzen, und man kann dann mit diesen Kongruenzen 

in vielen Fällen wie mit Gleichungen rechnen. So kann man zwei Kon- 

gruenzen mit demselben Modul addieren, subtrahieren, multiplizieren. Es 

EN en em. 
auch a+c=b+d und a—c=b—d(mod.k). 

Ferner ist auch ac=bc, be=bd; 

folglich auch ac=bd(mod.k). 

Dividieren jedoch darf man eine Kongruenz nur, wenn der Divisor relativ 

gm 
ag = bg (mod. k), = 

so muß (a—b)g durch k teilbar sein. Sind nun g und k relative Prim- 

zahlen, so muß a — b durch k teilbar sein, und folglich ist 

a=b(mod.k). 

Ist jedoch g nicht relativ prim zu k und ö ihr größter gemeinschaftlicher 

Faktor, also g = g’ö und k = k’ö, wo g’ und k’ ganze Zahlen, die relativ 

prim zueinander sind, so läßt sich aus dem Umstande, daß (a — b)g durch 
k teilbar ist, nur schließen, daß a — b durch k’ teilbar y. ns 

Aal 
= b(mod. =): | en, mA 

Es sei nun gegeben gem mi 

ag=bh(mod.k) und g=h(mod.k), 

so ist bg=bh, alsoauch ag = bg (mod. k). 
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Ist nun g und folglich auch h relativ prim zu k, so folgt 

a=b(mod.k). 

Hätte aber g und folglich auch A mit k den Faktor ö gemein, so würde 

nur folgen, daß % 
a=b(mod. = ,)- 

3. Reste. Es seien k aufeinanderfolgende ganze Zahlen 

(D) s,s+l,s+23,...s+k—1 

gegeben. Dividieren wir die Zahlen dieser Reihe mit k, so bleiben offenbar, | 
die k Reste 74 =m+Z Au gekmtt 

A KR 4 Y= Am 
(m) a RFFRSE 
abgesehen von der Reihenfolge. Da jede Zahl mod. k mit dem Rest kon-" 

gruent ist, der bei ihrer Division durch k verbleibt!/so ist jede Zahl der 

Reihe (I) mit einer Zahl der Reihe (II) kongruent nach dem Modul k. 

Nimmt man aus der unendlichen Zahlenreihe von — oo bis + ooirgend- 

eine Zahl g oder — g, so ist dieselbe immer mit einer, aber auch nur einer 

Zahl der Reihe (II), also auch der Reihe (I) kongruent nach dem Modul k. 

Denn die Division mit k gibt 

g=m-k+r,(!<r<k 

und g=(m+1V)k—t( <t<k) 

—9=—- (m+Dk+t. 

Es sind mithin r bzw. t die Zahlen der Reihe (II), mit welchen g bzw. 

— g kongruent ist. Damit ergeben sich auch dann die Zahlen der Reihe (I), 

mit welchen g bzw. — g kongruent ist. 

Nimmt man also zu der Reihe (II) irgendeine andere Zahl außerhalb 

der Reihe hinzu, so sind zwei Zahlen darunter, dienach dem Modul k kon- 

gruent sind, während nie zwei Zahlen der Reihe (I) allein unter sich kon- 

gruent sind. Die Zahlenreihe (I) bildet also für jedes s ein System in- 

kongruenter Zahlen. 

Ist a relative Primzahl zu k, und setzt man in den Aus- 

druck 
ac +b 

für x ein solches System inkongruenter Zahlen ein, so erhält 

man wieder ein System inkongruenter Zahlen, nur in anderer 

Anordnung. 
Bieberbach, Algebra 16 
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44=14+5 
19=23.4+1 

Uu-=19+b 
219=39+2 

LE Earl 
39:4-.3+ 3 
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Denn sind y,y’ irgend zwei Zahlen des inkongruenten Systems und 

yn ay+b=ay’+b(mod.k), 

so müßte ay=ay', 

also, da a relativ prim zu k ist, auch 

y=y 

sein, was gegen die Voraussetzung ist. 

So erhalten wir z. B., wenn wir den Modul k = 9 annehmen und in den 

GEAR, Ausdruck 5 +4 cn ie. 

das System inkongruenter Zahlen j | . E # / ' 

0, 18 2, 8, 
4, Ds 6, 7 

g SH + Yr 27 

5.5 ? Y ® 27 

einsetzen, die Werte 4, 9, 14, 19, 24, 29, 34, 89,44, +1 

welche selbst ein inkongruentes System bilden; denn sie sind kongruent 

zu den Resten 4,0,5,1,6,2,7,8, 39 

4. Lineare Kongruenzen. Wenn in eine Kongruenz eine unbekannte Zahl 

x eintritt, welche eben durch die Kongruenz erst bestimmt werden soll, so 

nennt man die Kongruenz eine Kongruenz ersten, zweiten, ...n-ten Gra- 

des, je nach dem Grad, in welchem sie die Unbekannte enthält, ganz ana- 

log wie bei den Gleichungen. So ist 

az +b=0(mod.k) 

eine Kongruenz ersten Grades; 

az" +bar-t+...+ge+h=0(mod.k) 

en ana te Ten 

Wir betrachten zunächst die Kongruenz ersten Grades 

(A) ax + b= 0 (mod. k). 

et 

Hat man eine ‚Wurzel‘ x, dieser Kongruenz, so hat man auch sogleich 
unendlich viele; denn es genügt dann auch der Kongruenz 

x=m+tmk, 

. re ne ur = — 

die also z. B. der Reihe 0,1,...k—1 angehören. (&, - film ame ınon 
dd F ’ .G TE 

YUG ok JS “ 
un x 

ann 

w. x we 
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F PR 

lbs] Ist der Koeffizient a von x relativ prim zum Modul k, so hat die Kon- 

u 2, gruenz immer nur eine Wurzel. Denn u man k aufeinanderfolgende arıemi 

u.‘ Zahlen für x in ax + b, so gibt es nach (84,3) unter den Werten von 

DR} X )rax + b immer einen und nur einen, der mit 0 kongruent ist. 

»% Ist a nicht relativ prim zu k und ist der gemeinschaftliche Teiler ö von a 

er ‘und % nicht zugleich Faktor von b, so ist die Kongruenz unmöglich; 

”“ läßt keine Wurzel zu. Ist aber ö, der größte gemeinschaftliche Faktor 

von a und k, zugleich Faktor von b, so hat man 

nn + = =( (mod. 3) 

(nach 5, 4, 2). Diese Kongruenz hat wie im ersten Falle genau eine Wurzel 

%o. Ist diese gefunden, so en der En LE 

0% u. = - 0 (mod. k) die Wer
te [ (per ner en re 

) N, 4b; 

a & < m 
2 

o6—2D)k ee F&EL+ Im. i 

Lo Lot yo» Ben en, a T 

sie hat mithin ö Wurzeln.) ar [ 4 4 24 

Die Lösung der Kongruenz 

ax =b(mod.k) 

verlangt nichts anderes als die Gleichung 

ac—b=yk 

in ganzen Zahlen &, y aufzulösen (Diophantische Aufgabe). 

Um die Lösung zu erhalten, wende man auf die Zahlen a und k das Eu- 

klidische Verfahren des größten gemeinsamen Teilers an. Es genügt «a 

und k teilerfremd anzunehmen; wofür man (a, k) = 1 zu schreiben pflegt. 

Es ist keine Beschränkung der Allgemeinheit a < k anzunehmen. Dann 
> a) Ra 2 ur ne findet man en Hrsturtenend atrugen Ve sc 

a = 01 4 (Ag Das 

d,_1 — Q,d, + d,+1 0 = &,r1 = A, 

a, = @,+1 . d,+1 E= 0. 

Wäre der letzte vor 0 auftretende Rest a,,, nicht + 1, so ginge dieser 

Rest nach der letzten Gleichung in a,, nach der vorletzten also auch 

in a,_,, usw. schließlich in k und a auf.) Also ist a,,, =1. Die vor- 

letzte Gleichung lehrt also 

Entnimmt man d, = ds 0, 1 
16* 
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aus der vorvorletzten Gleichung und trägt es hier ein, so wird a,,, linear 

mit ganzzahligen Koeffizienten in der Form 

= @a,_g er Ba,_ı 

dargestellt. Geht man so rückwärts weiter, so findet man schließlich eine 

Darstellung 1=ar'—yk; 

multipliziert man hier mit b, so hat man 

b=ar—yk 

mit hr, 

Beispiel. 24x = 13 mod. ar 

Also En 

Man hat 831=24+7 

24=83-7+3 

7=2-3+1. 

Also 1=7—2-3 

—7—-2(24—3-7) 

— 7:7 — 2:24 

ee 
| 1-71 -9:2. ; 

Also ist ME 1.13.31 .9.18- 9. 

Also 2 = 9.13 mod. ach 
oder = 1 mod.31 

ist die Lösung der Kongruenz 24x = 13 mod. 31. 

Man kann übrigens bei Auflösung einer Kongruenz ersten Grades auch 

das Euklidische Verfahren umgehen, indem man auf folgende Weise 
verfährt. 

Es sei wieder gegeben 24x = 13 (mod. 31), 

also 24-2=13+31-y 

in ganzen Zahlen x, y zu lösen. Nun folgt 
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Folglich muß 7y + 13 ein Vielfaches von 24 sein, oder 

7y +13 = 242, 

wo z eine ganze Zahl. Hieraus folgt 

Es muß mithin 32 — 6 ein Vielfaches von 7 sein, also 

32 —6 =Tt, 

wo t eine ganze Zahl. Daraus 

From t 

Demnach muß t ein Vielfaches von 3 sein. Man setze folglich 

t=834u) 

wo u eine ganze Zahl. Dann wird 

2= 1uer2 

y=24u+5 

t=7+3lu, 

wo u eine beliebige positive oder negative ganze Zahl ist. Das Resultat 

stimmt, wie man sieht, mit dem vorhin erhaltenen überein. 

Da man aus den aufeinander folgenden Werten von &, y,2,... Immer 

die ganzen Zahlen herausnimmt, werden die Reste, welche die Unbekann- 

ten multiplizieren, immer kleiner, und schließlich wird der Rest 1, so daß 

sich die Operation stets von selbst schließt. 

Dieses Verfahren stammt von Euler. 

5. Systeme von linearen Kongruenzen. Man kann nun auch ein System 

von n Kongruenzen ersten Grades mit n Unbekannten, vorausgesetzt,'daß 

der Modul für alle derselbe ist, auflösen, indem man das System durch 

Elimination auf Kongruenzen mit einer Unbekannten zurückführt. Am 

sichersten ist es, hierzu schrittweise zu verfahren. Es können auch hier 

mehrere Lösungen möglich sein oder auch gar keine. 

Ist z. B. das System gegeben 

22 —3y+62 =4, 

(1) 42 +2y-+4z= 7 (mod. 15), 

z+5y—-»=1T, 
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so erhält man, indem man x aus je zweien der drei Kongruenzen eliminiert, 

die drei Kongruenzen 

(2) —8y+8 =1, 13y—102=10, 18y— 122 = 21 

(mod. 15). 

Die Elimination von z aus irgend zweien dieser Kongruenzen gibt 

12y = 45 (mod. 15) 

4y = 15 (mod. 5). 

Diese letzte Kongruenz hat die eine Wurzel y=0; die Kongruenz mit 

dem Modul 15 also die Wurzeln 

y=0,5,10. 

Die entsprechenden Werte von z berechnen wir aus der ersten der Kon- 

gruenzen (2), weil dieselbe für jeden Wert von y nur eine Wurzel z zu- 

läßt, während die zweite und dritte der Kongruenzen (2) fünf bzw. drei 

Wurzeln für jeden Wert von y zulassen. Wir erhalten so 

für y= 0,82= 1 (mod.15), Wurzel z= 2, 

sy 5,082 AM m” Po > 

sy 10,8 + ER WA, 

Diese Wertepaare von y und z befriedigen auch die zweite und dritte der 
Kongruenzen (2). Setzen wir sie in eine der Gleichungen (1) ein, z.B. 
di 5 
ıe dritte on 

so ergibt sich für jedes der drei Wurzelpaare derselbe Wert für x, nämlich 

gel le 

Das System läßt also die drei Lösungen zu: 

vll, y-r0we 

zZ llwy our 

ws 10, 

Zu jeder dieser Zahlen läßt sich noch 15 - t beifügen, wo t eine beliebige 
ganze Zahl ist. 

6. Ein System mit wechselndem Modul. Als Beispiel der Aufgabe, eine 
Zahl x so zu bestimmen, daß sie mehreren linearen Kongruenzen zugleich 
genügt, suchen wir eine Zahl, welche mit a dividiert den Rest a, mit b 
dividiert den Rest $ usw. läßt. Dann muß x die folgenden Bedingungen 
erfüllen: 
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(1) z=«(mod.a),x=ß(mod.b), x =y (mod.e),... 

Aus der ersten Kongruenz folst 

(2) z=a+tat, -+tl 

wo teine beliebige ganze Zahl sein kann. Damit gibt die zweite Kongruenz, 
r 

(3) at=ß— a (mod.b). Alle We n=fp-)+ Th ekat= Ba 

Ist a prim zu b, so hat dieselbe immer eine Lösung 

t=t bu, 2 l } f 

wo u eine beliebige ganze Zahl, und Fa Ye rat =& +; ar u)= AHAFM 

(4) z=.a + at, (mod. ab) 

Kongruenz (3) nur möglich, v wenn auch Ba Fliesen Faktor enthält, 

oder also 

(5) «= ß (mod. ö) 

ist, und an die Stelle von (3) tritt nun die Kongruenz 

6) 3 t= 7° (mod. 2). 

Ist it, eine Lösung derselben, so ist nun die Zahl, welche die zwei ersten 

Kongruenzen (1) befriedigt, gegeben durch 

ra , ab 

m een) 
Man sieht nun leicht, wie weiter zu verfahren ist, wenn x auch noch eine 

dritte Bedingung x = y (mod. c) zu erfüllen hätte, usf. 

Ist z.B. gegeben =4 (mod, 12,8 at 10 7 (mod, 12 

so wird Rasen 121 = T—4= 3 (mod. 15). 

Hier ist ö = 8, die Bedingung (5) mithin erfüllt; also fameb) 

4 =1(mod.5), woraus 4 =4+5- u. (An ee „url 

© 15 
A24= r= I mod 3 

t= 3 ur! “3% 4 
Mithin ergibt sich 2—=44+12-4+60-u nett Ri RR Lun, 3, 

oder x = 52 (mod. 60). Lt, = en = 4, uw u a 
| rs U 

7. Kongruenzen höherer Ordnung. Ist f(x) ein Polynom vom an: Grade 

mit ganzzahligen Koeffizienten, so ist 

f(x) = 0 (mod. k) 

eine Kongruenz n-ter Ordnung. Ist « irgendein Wert von x, welcher der 

Kongruenz genügt, so genügen ihr auch die Werte + mk, wo m eine be- 
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liebige ganze Zahl ist. Alle diese Werte sind als äquivalent zu betrachten, 

Einer derselben liegt zwischen 0 und k, und diesen nennen wir eine Wurzel 

der Kongruenz. (1.242 in) 1) 

Es ist klar, daß man jeden der Koeffizienten von f (2) ; au f seinen Rest 

in bezug auf den Modul % reduzieren kann, indem man 1nlh’ein Vielfaches 

von k zufügt; denn ein Glied der Form mkx” ist für jeden ganzzahligen 

Wert von xz durch k teilbar und kann mithin aus der Kongruenz wegge- 

lassen werden. 

Ist daher der Koeffizient der höchsten Potenz von x in f(x) durch k 

teilbar, so reduziert sich die Kongruenz auf den n— 1-ten Grad. 

Sind alle Koeffizienten von f(x) durch den Modul teilbar, so ist die Kon- 

gruenzidentisch; sie wird durch jede andere Zahl x erfüllt. 

Die Kongruenz ist unmöglich, wenn z. B. alle Koeffizienten außer dem 

letzten von x freiem Gliede einen Faktor mit dem Modul k gemein haben. 

8. Maximalzahl der Wurzeln. Ist 

ax® + bar-1+...+h=0 (mod. k) 

die gegebene Kongruenz und « eine Wurzel derselben, also 

aa" bar !+... +h=(, 

so folgt a(2r.— ar) +... + ge a) =0 

(e—.a) [aar-2+...} =0(mod.k). 

Ist k eine zusammengesetzte Zahl, so kann einer von ihren Faktoren in 

x — a, der andere in dem Faktor [|---} enthalten sein. 

Setzen wir aber voraus, daß der Modul eine Primzahl p ist, also 
[KR = 

a2” +..-=0 (mod.p), Pr 3 

so kann p nur in einem der Faktoren enthalten sein. Steckt p in z— «,®) 

so wäre = a-+mp, d.h. der Faktor 2 — « entspricht der Snurzel a. /L 
Soll x eine andere Wurzel sein, so muß sie der Kongruenz ul x u na 

A IA ers 

[ax®-1 +...) = 0 (mod. p) En 

genügen. Die Kongruenz n-ten Grades kann also nur eine Wurzel mehr 
haben als diese Kongruenz (n —1)-ten Grades. FolglichkanneineKon- 
gruenz n-ten Grades, wenn der Modul eine Primzahl ist, 
höchstensn Wurzeln haben (analog wie bei den Gleichungen). Aber 
sie kann auch weniger Wurzeln als n haben oder selbst gar keine. 

Hat die Kongruenz, wenn der Modul eine Primzahl ist, mehr Wurzeln, 
als ihr Grad beträgt, so ist sie notwendig identisch. 
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Ist der Modul eine zusammengesetzte Zahl, so kann die, Kongruenz tt Te 

n-ten Grades mehr als n Wurzeln haben, wie wir dies schon bei den Kon-  ..: 
gruenzen ersten Grades gesehen haben. (TU 43 «u Ya Pi At 24 

Die Kongruenz a2° +..-=0 (mod. k) ALTER x) CK r2) MO 
tr tr CR: 7 

läßt sich, a relativ prim zum Modul vorausgesetzt, so umändern, daß der 

Koeffizient des ersten Gliedes = 1 wird. Denn multipliziert man die Kon- 

gruenz mit y und wählt für y die Wurzel der Kongruenz ay = 1 (mod. k), 

so kann man 1 für ay setzen; die übrigen Koeffizienten lassen sich dann 

noch auf ihre Reste reduzieren, und man erhält eine Kongruenz von der 

Form fa) = 2" + Aa! +..- =(. 

Nehmen wir an, diese Kongruenz habe gerade n Wurzeln «a, ß,...k, so 

gehören dieselben auch der Kongruenz an 

Ha) (&—e)(&—P)...(<—h)=0. 

Diese letztere ist aber nur vom n— 1-ten Grade und folglich, wenn der 

Modul eine Primzahl ist, identisch. 3y:41+mF BR. 

Beispiel. 32 +2+4=0(mod.T) ° ge I ” k 1.3? 

3y22+yxz+4y=0; 3y = 1 (mod.T), woraus y = 5. f* Tr“ 7 
ee 

Also a u Bonpruenz 15 «? als 5% Bi 20 > 0, Kult H Eine 

oder L | vyEruee ER 0. 
X ) 

Die Kongruenz hat zwei Wurzen x =4,2=5. Die Kongruenz 

fo) («9a 5) =0 
reduziert sich auf 72 — 14 = 0 und ist mithin identisch. 

9. Der kleine Fermatsche Satz. Von besonderer Wichtigkeit sind die bino- 

mischen Kongruenzen 
ax" +b=0(mod.k) 

und insbesondere die einfachsten derselben 

DREI 

Es sei k ein beliebiger Modul, a eine Zahl prim zu k, die Reste der auf- 
7 se 

einander folgenden Potenzen T= 1:3 #4 
2 r Y ee 48 “ 4 7 

’ 0,02, 03 ON se | ER 4 
ni y’ ur Dal een 

seien ae te : = ra 
„1.934017 :1803 
4 L ‘ L 

Y 261-5 F#. 
Y bn Ir U 

PR Ar 4:5 + 
f Ihe t 

N R 2 N Y yn ) 
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Unter diesen Resten können nur k — 1 verschiedene sein. Es müssen also 

kongruente Potenzen in der Reihe vorkommen. Seir, = r„, mtw>», 

folglich auch a? = a” (mod. k), so wird (da a prim zu k) daraus folgen 7 

Ra = 1% 

Mithin kommt unter den Resten die Einheit vor. „laß = 

Es sei nun a“ die niedrigste Potenz von a, welche =1 ist, 

d.h. für welche der Rest r,=1 ist, so sind die vorhergehen- 

den Reste sämtlich verschieden. 

Denn sind a, a” zwei Potenzen niedriger als a® (d.h.o <u und o’< u) 

und hätten diese gleiche Reste, wäre folglich a = a”, so würde für’ > o 

folgen a’ "*=1 und, da 0’ —o<u, so wäre u nicht die niedrigste 

Potenz von a, welche =1 ist. 

Setzt man die Reihe der Potenzen über a“ hinaus fort, so repetieren sich 

die u-Reste. Denn ist z eine Zahl > u, so kann man setzenz = mu -+h; 

dann ist a? = qmu+n — qmu.gh— ar (daamı =]). 

Die ganze Reihe der Reste enthält also nur u verschiedene, die sich wieder- 
holen 

; TE TI Ta a Ta IND TI 

nom 221 Um zu sehen, wie der Exponent u von dem Modul k abhängt, setzen 

wir in ax (wo a relativ prim zu k) für x nacheinander k aufeinander fol- 

gende Zahlen, allenfalls 0, 1,2,...k— 1, sogibt az, wie wir früher sahen, 

wieder alle Zahlen 0, 1,2,...%k— 1, nur in anderer Folge, als Reste. Setzt 

man aber in a& für x nur die g(k)( = u) Zahlen ein, welche kleiner als k 

und zu k relativ prim sind, 

l 
! 

Ka AR LTE) 

so sind ah,,ah,,...ah, ebenfalls prim zu k, und ihre Reste 

01» 02.» Ou 

sind mithin ebenfalls prim zu % und alle verschieden. Folglich sind die 
Reste g wieder dieselben Zahlen wie die h, nur in anderer Ordnung. Multi- 
pliziert man nun alle Kongruenzen ah; = o, miteinander, so kommt 

ahyah,...ah, = 0102.:..0, d.h.=hıhe... hs 
q und da das Produkt hıh,...h, prim zu k ist, so folgt a = 1, d.h. Lt pt 

Klub Grete ft aM) \ 

(1) a?® = 1 (mod. k). 

Ist k eine Primzahl p, so ist @(p) =p—1, und man erhält den von. 
Fermat (1590—1663) gegebenen Satazf fir eh sunf Yu Bringt ja uff DA Eycy ug ha Be Ti: Br: f 

(2) ROTSUh Narr Tmoaip). 
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Diese Kongruenz wird mithin von jeder Zahl a erfüllt, die nicht durch p 
teilbar ist. 

Daraus folgt weiter, daß der Kongruenz 

e* a? = a (mod. p) 

überhaupt alle Zahlen genügen. Denn ist a durch p teilbar, so ist die Kon- 

gruenz ohnhin befriedigt. 

Der Satz (1), der verallgemeinerte Fertmatsche Satz, für einen 

beliebigen Modul k, wurde zuerst von Euler gegeben. 

10. Primitive Wurzeln. Nach dem verallgemeinerten Fermatschen Satze 

hat die Kongruenz 

(1) 27® = 1 (mod. k) r 

alle Zahlen, welche < k und zu k relativ prim sind, zu Wurzeln ] siehat 

also gerade o(k) Wurzeln. 

Sei a eine solche Zahl und a* sei die niedrigste Potenz von a, welche = 1 

ist, so sind, wie wir fanden, nur die Potenzen a?%, a?*,... wieder=1. Da 

nun a’® = 1 ist, so muß mithin u ein Teiler von p(k) sein. 

Betrachten wir nun die Kongruenz 

(2) x" =1(mod.k). ' 

Dieselbe enthält als Wurzeln nur Zahlen relativ prim zu k. Sie wird also f | 

eine Anzahl Wurzeln mit der Kongruenz (1) gemein haben. Ist darunter Minen BRPART“ 

eine Zahl a, für welche a“ die niedrigste Potenz ist, deren Rest 1 ist, so ae nom 

sagt man: „agehörezum Exponenten w für den betreffenden Modul‘ 

oder auch wohl: ‚a sei eine primitive Wurzel‘ der Kongruenz (2), 

analog wie bei den binomischen Gleichungen.) 

ik 

Dann sind die Potenzen 

(3) 4, 02,08, ...0%(=i1) 

sämtlich ebenfalls Wurzeln der Kongruenz (da für irgend- 

eine Zahl m,aa” = 1); "zugleich sind diese Wurzeln sämtlich |» 

inkongruent.f! frtrk Az) An za} mh) } 

Gibt es in dieser Reihe (3) außer a noch andere, welche ebenfalls 

zu dem Exponenten u gehören? Sei a? eine Wurzel der Reihe, welche 

nicht zum Exponenten u gehört, sondern zu einem Exponenten s < u, 

also Wurzel der Kongruenz x =]1 ist, dann hat man (aA =1 

1) Bei den Kongruenzen wendet man die Bezeichnung ‚‚primitive Wurzel“ g 
wöhnlich 7“ auf die Kongruenz (1) an, d.h. nur auf die Wurzeln, wel 2 6) \ 

( YA en 
gehören“. u Ya 4 EN I Leser in X Iran RE (.y* N x II de 

r U i FEN YN 
r No „fl mi rt) irn von e A u wu j 
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BSH oder a’ = 12 ee muß. is ein Vielfaches von u ‚sein, ds = mu; 

hieraus _— — . Das < u, so läßt sich also der Bruch -, — auf einen klei- 

neren Nenner en es haben demnach i und u einen gemeinsamen 

Faktor ö, oder esist? — ins u = sö und folglich (a?) = (a)? = =1,d.h. 

ai gehört zum Exponenten 5 N Hieraus folgt: 

In der Reihe (8) gehören nur diejenigen Potenzen der 

Kongruenz a*=1 eigentümlich an, oder „gehören zum Ex- 

ponenten u“, deren Exponenten relative Primzahlen zu u 

sind. 

Ist a” eine Wurzel der Reihe, für welche r prim zu u und welche also 

zu dem Exponenten u gehört, und bildet man mit dieser (statt mit a!) 

wieder die Reihe (3): 
NN 

so erhält man wieder dieselbe Reihe der Wurzeln, nur in anderer Anord- 

nung. Denn da r prim zu u, so ER die Zahlen r, 2r, . ‚ur, „mit, u Aus | 

diert, wieder alle Zahlen 0,1,...uw— 1 als Reste.” r: a; 2 nn x | 

Diese Sätze gelten, es mag der Modul k eine zusammengesetzte Zahly,,_ 

sein oder eine Primzahl. In letzterem Falle aber ergeben sich daraus sehr/J;4 

einfache Folgerungen. 

11. Primzahlmodul. Ist der Modul eine Primzahl p, so zeigt das Theorem 

von Fermat, daß die Kongruenz ha Per 

L. et x»-1 = 1 (mod. p) 
Ir0Y durch sämtliche Zahlen befriedigt wird, die nicht durch p teilbar sind. 
1+17 Sie hat also die p — 1 Wurzeln 
4 + 1017 ’ > 7 

: 1,2,9,...D—l8 1 + 58°) 
2 2232 „ Gehört irgendeine dieser Zahlen a nicht zu dem Exponenten p—1, so 
4 + 2271 . B B .. 2 1 + /, muß sie zu einem Teiler u von p— 1 gehören, also Wurzel einer Kon- 
+ 2 >] hr 

1 er ‚pe en: 6 » it Im Be i 

m Lil ‚i 
Ys 6 _ sein, and dann sind, nach dem Vorigen, alle Zahlen der nel 

= —1=.0 (mod. p) 
"s, ‚orkfo 

pet Er re 
$ 2 

“ DS db? 0,08, 0°... 0) 4, 
Yo 

4 42 47 oder 10, 0.0) as 

E “ Wurzeln der Kongruenz "Da aber eine Kongruenz für einen Primzahl- 
_ 120mm modul nicht mehr Wurzeln haben kann, als der Grad der Kongruenz be- 
m / trägt, so sind dies a a Musi welche die ' Kongruenz haben kann, 

f / N % en D) ea = na . a 

d p IP f ii 7] f ET 14 ’ 

1 +559 } sk >- 41-417 N ! ! /L pi TA F "> Fr 

en 
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5,4, 11. Primzahlmodul wei ı 

'h-1=D 2 
und unter diesen sind ferner, wie in voriger Nummer gezeigt wurde, (u) 

5 £ DD) a;, E Br Al : Wurzeln, welche zu dem Exponenten u gehören. (1.22 ana Aller Un 64/4, 

Es läßt sich nun zeigen, daß zu jedem Teiler u von p — 1 eine Wurzel «a 

ehört.? Seien 
8 Lau, u, —1 

die Teiler von p— 1 und y(u), y(w’),... die Anzahl der Wurzeln, die zu 

diesen Teilern u, w’,... gehören. Da jede derp— 1 Zahlen 1,2,...p—1 

zu einem der Teiler gehören muß, so folgt 

vl) +rW)+yW) +. +yp—-N)=p-—1. 
Ferner ist nach einem bekannten Satze auch { 8 (9) } 

rl) teW)+eW)+t.-+PPß—-Y=p-1. 
Nun fanden wir, daß für irgendeinen Teiler u die Anzahl ‚‚der zu u ge- 

hörigen Wurzeln“ immer = p(u) ist, wenn überhaupt eine solche vor- 
handen ist. Es ist also entweder y(u) = 0 oder y(u) = p(u), und da die 

Summe der » gleich ist der Summe der 9, so muß notwendig für jeden 

Teiler y(u) = p(u) sein. 

Daraus folgt mithin: 

Ist virgendein Teiler von p—1, so hat die Kongruenz 

x" =1 (mod.p) 

immer so viele Wurzeln, als ihr Grad beträgt (also u), und 

darunter sind @(u) Wurzeln, die zu dem Exponenten u ge- 

hören. 

Ist a irgendeine dieser (u) Wurzeln, so stellt die Reihe 

STATE dee 

die sämtlichen Wurzeln der Kongruenz dar, und in dieser 

Reihe sind diejenigen Potenzen, deren Exponenten prim zu 

u sind, diejenigen Wurzeln, welche zu u gehören. 

Insbesondere hat die Kongruenz 

zP-1 = ] (mod. p) 

p— 1 Wurzeln und darunter p(p — 1), die ihr eigentümlich sind oder pri- 

mitive Wurzeln. Ist a eine derselben, so stellt die Reihe 

les... 002 

die sämtlichen Wurzeln der Kongruenz dar. 

Beispiel. 2 —1>0 (mod. 13). 

Maırzein 2 = 1,279, 409,.0,.01,8.9 10.2121, 12. 

2531 
e 

4 ei g 

f- Ir 
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Die Kongruenz hat p(12) — 4 primitive Wurzeln, die hier unterstrichen 

sind.,[}, . ı EN Wurzeln <= 1,3,4, 3:10, 12 ur ha Pe: Grm man [2 f EN 

w=l, ” z=1,5,8,12 

el, ” 209 

=], = 21,12 

= h „ = ar 

Die unterstrichenen Zahlen gehören zum entsprechenden Teiler. So ge- 

hört 4 zum Exponenten 6, und die Reihe 

1,4, 42, 43, 44, 45 

ist kongruent zu 1,423212.,9.210: 

stellt also wieder sämtliche Wurzeln dar. Darunter sind 4! und 4° Wurzeln 

zum Exponenten 6 gehörig. 

alwt24b 12. Zusammengesetzter Modul. Ist der Modul k der Kongruenz 

2® =] (mod.k) 

eine zusammengesetzte Zahl, so werden die einfachen Gesetze, welche gel- 

ten, wenn k Primzahl ist, dadurch kompliziert, daß, wenn u irgendein Tei- 

ler von $(k) ist, die Kongruenz x“ = 1 (mod. k) nicht gerade u Wurzeln 

haben muß, sondern auch mehr Wurzeln haben kann. Damit fällt dann 

auch der Satz, daß die Kongruenz immer eine zu u gehörige Wurzel und 
dann auch gerade p(u) solche Wurzeln haben muß. Ohne auf diese Ver- 
hältnisse näher einzugehen, sei dies nur an einem Beispiel gezeigt. 

Es sei k = 35, also p(k) = 24. Dann hat nach dem verallgemeinerten 
Fermatschen Satze die Kongruenz 

x” = 1] (mod. 35) 

gerade 24 Wurzeln, nämlich alle zu 85 primen Zahlen 

150 2,2.3,,.4,06,28,.9511, 1013016817 

18,19, 22, 23, 24, 26, 27, 29, 31, 32, 38, 34. 

Die Kongruenz besitzt aber gar keine primitive Wurzel. In der Tat ist 
jede zu 35 relativ prime Zahl, auch relativ prim zu 5 und zu 7 und be- 
friedigt mithin nach dem Fermatschen Satze die Kongruenzen 

x* = 1 (mod.5), x° = 1 (mod.7), 

also auch die Kongruenzen 

2» = 1 (mod.5), «!®=1 (mod. 7), 

mithin auch «12 = 1 (mod. 35). 



5,4, 13. Der Wilsonsche Satz 25D 

Jede Wurzel der Kongruenz x?* = 1 (mod. 35) ist mithin auch Wurzel der 

Kongruenz x!? = 1 (mod. 35). 

pa Man ersieht, daß, wenn der Modul zwei verschiedene ungerade Prim- 

’ zahlen p, q enthält, die Kongruenz x’® = 1 (mod. k) nie primitive Wur- 
zeln haben kann. 

Betrachten wir noch die andern Teiler von p(k), so ergibt sich (die zu 

dem Exponenten gehörigen Wurzeln sind unterstrichen): 

weneuel 

22=1, 2=1,6,29,34 
Ze kur —1,11 16 

=, 6=1,5,8,10,22,21,29,84 

ei 5 =154,06,9,11,16,19, 24,26, 2931,84 

x®=1 hat dieselben 8 Wurzeln wie die Kongruenz & =]1, 

also gehört keine der Wurzeln zum Teiler 8. Die übrigen 8 Zahlen 

2,9, 12,10018523,32, 53 

gehören zum Teiler 12. 

Übrigens gelten die Sätze von (6, 4, 10). So gehört 4 zum Exponenten 6. 

Also gibt die Reihe 4, 42, 48, 44, 45, 46 

oder 20,201. IL 

sechs Wurzeln der Kongruenz x° = 1, und darunter sind die Wurzeln 41, 45 

dieser Kongruenz eigentümlich. Aber die Reihe erschöpft die Wurzeln der 

Kongruenz nicht. Nimmt man statt 4 die Wurzel 9, so erhält man die- 

selben Zahlen. Nimmt man aber statt 3 die zu 6 gehörige Zahl 19, so er- 

hält man eine andere Reihe von 6 Wurzeln 

oa osı Berta 9°719° 

oder 19,11, 34,16, 24,1 usw. 

13. Der Wilsonsche Satz. Kehren wir zur Kongruenz 

xt =] (mod. p) 

zurück, wo p Primzahl ist. Dieselbe hat, wie wir sahen, die p — 1 Wurzeln 

a pe EL EERE PER LEN 

und darunter (p — 1) primitive. Ist a eine derselben, so sind auch 

0 0r an 00m 

die sämtlichen Wurzeln der Kongruenz; ihre Reste geben wieder alle 

Zahlen 1,2,...p—1. 

Pe 
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Daraus folgt,’ daß 

1-2-3...p— 1=a-a?.a?... ar! 

Ist nun p eine ungerade Primzahl, also I eine ganze Zahl, so muß 

pr—1i 

«”° = -+1sein. Denn das Produkt 

zu 2 
% 2 ol z RR 

ist durch p teilbar und folglich muß einer seiner Faktoren durch p teil- 

bar sein. 

Da ferner die niedrigste Potenz von a, welche den Rest 1 gibt, die 
p-1i 

p—1-te Potenz ist, so kanna °” nicht kongruent + 1 sein. Es ist also 
Kr f f r up \& : ) f 

a Pr ], Er naeh ) F } 

4 a a ( 

und, da p ungerade, auch a =—|1. 

Hiermit ergibt sich 

(p-A)! = 1-2-8...(P—1) =—1 (mod.p), oder: 

Die Zahl 1-2-.3...p—1)-+1ist ein Vielfaches von p, wenn 

p Primzahl. Dies ist der Wilsonsche Satz. 

Daß der Satz auch für die einzige gerade Primzahl 2 gilt, ist sofort er- 

sichtlich. 1|=-1+1T.2 

Der Satz läßt sich auch umkehren in der Weise: 

Ist 1-2-3...(p—1) + 1 durch p teilbar, so muß p Primzahl sein. 

Denn wäre p eine zusammengesetzte Zahl und g ein Faktor von p, so müßte 

g auch als Faktor in dem Produkt 1-2...(p—1) enthalten sein und 

1-2...(p—1) + 1 wäre demnach nicht teilbar durch g. 

14. Zweiter Beweis des Wilsonschen Satzes. Der Wilsonsche Satz läßt 

sich auch wie folgt beweisen. Nach (5, 4, 8) ist 

(1-1) — (e—1)(e —2)...(e& —-p+]N1) = (0) (mod. p), 

wo p Primzahl, eine identische Kongruenz, da sie die p—1 Wurzeln 
1,2,...p—1 hat, und da sie nur vom p— 2%-ten Grade ist. Alle Koeffi- 
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5,5, 1. Gruppierung der Wurzeln Dale 

zienten derselben sind also durch p teilbar. Bezeichnet man daher die" n-: 
Summe der Kombinationen der Zahlen 1,2,3,...p—1 zu je i mit o,, so ist 

10, =I, 5, =I,...0,, 1 (mod. p).” 
4 +. 76 

Die letzte dieser Kongruenzen gibt den Wilsonschen Satz. (du hr partun « 

Aus diesen Kongruenzen und den Newtonschen Gleichungen folgt auch 

sofort, daß, wenn die Summe der i-ten Potenzen der Zahlen 1,2,8,...p —1 N. 

durch s, bezeichnet wird, LE M ale 02 Ka) asien FIR 
s; = 0 (mod. p) 

ist für jedes ?, außer wenn ? aa: von p—1 ist. J. 12 (dx. 
Dn 4 

rk f; 

/ h ee, #), ) Lee hn Op 

fe aha Ben FU are 2/6006 j* h 7 Er, 
VYBAR Er 

uf onea, BI3 
NO Y/ auf) aan Alien

 
Rt 

i ; Fünftes eehilel, Jf 7 rl 4 ar & 

Abelsche nn Ai a Yl anf & ft 1%) / To 3 N 

1. Gruppierung der War Eine wichtige ar: von Gleichuaden 

bilden die zuerst von Abel untersuchten Gleichungen, welche die Eigen- 

schaft haben, daß zwei ihrer Wurzeln durcheinander ausdrückbar s sind. ), 

Die von Abel befolgte ! Methode ist eine Erweiterung der von Gauß für die 

Auflösung der Kreisteilungsgleichungen gegebenen, von der nachher die 

Rede sein wird. 

Es sei 

LEILTERZE a7 f(a) = 0 
eine Gleichung n-ten Grades, von der wir voraussetzen, daß sie irredu- 

zib zibeli in einem gegebenen Rationalitätsbereiche sei und daß sie zwei ‚wei Wur- 

zeln z’ ‚%& habe, die durch die Relation 

(2) x’ —= 6(x,) 

verbunden sind, wo 6 eine rationale Funktion von x ist, deren Koeffizien- 

ten demselben Rationalitätsbereiche angehören. 

Da f(z’) = 0, so ist auch f(0x,) = 0. Es haben mithin die zwei Glei- 

chungen 

@) jta) = 0,10) = 0 
eine Wurzel x, gemein, und folglich haben sie (1, 5, 6), 8. 34 da f(x) irre- 

duzibel, alle Wurzeln von f(x) gemein, d.h. ist x eine Wurzel, so ist auch 
0(x) eine Wurzel»folglich sind 

2,02, 0 

1) Crelles Journ., Bd. 4, 1829, u. (Euvres, publ. par Sylow et Lie, I, 478. 

Bieberbach, Algebra i 17 

00 | dohr het En 
\}, / 

AU D/Z (enahf 

ef ft 
on) 

Wlgul % 
a, 
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oder in kürzerer Schreibweise 

(4) 21030 

Wurzeln der Gleichung? Da f(x) = 0 nur n Wurzeln hat, müssen sich die 

Werte dieser Reihe wiederholen. Seien r, s irgend zwei der oberen Indizes, 

und es sei 

Dre 7, = 0° x, 

De) On) el ee 0 

gi ee =i 

die Wurzel 0°x, mit f(x) = 0 gemein, und folglich genügen ihr alle Wur- 

zeln von f(x) = 0. Man kann annehmen, daß r der kleinste Index ist, für 

welchen überhaupt für eine Wurzel x von (a) = — 0) die Beziehung ( Ge—i 

gelten kann. Dann gilt 9"x = x für jede Wurzel von f(x) = 6. Denn 

9"2— x = 0 hat dann mit dem irreduziblen f(x) = 0 eine Wurzel gemein. 

Namentlich ist also 6”"x, = x,. Dann sind also in der Reihe (4) nur r ver- 

schiedene Wurzeln enthalten, nämlich u, iR 

(6) 2 OT Ge 

Istr = n, so sind dies alle Wurzeln der Gleichung. Ist r < n, so muß die 

Gleichung f(x) = 0 noch andere Wurzeln haben, die nicht ın dieser Reihe 

vorkommen. Sei x, eine solche Wurzel, so ist dieselbe wieder zugleich 

Wurzel der zwei Gleichungen (3) und genügt ferner auch der Gleichung (5). 

Man schließt daher wieder, daß aus der Wurzel x, sich folgende r verschie- 

denen Wurzeln 

(N EUER 

ergeben, indem 0"x, = x,, 0"+°x, = 0"x,. Es ist aber auch leicht zu 

zeigen, daß die Wurzeln der Folge (7) sämtlich verschieden sind von denen 

der Folge (6). Denn wäre 

Gera de 

so müßte Orr. Hey, = Or-ktrg, 

ER = 0935 = Lg 

sein, was ausgeschlossen ist, da x, in der Reihe (4) oder (6) nicht vor- 

kommt. 

Es muß mithin n = 2r oder > 2r sein; in letzterem Falle gibt es eine 

Wurzel x;, die nicht in den Reihen (6) und (7) enthalten ist, und in bezug 

auf welche man wieder dieselben Schlüsse machen kann. Man sieht, daß 

N — 0°0,,) a. die Gleichung „| 
= Ö „irrt pr {N eh Il zesrı Ad uasfa d Safer ZA , 
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nVielfaches von rseinmuß, d.h.n = m*r, und die sämtlichen 

Wurzeln gruppieren sich dann in m Reihen zu je r in der 

Weise 
reg Een la Sean Ua 

| 92 RR (8) a er. or lc, 

IR seid Ar... 

2. Reduktion auf zwei u ren Sei nun y= 9(Cı, 2a,...L,) 

irgendeine symmetrische Funktion) so ist 

(9) Yyı = p(tı, 0%,.-.0""10) = ol); 

eine Funktion von x, , welche die Eigenschaft hat, daß sich ihr Wert nicht 

ändert, wenn man x, durch 9x, ersetzt; denn hierdurch wird nur eine 

zyklische Vertauschung der Wurzeln in p bewirkt. Man hat folglich 

Yı = pl) = Pd) = PP) = = pi). 

Nennt man %3, Y3,...Ym die Werte, welche y annimmt, wenn man x, 

bzw. durch &,, &,, . . . £,„ ersetzt, so hat man ebenso 

Ya = PR) = = p(O"1m,) 

Ym PlEm) zer le a nn 

Also hat y rm Werte, entsprechend den n= rm Werten von x, aber je 

r Werte sind immer gleich, und die Bestimmung der Werte von Yyı, Ya... Ym 

hängt von einer Gleichung m-ten Grades ab: 

Y—Y)(y— Yo). (Yy— Ym) = 0 

(10) Beau a tayr Ser nt, Ne. 
deren Koeffizienten als symmetrische Funktionen der Wurzeln der Glei- 108 3 Han 

chung f(x) = 0 sich aus den Koeffizienten derselben berechnen lassen. ® u kei 

Diese Berechnung wird dadurch erleichtert, daß vermöge obiger Glei- Hirt RE “ 

chungen für irgendeinen ganzen Exponenten s r 

— [pi + 0)’ + + (PT) ], 

also y+yt-+y, = I NW (y® Ya ) ER ® 
Ir. abi d; 

ist, wo sich die Summe % auf alle Wurzeln der Gleichung f(x) = 0 er- ...." a 6, 

streckt. Diese Summe als rationale symmetrische Funktion der Wurzeln gulu. {ya 

läßt sich berechnentind liefert damit die an der y‘ "und mithin y‘ 14 

auch die Koeffizienten der Gleichung (10). { P Y +1, 2 4: Br .- 
17* 
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Sind die Wurzeln 4}, Yg, --- Ym dieser Gleichung gefunden, so lassen 

sich auch die Wurzeln x berechnen mittels folgender Methode. Die ge- 

gebene Gleichung (1) und die Gleichung 

(2) — Yyı = 0 

haben jedenfalls die r Wurzeln der ersten Reihen von (8) miteinander ge- 

mein, und indem man den größten gemeinschaftlichen Teiler aufsucht, 

kann man die Gleichung aufstellen, unter deren Wurzeln z2,, 02,,... 

O'-!x, vorkommen. Setzen wir zunächst voraus, daß die Wurzeln von 

(10) verschieden seien, so können den größten gemeinschaftlichen Teiler 

von f(x) und (x) — y, keine weiteren Wurzeln von f(z) =0 zu Null 

machen. Daher ist der größte gemeinsame Teiler vom Grader. Er sei 

(11) +9 Yy)- ar) ar re), 

wo die®,,9,,...®, rationale Funktionen von y, sind, deren Koeffizienten 

dem gegebenen Körper angehören. Setzt man in (11) y, an Stelle von 

%Yı , 80 liefert diese Gleichung die r Wurzeln 

Here 

Die Gleichung (11) gibt also, indem man darin für y, der Reihe nach die 

Wurzeln y,, Ya, - - - Y„m der Gleichung (10) setzt, m Gleichungen, von denen 

jede eines der Systeme von r Wurzeln liefert. 

Natürlich braucht man von jeder dieser m Gleichungen nur je eine 

Wurzel zu kennen, da man aus dieser sofort nach (8) die ganze Reihe der 

r Wurzeln hat. 

Hat die Gleichung (10) mehrfache Wurzeln, so wird der größte gemein- 

schaftliche Teiler der beiden obigen Gleichungen von höherem als dem 

r-ten Grade. Denn ist y, = %,, so hat die zweite dieser Gleichungen mit 

f(x) auch die Wurzeln der zweiten Reihe von (8) gemein, so daß an Stelle 

von (11) eine Gleichung 2r-ten Grades treten würde. Dieses läßt sich ver- 

meiden, wenn man für y eine aa: symmetrische Funktion wählt. 

Setzt man 

Yy = (e— 2,)(e —0%,)...(e—H1z)@=1 ee 

so können nicht zwei Werte von y für mehr als r Werte von « einander 
gleich werden, da je zwei Reihen der Wurzeln (8) verschieden sind. Gibt 

m(m — 1)) 

12 
man also « einen Wert, der von den ——r Zahlen verschieden ist, für 

die entweder Y, = y, oder y, = y, usw. sein Bann: so sind für dies « alle 
y, voneinander verschieden. A. ır.= +, « ee I inte on 

— & „- x N: a 8 PATE ar Wi id M £ € ni £ 
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Die Auflösung der Gleichung f(x)=0 ist mithin zurück- 

geführt auf die Lösung einer Gleichung (10) vom m-ten Grade 

und die Auflösung von m Gleichungen (ll) r-ten Grades. 

Die Gleichung (10) m-ten Grades ist im allgemeinen keine Abelsche; 

die Gleichung (11) aber, welche eine der Gruppen (8) von r Wurzeln liefert, 

ist wieder eine Abelsche Gleichung, deren Wurzeln nur eine AIG 

bilden. Diese letzteren Gleichungen werden auch „zyklische“ ge- 
nannt. ( Ge u ARU Ace Oa. flug fr RY Mi Tram 179) 

3. Reziproke Gleichungen als Spezialfall. N einfachen speziellen 

Fall von Abelschen Gleichungen haben wir schon früher kennengelernt 

bei den reziproken Gleichungen. Ist f(x) = 0 eine reziproke Gleichung 
A 3 1 5 5 

und x, eine Wurzel, so ist auch .- 6(x,) eine Wurzel. Dann ist 
1 

Baur) = 02(2) = x. Ist mithin die Gleichung vom Grade 2m, so gruppie- 

ren sich die Wurzeln in m Reihen von nur je 2 Wurzeln (r = 2) 
ER 

Br X) = x Tı 5, 0x, 

Xg; 6%, 

Doms 0 Km: 

Durch Einführung der symmetrischen Funktion 

y-5++=c+Ba 

erhielten wir eine Gleichung m-ten Grades in y, und für jede Wurzel y, %2/ 
dieser Gleichung ergaben sich die zwei entsprechenden Werte der Gruppe 

x aus der Gleichung ee 

Letztere hat wieder den Charakter einer Abelschen Gleichung; denn ihre 

zwei Wurzeln bilden die Gruppe 
1 

2,0: (= —) . 

Man sieht, daß die Analyse der Abelschen Gleichungen nur als eine Er- 

weiterung der schon bei den reziproken Gleichungen befolgten Methode 

erscheint. 

4. Zyklische Gleichungen. Wir betrachten nun den Fallr=n, 

in welchem also die Wurzeln der irreduziblen Gleichung 

(1) rel nur eine Bein bilden: 

(2) x,02,0°2,...00-1(0), "go daß 
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(8) vri=i% und 

(4) Gere — Dr. 

Ist nun « eine Wurzel der Gleichung 

RM ee —1l=0, so setze man 

(5) o(z) = redete 20, RR lg a)". =Y 

— dei ann 

Diese Langrangesche Funktion (8. Auflösung der kubischen Gleichungen 

(5,1, 6)) wird eine symmetrische Funktion der Wurzeln von f(x) durch 

die Abhängigkeit (2), die zwischen ihnen besteht. In der Tat erhält man, 

wenn man x mit der Wurzel 6°x vertauscht, 

»(6!z) = (Hix + aMit!n + --- + ar -10r -1Hig)" 

— (ar + art... + an-Itign-1tig)n]) 

Da aber er ut = etz! Or 3, Nitniatiund (error 

man (0x) = p(«) für jeden Wert=1,2,...n—1. Es ist also 

px) = P(da) = p(P*a) = = P(Or7!z) 

ud P@)=,[pl@a) + Pl) +P Od) + +p(rtn)]- 
Es ist demnach p(x) eine symmetrische Funktion der Wurzeln von f(x), 

welche für jede Wurzel berechnet werden kann. Ist y der Wert von (x) 
für irgendein «, so ist 
(6) c+e0x + 0@209?2 + ---. 4 ar-1gn-1g — Vy. ln In.0; 

£) 8.08 in 
: #) x+01- Dit: +0 x =:V/Y Seien nun Yas Yı» Yas 3 Yazı ER BREI Ba WR 

nn Je F 
. . er er, ! Ws 

die Werte von y, die den Wurzeln nr Orr" Or v, 

een 

der Gleichung &° — 1 = 0 entsprechen, dann ist zunächst eine /y, nichts 
anderes als die Summe sämtlicher Wurzeln von Im = (0, also, wenn A der 
Koeffizient von x”-!in dieser Gleichung ist, I e. = er arm 

(7) Yu=—4. (T.234 

Setzt man ferner in (6) für « alle Wurzeln nach und nach ein und addiert 
die sämtlichen Gleichungen, so erhält man 
73% 1 VL WER, IE RE u 7 (8) =, 1-4 u + VYat + Va]: 
Multipliziert man al aber mit ER I. abeygr man sie Aaua 
so erhält man (.) Inn kei Brnarhn mann nn De rb 

(9) . A+aor VS ee + azm Ya) ax y 
für irgendeinm =1,2,...n—1. r 3 

ei 
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”% 7 2 ve ER ” neh ae eh pay del ten > a ei are f * ut &x KH 4 u er ir 
AA en ana Ar unten mfg ed Me „i 5,5 4.,Zyklise sche en % 63/ 

> tn gegdun “7 fund u ah Ani a mul yar Fin in da vu 7 An hie a um 26: dern N 

kuf, er Wenn man die ’/ in nn Gleichungen (8), en in ihrer ganzen Allge- ““ = 
meinheit auffaßt, so geben sie für & n”-1 Werte, während f(x) = 0 nur, = « 

Per 

n Wurzeln hat. Diese Schwierigkeit hebt sich dadurch, daß, sowie der ea; ar 

Wert von einem Radikal, z. B. Yy 29 aaa onue nn ist, die andern dadurch Drei 

a 

Yı wrorfur an nr A ir RR van ry A uulfä we nitbestiumt sind,, h, „Mor FL tan ara P v2) er (dr 1% Rn 5 fr ’ 
) e mN-R m 

In der Tat, es sei « eine primitive ee von 2 — 1 = 0, dann kann (? / im 
die Reihe der Wurzeln 1,@,,@&,...«@,_ı durch die Reihe der Potenzen *"", _ 5. 

DR 0 

von « a ee 

Iaa,a 2 .arz) rar—ın ME nr eat 
2 

f l, a j 14 nn Jule { 7 

ersetzt werden, und es ist dann LVyı) Yo’ br & 
is) am: 

Nn,—_ 

BEN 

Vy=x+adz-+a80?n +... + ar-ign-1g k Fl 

; 
Am [Ausf vmt 0 

VYr 
- — — In - min -K! 

} Yr a + a0 x + a®*0°x u + ak ı)Qn Lg, Ara oe en X Dat 

x ö ? 2 PAR 8 
Vertauscht man in der ersten dieser Formeln x mit 0” x) so ıst es dasselbe, e m 

wie wenn dieselbe mit «"-” multipliziert würde, d. h.’yyı geht in a®""%/y, & 

über. Dieselbe Vertauschung in der zweiten Formel entspricht einer Multi- 

plikation mit «*(*-”) auf der rechten Seite; es geht also hierbei 'Yy, in 

a*(n= m) /y, über. Mithin erhält durch Vertauschung von x mit O”x das 
Produkt MITTEN Ka WE 

Vu" -Yyr 

den Faktor ««® =”) = 1; d.h. es ändert sich nicht. Setzen wir folglich 

VYn-Vn" "= vi). 
so ist air) = vld8) = wld2r)— re. u ler), 

1 also Ye) = I [ via) + v2) +++ ylon-in)]. 
y(z) ist mithin eine ganze symmetrische Funktion der Wurzeln von 

f(x) = 0 und kann aus den Koeffizienten von f(x) berechnet werden. Ist 
a, sein Wert, so hat man N, Es 

N— a 
a0) Yn=, (V y) ; 

und die Gleichung (8) verwandelt sich in folgende: f 

1 n nINZ FE mn-ı ([R/_ _ \n- 

a) ==, |-44+ un +2 +2 nr eu | 
1 Yı Yı 

Dieser Ausdruck für x hat gerade n Werte, den n Werten von Yy, ent- 

sprechend, und stellt dien Wurzeln der Gleichung dar. 

Sind also die n Wurzeln einer irreduziblen Gleichung in 

der Form darstellbar 

a Eli a ah 

wo 6 eine rationale Funktion, so daß Or(a)= x, so ist die 

Gleichung durch Wurzelgrößen lösbar. 



264 Fünftes Kapitel: Abelsche Gleichungen 

3 < : 
Ferner folgt daraus: Wenn in einer irreduziblen/Gleichung, 

deren Grad eine Primzahl ist,’eine Wurzel rational durch 

eine andere ausgedrückt werden kann, so ist die Gleichung 

durch Wurzelgrößenlösbar. Denn die Gleichung ist dann eine Abel- 

sche, deren Wurzeln nur eine Reihe bilden können.) 

5. Realitätsfragen. In dem speziellen Falle, wenn die Koeffizienten 

von f(x) und O(x) reell sind, enthält y, keine andere imaginäre Größe 

als «. Aus y, erhält man a Yn_ı, ndem man ar 1 = = an die Stelle 

von a setzt. Da nun a und I „ konjugiert i imaginär sind, so gilt dasselbe 

von yı und y„_ı. Man kann a setzen 

(12) Yyı = 0(608® +1: sin®o), Yn-ı = 0(C08S® — i- sin®), 

wo g eine reelle positive Größe, » ein reeller Winkel ist. 

Aus der Gleichung (10) folgt ferner fürk=n—1 

(18) Pyaı -Yyı= — An-1- 

Da sich der Wert dieses Produkts nicht ändert, wenn man y, und y„_ı; 

oder also « und = vertauscht, ist a,_, einereelle Größe, welche durch a 

bezeichnet sein mag. Dann folgt aus (12) und (13) 

(14) e?=a", VYo=Ya. Hiermit wird 

(15) Yyı = Va (cos =. +i-sin u) 5 

wo r eine ganze Zahl bezeichnet, und aus (10) 

(16) Vyn = Vat (cosk- = ink- ee). 

Hier ist a,, wie y,, rational in den Koeffizienten von f(x), 6(x) und e, 
oder da SE a 

& . ae 

in cos = und sin . Die Werte von (11) oder (8) eingesetzt geben mithin 

2-1 I— Aa (cos = +; sin CH) 

. [0 sr 2arı ER: o-—-2arn 
+ (9 + hyt) a (cos 2-— —— +i:sin?- I 

te Erea sin3 - m 

| 
1) Bei dieser uftssüng der Abelschen Gleichung vom Grade n werden die Wur- 

zeln a einer binomischen Gleichung x — 1 — 0 als bekannt vorausgesetzt; aber 
diese binomische Gleichung ist nach dem folgenden Kapitel selbst eine Abelsche 
durch Wurzelgrößen auflösbare Gleichung. ' 



5,5, 6. Zyklische Gleichungen, deren Grad keine Primzahl ist 365 

wo die g, h rational aus denselben Größen zusammengesetzt sind wie a, 
und y,. Setzt manr=0,1,2,...n — 1, so erhält man die verschiedenen 

Wurzeln. 

Die Auflösung hängt also ab von a, d.i. cos =" bzw. sin = ‚von „wo 

© ein Winkel, dessen Tangens unter Benutzung ne ar 1) ra- 

tional aus « bestimmt ist, und dem Ausziehen der Quadratwurzel aus einer 

reellen Größe a. 

Da die Koeffizienten von #x als reell angenommen sind, so ersieht man, 

daß, wenn eine Wurzel reell ist, alle Wurzeln reell sein müssen. Die 

Wurzeln der Gleichung sind also entweder alle reell oder 
alle imaginär. AH4Y.20 

6. Zyklische Gleichungen, deren Grad keine Primzahl ist. Die in (5, 5,4) v.251 

gegebene Methode läßt sich auf jede Gleichung n-ten Grades anwenden, 

deren Wurzeln nur die eine Reihe 

1) 2, 0x,6?x,... 0r-1x 

bilden, wo 6"x = x, es mag n eine Primzahl oder eine zusammengesetzte 

Zahl sein. Aber im letzteren Falle läßt sich die Li Lösung vereinfachen. 

Sein=m+r; wir können dann die n Wurzeln in Gruppen teilen zu je 

r, in der Weise 
1 

Hl 

T, Omx, 02m x, ade gr mp 

(2) dr, Hm+1g, Hemtig, „„.gr-Dm+l, 

Grzug Dr ler! 03m-1, Er Dry 

und wenn wir setzen 

N a Ne 

und außerdem die Operation 0” x mit 6, bezeichnen, so daß 

Due: 

so wird das Schema der Wurzeln 
2 r—1 ee A 

2 r—1 
(3) Ts, d, 83, Dexa; Seel), E23 

2 r—1 BE TRHIER 

und in jeder der m Reihen it 4 2x = 0" = Mı=x. 19 

Wir haben nun ganz dasselbe System von Wurzeln, wie wir es (5, 5,1; 8) 1201 

für eine Abelsche Gleichung gefunden haben, deren Wurzeln sich in m 
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Reihen zu je r Wurzeln anordnen, nur steht 6, statt 6. Man kann daher 

auch die Gleichung f(x) = 0 in diesem Falle ganz nach der dort (5, 5, 2) 

befolgten Methode behandeln. Man kann die Gleichung in m Gleichungen 

r-ten Grades (5, 5,2; 11) zerlegen, deren Koeffizienten rationale Funk- 

tionen je einer Wurzel einer Gleichung m-ten Grades (5, 5, 2; 10) 

(4) y(y) = yr + Cyri + Osymit nt Om 

sind. Es seien ferner %ı, Yg> - - - Ym diem Wurzeln derselben und 4 N 

2 +) tl 
(5) = 49,4)22 +9. u) 270 

x ol +9, (ym)2’? ug 0 

die Gleichungen r-ten Grades, von welchen jede dier Wurzeln von f(x) = 0 

liefert, die in dem Schema (3) in einer Reihe stehen. Da alle Wurzeln die 

Reihe (1) bilden, so reicht es im gegenwärtigen Falle hin, eine Wurzel yı 

der Gleichung (4) zu kennen und dazu eine Wurzel der entsprechenden 

Gleichung (5), weil mit einer Wurzel x die sämtlichen durch die Reihe (1) 

gegeben sind. 

Der hier behandelte Fall unterscheidet sich aber wesentlich von dem 

in (5,5,1) behandelten dadurch, daß, da die Wurzeln der vorgelegten 

Gleichung f(x) = 0 nur eine Reihe bilden, die Gleichung, wie wir sahen, 

algebraisch auflösbar ist und folglich auch die Gleichung (4) in y alge- 

braisch lösbar sein muß, während sie in dem zuerst betrachteten Falle 

(5,5,1) darüber noch nichts wissen. Sie “wird nämlich hier selbst eine 
Abelsche Gleichung, deren Wurzeln eine Reihe bilden, =... 4.1 mg, 

Hierzu bemerke man, daß y eine symmetrische Funktion # der Wurzeln 

einer Reihe des Schemas (3) war also ee 
wm ig 1 

Yyı = F (a, 9ı1%,...9 0%) = p(2) 

Ya = F(@,, 6125,...0, 2) = p(%,) 

oder Fl, Oma... Na) = pl) 
y.=F(082,0-0mer. 0. 2 on 

Die Gleichung (4) gibt die Werte der Funktionen y; die erste der Glei- 

chungen (5) gibt, wenn y, gefunden, die Wurzeln x, 0”x,... 0"-Umz, 

Nun ist aber y, und ebenso y, usf. offenbar zugleich symmetrische Funk- 

tion eben dieser Wurzeln &,06”x,..., d.h. eine symmetrische Funktion 
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der Wurzeln der zweiten, dritten, ... Reihe der Wurzeln (3) ist zugleich 

symmetrische Funktion der Wurzeln der ersten Reihe. Also kann y, aus 

den Koeffizienten der ersten Gleichung (5), folglich auch aus y, rational 

berechnet werden; ebenso 4, usf. Sei demnach y, = öy,, wo © eine ratio- 

nale Funktion, mithin = 

Yy= pr) = apa), 
so wird Y = (02) =Ho(dr) = W:o(z) 

Ym = PAIR) = Sp" ?) = a" tp(e). 
Die Wurzeln der Gleichung (4) bilden also in der Tat eine Reihe 

Yı, öyı, Ö’yı,. . By; S"yı = PR) = Yı, 
sie ist folglich algebraisch auflösbar. 

Wäre nun m wieder eine zusammengesetzte Zahl, m = mır,, so könnte 

man auf diese Gleichung dieselbe Analyse anwenden und sie zurückführen 

auf eine Gleichung m,-ten Grades und Gleichungen r,-ten Grades. Ist n 

in seine Primzahlfaktoren zerlegt, 

n = pıph..., 

so ließe sich auf diese Weise die Auflösung einer Abelschen Gleichung, 

deren Wurzel nur eine Reihe bilden, zurückführen auf A, Gleichungen 

p,-ten Grades, /, Gleichungen p;-ten Grades usw. Alle diese Gleichungen 

sind dann algebraisch lösbar, und es würde hinreichen, von jeder nur eine 

Wurzel zu kennen. 

Zusatz. Jede zyklische Gleichung, deren Grad eine Potenz von 2 ist, 

läßt sich durch Quadratwurzeln lösen. 

Sechstes Kapitel. 

Algebraische Auflösung der Kreisteilungsgleichungen. 

1. Darstellung der Einheitswurzeln durch Wurzelzeichen. Wir haben ge- 

sehen, daß die binomische Gleichung 

a" —-A=0 

sich immer auf die Gleichung © —1=(0. 

reduzieren läßt. Die Gleichung hat die Wurzel 1; nehmen wir diese hin- 

weg, so erhalten wir die Gleichung 

nl ger sehe 0, 
B—il 
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- 5 +.» r Die Wurzeln dieser Gleichung haben wir in der trigonometrischen Form 
Y 

_ 443: Je 7" gefunden (6, 2, 2) 2 | un a Bo ne kr 

rl 
a & ee Kl ; 

Ari 
%.7Von der Auflösung dieser Gleichung hängt mithin auch die Lösung der 

geometrischen Aufgabe ab, den Kreisumfang 2x in n gleiche Teile zu teilen. 

= - ES Es soll nun gezeigt werden, daß die Wurzeln dieser Gleichung durch 
» eur Wurzelgrößen dargestellt werden können. 

£ * Die Aufgabe läßt sich vereinfachen; denn, wie S. 227 und 217 ergeben, 

»-x° - kann man die Auflösung der Gleichung &*—1 = 0 durch Wurzelziehen 

3» „7 zurückführen auf Gleichungen derselben Art, für welche der Exponent 

eine Primzahl, und zwar ein Primteiler von n ist. Wir gehen daher so- 

gleich von der Gleichung 

- 34 yrb Pag 

(1) e—1l1=0 

aus, wo p Primzahl, oder mit Ausschluß der Wurzel 1 

(2) Ag iron tot1=0. 

Wir wissen, daß diese Gleichung irreduzibel ist, daß alle ihre Wurzeln pri- 

mitive Wurzeln sind und daß folglich, wenn « eine dieser Wurzeln ist, die 

sämtlichen Wurzeln durch die Reihe 

(3) 0,0?,@°,...a?-1 oegeben sind. 

1.2%% Wir können diese Reihe anders ordnen. Wir fanden in (5, 4,11), daß, 

wenn p Primzahl, die Kongruenz 

(4) xz?-1 =] (mod.p) 

diep—1 Wurzeln 12. Be nl 

hat, und darunter immer primitive Wurzeln. Ist r eine solche primitive 
Kongruenzwurzel, so können diese p— 1 Wurzeln auch durch die Reihe 

(5) 1 ururs, Air en 

dargestellt werden, da diese Reihe von Potenzen, mit p dividiert, wieder 
die Reste 1,2,...p —1 in anderer Anordnung ergibt!) Da nun a? = 
so können wir die Reihe (8) der Wurzeln unserer Gleichung (2) ersetzen 
durch die Reihe 

(6) @, 07,0, no Ro a). 

Jede Wurzel dieser Reihe geht nun aus der vorhergehenden hervor durch 
eine rationale Operation, nämlich die Erhebung in die r-te Potenz (r ist 
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eine ganze Zahl). Setzen wir @" = da, so bilden die Wurzeln also eine 

Reihe von der Form 

Ra, eigen). 

Die Gleichung (2) ist also eine zyklische Gleichung (5, 5, 2), welche alge- 

braisch lösbar ist, falls die dabei nach dem vorigen Kapitel benötigten Ein- 

heitswurzeln durch Wurzelzeichen darstellbar sind. Auf diese Eigenschaft 

der Wurzeln hat Gauß!) die Auflösung der Gleichung (2) gegründet. 

Nach dem dort (5, 5, 4) angegebenen Verfahren werden wir daher zu- 

nächst eine Funktion p(x) der Wurzeln aufstellen von der Form 

(7) o(z2) = (2 + Bar + Bat + --- + Bra? Pt, 

wo ß irgendeine Wurzel der Gleichung 

(8) 
gp—1 en it En, 0. 

Diese Funktion ist, wie wir sahen, eine symmetrische Funktion der Wur- 

zeln x, x”, x”°,... Sind 9, Yı»--- Yn_2 die Werte derselben, diedenp — 1 

Wurzeln 8 entsprechen, so sind die Wurzeln der Gleichung (2) nach 

(5, 5,4), (8) 
1 e 

) = 1-14” Vu + Vya+-" Vyo-a]- e—1 

Die Wurzel wird hiernach durch eine Reihe von Wurzelwerten ”"y/y dar- 

gestellt, die nach (5, 5,4), (11) selbst wieder durch Potenzen einer der- 

selben ”"yy, dargestellt werden können. 

Die Formel enthält noch die Wurzel $. Dieselbe hängt aber von einer 

binomischen Gleichung niedrigeren Grades ab, die selbst wieder derselben 

Methode unterworfen werden kann. Nehmen wir also im Sinne der voll- 

ständigen Induktion an, daß die Gleichungen 2° — 1 = 0, deren Grad eine 

Primzahl s < pist, durch Wurzelzeichen lösbar sind, so ist auch 2» — 1=0 

durch Wurzelzeichen lösbar. Für 22 —1 = 0, 2? — 1 = 0 usw. trifft aber 

die Annahme sicher zu. ph f226 

2. Mit Zirkel und Lineal konstruierbare reguläre Polygone. Bei den hier 

in Rede stehenden Konstruktionen soll von Lineal und Zirkel Gebrauch 

gemacht werden, um aus einer Anzahl gegebener Punkte weitere zu finden. 

Dabei soll das Lineal benutzt werden, um gegebene oder bereits gefundene 

Punkte geradlinig zu verbinden. Der Zirkel wird benutzt, um einen Kreis 

um einen gegebenen oder gefundenen Punkt als Mittelpunkt zu verzeich- 

nen, mit einem Radius, der dem Abstand zweier gegebener oder gefundener 

1) Disquisitiones arithmeticae, 1801, Sect. VII. Gesammelte Werke Bd.I. 

ER 

= 
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Punkte gleichkommt. Weitere Punkte werden dann gefunden, indem man 

solehe Kreise und Geraden miteinander zum Schnitt bringt. Alle diese 

Operationen sollen in endlicher Anzahl vorgenommen werden. Führt man 

reehtwinklige Cartesische Koordinaten ein, so lassen sich die verwendeten 

Abstände und die Koordinaten der neugefundenen Punkte durch Quadrat- 

wurzelausdrücke aus den Koordinaten der gegebenen oder schon gefunde- 

nen Punkte ausdrücken, wobei die rationalen Operationen und das Wurzel- 

ziehen nur endlichoft Verwendung finden. Man kann das auch so aus- 

sprechen, daß man sagt, die Koordinaten der jeweils neu konstruierten 

Punkte werden dureh Auflösen quadratischer oder linearer Gleichungen 

gewonnen, deren Koeffizienten sich rational aus den Koordinaten ge- 

gebener oder bereits konstruierter Punkte ausdrücken. 

Wir wollen augenblicklich nicht die Frage nach den notwendigen Be- 

dingungen stellen, denen die Eckenzahl eines regulären Polygones ge- 

nügen muß, wenn man seine übrigen Ecken aus der Kenntnis des Kreis- 

mittelpunktes und einer Ecke konstruieren will. 

Jedenfalls aber ergeben sich aus den bisherigen Ergebnissen über zy- 

klische Gleichungen hinreichende Bedingungen für die Konstruierbarkeit. 

Wir bemerkten nämlich am Schlusse des vorigen Kapitels auf S. 267, daß 

zyklische Gleichungen, deren Grad eine Potenz von 2 ist, jedenfalls durch 

Quadratwurzelausdrücke lösbar sind. Ist also p eine Primzahl von der 

Form 2” + 1, so ist die Kreisteilungsgleichung 

za? 2..+1=0 

eine zyklische Gleichung, deren Grad eine Potenz von 2 ist. Daher sind 

alle die regulären Polygone mit Zirkel und Lineal konstruier- 

bar, deren Eckenzahl eine Primzahl von der Form 2° +1 ist. 

Ist weiter n eine Zahl von der Form n = 2*p,...p,, wo 

Pı...p, lauter verschiedene Primzahlen der Form 2r + 1sind, 

so net auch das reguläre Polygon dieser Eckenzahl mit Re 
kel und Lineal konstruierbar. 

Denn nach 8.225 erhält man alle n-ten Einheitswurzeln, indem man 
je eine ine Ak. te, Pı-te, Pa-te usw. miteinander multipliziert, also durch Aus- 
führung einer rationalen Operation. Aber auch die 2*-ten Einheitswurzeln 
ergeben sich mit Zirkel und Lineal, da man ja Quadrat, Achteck usw. zu 
konstruieren versteht. 

AN An 

Soll p/von de der Be 2° +1 sein, so ist erforderlich, daß k keinen un- 
geraden Faktor habe. Denn wäre k=h(2n-+1), so wäre Mer+) 1 
durch 2* + 1 teilbar; da, 2° = x gesetzt, z?”+1 4 1 durch x + 1 teilbar 
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ist, wobei der Quotient ganzzahlige Koeffizienten bekommt’ Es muß En ” 4 Ph 

also k von der Form 2° und mithin Dz 92° 11 sein. Für T=0ist y n + 
b BUBEN BE er j =f ’ 

Dsstur,l=1, p—=5,sfür ee p=17. Die nächste Zahl, für 

welche p Primzahl und von dieser Form ist, entspricht 1 = 3, p = 257. X * 

Über die Auflösung der Gleichung 23” — 1 = 0 s. Richelot in Crelles 12 127 s 

Journ., Bd. 9. K= 01,2. 
Aber für 1=5 ist p = 22° + 1 = 4294967297, eine Zahl durch 641 

teilbar, also nicht Primzahl. Es ist noch unbekannt, wie viele Primzahlen 

in n dieser Form enthalten sind und für welche Primzahlen mithin die Tei- 

lung ı des Kreises mittels Zirkel und Lineal möglıch ist. 

3.Notwendige Bedingungen für die Eekenzahl konstruierbarer Polygone. 

Wir werden zeigen, daß eine Primzahl, die als Eckenzahl eines konstruier- 

baren Polygons auftritt, die Form 2” + 1 haben muß. Anders ausgedrückt 

besagt dies, daß der Grad der zugehörigen irreduziblen Kreisteilungs- 

gleichung 
el Aa ll) 

eine Potenz von 2 sein muß Ist dies bewiesen, so wissen wir, daß es andere 

als die vorhin aufgezählten konstruierbaren regulären Polygone nicht gibt. 

Zum Beweis denken wir uns nach und nach die verschiedenen Quadrat- 

wurzeln berechnet, die zur Auflösung erforderlich sind. In jedem Moment 

betrachten wir dazu einen gewissen Zahlkörper. Wir gehen von dem 

Körper der rationalen Zahlen aus. In ihm ist die Kreisteilungsgleichung 

irreduzibel. Nun adjungieren wir ihm eine erste Quadratwurzel aus einer 

rationalen Zahl, d.h. wir betrachten den Körper der Zahlen, die sich als 

rationale Funktionen jener Quadratwurzel mit rationalen Koeffizienten 

bilden lassen. Dann adjungieren wir wieder die Quadratwurzel aus einer 

Zahl dieses Körpers. So erhalten wir einen neuen Körper. Er besteht aus 

allen Zahlen, die sich ratıonal aus der neuen Quadratwurzel mit Hilfe von 

Koeffizienten des vorausgehenden Körpers darstellen lassen usw. Jeden- 

falls fragen wir uns, ob in dem neuen Körper die Kreisteilungsgleichung 

noch irreduzibel ist. Ist sie zum erstenmal reduzibel, so studieren wir für 

die folgenden Körper einen ihrer reduziblen Faktoren und warten, bis er 

zum erstenmal reduzibel wird. Dann betrachten wir einen irreduziblen 

Faktor weiter usf. Ich bemerke nun: Ist ein Polynom in einem 

Körper Kirreduzibel, d.h. kann es nicht in Faktoren zerlegt 

werden, deren Koeffizienten diesem Körper angehören, wird 

es aber reduzibel, nachdem man diesem Körper die Quadrat- 

wurzel r aus einer seiner Zahlen adjungiert hat, so zerfällt 

esin zweiirreduzible Faktoren gleichen Grades. 
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Denn r genügt der in K irreduziblen Gleichung 

Bl: 

Ist nun f(x, r) ein im erweiterten Körper K(r) irreduzibler Teiler von 

NO AER Ha) = fan plan). 
Dann ist auch fa) = Ha, —r)po(&, —r). 

Denn die Gleichung (&) — F,2) 9 (2) = 0 

hat mit dem irreduziblen z2—r?=0 eine Wurzel, also alle Wurzeln gemein. 

Daher ist auch f(x, — r) ein Teiler von f(x). Er ist mit f(@,r) nicht iden- 

tisch. Denn wäre Hx,r) = f(&,—r), 

so wäre auch er) = Aue "ei Se, - 

also eine symmetrische Funktion der beiden Wurzeln r und —r von 

22—r:=0. Daher wäre f(z,r) ein Polynom mit Koeffizienten aus K, 

und f(x) wäre in K schon reduzibel. Da also f(x,r) und f(z,—r) nicht 

identisch sind, so haben sie auch keine Wurzel gemein. Denn beide sind 

irreduzibel. Wäre nämlich 

62 _nN= har)fa(e;r), 

so wäre Kar) = ha nf, —n). 
Hätten sie also eine Wurzel gemein, so wären sie konstante Multipla von- 

einander. Man darf aber annehmen, daß die Koeffizienten der höchsten 

Potenzen durchweg 1 sind. f(x,r) und f(x,—r) müßten also identisch 

sein, was wir schon als unmöglich eingesehen haben. Daher ist /(x) durch 

I(&,r) - f(x,— r) teilbar. Da aber f(z,r)f(x,— r) als symmetrische Funk- 

tion der Wurzeln r und — r von 2?— r? = 0 Koeffizienten aus dem Körper 
K hat, so ist f(x) = Hz,r) f(x, — r). 

Daher ist der Grad von f(x) durch zwei teilbar. 

Wenden wir nun diese Überlegung auf die Kreisteilungsgleichung an, 
so zeigt sie, daß der Grad derselben eine Potenz von 2 sein muß, wenn 
anders durch sukzessive Adjunktion von Quadratwurzeln ein Linearfaktor 
soll abgespalten, d. h. die Gleichung soll aufgelöst werden können. 

4. Dreiteilung des Winkels. Die Methode der vorigen Nummer enthält 
auch einen Beweis dafür, daß man nicht jeden Winkel mit Zirkel und Li- 
neal in drei gleiche Teile teilen kann. Es würde sich darum handeln, aus 
gegebenem cos3« den cos« zu konstruieren. Nun ist 

c08 3a = 4 cos? — 3 cosa. 
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Setzt man 2 cos« — x, so lautet die Gleichung 

2? — 57 —2c0834 = (. 

Wenn sie irreduzibel ist, kann sie nach der Betrachtung der vorigen Num- 

mer nicht durch Quadratwurzelausdrücke gelöst me denn ihr Grad ist 

keine Potenz von 2. Ist z.B. cos3«e=4#, d.h. 3a =, so ist die Gleichung 

—3:—1=0 

im Körper der rationalen a irreduzibel. Denn wäre sie reduzibel, 

so wäre einer der Faktoren linear, d. h. die Gleichung hätte eine rationale 

Wurzel. Als solehe kommt aber nach S.88 nur + 1 in Betracht. Keine 

von beiden Zahlen ist aber eine Lösung der Gleichung. 

d. Realitätsfragen. Wir können die Lösung der Gleichung (2) S. 268 

vereinfachen, indem wir sie als reziproke Gleichung behandeln, d.h. die 

Summe von je zwei reziproken Wurzeln x + 2 als Variable einführen. 

Ist p= 2v + 1, so reduziert sich die en (2) dadurch 2; eine 

Gleichung vom Grade v = n 

A| are ii Wer 0 2, LEN EN a Kuan 

| 

£ ee, af Ze 3% 

(10) (w — 3) (w— 4) gen er 77 2; & 

iz a ed. Ei 

Da unter den Wurzeln der Gleichung (2) ” YR 
2 ER p) 

cosk- Franke Inch 
p p # 

sich diejenigen als reziproke entsprechen, welche zu den Werten k=1 “ 

und p— 1/2 und p—2,...u und p—u= u-+ 1 gehören, so sind die 14 

Wurzeln dieser Gleichung (10) 
In 

2=2cosk - — 
B 

Ben (1) 

Von dieser Gleichung hängt also die Teilung des Kreisumfanges 27 in 

p gleiche Teile ab (Kreisteilungsgleichung). 

Diese Gleichung (10) muß aber (nach 5, 5,6) wieder eine Abelsche 

Gleichung sein. Gehen wir von der Darstellung der Wurzeln der ursprüng- 

liehen Gleichung (2) durch die Reihe (6) aus und suchen wir, welche in „. 

fa ° 

dieser Reihe reziproke sind. Sind @” und @”* ein solches Paar, so muß ’«& 
ar = ar+ rk _ 1 

sein, also (u. % = ri + rk = (0) (mod. p) 

oder r=e—r# 
Bieberbach, Algebra 18 
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NEN: A er tn da r primitive Wurzel der az x»-1 = Ynach (5, 4, 18) 1256 

| x ve (-1).% ee ne men 

nr a en Enten. 

en a Die zwei letzten Kongruenzen geben multipliziert 
pm enas Magtrh } die eranehAr De 

= u 1m) fe ag rt" GT = r* (mod. p). 

Da die a von r bis au p— 2-ten inkongruent sind, 'so muß 

ee — = k(mod.p — 1) se Es sind daher diejenigen Wurzeln der 

Reihe (6) reziprok zueinander, für welche die Exponenten von r bzw.O und 

Pl, 1 und v+J1,... 2 ev—1) und il sind. 

Die Wurzeln der Gleichung (10) lassen sich demnach, wenn wir der 

Kürze halber —, ae — 4 setzen, in die Reihe 

+1 lusa, 2ess2a 2as3H, 
} 2 wslhe] 21 #77 

(11) on a, 2cosra, 2cosr?a,...2cosr’-1a. 

Die Gleichung (10) ist also in der Tat eine Abelsche Gleichung; denn 

cosra läßt sich rational durch cosa Lu Setzt man: 2, „cosa = %, 

ost diese Rah ru ı >’ ee nn Dr E 3 Fi 7 { 818 a6? 3 

2 c0o8a = 2,2 cosra = Or, % cosr:a = 0°T,...2cosr?- a ehr = 

und außerdem 0x = 2cosr’va = 2% cosa, 

P-1 
dr=r’ =—1ist. 

Die rationale Funktion 6 ist hier (5, 2,1), (8)) 7.21 F 

1) Ba= ar rare ED a NN are. 
Die Auflösung der Gleichung kann mithin nach (5, 5, 4) vollzogen werden.?2 

In dieselbe geht noch eine Wurzel y der Gleichung \ 
a, [ck T.26b1) 

ein, welche ebenfalls algebraisch ‘gelöst werden kann. 

We) IH Zugleich hat man hier den in (5, 5, 5) betrachteten Fall, in welehem die 

Koeffizienten von f(x) und O(x) reell sind. Nach dem dort gefundenen 

Satze erfordert mithin die Auflösung der Gleichung (2) oder also die Tei- 

lung des Kreisumfanges in p= 2v + 1 Teile, die Teilung desselben in 

v Teile, die Teilung eines Winkels », der sodann konstruiert werden kann, 

in v Teile und die Ausziehung der Quadratwurzel aus einer reellen Zahl. 

Wie Gauß gezeigt hat, ist diese Zahl (bestimmt durch (13) in (5, 5, 5)) 
immer = p. 
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Ist aber v eine zusammengesetzte Zahl, v = v’v’’v’’’..., so zerfällt die 
Auflösung der Gleichung (2) in die Auflösung A belscher Gleichungen vom 
Gradeu, 0,0", . .. 

6. Beispiele. 1. Gegeben ist 

1 De == 4 a (1) —1=0, rer tet,sd 

woraus nach Entfernung der Wurzel x = 1 e 

(2) ++ +Hr+1=0. 

Diese reziproke Gleichung reduziert sich, indem man x + = = 2 setzt, 

sofort auf die Gleichung 

(3) ?+2—1=0. 

Sind 2,, 2, die Wurzeln derselben, so ergeben sich die vier Wurzeln von (2) 

mittels der Gleichungen 

(4) ®—, +1=0, 2 —ı2,+1=0. 

Wenn wir aber auf die Gleichung (3) die allgemeine Methode anwenden 

wollten, so hätten wir zunächst (nach 5, 5, ) eine primitive Wurzel r der () MIR 

Kongruenz 

(5) #—1=0(md.d) 5 in l25Q 2 
zu suchen. Dieselbe hat zwei primitive Wurzeln 2,3. Nehmen wirr =2, „# 16-4 

so Se m a1) die Wurzeln der Gleichung (3) R n , 
2 == 

(6) 2 cosa, 2cos2a, a = er 
L, 2, 

Wir bilden nun (nach (5, 5, 4), (5)) die symmetrische Funktion 

y= p(2) = (?cosa + «2 cos 2a)}, 

wo « eine Wurzel der ne 2 —1=0, aloe = +1 zu setzen a 

Für = + 1 wird{J [TE RA fern An Kindtgand um ind) ae = If 

et: fürra=—1, 

Yı = 4 cos?a + 4 cos2a —8 cosa csda = + — 2, 1) 

y=1+2+2=5. 

Nach Gleichung (8) in (5, 5, 4) ist mithin die Lösung der Gleichung (8) 

@) nn), 
wo das Zeichen von Y5 beliebig. 

Hier ist p = 2? + 1, daher führt die Lösung nur zu Quadratwurzeln 

und kann demnach auch mittels Zirkel und Lineal konstruiert werden. 

18* 
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In einem Kreis vom Halbmesser 1 mit dem Mittelpunkt O ziehe man 

zwei rechtwinklige Durchmesser AB und CD (Fig. 15); halbiere OD in M 

und schlage MA nach MN um. Dann ist 

2 

Ve NOo= a mi 2.cos 5 

Halbiere ON in Q, so ist 0Q = cos“. Zieht 
3 man also durch Q eine Parallele zu AB, die 

in K den Kreis schneidet, so ist KOQ = = 

und KC ein Fünftel des Kreisumfanges. 

2. Es sei gegeben 
D — 

Tig. 15. (1) "—1=0 
2 

oder, wenn wir die Wurzel £ = 1 entfernen, 

(2) 26 Lg gg a2 ey LI Tr—et(. 

Eine Wurzel der Gleichung ist 
En Ian a 
— cos 7 Tr rsn 

und die Reihe der Wurzeln wird 

De 

Wollen wir die Gleichung als Abelsche Gleichung behandeln, so suchen 

wir die primitiven Wurzeln r der Kongruenz 

2 —1=0 (mod.7); 

dieselbe hat zwei primitive Wurzeln 8, 5. Benutzen wir die kleinerer = 3, 

so ordnen sich die Wurzeln in die Reihe 
2 3 4 5 6 . 

8) q, aB, a? ’ 0, a? ’ u («3 = a), d. 1. 

%) 
(3°) 0, aaa, 0 0 

Da 6 = 2% 3, können wir die Wurzeln in 3 Gruppen zu je 2 abteilen: 

3 6 
NEO (a3 — «) oder also a, a® 

4 (4) a 00 
2 9 © a, a a?, 0oÖ. Setzen wir 

(5) 21 —a4 - as, E72) == a? + at, &z = 02 E= 0 

so sind dies die Wurzeln der Gleichung 

R-2)@-2)@—-2)=0, 
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deren Koeffizienten als symmetrische Funktionen der ech sogleich aus 

den Koeffizienten der Gleichung (2) ergeben. Man erhält 

(6) 2? +2—-%—1=(, 

und die Wurzeln einer Gruppe ergeben sich aus den a 

(a e)(0— a) =0 ve XE xar«“) ) +0 6er 
( Mn 

(le EU ein) Peace „MN ge 
6° f v! ar De h 

’ u-v) uat., ı Ur m a „u | 

LEE (4) and Pt reziproker Wurzeln, und die Gleichung z () 

ist mithin dieselbe Gleichung, die man unmittelbar erhält, wenn man die 

Gleichung (2) als reziproke Gleichung behandelt. Dieselbe gibt die Werte feft Zu 

von 2 
4= Los, 2, = 2008 N‘ 2 = 200 

Statt die 6 Wurzeln in 3 Gruppen zu je 2 Wurzeln zu teilen, könnten wir 

sie auch in 2 Gruppen zu je 3 Wurzeln ordnen, in der Weise 

(8) de 
> a, a, (a == a®) 7 0% a. 

Es sei sodann (6, 5, 2) - 7 2599 
5 e+®+0e!= y 

e+ae+e®=y,, 
(9) 

so sind die Werte von y,, Ys aus der Gleichung 

(y—Yyı)(y—Ys) =0 zu berechnen. Nun ist 

Yı + Ya = Summe der Wurzeln = —1, 

Yy=3 +La=2. Yu dt fr Y a a 

Folglich die Gleichung in y rare tr ra Rt 

(10) yY+y+2=0. 

Die Gleichung, welche die Wurzeln der ersten Gruppe gibt, ist 

(x — eo) (2 — ed) (x — a!) = 0. 

Nun ist _ a+®+ae=yı 

er tat tat= ++ = =—1—y, 

Geo al]. 
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Die drei Wurzeln der ersten Gruppe bestimmen sich also aus der Gleichung 

(7) ey lo y)2 10, 

die der zweiten Gruppe aus 

2,2 —(l+Yy)r—1=0. 

Dies sind wieder Abelsche Gleiehungen. Es genügt, eine Wurzel von 

einer der Gleichungen (7) zu berechnen. 

Die kubischen Gleichungen (6) und (7) können wir nach dem Früheren 

_ durch Wurzelgrößen auflösen. Da sie aber Abelsche Gleichungen sind, 

| ‚ so können wir auch die in (5, 5, 4) gegebene Auflösungsmethode anwenden. 

'Dies soll an der Gleichung (6) gezeigt werden. 

Die Wurzeln derselben bilden die Abelsche ri N Y 274, Ja 3 pin hrrt 
yuk Be Kr aa el 

0202 ® st #) 

nämlich 2 cosa, 2 cos3a, 2 cos3?a, (2 cosd°a — 2 costa)) 

nach (4), (5); oder also 
2 cosa, 2 cos3a, 2 cos2a 

(a = ar). Wir bilden sodann die Funktion fi Yunerfb I, ı} 

(8) yl2)- y= (Acosa +P:2%cos3a + B?-2c0s2a)?, 

wo ß eine Wurzel der Gleichung 

2 Il. 

Die Funktion y muß eine symmetrische Funktion der Wurzel 2 sein. Für 
ß = 1 wird dieselbe Yy= (2) =—1. 

Sind ßı, ß, die imaginären Wurzeln von N —1=0, so gibt die Entwick- 

lung von (8), daß2 = 1,829, pe Y: Br & -Rß ‚usda+ß) 2 022)" 
ww 

Yı = 3 cos?a 4 8 c0o8?3a + 8 cos?2a 

+3-8 [ cos? a - co83a + cos?2a : cosa + cos?3a- cos2a} ß, 

+38 [cosa - 082304 c082a : cos?a + cos3a - cos?2a} ß} 

+6:8cosa: cos2a - cosda. 

Die Koeffizienten von ß,,ß} sind hier symmetrische Funktionen der 

Wurzeln. Denn zerlegen wir jedes Glied in zwei Glieder mittels der 
Formel 

2 cosma - cosna = cos (m + n)a + cos (m —n)a 
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und bemerken, daß cos4a = cos 3a, cos5a = c082a, S d LEI PRLFRLERER 

un 3A» a sl = dr } w— ng 

IS. 

cos? a c0883a — 4: cosa(cos3a + c08 2a) 

c08 a cos? 3a — 4 : cos3a(c0S3a + C08 2a) 

usf. 

und der Koeffizient von 38, ergibt Sich —= 22, 22% ) ebenso der von 3ß} 

als 222 + 22,2%. 

Hiernach wird 

y= 22 +62,23 + 3Pfı 222: +3 (22 + 22,2) 

oder, da + +10, ao = — (+1), 

y= 22 + 6222 —3(222 + 222) + 3Pı (221% — Be 

Nun berechnet sich aus den Koeffizienten von Gleichung (6) (Me ‚a2, er 

23 = — 0) + 30,09, — 30, = —4, ff grtoH L 

22. = mn —-32,=+5, 

PA 

Aa = + 1; h-3l5-2)F 3B,/-2 -5) daher 

(9) DeeelilfengeN £ 
Ebenso Yy—=—-T—T 38. Mithin wird{e(®) 2 

(10) 2=4[-1+-7-7.8, +V—-7-7:3B,) 

oder auch, da a a = = 

1) 2=4{-1+ 3-43: sy 8 + V3+3-3Y- a ns se 

Das ist derselbe Ausdruck, welchen man auch nach der Cardanischen 

Formel erhält. Wie die / auszulegen sind, um die drei Wurzeln z zu er- 

halten, bedarf daher auch keiner weiteren Untersuchung. 

Mittels dieser Werte von z erhält man sodann aus Gleichung (7) die 

Wurzeln . der Gleichung (2). 

3. Es sei 

d) = lo — V=:0,N) 
u 

1) Die Gleichung z!! — 1 —= 0 führt, wenn man die Wurzel = 1 weghebt, auf 

die Gleichung + 22 -+...+1=0 und diese auf eine Abelsche Gleichung 
fünfter Ordnung, welche nach 257ff. zu lösen wäre. Wie die Schwierigkeit dieser 
Lösung zu umgehen, siehe Gauß, Werke II, 8.243, „Circa aequationes puras 
ulterior evolutio‘“, art. 13; auch Bachmann, Lehre von der Kreisteilung, S. 97, 98. 
Übrigens hat schon Vandermonde nach der ihm eigentümlichen allgemeinen Me- 

thode die Wurzeln in der Form »—=#[1-+ 127 ae VYy 2“ 77 er Yyl gefunden 

[durch Zeichenfehler in Gleichung (5) entstellt]. Hist. de l’Acad. de Sc. annese 1771. 

„Surlares.d. &qu.‘, art. 35, p. 415. 
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3 A 
Die Reduktion als reziproke Gleichung führt zu der Gleichung [ +5 

(2) 228 —522— 42° +62 +32 —-1=(, i 

deren Wurzeln in der Form 

2— 2 cosk- E “(k=1,2,...6) enthalten sind. 

<{Ist r eine primitive Wurzel der Kongruenz 

xt =] (mod. 13), 

so können die Wurzeln von (2) in die Reihe geordnet werden | _ —U gesetzt) 
— 
—n 

(3) 2 cosa, 2cosra, 2 cosr?a,...2cosra. 

Die Kongruenz hat die primitiven Wurzeln 2, 6, 7, 11. Wir wählen die 

kleinste und setzen r = 2. Dann ist die Reihe (3) identisch mit der Reihe 

(4) 2 cosa, 2 cos2a, 2 cos4a, 2 cosd5a, 2 cos3a, 2 cosba. 

Wir könnten nun die Abelsche Gleichung (2) nach (5, 5, 4) behandeln. 

Daabervo=6= 2-3, teilen wir (nach (5, 5, 6)) diese Wurzeln in zwei 

Gruppen zu je dreien in der Weise: 

2cosa, 2cosr?a, 2cosrta d.i. 2cosa, 2cos4a, 2 cosda, " 

(5) 
2 cosra, 2cosr’a, A cosr?a 2 cos2a, 2cos5a, 2 cosba. 

DER 
Die Reihen bilden eine Periode, denn esistre=r ” = —1, also 

2 cosrda = 2 cos (—a) = 2 cosa 

und ebenso 2 cosr’a = 2%cos(— ra) = 2%cosra. 

Wir bilden nun die symmetrischen Funktionen 

Yyı = 2cosa + 2% cos4a + 2% cos3a, 
(6) 

Ya = 2 cos2a +2 se cos 6a. 

Dann ist y, + y, die Summe der este, a ve 

M) ytya=—1. 

Ferner ergibt sich, bei Berücksichtigung der Formel N £ N cas Ja= ar 27 

cosa-cosb = %cos(a+b) +4cos(a—b), Lot air 42 

sogleich YıY. = 3x Summe der Wurzen =—— 38. „./en- 

Mithin sind y, und %, durch die Gleichung bestimmt Be £8 

(8) P+y—3=0. er 9 a zum YA 

m” 
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Wir können nun leicht die Gleichung bilden, welcher die drei Wurzeln 

einer Gruppe (5) genügen. Bezeichnen wir die der ersten Reihe kurz mit 

% 1, &%g, X, So ergibt sich aus (6) 

%ı tm + =Yı 

2%, 2%; = Summe der sämtlichen Wurzeln = — 1 

%Lg%; = 2 cos5a +2%cos6ba+2coo2a +2=y,+2=1-—.y.. 
EN: 3: ä 1 NEUN u 1% 

Folglich ist die Gleichung, welche &,, &3, 3 gibt, {- a et et, 

(9) 3— y?—a—l+y =). 

Setzt man darin %, für y,, so gibt sie die Wurzeln der zweiten Reihe (5). 

Statt die Wurzeln in zwei Gruppen zu je dreien zu teilen, können wir 

dieselben auch in drei Gruppen zu je zweien teilen in der Weise: 

[€>7 

2 cosa, 2cos2a d.i. 2cosa, 2cosda 

(10) 2 c03s2a, 2cos2a ,„ 2cos2a, 2 c033«a 

2 cos2a,2cos®a ,„ 2cos4a, 2 cosba. 

Da der Winkel immer mit 2° multipliziert wird, setzt sich jede der drei 

Reihen periodisch fort. 

Es seı nun Yı = %cosa + 2% cosda 

(11) Ya = %cos2a + 2 cosda 

Y; = 2 cos4a + 2 cos6a, 

so ergibt sich Yıt Ya + Y = Summe d.W.=—1 

YıYya = Summe d.W. + 2%cosda + 2cos2a =—1+ % 

und ebenso Yayz =—1+ Ya Yyı = —-1+ Yı- 

Also Yytyytyyı=-I3rtytryty=— 

Ferner Yyy = It Wu -Yyyp-p=—1. 

Folglich sind yı, Y;, y; die Wurzeln der Gleichung 

(12) Y+y—4y+1=!. 

Damit ergeben sich dann sofort die quadratischen Gleichungen, welche 

die zwei Wurzeln einer Reihe bestimmen. Denn es ist 

2 cosa +2cosda = Yı, 

je 

2 cosa-2cosda=?2cosda+2cabe = y = —- Mn. 
1 
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Die Wurzeln der ersten Reihe (10) bestimmen sich also aus 

zu ME) (13) 2? — Yıc-+ y, 

Ersetzt man hierin y, durch y, bzw. y;, so gibt die Gleichung die zwei 

Wurzeln der zweiten bzw. dritten Reihe. 

4. Wir betrachten nun noch die Gleichung 

(1) 1-0, 

von welcher die Teilung des Kreises in 17 Teile abhängt. Hier ist 

p=17= 2% + 1,also, wenınp = 2v +1,v = 2°, Entfernt man die Wur- 

zel 1 und setzt manz2 = rc + =, so reduziert sich die Gleichung auf 

2) 224 27 —72°—-62°+1522+102°— 102 —-4r + 120, 

27 
a (Ko 122 249), 

Um dieselben in eine Reihe der Form x,6x,...0°x zu bringen, nehmen 

wir eine primitive Wurzel r der Kongruenz 

x! = 1 (mod. 17) 

zu Hilfe. Dann stellen sich die Wurzeln G7 

(3) 2cosa, 2cosra, Acosr?a,...2cosr?’a, (2cosrda = 2c0s (—a) = 2%c0sa). 

Die Kongruenz hat 8 primitive Wurzeln 3,5, 6,7,10,11,12,14. Wir 

wählen für r die kleinste r= 3. Dann sind die Reste der Potenzen von 

rnach dem Modul 17 1,3, 9, 10,13, 5,15, 11 

und die Reihe (3) der Wurzeln wird 

(3) 2 cosa, 2 cos3a, 2 cos9a, 2 cos 10a, 2 cos13a, 2 cosda, 

deren Wurzeln Mr DCos= 

—d gesetzt) in der Reihe dar: 

2 cosl5a, 2cosila oder also 

(3) 2 cosa, 2 cos3a, 2 cos8a, 2 cos 7a, 2 cos4a, 2 cosda, 

2 cos 2a, 2 cosba. 

Wir teilen nun die Wurzeln (3) in die 2 Reihen ab 

(4) 2cosa, 2cosr?a, 2cosrta, 2 cosr°a, 

2cosra, 2cosr®a, Acosra, Acosr’a, 

die jede für sich eine Periode bilden, indem 2 cosr®a = 2 cosa, 2 cosr?a 
—= 2 cosra ist. Diese 2 Reihen lassen sich schreiben 

a) 2cosa, 2cos8a, 2cos4a, 9 cos2a, 

2 c08s3a, 2 cosTa, %cosda, 2 cosba. 
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Die Summe der ersten Reihe sei y,, die der zweiten Reihe %,, also 

Yı = 2% cosa + 2% cos8a + 2% cosda + 2 cos2a, 

(5) Ya = 2 c0s3a + 2 cos7a + 2 cosd5a + %cosba, 

so ist Y) + Ya = Summe d. W.= —1. Ferner ergibt sich leicht 

(6) Yıyy = 4x Summe d.W.= —4. 

Die Werte von y,, Y, sind also die Wurzeln der Gleichung 

(7) ul. 
Man könnte nun hier ohne Schwierigkeit die Gleichung vierten Grades 

(8) Hy +) + yE +) = 0 
aufstellen, welche, je nachdem man darin y = y, oder y = 1, setzt, die 

vierin y, oder 3, enthaltenen Wurzeln x bestimmt (6, 5, 2). Es lassen sich 

nämlich hier die Koeffizienten dieser Gleichung als symmetrische Funk- 

tionen dieser vier Wurzeln x leicht durch y, bzw. y, ausdrücken. Aber die 

Aufstellung dieser Gleichung kann vermieden werden. Denn diese Glei- 

chung (8) ist, wie wir wissen, wieder eine Abelsche, und ihre vier Wurzeln 

lassen sich wieder in je zwei Gruppen zu je zwei Wurzeln anordnen. 

So können wir die erste Reihe (4) zerlegen in die Reihen 

9 2 cosa, A cosrta, (2 cosr®a = 2% cosa) 

(9) 2 cosr?a, 2 cosr®a, (2 cosr!!’a = 2 cosr?a) oder also 

’ 9cosa, %eos4a, 

9) 2 c088a,2 cos2a. Setzen wir dann 

uU, = %cosa + 2 cos4a, U, = 2 c0s8a + 2% cos2a, 

so ist u, + U, = Yı, Uıu, = Summe sämtlicher W.= —1; mithin sind 

U, 4, die Wurzeln der Gleichung 

(10) W— yu—1l-=0. 

Ebenso teilen wir die zweite Reihe (4) in die 2 Reihen 

2cosra, 2cosra -d.i.. 2cos3a, 2cosd5a, 

(11) 
2 cosrda, 2cosra ,„ 2cosTa, 3cos6a, 

Setztman v, = 2 cos3a + 2c085a, d% = 2% cosTa + 2%cos6a, 

so ist wieder d, + d%, = Y3,dıdg = — 1 und v,,v, sind mithin durch die 

Gleichung bestimmt 

(12) ”—yv—1l=0 

oder auh,hda „+ y%a=—1, 

(12°) + (1+y)v’—1=)0. 
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Nun ergeben sich aber sogleich auch die einzelnen Wurzeln dieser Paare. 

Denn ist 
% = 2.0084, % = 200840, 

soist &ı + 2, = u, und 2,2, = 2 cos3a + 2cosda — v,. Also sind &,, 2a 

durch die Gleichung bestimmt 

(13) 22 — U + %] = 0. 

Ganz ebenso ergibt sich, daß die zwei Wurzeln 

% = 2 00880, 7, = 2 0082a 

sich aus der Gleichung bestimmen 

”— WU —=0, 

ferner &; = 2 00834, tg = 2 cos 5a aus 

°—- C++ Ww—(, 

&, =2cos 7a, und X, = 2 cos 6a aus 

Re — Er +Uu =. 

Wir brauchen aber nicht alle diese Gleichungen; es reicht hin, die Glei- 

chungen (7), (10), (12) und (13) aufzulösen. Die Wurzeln quadratischer 

Gleichungen lassen sich aber mittels Zirkel und Lineal konstruieren, und 

mithin kann auch der Kreisumfang mittels Zirkel und Lineal 

in 17 gleiche Teile geteilt werden. 

Konstruktionen haben gegeben v.Staudt (Crelles Journ., Bd.24, 5.251), 

H. Schröter (ebda Bd. 75, 8. 18), Serret (Alg. Sup. II, p. 569). Neuer- 

lich hat noch L. Gerard eine Konstruktion gegeben mittels des Zirkels 

allein (Bulletin de Math. Elem. von B. Niewenglowski 2”° annde 1897, 
p. 164). 

Siebentes Kapitel. 

Substitutionsgruppen. 

1. Substitutionen. In (5, 1, 6) wurde darauf hingewiesen, welchen 
Vorteil es für die algebraische Auflösung einer Gleichung hat, wenn man 
Funktionen der Wurzeln kennt, die bei gewissen Permutationen ungeändert 
bleiben, während sie bei andern Permutationen sich ändern. Das führt 
und dazu, uns jetzt überhaupt mit den Permutationen nun ihrem Einfluß 
auf gewisse Funktionen zu beschäftigen. 



5,7, 1. Substitutionen 285 

Wir denken uns n Elemente, etwa die n Wurzeln einer Gleichung; wir 

wollen diese Elemente numerieren und demgemäß einfach durch ihre 

Nummern 
ee Ser 

bezeichnen. Wenn man jedes der n Elemente wieder durch eines der n Ele- 

mente ersetzt, derart, daß zwei verschiedene Elemente auch stets durch 

zwei verschiedene Elemente ersetzt werden, so nennt man das eine Sub- 

stitution. Haben wir z. B. 4 Elemente 1, 2, 3, 4 und ersetzen wir 

das Element 1 durch das Element 3, 

’ 2 „ 2) BE) 2, 

”» 3 BE) >) 2. 4, 

2 ’ 4 „ >) ’ 1, 

so liegt eine Substitution vor, die wir durch 

Rare 

3241 

bezeichnen; es steht hier einfach unter jedem Element dasjenige, durch 

welches es ersetzt wird. Die Symbole 

ee: ee - (13%) 

Di Ba Na 9) 1 4008 ir Fa 

bedeuten alle die gleiche Substitution; denn in jedem steht unter dem 

Element 1 das Element 3, unter dem Element 2 das Element 2 usw. 

Bein Elementen kann jede Substitution in der Form 

( DEIN 

Uns 

geschrieben werden, wobei in der zweiten Zeile irgendeine Permutation 

der Nummern 1,2,...,nsteht. Da esn! Permutationen gibt, gibt es auch 

n! Substitutionen. 

Wir werden Substitutionen auch kurz durch große lateinische Buch- 

staben bezeichnen. Speziell die Substitution, welche jedes Element durch 

sich selbst ersetzt, bezeichnen wir durch E; also: 

" ( 28 24 
NE) 

Liegen zwei Substitutionen S, T vor, etwa 

9322) a) 

DATE AR 
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so kann man daraus eine ganz bestimmte dritte Substitution herleiten, in- 

dem man zuerst die durch $ und dann noch die durch T geforderte Er- 

setzung der Elemente vornimmt. Vermöge $ werden die Elemente 1, 2,3, 4 

in dieser Reihenfolge ersetzt durch 3, 2, 4,1, und diese werden durch die 

Substitution T, die auch in der Form 

Be 

\ Se a) 

geschrieben werden kann, der Reihe nach ersetzt durch 2, 3,1,4. Man ge- 

langt daher zu der Substitution 

1234 

( 81 ‚) { 

die das Produkt TS heißt. Das Produkt ist im allgemeinen nicht kom- 

mutativ; denn es ist z. B. in unserem Fall 

a Trolenaeee ren ee] 

934 1) M 392 1 Na) \aB or) Er 

also von TS verschieden. 

Man sieht sofort, daß bei dieser Art von Multiplikation die Substitution 

E eine analoge Rolle spielt wie die Zahl 1 bei der Zahlenmultiplikation; 

es ist nämlich Se 

und daher kann E als Faktor in einem Produkt stets weggelassen werden. 

2. Rechenregeln. Für die Multiplikation gilt das assoziative Gesetz, 

UDS—UTS) 
Denn es möge 

vermöge S das Element «a ersetzt werden durch b, 

BE) 1; ”. > b 2} 3 7 C, 

7 U b>} , C 

so daß also s-(,). el) o-() 
Dep Open. ee 

geschrieben werden kann. Dann ist aber 

DRER 
UT IRUBTLS a 5 

Dass EN N/A ES 
und also uns-( )( I=\ ): 

RAN be nnd den 

REN a 
UITS)\ Tau li, 
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Die Produkte (UT)S und U(T'S) bezeichnen also wirklich dieselbe Sub 
stitution. 

Aus dem assoziativen Gesetz folgt sofort, daß ein Produkt von beliebig 

vielen Faktoren unabhängig ist von der Art, wie die Faktoren durch Ord- 

nungsklammern zusammengefaßt werden; man läßt daher die Ordnungs- 

klammern meistens weg. Dagegen darf keine Faktorenumstellung statt- 

finden. 

Ein Produkt von k gleichen Faktoren S heißt die k-te Potenz von S und 

wird mit S* bezeichnet (St = S); offenbar gelten dann die Formeln 

SRST — Se+1, (Smı — Sri, 

ID IS 
Zu jeder Substitution S = | ? ) 

G, Us 05.2.0 

gibt es eine und nur eine Substitution 7 derart, daß ST = Eist; das ist 

nämlich augenscheinlich die Substitution 

man bezeichnet sie durch S-!. Offenbar ıst dann auch TS = E, und zwar 

ist T wieder die einzige Substitution, die das leistet. Man hat hiernach die 

Gleichungen Bi gıc m 

Die k-te Potenz von S-! wird durch S=-* bezeichnet; ferner versteht 

man unter S® die Substitution E. Hiernach ist nun die Potenz für be- 

liebige ganzzahlige Exponenten ganz entsprechend wie bei Zahlen defi- 

niert, und genau wie bei Zahlen beweist man die Formeln 

SET — Sr+t, (Sm) — Set, 

auch wenn nicht beide Exponenten positiv sind. 

Ist S eine Substitution, so können die Potenzen 

DIDI DD 

nicht alle voneinander verschieden sein, weil es ja nur endlich viele Sub- 

stitutionen gibt. Seietwa S’ = S”, wol > m. Indem man diese Gleichung 

mit S-” multipliziert, erhält man 

SEHR 

Von jeder Substitution ist also eine gewisse Potenz gleich E. Ist k der 

kleinste positive Exponent, für den S* = E ist, so heißt k die Ordnung 

von S. Offenbar sind dann die k Substitutionen 

Bea 
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alle voneinander verschieden. Denn wäre etwa ST = $”, wo 

k-lz1>m2>0, 

so wäre auch S"- "= E; also\ wäre die Ordnung von $ höchstens gleich 

!— m, daher kleiner als k. 

3. Zerlegung in Zyklen. Für die Substitutionen ist noch eine zweite 

Schreibweise im Gebrauch, die wir an dem Beispiel (n = 8): 

1234567 .) 

(i 4182635 

erklären wollen. Hier wird 1 ersetzt durch 7, 7 durch 3, 3 durch 1; es 

werden also die drei Elemente 1, 7, 3 zyklisch vertauscht. Ferner wird 

2 ersetzt durch 4, 4 durch 8, 8 durch 5, 5 durch 2; es werden also die Ele- 

mente 2, 4, 8, 5 zyklisch vertauscht. Schließlich bleibt 6 ungeändert. Man 
bezeichnet daher die Substitution auch durch das Zeichen 

(1,7, 3)(2, 4, 8,5) (6). 

Bei dieser Schreibweise mit Zyklen kann ein eingliedriger Zyklus, hier (6), 
auch wegbleiben, da er ja nur besagt, daß das betreffende Element nicht 
geändert wird. Ferner können die Elemente innerhalb eines Zyklus selbst 
wieder zyklisch vertauscht werden, und schließlich ist es gleichgültig, in 
welcher Reihenfolge man die Zyklen schreibt. Beispielsweise könnte man 
die obige Substitution auch in den Gestalten 

(4, 8,5, 2) (7, 8,1), 

(8, 5, 2,4) (6) (1,7, 3) 

und noch in vielen andern Gestalten schreiben. 
Man sieht leicht, daß hierbei das Nebeneinanderschreiben von Zyklen 

wirkliche Multiplikation in dem oben definierten Sinn ist. Das Produkt 
der drei Substitutionen 

(8, 5, 2, 4), (6), (1, 7, 3) 

ist eben (8, 5, 2, 4) (6) (1,7, 3); die Faktoren sind hier vertauschbar, was 
aber nur daher kommt, daß kein Element zugleich in zwei Zyklen auftritt. 
Ein eingliedriger Zyklus bedeutet offenbar die Substitution E, und daher 
ist es nicht zu verwundern, daß er als Faktor weggelassen werden kann. 

4. Substitutionsgruppen. Definition. Eine Gesamtheit von Sub- 
stitutionen von n Elementen heißt eine Gruppe, wenn, unter 
S, T irgend zwei (nicht notwendig verschiedene) Substitu- 
tionen der Gesamtheit verstanden, stets auch die Produkte 
ST und TS der Gesamtheit angehören. Die Anzahl der Sub- 
stitutionen heißt die Ordnung der Grappea u 
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Hiernach ist z. B. die Gesamtheit aller n! Substitutionen eine Gruppe; 

ihre Ordnung ist n! Es gibt aber auch Gruppen von kleinerer Ordnung. 
4. B. bilden die vier Substitutionen 

E, (1,2), 8, &), (1,2) 8, 4) 

offenbar eine Gruppe. Ja die Substitution E# bildet für sich allein schon 

eine Gruppe, offenbar die einzige vom Grad 1; wir nennen sie die Ein- 

heitsgruppe. 

Wir bezeichnen Gruppen durch große deutsche Buchstaben, speziell die 

Einheitsgruppe mit &. Ist & eine Gruppe und $ eine Substitution von ©, 
so gehören nach der Gruppendefinition auch die Potenzen 

DD De 

der Gruppe an. Da unter diesen Potenzen nach (5, 7, 2) auch die Substi- 

tution E vorkommt, so enthält jede Gruppe die Substitution E. Ist S eine 

Substitution von der Ordnung k, so ist S-!= S*-1; daher kommt auch S-1 

unter den Substitutionen der Gruppe vor. Ferner bilden die Substitu- 

tionen 
SE SSEg gr 

selbst eine Gruppe von der Ordnung k. 

Sei jetzt @(Xı, 2a, .... ., £,) eine ganze Funktion von n Variabeln. Wenn 

man auf die Funktion eine Substitution S anwendet, d.h. wenn man die 

Variabeln in gemäß der Substitution S permutiert, so wird die Funktion 

entweder dieselbe bleiben oder eine andre werden. Beispielsweise fürn = 4 

geht die Funktion 2,2%, 4 2,2%, durch die Substitution (1 423) über in 

TyXz + 25; sie bleibt also dieselbe Funktion. Durch die Substitution 

(1342) dagegen geht sie über in x3%, + 24%, also in eine andere Funktion. 

Man sieht leicht, daß die Gesamtheit aller Substitutionen, durch die eine 

Funktion in sich selbst übergeht, eine Gruppe bildet. Denn wenn die Funk- 

tion durch S und T nicht geändert wird, so wird sie durch ST auch nicht 

geändert. 

Eine symmetrische Funktion von n Variabeln bleibt offenbar bei allen 

n! Substitutionen unverändert; deshalb wird die Gruppe aller n! Sub- 

stitutionen als die symmetrische Gruppe bezeichnet. Das Differenzen- 

produkt 
9%, .-.3%) = (1 — 2%) (1 — 8) “li 3) 

(12 — 23)... (%— %,) 

(In-ı >= En) 

Bieberbach Algebra 19 
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kann bei jeder Substitution nur in @(&1, - » +» %n) oder in — @(&1,.. ., 2.) 

übergehen; es ist eine alternierende Funktion. Die Gruppe, bei deren 

Substitutionen es unverändert bleibt, heißt daher die alternierende 

Gruppe. Sie besteht aus allen Substitutionen der Form 

1m2 Be ren ) 

(m RR 

bei denen die Permutation der zweiten Zeile eine gerade Permutation 

ist; sie enthält also 4n! Substitutionen (vgl. 44). 

5. Untergruppen. Bildet ein Teil der Substitutionen einer Gruppe © für 

sich schon eine Gruppe U, so heißt U eine Untergruppe von ©. Wir be- 

weisen jetzt den wichtigen Satz: Die Ordnung einer Untergruppe 

ist ein Teiler von der Ordnung der Gruppe. 

Sei & eine Gruppe und U eine Untergruppe; letztere sei von der Ord- 

nung k und bestehe aus den k Substitutionen 

(1) DD 

Ist $ eine weitere (nieht zu U gehörige) Substitution von ©, so sind 

(2) ERSEN ERNST BR 

ebenfalls Substitutionen von ©. Sie sind voneinander verschieden; denn 

wäre etwa U,S=U,S, (A+ u), so würde hieraus, indem man rechtsseitig 

mit S-1 multipliziert, folgen: U, = U,, was aber falsch ist. Die Substitu- 

tionen (2) sind aber auch durchweg von den Substitutionen (1) ver- 

schieden; denn wäre etwa U,S = U,, so wäre 8 = Ur u also wäre S 

eine Substitution der Untergruppe (1), was nicht sein sollte. Ist nun etwa 

mit den Substitutionen (1) und (2) die ganze Gruppe © erschöpft, so ist 

ihre Ordnung gleich 2k, und hiervon ist die Ordnung von U ein Teiler. 

Ist aber die Gruppe & mit den Substitutionen (1), (2) noch nicht er- 

schöpft, so sei T eine weitere Substitution von ©. Dann enthält © auch 

die weiteren Substitutionen 

(3) UT, LT, CRORGE UT, 

und man sieht wieder leicht, daß diese sowohl voneinander als von den 

Substitutionen (1), (2) verschieden sind. Ist nun mit den Substitutionen 

(1), (2), (3) die ganze Gruppe © erschöpft, so ist ihre Ordnung gleich 3k, 

und davon ist k wieder ein Teiler. Ist sie aber noch nicht erschöpft, so 
kann man analog weiterschließen. 

Hiernach ist, wenn © eine Gruppe von der Ordnung l und U eine Unter- 

gruppe von & von der Ordnung kist, der Quotient ” eine ganze Zahl; man 
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nennt sie den Index von U in bezug auf &. Die Gesamtheit der Sub- 

stitutionen (2) oder (3) nennt man eine Nebengruppe von U und bezeichnet 

sie mit US bzw. UT; jedoch ist eine Nebengruppe keine Gruppe. Sie 

müßte ja dann E enthalten, das aber in U vorkommt. Die ganze Gruppe 

& besteht aus den Substitutionen (1), (2), (3) usw.; sie erscheint hiernach 

gewissermaßen in Nebengruppen zerlegt, was man durch die leicht ver- 

ständliche Formel andeutet: 

$G=-U+US+UT+--- 

Die Anzahl der rechts stehenden Nebengruppen (1 mitgerechnet) ist 

gleich dem Index. 

6. Konjugierte Untergruppen. Hat man zwei Gruppen von gleicher Ord- 

Bus ER RR 
DETSSISAT 

so ist jedes Produkt S,S, wieder ein S,, und jedes Produkt T,T, wieder 

ein T,. Die Indizes p und qsind dabei durch A und u bestimmt; wir setzen 

etwap = o(A,u),q = y(A, u). Wenn dann für jedes Indexpaar A, u stets 

p(A,u) = w(A, u) ist, so heißen die beiden Gruppen isomorph auf- 

einander bezogen. Zwei Gruppen heißen zueinander isomorph, wenn sie 

sich durch passende Numerierung ihrer Substitutionen isomorph auf- 

einander beziehen lassen; unter Umständen ist das auf mehrere Arten 

möglich. 

Isomorphe Gruppen erhält man z. B. auf folgende Art. Sei 

(1) DS 

eine Gruppe, und sei V irgendeine Substitution. Dann bilden die Sub- 

stitutionen 

(2) De Te ysr 0 Deyıy 

wieder eine Gruppe, sie ist in dieser Anordnung isomorph auf die vorige 

bezogen. Denn wenn etwa S,S, = S,, so ist auch 

TI, = V""SVV18, 7 = VT18SES,V/ = V788,V 

sy ı9. 0-71, 

Ist & die Gruppe (1), so bezeichnet man die isomorphe Gruppe (2) mit 

V"ı®8V. 

Sei nun & eine Gruppe und U eine Untergruppe von ©. Ist dann V/ 

irgendeine Substitution von ©, so ist die zu U isomorphe Gruppe V-UV 

offenbar wieder eine Untergruppe von ©; man nennt sie eine zu U kon- 

1a) 
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jugierte Untergruppe von ©. Ist & von der Ordnung I, so kann man für 

V alle I Substitutionen von & wählen und erhält so Z konjugierte Unter- 

gruppen, die aber teilweise miteinander identisch sein werden. Wenn man 

nämlich & in Nebengruppen zerlegt, 

= U+US, +1, +: + Sr; 

so sieht man sofort, daß mit den Gruppen 

1, SAlSE Ba lee rise 

bereits alle zu U konjugierten Untergruppen von © erschöpft sind. Aber 

selbst diese brauchen nicht voneinander verschieden zu sein. Eine Unter- 

gruppe heißt ausgezeichnet, wenn sie mit allen konjugierten Unter- 

gruppen identisch ist. 

Beispielsweise ist die Einheitsgruppe & eine ausgezeichnete Untergruppe 

von jeder Gruppe. Als weiteres Beispiel betrachten wir die Gruppe aller 

6 Substitutionen von drei Elementen: 

#,.(152), 1,9, 282 29): 

Die beiden Substitutionen E, (1, 2) bilden eine Untergruppe U; sie ist aber 

nicht ausgezeichnet, weil die konjugierte Untergruppe (1, 3)-1U(1, 3) aus 

den Substitutionen 

Fund (1,3) 2(1,2)(1, 3) 12,83) 

besteht, also nicht mit W identisch ist. Dagegen ist die Untergruppe 

B..(d,2,3), (1,93, 2) 

ausgezeichnet. Denn jede dazu konjugierte muß wieder die Ordnung 8 be- 
sitzen. Man sieht aber leicht, daß es keine anderen Untergruppen der 
Ordnung 3 gibt. 

?. Beispiele von ausgezeichneten Untergruppen. Zunächst ist die alter- 
nierende Gruppe, d.i. die Gruppe der geraden Vertauschungen von n 
Dingen eine ausgezeichnete Untergruppe der symmetrischen Gruppe von 
n Dingen. Denn mit jeder geraden Substitution X ist auch S-1X& eine 
gerade Substitution, wenn © eine beliebige Substitution bedeutet. 

Für n = 3 hat die alternierende Gruppe die Ordnung 8. Da 3 Primzahl 
ist, so besitzt sie außer der Identität keine Untergruppe. 

Für n = 4 besteht die alternierende Gruppe aus den 12 Substitutionen 

E, (12) (34), (13) (24), (14) (23) 

(123), (134), (248), (142), 

(132), (234), (124), (148). 
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Die vier ersten dieser Substitutionen 

E, (12) (84), (13) (24), (14) (28) 
bilden eine Gruppe, die sogenannte Vierergruppe. Sie ist eine ausgezeich- 

nete Untergruppe der alternierenden Gruppen, wie man leicht bestätigt. 

Eine ausgezeichnete Gruppe der Vierergruppe ist wieder von 

E, (12) (34) 

oder von E, (135) (24) 

oder von E, (14) (23) gebildet. 

S. Maximale ausgezeichnete Untergruppen. Eine ausgezeichnete Unter- 

gruppe U von © heißt maximal, wenn es keine ausgezeichnete Unter- 

gruppe 3 von © gibt, die selbst U als Untergruppe und dann eo ipso als 

ausgezeichnete enthält. 

Eine ausgezeichnete Untergruppe ist z. B. sicher maximal, wenn ihr 

Index eine Primzahl ist. Denn ist & die Gruppe und U eine ausgezeichnete 

Untergruppe, die nicht maximal ist, so gibt es „zwischen‘‘ & und U noch 

eine Gruppe & derart, daß U eine ausgezeichnete Untergruppe von 3 und 

3 eine ausgezeichnete Untergruppe von & ist./Sind dann k, m, ! die Grade 

von U, 3, ©, so sind = . = ganze Zahlen größer als 1, und der Index von U 

in bezug auf © ist - = . . = also keine Primzahl. 

Sei jetzt ©, eine Gruppe und ©, eine maximale ausgezeichnete Unter- 

gruppe von Ö,, sodann ®, eine maximale ausgezeichnete Untergruppe von 

&,, sodann &, eine maximale ausgezeichnete Untergruppe von ©, usw. 

Man kann das so lange fortsetzen, bis man zu der Einheitsgruppe & 

kommt. So erhält man die Reihe von Gruppen 

(1) Go; ©}, Gare, G,; 

deren jede eine maximale ausgezeiehnete Untergruppe der vorausgehenden 

ist und deren letzte &, = & ist. Man nennt die Gruppe (1) eine Kom- 

positionsreihe von ®,. Ist j, der Index von ®, in bezug auf ©,_,, 

so gehört zu der Kompositionsreihe (1) die Indexreihe 

(2) PEHFERBBFET: 
Zu einer Gruppe ©, kann man häufig auf verschiedene Arten Kom- 

positionsreihen bilden. Sei etwa 

8) Oo, 91, 92» + Da 
eine zweite Kompositionsreihe von ©, und sei 

(4) legal, 
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die zugehörige Indexreihe. Dann besagt ein wichtiger Satz von 0. Jordan, 
den wir nur erwähnen, aber nicht beweisen werden: Esistq = p unddie 

Indexreihe (4) enthält, von der Reihenfolge abgesehen, genau 

die gleiehen Zahlen wie die Indexreihe (2). 

9. Einfachheit der alternierenden Gruppe für n > 4. Die alternierende 

Gruppe von n Elementen ist fürn > 4 einfach, d.h. sie besitzt keine von der 

Identität verschiedene ausgezeichnete Untergruppe. Dieser nun gleich zu 

beweisende Satz ist von erheblicher Wichtigkeit für die Algebra, enthält 

| er doch, wie wir sehen werden, die Erkenntnis, daß man die allgemeinen 

Gleichungen vom fünften und höheren Grad nicht auflösen kann, wenn 

man nur Radikale neben den rationalen Operationen endlicher Anzahl 

verwendet. Zum Beweis nehmen wir an, U sei eine ausgezeichnete 

_ Untergruppe der alternierenden Gruppe. Dann beweisen wir der Reihe 

nach die folgenden fünf Sätze, deren letzter grade unsere Behauptung ist: 

A. WU kann nicht alle dreigliedrigen Zyklen, d.h. Substitutionen der 

Form (a, b, c) enthalten. 

B. U kann gar keinen dreigliedrigen Zyklus enthalten. 

I. U enthält keine Substitution, in deren Schreibweise mit Zyklen 

ein mehr als dreigliedriger Zyklus vorkommt. Vgl. (5, 7,3). 

A. U enthält keine Substitution, in deren Schreibweise mit Zyklen ein 

zweigliedriger Zyklus vorkommt. 

E. U enthält nur die Substitution P. 

Beweiszu A. Jeder mehrgliedrige Zyklus kann als Produkt von zwei- 

gliedrigen Zyklen dargestellt werden, z. B. 

(1,2,8,..,.09) =(1,2)(1,3)...(1,p). 

Da jede Substitution sich als Produkt von Zyklen schreiben läßt (5,7583 
kann sie also auch als Produkt von lauter zweigliedrigen Zyklen geschrie- 
ben werden. Die alternierende Gruppe besteht dann aus allen Substitu- 
tionen, die ein Produkt von einer geraden Anzahl zweigliedriger Zyklen 
sind. Speziell ist jeder dreigliedrige Zyklus ein Produkt von zwei zwei- 
gliedrigen Zyklen, z. B. 

(1, 2, 3) as (4, 2) (1, 3), 

gehört also der alternierenden Gruppe an. Umgekehrt kann aber ein Pro- 
dukt von zwei zweigliedrigen Zyklen stets auch durch dreigliedrige Zyklen 
dargestellt werden, z. B. 

(1,2)(,3) = (1,2, 3) 

(1,2)(8,4) = (1,2, 8) (1,4, 3). 
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Daher ist jede Substitution der alternierenden Gruppe entweder ein drei- 

gliedriger Zyklus oder ein Produkt von dreigliedrigen Zyklen. Wenn also 

U alle dreigliedrigen Zyklen enthält, so enthält U bereits die ganze alter- 
nierende Gruppe und kann keine Untergruppe von ihr sein. 

Beweis zu B. Wenn ll einen dreigliedrigen Zyklus enthält, z. B. den 

Zyklus (1,2, 3), und wenn (k, l, m) irgendein dreigliedriger Zyklus ist, so 

enthält die alternierende Gruppe eine der beiden Substitutionen 

(a N 

k,l, m!’ \k,m, 1) 

Daher enthält U als ausgezeichnete Untergruppe der alternierenden 

Gruppe jedenfalls eine der beiden Substitutionen 

Mans: 1,2, 8° 
| a2, 3) ( )-& lm) 

Mm k, Il, m Kun, 

Nee 1223 
d En a 
E a) a) .. 

und folglich im zweiten Fall auch (k, m, I)? = (k,l,m). Wenn also U 

einen dreigliedrigen Zyklus enthält, so enthält U jeden dreigliedrigen Zy- 

klus, was nach A nicht möglich ist. 

Beweiszu/. Wenn U eine Substitution S enthält, deren Schreibweise 

mit Zyklen einen mehr als dreigliedrigen Zyklus aufweist, etwa 

OT 

wo L das Produkt der andern Zyklen von $ bedeutet, so enthält U als 

ausgezeichnete Untergruppe der alternierenden Gruppe auch die Sub- 

stitution (1,2, 3)-18(1,2, 8) 

und also auch die Substitution 

Se A) 

7045902, 1,172 (1,3,2)(1, 273.4... )2(1,2,3) 

204,3, 2, 1)11,8,2)(1, 2,8, 492..)(1, 2,0, lern 

also einen dreigliedrigen Zyklus, was nach B nicht sein kann. 

Beweis zu A. Benutzen wir für eine Substitution S von U die Schreib- 

weise mit Zyklen), so können es nach /'nur zwei- und dreigliedrige Zyklen 

sein. Wenn dabei zweigliedrige Zyklen wirklich vorkommen, so kommen 

1) Dabei haben also nie zwei Zyklen ein Element gemein. 
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sie, da S der alternierenden Gruppe angehört, in gerader Zahl vor, und 

S® ist dann das Produkt aller zweigliedrigen Zyklen von $; sei etwa 

83 = (1,2)(8,4)M, 

wo M das Produkt der andern zweigliedrigen Zyklen ist. Dann enthält, 

dan > 4 sein soll und also außer den Elementen 1, 2, 3, 4 mindestens noch 

eines, etwa 5, vorhanden ist, U auch die Substitution 

(1.2,5)218.(1,2,5) 

und also auch die Substitution 

Ss 2(1,2,5).8°21,.20) 

— (1,2)(8, )M-!(1,5,2)(1,2)(8,4)M (1, 2, 5). 

Das ist aber, wenn in M das Element 5 nicht vorkommt, die Substitution 

(1,5, 2), also ein dreigliedriger Zyklus, was nach B nicht möglich ist. 

Wenn aber M das Element 5, also etwa den Zyklus (5, 6) enthält, so ist 

Obiges die Substitution (1, 6)(2,5); daher enthält jetzt U auch die Sub- 

stitution 

(1,5, 3721, 6), @,5)(1, 5,3) = (2, 8,6) 

und also auch die Substitution 

KRONE Dh 

das ist aber wieder ein fünfgliedriger Zyklus, was nicht möglich ist. 

Beweis zu E. Wenn U eine von HE verschiedene Substitution S ent- 

hält, so können in ihrer Schreibweise mit Zyklen nach I’ und A nur drei- 

gliedrige Zyklen auftreten, und zwar müssen es nach B mindestens zwei 

sein. Sei also etwa 

S= (1,2,3)(4,5,6)N, 

wo N das Produkt der andern dreigliedrigen Zyklen ist. Dann enthält U 
auch die Substitution 

(1,4,2)-18(1, 4, 2) 

= (1,2,4)(1,2,3)(4,5,6)N(1,4,2) = (1,5, 6)(2,4,3) N 

und also auch die Substitution 

8.2(1,5,6)(2,4,8) N 

= (1,3, 2) (4, 6,5) N-1(1,5,6)(2,4, 3) N 

= (1,3,2) (4, 6,5)(1,5,6)(2,4,8) = (1,4, 2, 6,3), 

also einen fünfgliedrigen Zyklus, was nach 7’ nicht möglich ist. 
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Achtes Kapitel. 

Anwendung der Gruppentheorie auf die Theorie der 

algebraischen Gleichungen. 

1. Körper, Reduzibilität, Irreduzibilität. Eine Gesamtheit von Größen 

bildet nach S.31 einen Körper, wenn man mit denselben nach den vier 

Grundprozessen Addition, Multiplikation, Subtraktion, Division rechnen 

kann, ohne dem Körper nicht angehörige Elemente zu erhalten. Die Ele- 

mente des Körpers können Zahlen oder Funktionen gewisser Variabler 

oder teils Zahlen, teils Funktionen sein. Jedenfalls enthält ein jeder Kör- 

per die Gesamtheit aller rationalen Zahlen, da die Division eines Elementes 

durch sich selbst die Zahl 1 liefert, aus der man vermittelst der vier 

Rechenoperationen alle anderen rationalen Zahlen gewinnen kann. Wir 

werden sagen, ein Polynom oder eine durch Nullsetzen desselben ent- 

stehende algebraische Gleichung gehöre einem Körper K an, wenn die 

Koeffizienten des Polynoms Elemente des Körpers sind. Das Polynom 

heißt in K reduzibel, wenn man es in mehrere ganze ra rationale Faktoren " 

von mindestens erstem Grade zerlegen kann, die auch K angehören. An- 

derenfalls heißt das Polynom irreduzibel. 

Nachdem wir so an die schon früher eingeführten und schon mehrfach 

benutzten Begriffe erinnert haben, fügen wir noch einiges Erläuternde 

hinzu. 

Die im vorigen Kapitel eingeführten Gruppen erinnern in etwas an die 

eben betrachteten Körper. Bei den Gruppen liegt auch eine Gesamtheit 

von Elementen — in endlicher Anzahl — Substitutionen — vor. Es ist für 

je zwei geordnete Elemente a, b eine Operation — Produkt — a b erklärt, 

die folgenden Regeln genügt: 

1. ab ist erklärt und gehört wieder der Gruppe an. 

2. Es gilt das assoziative Gesetz. 

3. Sind a, b zwei Elemente der Gruppe, so sind die Gleichungen 

Bored,to- 

stets durch genau je ein Element der Gruppe lösbar. 

Analog bei den Körpern: Für die Elemente des Körpers sind zwei Ope- 

rationen, Addition und Multiplikation erklärt, derart daß 

1. Summe und Produkt zweier Elemente stets wieder ein eindeutig be- 

stimmtes Element des Körpers ergeben, 

2. kommutatives, assioziatives und distributives Gesetz für diese Ope- 

rationen gelten, 
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3. die Gleichungen a+tzi=b 

ar 

stets durch genau ein Element x des Körpers lösbar sind, es sei denn « die 

Lösung der Gleichung 
ata=u. 

Wie Pilze nach dem Regen schießen heute Verallgemeinerungen dieses 

klassischen von Dedekind geschaffenen Körperbegriffes aus dem Boden. 

Diese Erweiterungen liegen z. B. darin, daß man bei 2. auf das kommu- 

tative Gesetz verzichtet. 

Bürgerrecht besitzen auch bereits die Ringe. Man erhält sie, wenn man 

die drei Grundeigenschaften der Körper mit Ausnahme der Lösbarkeit 

von ax = ß fordert. 

2. Adjunktion. Man kann aus einem Körper K durch Adjunktion einer 

ihm nicht angehörigen Größe « einen neuen Körper K(«) erzeugen. Er 

besteht nach Definition aus den rationalen Funktionen von «a, deren Koef- 

fizienten dem Körper K angehören. 

Insbesondere sei nun /(x) eine Gleichung aus K mit lauter verschiedenen 

Wurzeln oe... . Wir adjungieren diese sämtlich dem Körper K. Wir 

wollen uns N en daß die Adjunktion diesern Wurzeln 

gleichwertig ist mit der Adjunktion einer einzigen passend 

gewählten linearen Verbindung 

H= hıcı Air h,a, m r Ann 

mit Koeffizienten h,... h, aus K. 

Zum Beweis stellen wir zunächst fest, daß manh, ... h„ so wählen kann, 

daß die n! Ausdrücke, die man aus h durch Permutation der «a, erhalten 

kann, sämtlich verschieden werden. Man nehme z.B. für h,...h, die 

aufeinanderfolgenden Potenzen einer Zahl h. Sollen dann zwei der n! 

Werte von H einander gleich sein, so muß eine nicht identisch erfüllte 

Gleichung höchstens n-ten Grades für h bestehen. Daher gibt es nur 

endlich viele Werte von h, für die zwei der n! Werte von H gleich sein 

können. Wählt man also für h eine andere Zahl aus K, so fallen die 

n! Werte von H alle verschieden aus. 

Um nun zu beweisen, daß der Körper K(a,...«a,), mit dem Körper 
K (H) identisch ist, wenn H n! verschiedene Werte annimmt, stützen wir 

uns auf den folgenden Satz: 

Ist f(a)...«„) irgendeine rationale Funktion der Wurzeln 
und H(a,...«a,) eine rationale Funktion der Wurzeln, die bei 
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Anwendung dern! Substitutionen der symmetrischen Gruppe 

S in n! verschiedene Größen übergeht, so ist f eine rationale 

Funktion von H, die ebenso wie f und H Koeffizienten aus 

K besitzt. 

Seien nämlich VATER TH 

und Bo n!—1 

die n! Werte, in die fund H übergehen, und setzt man 

en veveh). nn —>n.s) G; n OR url 
so ist dies, ebenso wie Y u LH. LEE - fur EAN. 

FA CA) 2) : [ FH, 
Gt Gyfı C)fnı- ‚a HH MA) stud SH N; u 

eine symmetrische Funktion der « und daher eine rationale Funktion von G ke = ( 
t mit Koeffizienten aus K. Daher ist für? — H ( t-H ) 

en L(H) 3) RE 6 
Ze). By zn 

womit die Behauptung schon bewiesen ist. 

Insbesondere ist also jedes «, durch H mit Koeffizienten aus K darstell- 

bar. Daher ist der " Körper K ( K an -: %,) mit ( den , Körper Fe (A) identisch, 

wie wir beweisen wollten. [ Wehen PAI2 an Ian 33 
i 

3. Galoissehe Körper. Sind Ho H. die n! Werte von H, so ge- 

nügen sie einer K angehörigen Gleichung (Paoxlerora 2154) 

Pi)= k@-Hk&@-B)...@-H,_)=0 
z 

vom Grade n!. g sei der Grad desjenigen in K irreduziblen Faktors Ge) 4370, 

derselben, den H zu Null macht.”Dann nennt man gden Grad des Kör- 

pers K(H) und diesen selbst einen Galoisschen Körper. Das charak- 

teristische Merkmal eines Galoisschen Körpers wird darin gesehen, daß die 

übrigen Wurzeln der irreduziblen Gleichung, welcher H genügt, sich (nach 

(5, 8 ‚2) rational mit Koeffizienten aus K durch H ausdrücken lassen?) ) (WeLd.r? 

daß 2 die, sogenannten konjugierten Körper 

K(H), K(H,)... K(A,-ı) 

identisch sind, wobei H,H,... H,_, dieg Wurzeln der in K irreduziblen 

Gleichung sind. 

Die Zahlen eines Galoisschen Körpers (wie wir hier aufs neue (3, 1,8) 4.110 

beweisen wollen) K (H) lassen sich alle in der Form 

C,+CıH +---+ 0,18"! 
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darstellen, wo die CO, aus K genommen sind. Denn zunächst lassen sich 

sicher alle Zahlen von K (H) in der Form 

GH U HF: BOZEN 

D,+ DH+ D-12272 

darstellen, wo die C, und die D, aus K genommen sind. Daß man nur bis 

zum Grad g—1 zu gehen braucht, liegt daran, daß H einer Gleichung 

g-ten Grades genügt, die es erlaubt, die höheren Potenzen von H durch 

die niedrigeren auszudrücken. Nun aber kann man den Nenner beseitigen, 

wenn man den Bruch mit dem Produkt aller zu seinem Nenner konjugierten 

Größen 
D,+DA, +: +D Br k=1...0-) 

erweitert. Das ist möglich, weil keine dieser konjugierten Größen Null 

sein kann. Denn sonst hätte das Polynom ” 

D, + Di? + ---+D,_-ı2! 

von g—1-ten Grade mit dem irreduziblen G(z) von g-ten Grade eine 

Wurzel gemein. Dies ist unmöglich, weil sonst das in K irreduzible G (2) 

vom Grade g mit dem Nennerpolynom einen Faktor von mindestens 

erstem, höchstens aber 9— 1-tem Grade gemein hätte, dessen Koeffizienten 

nach dem Euklidischen Teilerverfahren zu bestimmen sind und daher 

auch K angehören. Nimmt man aber die Erweiterung vor, so wird der 

ebenso wie die Koeffizienten von@(z) zu K. Man kann daher den Nenner 
in die C, des Zählers hineinnehmen. we: 

Wir bemerken endlich, daß in der Darstellung 

far...) =G%-+GH+---+0,_,H1 

die K angehörigen Koeffizienten eindeutig bestimmt sind. Denn anderen- 

falls würde man durch Subtraktion zweier solcher Darstellungen eine 

Gleichung von höchstens 9— 1-tem Grade finden mit Koeffizienten aus 

K, die mit der irreduziblen Gleichung G = 0 vom Grade g eine Wurzel 
gemein hätte. 

G (2) nennt man eine Galoissche Gleichung oder auch die zu f(z) ge- 
hörige Galoissche Gleichung, wobei f(z) das Polynom mit den Nullstellen 
&ı ...@„ bedeutet. 

Eine Galoissche Gleichung ist also dadurch ausgezeichnet, 
daß ihre Wurzeln sich rational durch eine derselben dar- 
stellen lassen, mit Koeffizienten aus dem der Betrachtung 
zugrunde liegenden Körper K. 
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4. Darstellung gewisser Substitutionen dureh rationale Funktionen. Die 

a; lassen sich (nach (5, 8,2)) rational durch H ausdrücken zen 

m hlE)i 1. a 
Ist dann ©, die Substitution, die H in H, überführt, so trage man H, 

in /;(H) statt H ein. Dann ergeben die f,(H,.) die a, in der neuen durch die 

Substitution ©, bewirkten Anordnung. Denn setzt man 

H=2he,=2hf(B), 

H,; = I her, — hf, (ED); 

4 

so ist [EA ACAN 7 
Denn es ist auch H,= rt An) L af a MH sh A ( 4) f 

Und aus Zh,fz,(H) = hf: (H,) = Hi folgt f.,(H) = Fı(H,). Es stellen 
nämlich auch die f,(H,) die n Wurzeln von f = 0 in einer gewissen An- 

ordnung dar. Denn f,(H,) sind, für =1...n, n Zahlen, deren jede f = 0 

genügt. Es ist nämlich 0 = f(«,) = f(fı(E)). Also auch 0 = f(f;(Hn)). 

Denn hat die Gleichung f(f;(@)) = 0 eine Wurzel mit dem irreduziblen > 11.299 Fa 
G (x)/= 0 gemein, so genügt jede Wurzel von G(xz) = 0 auch f(f;(@)) = 0. 

Andererseits sind aber auch nicht zwei der /,(H,) für aan lea Num- 

mer ı einander gleich. Denn aus alH)s fr r 

fı(Hr) = T;(Hı) (+ A) Ya, (lH RR Pe: E77 

folgt wieder kH)=hH)G+r, ap hlmeteärt m Op bins Mer 
? dA AA weihase Hasf ale m Bm 

d.h. ee) en named Bes inc u 

gegen die Voraussetzung, daß die Wurzeln von f(x) = % alle verschieden Rn: 

sind. Wäre also nicht Kr: 
f., (A) = Iı(Hh); so würde die Gleichung 7 2" AR 

E Ben { q re 

Zh,fr,(A) == Zh,fı (Hr) = H, mul] 

aussagen, daß für zwei verschiedene Anordnungen der «, die &h,«, das- 

selbe H,. liefert. Dies widerspricht aber der Auswahl der h,, die gerade so 

getroffen war, daß Zh,e, für verschiedene Anordnung der «, auch ver- 

schiedene Größen liefert. 

5. Die Galoissche Gruppe. Die Aufgabe, die Wurzeln a,...«, einer 

Gleichung f(x) = 0 zu bestimmen, besteht darin, aus dem bekannten 

Körper K den Körper K (a, ...«,) zu berechnen. Dies geschieht Schritt 

für Schritt durch die Auflösung gewisser Hilfsgleichungen und Adjunktion 

ihrer Wurzeln zu K. Es ist nun wesentlich, zu bemerken, daß die vorzu- 

nehmenden Schritte durch eine gewisse Substitutionsgruppe bestimmt 

sind. Das ist die Galoissche Gruppe der Gleichung. Wir beweisen: 

0.2939 mu 

4: 

N 

ne. 

« 
’ 

ec age 
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Die Substitutionen, welehe H in die gWurzeln 

Ve labren 

von G@(e)=0 überführen, bilden eine Gruppe ©, die Galois- 

sche Gruppe der Gleichung f(x) =0. Sie besitzt die folgenden 

beiden Eigenschaften: 

1. Jede rationale Funktion f(a,...a,) mit Koeffizienten 

aus K, die durch die Operationen von © unverändert bleibt, 

ist einer Größe von K gleich. 

2. Jede einer Größe von K gleiche rationale Funktion von 

.a„ mit Koeffizienten aus K bleibt durch die Operatio- 

nen von © unverändert. 

Vorausgesetzt ist dabei wieder, wie bisher auch schon, daß die Wurzeln 

&ı ...@,„ von f(x) = 0 verschieden sind, und daß f(x) dem Körper K an- 

gehört. 

6. Erläuterungen. Zum Verständnis des Satzes ist zu bemerken, daß 

die Aussage, eine Größe bleibe bei einer Substitution unverändert, erst 

dann einen präzisen Sinn hat, wenn wir sagen, auf welche Darstellung der 

Größe f(a, ...«,) durch die a, sie sich bezieht. Es kann nämlich ein und 

dieselbe Größe oft auf mannigfache Weise durch die «, rational dargestellt 

werden und es kann sich herausstellen, daß sie z. B. bei verschiedener Dar- 

stellung gegenüber verschiedenen Substitutionen der Wurzeln unverän- 

dert bleibt. Betrachten wir z. B. den Körper K der rationalen Zahlen und 

die te f(e) = ? — le = r mit den beiden Wurzeln a, =1, 

= —1. Dann bleibt Linfarfndtiiz om Plan) 7 
= u +%=0, 

bei Vertauschung der « nicht unverändert. Denn es ist 

2, tu =, =—_1. 

Schreibt man aber 1 0 

so ist diese rationale Funktion, die ja auch Koeffizienten aus K besitzt, bei 

Vertauschung von «, und @, unverändert. Denn es ist ja auch 

1712 Doc 

Die eben berührten Schwierigkeiten treten nicht auf, wenn die «; von- 

einander unabhängige Variable sind. Denn sind fı (a, ...a,) und f»(aı...«,) 
zwei rationale Funktionen, mit von den « unabhängigen Koeffizienten, 
die für alle Werte der « einander gleich sind, so bleiben sie namentlich 
einander gleich, wenn man in beiden dieselbe Permutation der « vornimmt. 
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Bestehen aber Relationen zwischen den « und den Koeffizienten, die 

beim Vertauschen der « in verschiedener Weise berücksichtigt werden, so 

wird die Sache anders. Damit hängt es auch zusammen, daß zwar die 

Substitutionen, die eine Funktion der unabhängigen Variablen @ unver- 
ändert lassen, eine Gruppe bilden, daß dem aber nicht mehr so zu sein 

braucht, wenn Relationen zwischen den « bestehen. Ist nämlich 

faı... €) 
eine rationale Funktion der unabhängigen Variablen und sind 

3 ee 

N Ar SET HE Rn 

zwei Substitutionen, die f unverändert lassen, ist also 

je ..0%) = fla,, S .4,,) 

Kar.) =fla,...@,) 
für alle «,, so ist auch 

Mezea Tlane a) — fe, ...0,,) 

da wir vorhin schon feststellten, daß wir in zwei einander gleichen ratio- 

nalen Funktionen der unabhängigen Variablen «),...a,, nämlich in 

flaL...a,) und f(e, @,,), dieselbe Substitution nn können, 

ohne die Gleichheit zu ne 
2; At‘ s 9 Kr+ An 2KKe 4 

Betrachtet man aber andererseits die Wurzeln Ale = Los er 
4 4 21B Som + | 3) Bin Fi = +1 ! str f [ Sonde e ) >05) "ea 

ah 7r PIE A 
0, = e ’ beil..o EUER RE BR ar ER N 

e i 1 32x. A 6cH S 

der Gleichung 2 —1 = 0, dann ist z. B. 2 %, PN Ey; Fr Br £ 

23 h I A a EL a in 
ee Ay Kr h Fern 

Hr 192345 28.CH WE EN 
Durch die Substitution S= ( — LE Ze } Pe 

183452 R RR, ,# #4 
bleibt f(a,.... @,) unverändert. Es ist nämlich auch Pay "00: 

ee) 

(a1, &3, 4, &%, &5) = a, — a0, = 0. 

Wendet man aber die Substitution S ein zweitesmal an, so erhält man 

2,3 
fa, 5, 0, ,) = — am -0. 

7. Konstruktion der Galoisschen Gruppe. Diesem Sachverhalt gegen- 

über bietet die folgende Bemerkung einen Ausweg. Man betrachte die Ge- 

samtheit derjenigen mit Koeffizienten aus K gebildeten rationalen _ Funk- 

tionen der a, die Elementen des Körpers K gleich sind. Sie bilden einen 
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Körper R" den Körper der rational bekannten Größen? Man be- . 

trachte weiter die Gesamtheit derjenigen Substitutionen, die alle, diese 

Funktionen unverändert lassen. Diese bilden eine Gruppe. Man betrachte 

nämlich wieder die beiden Substitutionen S und T von $. 285, die nunmehr 

jede R angehörige rationale Verbindung der « unverändert lassen sollen. 

Also ist namentlich 
&ı &n) => !(a,, .. .0,,) 

Hay... 0.) =fl@,,---%,,)- 

Da aber hiernach (a, ER a;,) 

zu R gehört, so bleibt sie auch bei Anwendung von T' unverändert. Es 

ist also 
Har-..&,) = Tl, - - - Run)» 

d.h. f bleibt auch gegenüber der Substitution TS unverändert. 

Diese so definierte Gruppe ® ist, wie wir zeigen wollen, mit der 

$ 8,5 Gruppe © des Satzes in (5, 7,5) identisch./ Die dort mit 2. bezeichnete Be- 
dingung ist nach der eben gegebenen Definition erfüllt‘/Ferner gehören die 

sämtlichen g Substitutionen von © die H in H, oder H, oder H,_, über- 

führen zu &. Denn es sei F(«,...«,) eine zu R gehörige rationale Funk- 

tion der «. Die « lassen sich rational durch H ausdrücken: «a, = f,(H). 

Dann ist Ne ialeh WEN. 

Y.)%4 Daher hat die ganze Funktion F{fı(t),...f()) —F(eı ...@,) von t, die 
mit Koeffizienten aus K versehen ist, eine Nullstelle mit dem in K irredu- 

ziblen G(z) gemein?! Daher verschwindet sie auch für die übrigen Null- 

stellen von @ (2). Daher ist für jedes dieser H, 

Bio, 2a.) das ur), 

Nun aber stellen nach S. 301 die f, (H,) . - - „(Hx) diee, in der Reihenfolge 

dar, in der man sie in H eintragen muß, um H,. zu erhalten: 

h (Hr) = In: 

Also ist (ie ne = F(a,,.-.@;,)- 

Da F eine beliebige rationale Funktion aus R war, so gehören die Sub- 

stitutionen von © alle zur Gruppe ©. Die die Gruppe [6] an aber auch 
keine weiteren Operationen mehr. Denn da HG-Al: K) 

G(H) = G(hhaı +: + na.) = 0 

eine Größe aus R ist, so muß sie bei allen Substitutionen von & un- 

verändert bleiben. Eine nicht zu & gehörige Substitution führt aber H in 
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eine Größe über, die nicht zu den Wurzeln von G(z) = 0 gehört. Also ist 

& mit © identisch. Die Gruppeneigenschaft von © ist damit nachge- 
wiesen. 

Nun ist es leicht zu sehen, daß © auch die erste im Satz angegebene 

Eigenschaft besitzt, daß also jede bei & unveränderte mit Koeffizienten 

aus X gebildete rationale Funktion der «, einem Element von K gleich ist, 

also ein Element von R ıst. Ist nämlich 

Mi ((0110.1.8306,,) eine solche Funktion, also 

Ffer:..a,) = Flh(A)...fn(2)); 

so ist Muse) — TH) 

= FH)... n(H))= HE) (k=1...9—1). 
IDEE) Er 2) 

g 

Das gehört aber als symmetrische Funktion der H dem Körper K an, 

gehört also zu R. 

Also ist auch Fl(a,...a,) = 

8. Beispiele von Galoisschen Gruppen. 1. Wir betrachten die allge- 

meine Gleichung n-ten Grades 

ar nat te nd, 

in deralsoa,.... a, unabhängige Variable sind. Körper K sei die Gesamt- 

heit der rationalen Funktionen von a, ... a, mit beliebigen Zahlenkoeffi- 

zienten. Wir wollen zeigen, daß die Galoissche Gruppe die symmetrische 

ist. 

Wir betrachten zum Nachweis irgendeine mit Koeffizienten aus K ge- 

bildete rationale Funktion der Wuzeln «a, die einem Element von K gleich 

ist. Diese Gleichheit bedeutet eine Relation zwischen den « und den a 

mit an aenen, wrrunhuf 

Base Bla, 20,5 00:20), en 

die für beliebige « gilt. Sie bleibt daher auch bei jeder Vertauschung der 

« richtig. Denn ersetzt man die «, durch ihre Ausdrücke in den «a, so ent- 

steht eine Identität’in den unabhängigen Variablen a, die daher bei be- 

liebiger Vertauschung derselben richtig bleibt.’ /Da sich aber dabei die a 

nicht ändern, so bleibt F(a,...a@„;@,...a„) bei beliebiger Permutation 

der « unverändert. 

2. Wir betrachten die allgemeine Gleichung n-ten Grades 

er a2... +0,=0, 

in der also diea,.... a, unabhängige Variable sind. Körper K sei der Kör- 

per aller mit beliebigen Zahlenkoeffizienten gebildeten rationalen Funk- 

Bieberbach, Algebra 20 
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tionen von a}... a, und der YD, wo D die Diskriminante der Gleichung 

bedeutet. Dann ist die alternierende Gruppe X Galoissche Gruppe der 

Gleichung. Es sei nämlich eine beliebige mit Koeffizienten aus K ge- 

bildete rationale Funktion der « gegeben, die einem Element von K gleich 

ist. Diese Gleichheit bedeutet eine rationale mit Zahlenkoeffizienten ge- 

bildete Beziehung 
Fila. 20, ea V DE 

zwischen den «, dena und YD. Denkt man sich die a und VD durch die 

a ausgedrückt, so entsteht eine Identität, die daher bei beliebiger Permu- 

tation der « unverändert bleibt. Die A angehörigen Substitutionen lassen 

außer den a auch YD unverändert. Daher bleibt Pl, .+2.05501 27085 

yD) bei jeder Substitution aus X unverändert. Andere als die Substitu- 

tionen von X können weiter der Galoisschen Gruppe nicht angehören. 

Denn yD ist eine rationale Funktion der «, die einem Element von K 

gleich ist und die nur bei den Substitutionen von X unverändert bleibt. 

3. Wir betrachten die binomische Gleichung 

r—a—0 

vom Primzahlgrad p. Körper K sei ein Körper, dem a und die p-ten Eın- 
Zin 

{ { a k 
heitswurzeln, aber nicht /a angehören soll. Setzt man g,=e? 

(k=0,1...p), so sind die p Wurzeln Le TER Hirn TER 

Ya | Are‘ I = VD, Pr 

. L . AL X, Pi Ar = 4 

Es gelten u. a. die Beziehungen N R— 

1 (DAN Sr Bi 
Re ein a a. Be 

Bi YA 

&,+u—1 für vrul zPp 

HE 7 | Br : 3) 
en rm ee 

Ist dann S eine Substitution der, Galoisschen Gruppe, die «, in @, über- 

führt, so muß sie @, in a,,„_ı bZW. @,,._ı-, überführen, da sonst die 

angeschriebenen Relationen falsch würden. Daher ist 

os 2 N ed a ir TR 

vu+l p 1 v—1 

Dies aber ist die (u — 1)-te Potenz von In 1. Perwr a RER EP BE 

|. nu) 

DS 1 

den 2} 7 
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Daher kann die Galoissche Gruppe höchstens die p Substitutionen 

Ball BA RR 

enthalten, ist also entweder mit dieser Gruppe identisch oder eine Unter- 

gruppe derselben. Da aber p Primzahl ist und die Ordnung der Unter- 

gruppe also ein Teiler von p sein müßte, so ist die Galoissche Gruppe ent- 

weder die eben angegebene, oder sie besteht aus E allein. In diesem letz- 

teren Falle aber wären alle bei # unveränderlichen rationalen Funktionen 

der «, namentlich also //a selbst, Elementen aus K gleich, was den An- 
nahmen widerspricht. 

Daß 2?—a in K irreduzibel ist, folgt leicht hieraus. Wäre nämlich 

2? —a=f(x)'p(z), wo f und ® beide mindestens vom ersten Grade 

wären und Koeffizienten aus K besäßen, und wäre «, Wurzel von f, so 

bliebe f(«,) bei allen Permutationen der Galoisschen Gruppe unver- 

ändert. Durch T“ aber geht «, in «, über. Also genügen alle Wurzeln der 

Gleichung f(x) = 0. Sie hat den Grad p und o (x) ist konstant. 

9. Der Satz von Lagrange. Zugrunde gelegt sei ein Körper K. f(x) ge- 

höre zu K und habe lauter verschiedene Wurzeln. © sei die Galoissche 

Gruppe dieser Gleichung und $ eine Untergruppe derselben vom Index 7. 

fleı...@,) und @(a)...a,) seien bei $ unveränderte rationale Funk-/, 

tionen der « mit Koeffizienten aus K. gehöre” zu 9. D.h. es gebe in © 

keine 9 nicht angehörige Substitution, die unverändert läßt. Dann läßt a 

sich / rational durch @ mit Koeffizienten aus K ausdrücken. dr 

Wendet man alle Operationen von & auf f und p an, so nehmen beide 

den 7 Nebengruppen «9 entsprechende 7 Werte an: 

bh. -P-ı 

9 Pı +++ Pi-ı- 

Die 9; sind alle verschieden. Denn aus 9, = 9, folgt = 9x, für passendes 

k, indem man auf die Gleichung 

Ve Pa 

die Inverse derjenigen Substitution «a anwendet, die p in 9, überführt. 4 

Daher muß «!ß eine Operation von © sein, d.h. ß gehört zur Be De 

gruppe «9 von 9 wie «/Dann ist " ri “ri 
St 

De t— 9 -ı e ( t-Y 

ut ht co In 

wo Id) = kt PP)... (9-1) 
ist, eine rationale Funktion von t mit Koeffizienten aus K. Denn Ä(t) 

bleibt bei allen Substitutionen von & unverändert. Eine solche Substitu- 

20% 
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tion permutiert nämlich sowohl die f, wie die ,. Multipliziert man näm- 

lich alle Nebengruppen se 

mit demselben Element g von © 

99,99. -- 90-19, 
so sind dies wieder die vorigen Nebengruppen in anderer Reihenfolge. 

Denn gehört z. B. zu einem Element f, von 9 ein Element f, von 9, so 

ß 
“ ge;9ı = @.D, 

ist, so gehört zu jedem Element h, von 9 ein h,, so daß diese Gleichung 

gilt. Man multipliziere nur hinten mit einem beliebigen Element von h 

ga;dıh = ardah 

und beachte, daß h,h sowohl wie h,h die ganze Gruppe 9 durchlaufen, 

wenn h das tut. Also ist jede Nebengruppe 

ga;d 

einer Nebengruppe «,9 gleich. Ferner können nicht zwei verschiedene 

g;H und ae) 

dieselbe Nebengruppe «NS liefern. Denn wäre z.B. 

ga;hı = gard>, 

so wäre auch U, — dele: 

Da also bei Anwendung der Operationen von & die f, und die @, sich per- 

mutieren, so bleibt A (t) als symmetrische Funktion der f, und , bei ® un- 

verändert, gehört also dem Körper K an. Trägt man t = 9 ein, so kommt 

womit der Satz bewiesen ist. . 

Wir zeigen endlich noch, daß es stets zu 9 gehörige Funktionen gibt, 
d.h. Funktionen, die bei 9 invariant bleiben, sich aber ‚bei 2: anderen 
Substitution von $ ändern. yaaz G(z)<( ı-H){z-F k-FR 

Wir gehen dazu wieder von H und Ge) aus. H ! a; die De 
tionen der symmetrischen Gruppe in n! verschiedene Größen über. Durch 
die Substitutionen von 9 gehe HinH,H,...H,„_, über. Wir bilden 

Pl) = —- MÜ—H,)...(t—Hn-ı) 
Übt man auf Ö(t) die Operationen von © aus, so erhält man den 7 Neben- 
gruppen entsprechend’j Funktionen ee na ! 

DD, De Dann ist das Polynom 

gl; 01...) = (Bl) — B)(®—B;)...(®—-©,_,) 
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nicht für alle t Null. Es bleibt gegenüber den Substitutionen von & un- 

verändert und besitzt daher Koeffizienten aus K. Da es nicht identisch 

Null ist, kann man eine ganze Zahl t, für t einsetzen, für die unser Polynom 

nicht verschwindet — d.h. überhaupt nicht verschwindet, falls die « 

Zahlen sind, nicht identisch verschwindet, wenn in die @ irgendwelche 

Parameter eingehen. g(fo;& - ..«@,) ist dann eine Größe des Körpers K, 

die nur bei den Substitutionen von 9 unverändert bleibt, die sich aber bei 

allen anderen Substitutionen von & ändert, die also zu 9 gehört. 

10. Reduktion der Galoisschen Gruppe durch Adjunktion. f(x) habe 

lauter verschiedene Wurzeln; und gehöre dem Körper K an. © sei die 

Galoissche Gruppe von f(x) in K. Man adjungiere dem Körper K eine 

zur Untergruppe 9 vom Index 7 gehörige mit Koeffizienten aus K ge- 

bildete rationale Funktion, die also nach 5.307 Wurzel einer zu K ge- 

hörıgen Hilfsgleichung vom Grad 7 ist. Dann ist 9 im neuen Körper die 

Galoissche Gruppe der Gleichung f(x) = 0. Jedenfalls kann dann die 

Galoissche Gruppe keine nicht zu & gehörigen Elemente enthalten. Denn 

zu den rational bekannten Funktionen der « gehören nach wie vor die- 

jenigen, welche bei der Definition von © verwendet wurden. © aber 

enthielt die Gesamtheit aller Substitutionen, die alle diese Funktionen 

unverändert lassen. Zum Beweis sei 9(@, ...«,) eine zu 9 gehörige mit 

Koeffizienten aus K gebildete rationale Funktion der «. g(&\...«a,) ist 

dann eine einer Größe des Körpers K(g) gleiche rationale Funktion mit 

Koeffizienten aus K (g), einem Körper, der aus K durch Adjunktion von 

g entsteht. Sie bleibt nur bei den Permutationen von Ö unverändert, bei 

allen anderen von & ändert sie sich aber. Daher kann die Galoissche 

Gruppe von f(x) in K(g) keine anderen Elemente als die von 9 enthalten. 

Es gehören aber auch alle Substitutionen von 9 zur Galoisschen Gruppe. 

Es sei 

ai... @n) 

eine mit Koeffizienten aus K’(g) gebildete rationale Funktion der «. Sie 

sei also einer mit Koeffizienten aus K gebildeten rationalen Funktion 

Terz: 0429) 

gleich. Sie möge außerdem einem Element von K(g) ‚gleich sein. Die 

Gleichheit bedeutet eine mit Koeffizienten aus K gebildete rationale 

Gleichung zwischen «,... «a, und q 

Fid-so,) =: 

Also ist auch R(d, :.. 0,3 anal. 
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Da diese mit Koeffizienten aus K gebildete rationale Gleichung zwi- 

schen den « einer Größe von K, nämlich der 0, gleich ist, so bleibt sie bei 

allen Substitutionen von & unverändert. Beschränkt man sich insbe- 

sondere auf die Substitutionen von 9, so bleibt g(aı ....«,) unverändert. 

Daher bleibt en 

durch die Substitutionen von $ unverändert gleich Null. Daher bleibt 

auch f(a, - ..@„; 9) unverändert demselben Element von K(g) gleich, so 

daß also jede rationale mit Koeffizienten aus K(g) gebildete Funktion 

der «, die einem Elemente von K(g) gleich ist, durch die Substitutionen 

von 9 nicht geändert wird. 

Die Gleichung mit Koeffizienten aus K vom Grade 7, der, wie schon be- 

kannt, die Funktion h genügt, ist irreduzibel, weil man durch Anwendung 

der Operationen von © auf h aus h die sämtlichen übrigen Wurzeln dieser 

Gleichung gewinnen kann. — Man vgl. den oben bei der binomischen 

Gleiehung ins einzelne durchgeführten Schluß. — Man nennt sie eine _ 

Resolvente von f(x)=0. Insbesondere ist auch die Gleichung G (x) =0 {4.1 

von 8. 299 eine solche Resolvente, die sogenannte Galoissche Resolvente. 4 B 

Durch Adjunktion einer ihrer Wurzeln wird die Galoissche Gruppe auf 7 

E reduziert, weil ihre Wurzel h zur identischen Gruppe E gehören. 

Wenn man dem Körper K eine der übrigen Wurzeln einer Resolvente 

adjungiert, so reduziert sich die Gruppe auf eine der zu 9 konjugierten 

Gruppen. Geht nämlich eine solche Wurzel g;(a, ...«,) aus g(eı...«,) 

durch eine Substitution © der Gruppe © hervor, so gehört g, zur Gruppe 

SHS!. Denn ©-! führt g, wieder in g über, 9 läßt g unverändert, & 
führt g wieder in g, zurück. Andere Substitutionen von © aber lassen g, 
nicht unverändert, weil sonst nach demselben Schluß auch g noch gegen- 

über Substitutionen von © außer denen von 9 unverändert bliebe. 

11. Reduktion durch Radikale. Es sei p eine Primzahl; wir setzen vor- 
aus, daß dem Körper K die p-ten Einheitswurzeln angehören. Ist dann 
a eine Größe aus K, während Ya ihm nicht angehört, so möge durch Ad- 
junktion von a ein Körper K’ entstehen. In K sei &, in K’ sei & die 
Galoissche Gruppe von f(x) = 0. ist dann Untergruppe von &. Wir 
wollen diese Untergruppe untersuchen. Es sei g(a,...«,) eine zu & 
gehörende Funktion der Wurzeln mit KoeffizientenausK. Dag(a, ... %,) 
bei den Substitutionen von & unverändert bleibt, muß g nach der ersten 
Grundeigenschaft der Galoisschen Gruppe dem durch Adjunktion von 
’/a erweiterten Körper K’ angehören, also ist 

1) b=y+tyya+yVat...-+ ea 
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wo die y, Größen aus K sind. Nach der vorigen Nr. muß die Gruppe & 
durch Adjunktion von b sich ebenfalls auf &’ reduzieren, und wenn &’ 

vom Index 7 in © ist, so genügt b einer in K irreduziblen Gleichung vom 

Grad 3: 

(2) a0: es ıst also 

(3) F(yo -H Yyı ya + see + ee) = 0. 

Daher hat die Gleichung 

a Ya BsEl er Yya 0 
mit der nach Nr. 8 in X irreduzibeln Gleichung £? — a = 0 die Wurzel 

Ya gemein, und muß also auch die andern Wurzeln 

BOT Va 

haben, wo @,,...@,_ı die von 1 verschiedenen p-ten Einheitswurzeln 

sind. Es ist also auch 

F(y + yıa,Ya+:--+ var van) —( 

12,0. ,9071) 

und folglich hat die Gleichung (2) auch die Wurzeln 

(4) Dep yıa, Va er a 

we. 2,0), 

Diese sind voneinander und von b verschieden. Denn die Gleichsetzung 

von zweien würde eine Gleichung höchstens (p — 1)-ten Grades für Ya 

bedeuten, während doch ‘/a der irreduzibeln Gleichung p-ten Grades 

2? — a = 0 genügt. 

Hiernach hat die Gleichung (2) mindestens die p Wurzeln b, b,, ... .,b,_ı 

und ist also mindestens vom Grad p. Andererseits sind die Koeffizienten 

der Gleichung 

6) @-)(e-b)...(@—d,.) = 0 
symmetrische Funktionen von 

Va, a, ya, ...,l&p-ı Va 

mit Koeffizienten aus K und also selbst Größen aus K. Daher muß die 

in K irreduzible Funktion F (x) ein Teiler der Funktion auf der linken Seite 

von (5) sein und ist also höchstens vom Grad p. Hiernach ist F (x) genau 

vom Grad p, also ist 7 = p. 

Da die p-ten Einheitswurzeln zu K gehören sollen, ist die Adjunktion 

von Ya gleichbedeutend mit der Adjunktion von a,ya ; also wird auch 
bei Adjunktion von «,/a die Gruppe sich auf & reduzieren. Anderer- 

seits wird dann aber nach (4) die Größe b, adjungiert. Da diese zu einer 
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zu & konjugierten Untergruppe von © gehören, so wird die Gruppe auf 

eine zu & konjugierte Untergruppe von © reduziert, und zwar erhält man 

fürv»=1,2,....p—1 alle zu © konjugierten Untergruppen, die also 

sämtlich mit &’ identisch sein müssen. Daher ist © eine ausgezeich- 

nete Unterguppe, und da ihr Index die Primzahl p ist, so ist sie maximal. 

Zusammenfassend ergibt sich: 

Wenn die p-ten Einheitswurzeln dem zugrunde gelegten 

Körper angehören, und wenn die Galoissche Gruppe durch 

Adjunktion einer p-ten Wurzel aus einer Größe des Körpers 

sich reduziert, so reduziert sie sich stets auf eine maximale 

ausgezeichnete Untergruppe vom Index p, wofern p eine 

Primzahl ist. 

12. Folgerungen betr. Auflösung durch Quadratwurzeln. Aus diesem 

Satz ergeben sich schwerwiegende Konsequenzen. Nehmen wir zuerst an, 

eine Gleichung sei durch lauter Quadratwurzeln lösbar. Dann muß ihre 

Gruppe sich sukzessive durch Adjunktion von Quadratwurzeln reduzieren 

lassen, bis sie schließlich auf die Einheitsgruppe & herabgedrückt ist. 

Hierbei reduziert sie sich aber nach dem obigen Satz stets auf eine maxi- 

male ausgezeichnete Untergruppe vom Index 2. Demnach kann eine 

Gleichung nur dann durch Quadratwurzeln lösbar sein, wenn die Indizes 

einer Kompositionsreihe (und nach dem Jordanschen Satz von (5, 7,8) % 99) 

also jeder Kompositionsreihe) alle gleich 2 sind. In diesem Fall ist sie 

aber auch wirklich durch Quadratwurzeln lösbar. Denn sobald eine 

maximale ausgezeichnete Untergruppe vom Index 2 vorhanden ist, kann 

nach (5,8,10) die Gruppe auf diese reduziert werden durch Adjunktion 

einer Wurzel einer irreduziblen Gleichung zweiten Grades, also durch 

Adjunktion einer Quadratwurzel. 

DieGruppe der allgemeinen Gleichung dritten Grades ist die symmetrische 

Gruppe von 8 Elementen, also von der Ordnung 3!=6. Die Indizes der ein- 
zigen vorhandenen Kompositionsreihe sind, wiein (5,7,6) festgestellt wurde, 
2 und 3, also nicht alle gleich 2. Die allgemeine kubische Gleichung 
kann also nicht durch Quadratwurzeln gelöst werden. 

13. Die allgemeine Gleichung -ten Grades kann nicht dureh Radikale 
gelöst werden. Wir wenden uns jetzt der Frage zu, wann überhaupt eine 
Gleichung durch irgendwelche Wurzelzeichen gelöst werden kann. Zu- 
nächst sieht man leicht, daß, wenn eine Wurzel, etwa <, ‚, einerin K irredu- 
zıblen Gleichung f(x) = 0 durch Wurzelzeichen dargestellt werden kann, 
dann alle Wurzeln eine solche Darstellung zulassen. Denn gibt man den 
in x, auftretenden Wurzelzeichen ihre verschiedenen Bedeutungen (eine 



5,8, 13. Die allg. Gleichung n-ten Grades kann nicht durch Radikale gelöst werden 313 

p-te Wurzel ist ja »-deutig), so mag etwa &,, &,, . . -, &,„ entstehen; dann 

sind die Koeffizienten der Gleichung 

() @- 2) @- 2)... (2—2n) = 0 
Größen aus X, und die Gleichung hat mit f(x) — 0 die Wurzel x, gemein. 

Da aber f(x) irreduzibel angenommen wurde, ist /(x) ein Teiler der auf der 

linken Seite von (1) stehenden Funktion, so daß die Wurzeln von f(x) 

unter den Größen %,,&%g,.. ., £„ enthalten und somit durch Wurzel- 

zeichen dargestellt sind. 

Wenn nun alle Wurzeln einer Gleichung sich durch Wurzelzeichen dar- 

stellen lassen, so muß die Galoissche Gruppe durch sukzessive Adjunk- 

tion von Wurzelzeichen sich allmählich auf & reduzieren. Dabei kann 

man sich auf Wurzelzeichen mit Primzahlexponent beschränken, weil ja 

die Adjunktion von ‘Ya darauf hinausläuft, daß man zuerst Ya —b ad- 
jungiert und dann auch noch \b. Ferner läßt sich die Reihenfolge in der 

Adjunktion von Wurzelzeichen stets so einrichten, daß bei Adjunktion 

einer p-ten Wurzel die p-ten Einheitswurzeln schon vorher 

adjungiertsind. Denn diep-ten Einheitswurzeln lassen sich nach (5,6,1) 

ja selbst durch Wurzelzeichen darstellen, deren Exponent kleiner als p 

ist, und diese Wurzelzeichen wird man eben schon adjungieren, ehe man 

eine p-te Wurzel adjungiert. 

In der hierdurch (keineswegs eindeutig) vorgeschriebenen Reihenfolge 

sei nun etwa a das erste Wurzelzeichen, durch dessen Adjunktion sich 

die Gruppe reduziert!); die p-ten Einheitswurzeln gehören nach Voraus- 

setzung dann schon dem Körper an. Dann reduziert sich aber nach dem 

Ergebnis von S. 312 die Galoissche Gruppe auf eine maximale ausge- 

zeichnete Untergruppe vom Primzahlindex p. Wenn also eine Auflösung 

durch Wurzelzeichen möglich ist, so hat die Galoissche Gruppe eine 

maximale ausgezeichnete Untergruppe vom Primzahlindex. Da man auf 

diese maximale ausgezeichnete Untergruppe, auf die sich die Gruppe nach 

Adjunktion des Wurzelzeichens reduziert, die gleiche Schlußweise an- 

wenden kann, so erkennt man, daß sie wieder eine maximale ausgezeich- 

nete Untergruppe von Primzahlindex hat. Daraus folgt sogleich: 

Eine notwendige Bedingung dafür, daß eine Gleichung 

sich durch Wurzelzeichen lösen läßt, ist die, daß die In- 

dizes einer Kompositionsreihe (und also nach dem Jordan- 

schen Satz von 9.294 jeder Kompositionsreihe) ihrer Galois- 

schen Gruppe lauter Primzahlen sind. 

1) Dabei ist nicht ausgeschlossen, daß auch vorher schon Wurzelzeichen adjun- 
giert worden sind, ohne daß eine Reduktion der Gruppe eingetreten ist. 
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Übrigens ist diese Bedingung auch hinreichend, was wir hier aber nicht 

beweisen wollen. Ihre Notwendigkeit genügt, um zu erkennen, daß die 

allgemeine Gleichung von höherem als viertem Grad sich 

nicht durch Wurzelzeichen lösen läßt. Denn die Gruppe der 

allgemeinen Gleichung n-ten Grades ist nach $. 3806 nach Adjunktion der 

Quadratwurzel aus der Diskriminante zum Körper K ihrer Koeffizienten 

die alternierende und die Indizes einer Kompositionsreihe derselben nach 

8.294, wenn n > 4, nicht lauter Primzahlen, weil nämlich die alternierende 

Gruppe für n > 4 einfach ist. 

Nach diesem Ergebnis ist klar, warum die Versuche von Lagrange') 

und andern, die Gleichungen von höherem als dem vierten Grad durch 

ähnliche Methoden wie die Gleichung vierten Grades aufzulösen, scheitern 

mußten. Gauß hat in seiner Dissertation eine Bemerkung gemacht, wo- 

nach er die Nichtauflösbarkeit durch Wurzelzeichen für wahrscheinlich 

hielt. Bewiesen wurde sie zuerst von Ruffini?), dessen Arbeiten aber an- 

fangs nicht genügend beachtet wurden, und dann von Abel.?) Der oben 

durchgeführte Beweis sowie die ganze Gruppentheorie, in deren Rahmen 

er eingebaut ist, stammen von Galois.*) 

14. Numerisch gegebene, nicht durch Radikale lösbare Gleichungen. 

Im vorstehenden ist bewiesen, daß die allgemeine Gleichung n-ten Grades 

sich nicht durch Wurzelausdrücke lösen läßt. Damit wäre es verträglich, 

daß jede numerisch gegebene Gleichung durch einen von Fall zu Fall 

wechselnden Wurzelausdruck gelöst würde. Es läßt sich aber zeigen, daß 

1) Siehe die schon früher angeführte Abhandlung ‚‚Reflexions sur la rösolution 
algebrique des Equations“. Nouveaux M&m. de l’Acad. de Berlin 1770 et 1771. 
Ges. Werke t. III, p. 205. Lagrange gibt darin eine eingehende Analyse der Me- 
thoden von Tschirnhaus, Euler und Bözout und sodann eine Darlegung seiner 
besonderen Methode. 

2) Paolo Ruffini (geb. 1765, gest. 1822), ursprünglich Arzt wie Cardanus be- 
gründete seinen Satz in verschiedenen Publikationen; zuerst 1799 in seinem Lehr- 
buch: ‚Teoria generale delle Equazioni, in cui si dimonstra impossibile la soluzione 
algebraica delle equazioni generali di grado superiore al quarto‘‘, Bologna 1799. 
Geschichtliches über die Lösung dieses Problems, sowie eine eingehende Würdigung 
der Verdienste Ruffinis s. in der Schrift von Heinrich Burkhardt, ‚Die An- 
fänge der Gruppentheorie von Paolo Ruffini‘“, Göttingen 1891. 

Ruffini gab auch zuerst den Satz, daß eine Funktion von 5 Größen, wenn sie 
mehr als zwei Werte hat, wenigstens fünf hat. Es ist dies ein spezieller Fall der all- 
gemeinen, später durch die Arbeiten von Cauchy, Bertrand, Serret gefundenen 
Satzes, daß eine Funktion von n Größen nicht zugleich mehr Werte 
als zwei und weniger als n Werte haben kann, n= 4 ausgenommen. 

3) N.H. Abel, Beweis der Unmöglichkeit, algebraische Gleichungen von höheren 
Graden als dem vierten allgemein aufzulösen. Crelles Journ. Bd. 1, 1826, S. 65. 

4) Evariste Galois ist am 26. 10. 1811 geboren und fiel, 20 Jahre alt, im März 

des Jahres 1832 im Duell. Seine Schriften hat Liouville (meist in seinem Journal 
Bd. 11 (1846)) veröffentlicht. 1897 erschienen die Oeuvres math. d’Ev. Galois. 
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es schon im Körper der rationalen Zahlen Gleiehungen fünften Grades 

gibt, die sich nicht durch Wurzelzeichen lösen lassen. Man erkennt dies 

im Prinzip am raschesten durch folgende Überlegung. Daß die allgemeine 

Gleichung fünften Grades als Galoissche Gruppe die symmetrische Gruppe 

besitzt, bedeutet, daß ihre Galoissche Resolvente vom Grade 60 (vgl. 

8. 310) irreduzibel ist. D. h. dies ist ein Polynom vom Grade 60 mit Koef- 

fizienten, die rational von den Koeffizienten a,)...a, abhängen und es 

kann nicht in Faktoren zerlegt werden, die rational von &, a,,. . ., 4, ab- 

hängen. Nun besagt aber der Irreduzibilitätssatz, den Hilbert Crelle 

110 angegeben hat, und den man nach Dörge (Annalen 96) heute sehr ein- 

fach beweisen kann, daß man für a, .... a, solche rationale Zahlen setzen 

kann, daß die Resolvente als Funktion von & irreduzibel bleibt. Die mit 

diesen Koeffizienten gebildete Gleichung fünften Grades hat also auch die 

symmetrische als Galoissche Gruppe und ist daher durch Radikale nicht 

lösbar. 

Es würde aber schwer halten, wenn man auf diesem Beweisweg ein kon- 

kretes Beispiel einer solchen Gleichung fünften Grades angeben wollte. 

Dies genügt aber auf Grund eines Satzes, den Kronecker schon 1856 in 

seiner Arbeit über algebraisch auflösbare Gleichungen, Berl. Monatsber. 

angegeben hat. Danach hat eine durch Wurzelzeichen lösbare im Körper 

ihrer Koeffizienten irreduzible Gleichung fünften Grades mit reellen Koef- 

fizienten entweder lauter reelle Wurzeln oder nur eine. 

Gelingt es also, eine irreduzible Gleichung fünften Grades mit ratio- 

nalen Koeffizienten anzugeben, die genau drei reelle Wurzeln hat, so kann 

sie nicht durch Wurzelzeichen lösbar sein. 

Nun ist nach dem Eisensteinschen Satz von S. 231 

2 —45 —9 

im Körper der rationalen Zahlen irreduzibel. Sie besitzt mindestens drei 

reelle Wurzeln. Denn für x = — 2 wird @°® — 4x — 2 negativ, füre = —1 

aber positiv, für x = 0 negativ, für x = 2 aber wieder positiv. Endlich 

können nicht alle Wurzeln reell sein. Denn die Summe ihrer Quadrate 

ist 0, weil die Koeffizienten von x* und von x? verschwinden.’ Daher ist 

x? — 42 — 2 = (0) durch Wurzelzeichen nicht lösbar. 

15. Transzendente Zahlen. Im allgemeinen sind also die Wurzeln höhe- 

rer algebraischer Gleichungen, wenn die Koeffizienten derselben nicht be- 

sonderen Bedingungen genügen, algebraische Irrationale, welche 

sich nieht durch Wurzelgrößen darstellen lassen. Allgemein nennt man 

nach $. 116 jede reelle Zahl, welche Wurzel einer algebraischen Gleichung 
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mit rationalen Koeffizienten ist, einealgebraische Zahl. Die rationalen 

Zahlen sowie die durch Wurzelgrößen darstellbaren erscheinen als spe- 

zielle Fälle der algebraischen Zahlen. 

Aber obwohl in einem beliebig kleinen Zahlintervall unendlich viele 

rationale Zahlen liegen und die Irrationalen sich zwischen dieselben ein- 

schalten, reichen doch die gesamten algebraischen Zahlen nicht hin, das 

Zahlenkontinuum auszufüllen. Es gibt noch unendlich viele Zahlen, 

welche nicht Wurzeln einer Gleichung mit rationalen Koeffizienten sein 

können und welche man deshalb als transzendente Zahlen bezeichnet. 

Man beweist dies in der Mengenlehre, indem man zeigt, daß die al- 

gebraischen Zahlen eine abzählbare Menge bilden, während die Menge 

aller reellen Zahlen nicht abzählbar ist. 

Zu letzteren gehören die in der Analysis und der Geometrie bekanntesten 

Zahlen, nämlich die Basis der natürlichen Logarithmen e = 2,7182818. 

und das Verhältnis des Kreisumfangs zum Durchmesser z = 3,1415926 .. 

Hermite bewies zuerst (Compt. rend. 1873), daß die Zahl e nicht Wurzel 

einer Gleichung mit rationalen Koeffizienten sein könne. Sodann zeigte 

F. Lindemann (Math. Ann. XX, 1882), ausgehend von der Definition 

von z durch die Gleiehung e’” = — 1, die Transzendenz der Zahl x.) 

F. Lindemann gibt den allgemeinen Satz: 

Die Gleichung Ay + Are + Age® +---—(, 

worin die Exponenten k,,k,,... voneinander verschiedene, algebraische 

Zahlen und auch die Koeffizienten A,, Aı,. . . beliebige algebraische 

Zahlen sind, kann nicht bestehen, es müßten denn sämtliche A Null 

sein. 

Aus diesem Satze folgt dann sofort, da €” +1 = 0, daß z eine trans- 

zendente Zahl. Es folgt daraus aber auch weiter, daß die Exponential- 

größe 
Vz 

eine transzendente Zahl ist, wenn x eine algebraische Zahl (von 0 ver- 

schieden) ist und umgekehrt, daß der natürliche Logarithmus x einer 

algebraischen Zahl y eine transzendente Zahl ist. 
Da ferner 2iy = ei®— eri® die Funktion y = sinz definiert, so folgt 

auch, daß in der Gleichung £ 
y= sinz 

x und y nicht zugleich algebraische Zahlen sein können.?) 

1) Die Beweise von Hermite und F. Lindemann wurden wesentlich verein- 
facht durch Hilbert, Hurwitz, Gordan, sämtlich in Math. Ann. XLIII. 

2) Vgl. auch F. Klein; „Vorträge über ausgewählte Fragen der Elementar- 
geometrie‘, ausgearb. v. Taegert, 1895. 



Anhang. 

Kettenbrüche. 

1. Definition. Es seien A und B zwei ganze positive Zahlen, B< A. 

Um den größten gemeinschaftlichen Teiler von A und B zu finden, hat 

man wie bei dem Aufsuchen des gemeinsamen Teilers von zwei ganzen 

Funktionen zu verfahren und erhält das analoge Gleiehungssystem 

A=QBHR, 

B=QR+R, 

1) Rı\=QR,+ RB, 

R„-2 = ne, am 1 

wo die Quotienten Q und die Reste R der aufeinanderfolgenden Divisionen 

ganze positive Zahlen sind. Die Reste R,, R,,... bilden eine absteigende 

Reihe. Haben A und B keinen Faktor gemein, so wird der letzte Rest 

R„=1; haben sie aber einen gemeinsamen Faktor (die Einheit aus- 

geschlossen), so wird einer der Reste Null, und der letzte Divisor ist der 

größte gemeinsame Teiler. 

Wir setzen A und B als prim zueinander (ohne gemeinsamen Teiler) 

voraus; dann ergibt sich aus dem System (1) folgende Kettenbruch- 

entwicklung für Er 
B 

A R, TR is 
B Tr Qı ı B =; Qı 4 B/R, PER Qı + Os Sl KR, 

N 

(2) = Qı a 2 
Q: + 0% ab . u B 

und schließlich!) fürs = n,daR, =], a 

A 1 

) N 
In Ir a, $) 

n+1 

1) Sind A und B ganze Funktionen der Variablen x, welche keinen Faktor gemein 
haben, so sind in dem System (1) die Reste R ganze im Grade abnehmende Funk- 

NE. } > 
tionen von z, R,, ist eine Konstante, und es läßt sich B auf gleiche Weise in einem 
Kettenbruch entwickeln. 
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wenn man den letzten Nenner mitQ,„., statt R„_ı bezeichnet in Überein- 

stimmung mit dem System (1), dessen nächste Gleichung lauten würde: 

R„_ı = Qnrı Rn Qnıı)- Es folgt daraus auch 

De 
(8) A at, Ei 

Rn, 
Beispiel. Sei le ist dann 

17. = 1-102.7 047 -1+1 i OR LT 
17.1 = 1 ee, DIT. 2 +4, FTeZ,d 

oe 5 

2. Näherungsbrüche. Aus dem System (1) folgt 

R, = 4—Q,B 

R,=B-Q&R, =—-9:4A+ (+ QıQ)B 

R,= RR, —Q:R, = (1 + 99) A — (Qı + 93 + 219205) B 

4) = BR —QuR = — ++ 99: WAH (1+ 019 + Q19: + 

+ 950 + Q19295Q,) B 
ee ee ee ee Des Heike al a wi ee 

Man ersieht, daß allgemein R, von der Form ist 

(4) B,=(-DUN,A—M,B), 
wo N, und M, ganze Funktionen der Quotienten Q sind. u 

Gleichung (4°) folgt, daß, wenn man in Be Entwicklung (2) den Bruch 

vernachlässigt, sich ergeben würde $ ne -F Man nennt daher en 1 

s-ten Näherungsbruch des ganzen n Kettenbruchs- derselbe ist mithin 
derjenige Bruch, welchen man erhält, wenn man die Kettenbruchentwick- 

lung nach dem Teilbruch 2 abbricht, also 

De = 
(5) N; pe. u 

Qs 
So sind im obigen Beispiel die aufeinanderfolgenden Näherungsbrüche 
von 1 

il 
1, 1+7=2 1+- — 

der letzte ist der Bruch 1. selbst. 
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Aus in fürs=k und fürs=k— 1 folgt 

RB: N,;A—M;B 
Re-ı Nxk-1ı4 — M;-ıB 

A __ RaMx-ı-t Rr-ıMr, 
28 A 1 Sr Rx_ Nr 

und daraus 

Ersetzt man hier - durch oo so erhält man statt = den nächsten 
k+1 

Rx 
ra 

. Also kann man für jedes s setzen: 

(6) Be N 

Ein und dieselbe Relation knüpft also die Zähler M und 

ebenso die Nenner N dreier aufeinanderfolgender Näherungs- 

brüche aneinander. 

Aus den Gleichungen (6) berechnen wir M, und N, als Funktionen der 
Q, ausgehend von den Gleichungen (s = 2) 

M, +9M,—-M,=0, N+QN-N=0, 

wo wegen Hd, ro 
1 2 2 

(7) M, =, N=-1,.M -1LN 

zu nehmen ist. Es folgt daraus: 

Wenn zwischen zwei Reihen von Größen M,M3,-:-;Xı 

Na,... Relationen von der Form (6) und (7) stattfinden, kann 

man M,,N, immer als Zähler und Nenner eines Kettenbruchs 

von der Form (2) betrachten, für welchen Q,,0,,... die auf- 

einanderfolgenden Nenner sind. 

Die Elimination von Q, aus den zwei Relationen (6) gibt 

N,M,-ı - VEN ie Make == M,-ıNs-2) ee 

8 
( ) an (— 1)-2(N,M, — M3;N\,) En (— iz 1) en (— 1):=% oder 

M;_-ı M; ar ed 

m I 
Aus (8) geht hervor, daß M, und N, keinen gemeinsamen Faktor haben. 

Der Bruch rn ist mithin irreduzibel. Da ferner die Zahlen M,,N, 

stets positiv sind und mit s wachsen, wie aus (6) ersichtlich, so folgt aus 

(9), daß die Differenz von zwei aufeinanderfolgenden Nähe- 

rungsbrüchen abwechselnd positiv und negativ ist und daß 

ihr absoluter Betrag mit wachsendem s abnimmt. 
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Schreiben wir - in der Form 

u u er) mn mn nun ne 
so folgt aus Se 

1 — 1) 
(10) =(, + Hm NEN a s nr 

Da der letzte Näherungswert 7 Ana „ der Wert £ selbst ist, so wird 

il I il Ze Net ae Soc — ® 
1) B N, ( 1) .. NINE + 

Die Glieder der Reihe in [...} sind abwechselnd positiv und negativ und 
sienehmen beständigab. Der Wert der Reihe ist mithin positiv und kleiner 
als das erste Glied. Es ist also dem absoluten Betrage nach die Differenz 

ee 
BoENSONN SEEN, (12) 

aber mit En s abwechselnd positiv und negativ. 

Der Wert £ 7 des ganzen Kettenbruchs liegt mithin immer 

ae zwei aufeinanderfolgenden Näherungsbrüchen za 
s—ı 

und m die sich mit wachsendem s von verschiedenen Seiten 

dem Werte = nähern. 

3. Approximation durch die Näherungsbrüche. nz wir I 
Teil des Kettenbruchs (3), welcher nach dem Teilbruch „ folst, mit = 

so daß mithin 

u ee 
“ Qs+ — so ist nach (2) 

R,_ Ne >, Se 

2 en u u a woraus 

A_M, 
= Dis ge = Hieraus folgt weiter 

Ss s—-1ı 

(14) A u N ı—MsN;_ı ya 
B N, NN END NASSEN 

woraus wieder zu ersehen, daß diese Differenz absolut genommen < 
ist (denn zist > Q,41-+ -- ‚also 1). 

= 
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Ist der Bruch _ in einen Kettenbruch von der Art (3) entwickelt, so 

kommen die Näherungsbrüche des Kettenbruchs dem Bruche n näher 

als irgendein Quotient von kleineren ganzen a 

Denn = C und D ganze Zahlen und liegt I “ näher an “ als der Nähe- 
B 

rungswert . so ıst 
Ss 

Mazı PER Ms; >> Es 1 ar 

FA N; NS D 

1 IM. -ı-D—C-N;_ıl 
Also folgt - nn s—1 s-ı 

= Ns-ıN; DNS, 

D — | M,ı1D-CN,_, | N, 

oder, da der absolute Wert von M, ,D—CN,_, eine ganze Zahl, von Null 

verschieden ist, 
De=N. 

Um daher einen Bruch durch einen Bruch mit kleineren Zahlen mit 

möglichster Annäherung auszudrücken, verwandelt man ihn in einen 

Kettenbruch von der Art (3) und berechnet die Näherungsbrüche. 

Z.B. Es ist x = 3,14159265. Behalten wir nur fünf Dezimalstellen 

bei, so haben wir 

14159 1 1 
Sen etr 887 —3++ ern 
100000 m E= 14159 Zeil n m: = 7 + — 1 

Bleiben wir hier mit der Kettenbruchentwicklung stehen, so haben wir 

für z die Näherungsbrüche 
1 15 16 

3, 37; Iner SEREIT 

22 3833 355 oder ee ao 

Der Fehler des letzten Näherungswertes #3 ist nach (12) < —..; in 

Wirklichkeit stimmt dieser Bruch mit x bis auf sechs Dezimalen überein. 

4. Unendliche Kettenbrüche. Wir denken uns nun den Kettenbruch (1) 

ins Unendliche fortgesetzt, immer voraussetzend, daß sämtliche Teil- 

brüche positiv, ihre Zähler 1 und ihre Nenner 0) ganze positive Zahlen sind. 

Nur von solchen Kettenbrüchen einfachster Art soll überhaupt hier die 

Rede sein. 

Dann erscheint der bisher betrachtete endliche Kettenbruch (1), dessen 

Wert = ist, als der (n + 1)-te Näherungswert dieses unendlichen Ketten- 

bruchs, wie groß wir auch n wählen mögen. Die aus dem Bau des Ketten- 
Bieberbach, Algebra 231 
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bruchs gefolgerten Sätze (6), ... (1 2) über die Näherungsbrüche NE gelten, 

wie groß auch s sei. Zwar wachsen M, und N, mit s unbegrenzt; aber der 

Wert des Näherungsbruchs bleibt immer endlich und, wie aus Gleichung 
M 

(9) ersichtlich, kann die Differenz = — N ® wenn nur s groß genug ge- 

wählt wird, kleiner werden als eine beliebige noch so kleine Größe e. Da 

nun der Wert jedes folgenden Näherungsbruches = (n > s) innerhalb des 

Intervalls dieser beiden Näherungswerte fällt, so ersieht man, daß, wenn 

die Gliederzahl des Kettenbruchs ins Unendliche wächst, sein Wert einem 

ganz bestimmten endlichen Grenzwert x zustrebt. Man drückt dies aus, 

indem man sagt: der unendliche Kettenbruch 

1 

(15) Or 
Q ar o; + . \ i 

-in inf. 

ist konvergent, was für ganze positive Zahlen die Nenner Q sein mögen. 

Der Wert x des Kettenbruchs läßt sich auch durch die unendliche Reihe 

darstellen 
1 1 il 

j ee = 

u ETNENE  E 

Aus der Eigenschaft der Reihe, daß die Glieder abwechselnd positiv und 

negativ sind, während ihre absoluten Beträge beständig abnehmend unter 

jede Grenze sinken, folgt die Konvergenz der Reihe, und daraus läßt sich 

wieder auf die Konvergenz des Kettenbruchs schließen. 

Man sieht nun leicht, daß man jede positive Zahl x in einen Kettenbruch 

entwickeln kann. Denn ist Q, die größte, ganze, in x enthaltene Zahl, so 

kann man setzen 

Rz 
Pi s=Qı+ 

wobei &, > 1. Ebenso wird = %+ n - 
2 

Ä 

en 
+, il 

0 + 

so daß man erhält z=(,ı + 

a 
Ts j 

Diese Formel unterscheidet sich von (12a) in 3. nur dadurch, daß 5 durch 

x ersetzt ist. Genau wie dort erhält man also 

M, (— JE 
A =: S 

Ns Ns(Nsu+Ns-ı) 
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Da die rechts stehenden Nenner ins Unendliche wachsen, so haben die 

Näherungsbrüche re in der Tat die Zahl « zum Grenzwert. 
Ss 

Es läßt sich nun zeigen, daß es nur eine Kettenbruchentwicklung für & 

gibt.. Denn angenommen, es wäre auch noch 

[4 1 

aan eins 

wo Q, positiv ganz oder Null, während die übrigen Q, positiv{sind, so 
erkennt man, daß der auf Q, folgende Bruch < 1 ist. Folglich ist Q, die 
größte in x enthaltene ganze Zahl und demnach 

Qı =Q- 

Ebenso wird Q, die größte in x, enthaltene ganze Zahl, also 

= Q, us. 

Der Wert x des unendlichen Kettenbruchs (15) ist immer irrational, 

da jeder rationale Bruch, wie wir sahen, immer einen endlichen Ketten- 

bruch liefert. 

5. Periodische Kettenbrüche. Bemerkenswert sind besonders die un- 

endlichen periodischen Kettenbrüche, in welchen sich nämlich eine 

Reihe von Nennern Q periodisch wiederholt. Der Wert eines solchen 

Kettenbruchs kann leicht berechnet werden; eristimmereinequadra- 

tische Irrationale, d.h. die Wurzel einer quadratischen Glei- 

chung. 

Der Kettenbruch heißt rein-periodisch, wenn die Periode von An- 

fang an beginnt. Besteht die Periode aus k Gliedern, so hat der Bruch die 

Form 

Wat, (Periode Q1, Qu, + .- Qu) 

Brechen wir den Kettenbruch nach der ersten Periode ab und nennen den 

Rest desselben nn so daß mithin 
k 

® ee, 
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so ist nach Gleichung (13) der Wert des Kettenbruchs durch die Formel 

gegeben 

_ Mk&« + Mr-ı, 
(8) REN 

Aber da die Perioden sich unendlich oft wiederholen, ist hier x, = x, also 

x durch die quadratische Gleichung 

_ Mx2% + Mk-ı 

(5) Ne (M2— N,-)&— M;-ı —=0 

bestimmt. Diese Gleichung hat eine positive und eine negative Wurzel. 

Die positive Wurzel gibt den Wert x des Kettenbruchs (1). Aber es ist be- 

merkenswert, daß die negative Wurzel sich auch durch einen periodischen 

Kettenbruch darstellt, dessen Periode aus denselben Nennern Q, in um- 

gekehrter Ordnung genommen, gebildet ist, wie Galois zuerst gezeigt hat. 

Stellt nämlich der rein-periodische Kettenbruch (1) die eine Wurzel x, 

der Gleichung (5) dar, so ist die andere Wurzel x, 

ne — en Ei (Periode Q,,0&-1>---Qı) 

Um dies sogleich an einem Beispiel nachzuweisen, sei gegeben 

(a) mM=84+5 an (Periode 3, 2,1) 
I CaER 

Sure: wii, 

Dann ist die Gleichung (2) 

(b) De Or I+-— 

die quadratische Gleichung, von welcher der periodische Bruch eine Wur- 
zel ist. Da hier 

M; 
N. 

1 or N a EEE 38 4 

ee = 3 

ist, so wird die Gleichung (3) 

(ce) 322 —8:—7=(. 
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Diese Gleichung (b) oder (c) enthält aber auch eine negative Wurzel, die 
sich aus (b) wie folgt berechnet: 

1 il 
Siem. .4 —_ 2+-- 1 De 

il 1 1 il 1 1 +, =-7,1 3 =-(+7)1+ l = 32 i+- 2 en ( 2) +. 

und schließlich = —4 Be! 
3—ı 

Setzt man nun diesen Wert von x immer wieder an die Stelle von x im 

letzten Teilbruch, so ergibt sich 

(d) =—— ,1 (Periode 1,2, 3) 

en el 
u A 

Dies ist die negative Wurzel der Gleichung (c). Man sieht, daß dieses Ver- 

fahren allgemein gilt, für beliebige Perioden. 

Die zwei Irrationalen, welche durch die zwei Kettenbrüche (a) und (d) 

dargestellt werden, sind die Wurzeln von (e) 

4-37 4— Y37 
%ı — a 5 %g ——kie 1 . 

Die Vergleichung der zwei Kettenbrüche (1) und (6), welche die zwei 

Wurzeln darstellen, zeigt, daß, wenn die Wurzeln einer quadrati- 

schen Gleichung sich in rein-periodische Kettenbrüche ent- 

wickeln, die zwei Wurzeln von entgegengesetzten Zeichen 

sein müssen und die eine >1, die andere <I]. 

6. Symmetrische Perioden. Ein besonderer Falltritt ein, wenn die Periode 

in sich symmetrisch ist, indem die Glieder gleichweit von dem Anfang 

und Ende der Periode gleich werden. Da in diesem Falle die Periode sich 

nicht ändert, wenn man sie umkehrt, ersieht man, daß, wenn ein solcher 

Kettenbruch A die Wurzel einer quadratischen Gleichung dartsellt, die 

andere Wurzel durch — 3 dargestellt ist. Die quadratische Gleichung ist 

also dann von der Form 

A@— A) (c+ 7)=4®—- (4 —-1)a—4=0 oder also 

(4) ae +bz—a=(0, 

wo a, b beliebige ganze Zahlen sein können. 
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1 : 
Beispiel. s=1+7z N 1 1 (Periode 1, 2,1) 

ist Wurzel der Gleichung 82? — 22 —3 = 0; die andere Wurzel ist in 

Kettenbruchform 

RE (Periode 1,2, 1) 

7. Gemischte Perioden. Der Kettenbruch heißt gemischt-periodisch, 

wenn die Periode nicht unmittelbar von Anfang an beginnt, sondern noch 

andere Teilbrüche vorangehen; derselbe ist also von der Form 

EN (Periode b,,.... . b,) 
%+, 1 

+ 

1 
bı-+-, 1 

an 

Es sei x, der rein-periodische Kettenbruch mit der Periode b,,...b;, 

also 
1 1 Be ; 

NET. 1 a und ran: N so ıst 

Fa+z ds 
_Ms%+-M;_ı, 1 

(5) = N,aruN Analog ıst 

1 
(6) De 1 | 

en 
bı += : il 

e- DAB 1 —_ Msır&s+r + Msır-ı, 

; Ts+k Near r&s+ıc + Ns+ır-ı 

Nun ist aber 2,;, = 2,. Die Elimination von x, aus den zwei Gleichungen 

führt wieder zu einer quadratischen Gleichung in x. 

Jeder gemischt-periodische Kettenbruch ist ebenfalls 

Wurzel einer quadratischen Gleichung. 

8. Umkehrung. Der im vorigen bewiesene allgemeine Satz, daß jeder 
(rein- oder gemischt-)periodische Kettenbruch eine quadratische Irratio- 
nale darstellt, läßt sich auch umkehren. 
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Die Wurzeln einer jeden ganzzahligen quadratischen Glei- 

chung lassen sich unter der Voraussetzung, daß sie reell 

sind, in einen rein- oder gemischt-periodischen Kettenbruch 

entwickeln. 

Es sei f(x) = 0 die gegebene quadratische Gleichung, welche eine reelle 

positive Wurzel haben möge. Wäre dies nicht der Fall, so transformieren 

wir die Gleichung, indem wir — x statt x einführen. Die positive Wurzel 

möge zwischen den ganzen Zahlen a und a + 1 liegen. Nun setzen wir 

z=a+ z. Die transformierte Gleichung 

fh(e) = 0 

muß sodann eine positive Wurzel größer als 1 besitzen. Sie liege zwischen 

den ganzen Zahlen b und b + 1; dann setzen wir =b+ = und bilden 

die transformierte Gleichung 

re) = 0. 

Diese Gleichung muß eine positive Wurzel haben > 1; sie liege zwischen 

ce und c+1. Dann setze man 2’ =c+ - usf. Man erhält auf diese 

Weise die Wurzel x in der Form 

1 
DO b =} sr ER 

Alle diese transformierten Gleichungen f} (&’), fs(2’”),... haben dieselbe 

Diskriminante wie f(x). Denn der Substitution =a + 4 entspricht bei 

homogenen Variablen, S die Substitution 

z=arn + y 

iR 

Da nun, wenn D die Diskriminante von f(x) ist und D’ die Diskriminante 

der transformierten Form f} (x’), D’= m?D ist für m als Determinante der 

linearen Substitution und da hierm = — 1, so wirdD’=D. 

In der Tat ist fa)=h"2 +2ge+h=0, 

wo h, h’, g ganze Zahlen, 

D=g—hh, h= 
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macht man die Substitution z=a+ =, so geht die Gleichung über in 

ha)=h'r+2gae+W=0, 
were 20) 

g=ah+tg, M"=hat2ga+h=" — el _— 

also g’, h’' wieder ganze Zahlen sind, und 
D' =, > N h’'h’’ = YD). 

Die Periodizität des Kettenbruchs ist durch die Konstanz der Diskrimi- 

nante D bedingt; es kommt aber noch eine andere Eigentümlichkeit der 

transformierten Gleichungen hinzu. 

Es sei 

(7) fa) = (e —-e)(e —P) = 0 

die gegebene Gleichung und « die positive Wurzel, welche in einen Ketten- 

bruch entwickelt werden soll. Nach der i-ten Transformation der Glei- 

chung f(x) = 0 hat man 
1 

(8) rien ; 

4 + 2,’ 

und &, ist eine positive Wurzel der Gleichung 

(a) = 0. Aus (8) folgt aber 

_ Mu TM;-ı 
0 een 

Setzt man diesen Wert von x in die Gleichung f(x) = 0 ein, so ergibt sich 

19, Ka) = (en) 
Die zwei Wurzeln dieser Gleichung sind also 

re 4 
M;_ı —aN;_ NG N; 11 en 1 I (11) EN der: N, m, und 

"TR, 
Meg 

(12) M; 1 —ßN;-ı d.i Nenn 
PN MEN: _M; 

N; 

Ist nun « diejenige Wurzel, welche in den Kettenbruch (8) entwiekelt 
i—ı > EM: 

wird, so sind N, N,, we aufeinanderfolgende Näherungsbrüche von 
T a 
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«, und da « zwischen denselben liegt, so ist die erste Wurzel der Gleichung 

(10) positiv. Sie ist aber auch > 1; denn sie ist ja gerade die Fortsetzung 

des Kettenbruchs (2), nämlich 

1 
Yrırt ge 

also ist sie > a,,,, mithin auch > 1. 

Da ferner mit wachsendem ? die zwei Näherungsbrüche von « = = und 
i—1 

immer näher zusammenrücken und ß von a verschieden vorausgesetzt M; 
N; 
ist, so wird von einem gewissen ı an ß außerhalb der Grenzen dieser zwei 

Näherungsbrüche liegen; dann wird aber 

ee 
N;-ı 
ee 

N; 

negativ und nähert sich immer mehr dem Werte — 1; die zweite Wurzel 

nähert sich also immer mehr dem Werte — ne sie wird mithin negativ 
i 

und dem absoluten Werte nach <1. 

Man wird demnach immer zu einer transformierten Glei- 

chung f;(&;) =0 kommen, deren eine Wurzel positivund >1 

ist, während die andere negativ und absolut genommen <]; 

dann behalten auch die folgenden transformierten Gleichun- 

gen f;;,]=0 usf. diesen Charakter. 

Hat ı diese Grenze erreicht, so ist f;(x) = 0 von der Form 

:(®) = h,x? > 29,% = N == 0. 

Hieraus folgt durch Substitution von a,,ı + n statt x 

Frl) = kn? — 29410 —h, = 0 

usw., 

wo die h,_1>, hi, hirı> - - -» is» Jirı, - - - ganze positive Zahlen sind. Ist D 

die Diskriminante der gegebenen quadratischen Gleichung f(x) = 0, so 

wird mithin 
D=g +1 = gr t uhzı= 

Ferner hat man 

Ir4ı = ırıa — I, Kt Irı = Urıhr- 
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In den entsprechenden Wurzeln der aufeinander folgenden Gleichungen 

ar) _ Hr tVD 
N Tee h; ’ ’ 

hirı 
Li+1 

werden nun die Größen g, h immer unter einer bestimmten Grenze bleiben, 

nämlich 

Dream, 

und es muß sodann eine Kombination derselben wiederkehren und da- 

durch der Kettenbruch periodisch werden. Damit ist der in 8. angegebene 

allgemeine Satz erwiesen. 

Zu bemerken ist noch, daß aus obigen Ungleichheiten auch folgt: 

DVD. 

Es bleiben also auch die Nenner der Teilbrüche der Periode immer unter 

dieser Grenze. 

Ist D = 2, so können die a der Periode nur 1 oder 2 sein; fürD=3 

oder D = 5 können die a der Periode die Zahl 3 bzw. 4 nicht überschreiten 

usf. 

Ist nun eine quadratische Irrationale 

g+yVD 
h 

Wurzel der Gleichung f(x) = 0, (D Diskriminante von f(@)) zur Ent- 

wicklung in einen Kettenbruch gegeben, so vollzieht sich diese Entwick- 

lung sehr einfach, ohne daß es nötig wäre, die Reihe der transformierten 

Gleichungen f(x) = 0, f(x) = 0,... zu bilden. Es sei a die größte in 

EAN enthaltene ganze Zahl (wir können die Wurzel als positiv voraus- 

setzen), so mache man die Transformation 

gEVyDE 1 
h 

"ıyD. A 
2) ist dann die entsprechende Wurzel von f(x) = 0. Nun transfor- 

: VD 
mıere man an auf dieselbe Weise usf. 

Beispiel. 72—11-2+3=0 

lyn I VT 
TE 
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Um x, zu entwickeln, hat man 

11-+y37 V3T—-3 28 1 
ee we 1 Te = 1 a en il FR 

= 14 er: an (V37 +3) a; v37+3 
9, 

V37+3 va—5 19 1 EInEnEe 4 rd 2 = Bl 
2 Gr “o(yar+5) “T yarts 

6 

v375 Vv37—1ı 36 1 
il —= || GE A ZEN = j| Ze Sn 

s une Tewanry)  Tyardı 
6 

va-lı V37—5 12 1 
1 — 2: —i — 

6 er: " 6(y37+5) Tarı5 
b} 

v37+5 V37—5 2 1 —5- u a a 
; ya) va 

6 
Nun wiederholen sich die Nenner und folglich ist 

u u Periode (1,1, 5) ae re 
De 

Die zweite Wurzel gibt 

et DL 84 ee 
; 14 14 (11437) 11-+Y87 

6 

11 + 37 Vai 1 
= 2 — » — ä 

6 z 6 n y37 +1 ee 

Zr) gibt wie oben bei x, die Quotienten 1,5,1,1,..., also 

2 u = - 1 Periode (5,1,1) ee Te De 
ee, 

Ganz auf dieselbe Weise entwickelt man y4 in einen Kettenbruch. Ist 

a die größte in YA enthaltene Zahl und macht man in 

Id))=#-4=-0 
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die Substitution =a+ = so erhält man 
A 

2a 1 

I) gt GT 0, 

1 il 
deren Wurzeln Be, me 

', YA-a’ °  YVAta 

sind. Die erste Transformierte f,(x) hat also die Eigenschaft, welche die 

Periodizität des Kettenbruchs bedingt. 

a 

vV35+5 v35—5 1 
I EZ] 10 10 "ar 

= = 1 
Spell) 35 — 5 = 10 + — . V35 + +YV es 

10 

Also Periode (1,10) YV35=5+ S 1 
1080 



Abel 257. 261. 266. 279. 
314 

Abelsche Gleichungen 
23578. 

Abgeleitete 16 
absoluter Betrag 10. 12 
Addition komplexer Zah- 

len 6. 10 
adjungierte Matrix 71 
D’Alembert 21 
algebraische Zahl 116 
alternierende Gruppe 290 
Argument einer komplexen 

Zahl 10 
ausgezeichnete Unter- 

gruppe 293 . 
Als: I» #7 cha $ Che ch wat. pP} 

Bachmann 229. 279 
Bezout 42. 314 

Bieberbach 7. 8. 22. 24. 

133. 200 
Bilinearform 79 

Brioschi 108 

Budan 151 

— -Fourierscher Satz 151 

Burkhardt 314 

Cardanische Formel 205 

Cardano 205. 279 

Cartesische Zeichenregel 
146 

casus irreducibilis der 

Gleichung dritten Gra- | 
des 207 

Cauchy 21. 42. 110. 130. 

131. 132. 314 

Cayley 108 
charakteristische 

tion 95 

Cohn 109. 170. 171 

Cramer 42 

Crelle 42. 155. 160. 

2357. 284. 315 

Curtiss 194 

Funk-| 

229.| 

| 
| 

Register. 

definite Form 87 
Derivierte 16 

Descartes 146. 155 

Determinanten A1ff. 
Diophant 243 
Diskriminante eines Poly- 

noms 117 

— einer quadratischen 
Form 80 

| Dörge 315 
Dreiteilung des Winkels 

272 

Eigenform 95 
Eigenwert 95 
Einheitswurzeln 221ff. 
Eisenstein 229. 231. 315. 
elementarsymmetrische 

Funktionen 101 
Encke 175. 181 
Euklid 33. 244 

| Euklidisches Teilerverfah- 

ren 33. 300 

| Euler 4. 20. 21. 245. 251. 
314 

Eulerscher Satz 20 

Faber 143 
Faltungssatz von Grace193 
Fejer 189. 191. 192. 193 

| Fermat 249. 232. 250. 251. 
254 

Fermatscher Satz 250 

Ferrari 205 

Ferro 205 

Fourier 151. 146. 155 

' Frobenius 8 

' Fundamentalsatz der Al- 

„ehe 21 iz 
Alan ti 

Galois 999. 
Galoissche Gruppe 301 
— Körper 299 

| — Resolvente 310 

GauBß 152 IE IE 
110. 186. 188. 191. 199. 
200. 229. 239. 257. 269. 

289. 314 

Gaußscher Satz 186 

gemischt-periodischer Ket- 
tenbruch 326 

Gerard 284 

Gerhardt 41 

Gewicht einer symmetri- 
schen Funktion 108 

Gordan 316 

Grace 193. 198 

| Grad einer Gleichung 3 
— einer symmetrischen 

Funktion 108 
Graeffe 174ff. 
Gruppe 288 

W.R. Hamilton 5 

Hankel 6 

Hauptachsentransforma- 
tion 93 

Heawood 198 

Herglotz 171. 174 
Hermite 98. 316 

Hilbert 315. 316 

Hölder 207 

| De ’Höpital 41. 42 
Horner 135 

' Hudde 205 

Hurwitz 174. 316 

Index einer Untergruppe 
291 

Indexreihe 293 
irreduzible Polynome 32 
irreduzibler Fall der Glei- 

chung dritten Grades 207 
Arne Uugrle Gleschrs € 4229 

| Jacobi 42. 155 
Jerrard 125 

C. Jordan 294 



334 

Kakeya 171f. 
Kettenbruch 317ff. 
F. Klein 125. 316 
Kolonnen einer Determi- 

nante 50 
komplexe Zahl 4ff. 
Kongruenz 240 
konjugiertekomplexe Zahl? 
— Untergruppen 291 
Kompositionsreihe 293 
Konstruktion mit Zirkel 

und Lineal 269 
Körper 31 
Kreisteilungsgleichung et 8) 
Kronecker 229. 315 

Lagrange 21. 106. 143. 145. 
146. 210. 211. 307. 314 

Laguerre 189. 190. 193. 194 
Legendre 161. 189 
LegendreschePolynomel61 
Leibniz 41. 42 

Libri 205 
Lie 257 

Lill 135. 141 
linearabhängig 91 
linearunabhängig 91 
Lindemann 316 
Liouville 145. 314 

Malo 197 

Matrix 58 

Matrizenkalkül 77 

Mehmke 139 

Montel 197 

Multiplikationssatz der De- 
terminanten 65 

Multiplizität einer Wurzel 
27 

Näherungsbruch eines Ket- 
tenbruches 318 

Näherungsmethode von 
Newton 142 

Register 

Newton 104. 106. 118. 123. 
130. 131. 139. 140. 142. 
143. 180. 187 

Newtonsche Formeln 104 

Nieuwenglowski 284 

Ordnung einer Gruppe 
288 

orthogonale Matrix 91 

FParzmeter 
Periode eines 

ches 323 
Permutation 44 
Pierpont 103 
Potenzsummen 103 
Poulain 187. 189 
primitive Einheitswurzeln 

DOLE. 
— Wurzeln einer Kongru- 

enz 251 

L Kettenbru- 

quadratische Form 81 

Rang 58. 87 
reduzibel 32 
reguläre Polygone 269 
Resolvente 209 
Resultante 55. 116 
reziproke Gleichungen 214 
— Matrix 82 
Richelot 271 
Ring 31 
Rolle 149. 186. 189. 198. 

201 
Rouche 25. 169. 170 
Ruffini 314 
Runge 181 

Säkulargleichung 102 
schiefsymmetrische Ma- 

trix 75 
Schröter 284 
J. Schur 171. 174. 197 
H. A. Schwarz 13 

Schwarzsche Ungleichung 
13 

Serret 125. 284 
Signatur 87° 1“ 
Staudt 2834 

Stern 160 
Sturm 21. 42. 110. 139. 

131. 132. 314 
Sturmsche Ketten 161 
Substitutionen 284 
Sylow 257 
Szegö 199 
Sylvester 155 
symmetrische Funktion 99 
— Gruppe 289 
— Matrix 74 

EM Ba 

Taegert 316 
Tartaglia 205 
Trägheitsgesetz 86 
Trennung der Wurzeln 

133 
Tschirnhaus 122. 208. 314 

unitär 98 
Unterdeterminante 56 

Untergruppe 290 

Van der Monde 42. 279 

Van Vleck 193 

Vektor 9 

Vincent 145 

Walsh 199 Wurzel #3 
Waring 106 
C. Wessel 5 

Wilson 255. 256 

Zahlenpaare 5 
Zeilen einer Determinante 

50 
Zerlegung eines Polynoms 

in Linearfaktoren 26 

zyklische Gleichungen 261 



Von demselben Verfasser erschienen ferner: 

Differential- und Integralrechnung. 1. Differentialgleichung. 3., verb. 
u. verm. Aufl. Mit 34 Fig. [VI u. 142S.] 8. 1928. Kart. 24 4.40. I. Inte- 
gralrechnung. 3., verb. u. verm. Aufl. Mit 25 Fig. [IV u. 152S$.] 8. 1928. 
Kart. ca. $# 4.60. (Teubn. techn. Leitf. Bd. 4 u. 5) 

Das Buch wendet sich auch in seiner sorgfältig durchgearbeiteten Neuauflage vornehm- 
lich an die Studierenden unserer Universitäten und technischen Hochschulen und will 
ihnen in wissenschaftlich einwandfreier, doch möglichst faßlicher Form das Grundlegende 
über Grenzwerte, Reihen, Differential- und Integralrechnung darbieten. Es wird bei seiner 
knappen Fassung auch höheren Lehrern und Ingenieuren sehr willkommen sein. 

Funktionentheorie. Mit 34 Fig. im Text. [IV u. ı18 S.] 8. 1922. (Teubn. 
techn. Leitf. Bd. 14.) Kart. %# 3.20 

„In gedrängter, aber klarer Sprache, mit schönen Figuren und guten Beispielen durch- 
setzt, wird eine Einführung in die Theorie der Funktionenlehre gegeben, die, mit den 
komplexen Zahlen beginnend, in streng logischer Kette zur konformen Transformation führt. 
Wie immer, wenn man des Verfassers Arbeiten liest, bietet die Lektüre einen Genuß, 
denn sie gibt Eigenes, Persönliches.“ (Unterrichtsbl. f. Mathem. u. Naturwissensch.) 

Lehrbuch der Funktionentheorie. 

I. Band: Die Elemente der Funktionentheorie. 2., verb. Aufl. Mit 80 Fig. 
ım Text. [VI u. 314 S.] gr. 8. 1923. Geh. RM 12.—, geb. AM 15.— 

II. Band: Moderne Funktionentheorie. Mit 44 Fig.im Text. [VII u. 366 S.] 
gr. 8. 1927. Geb. RK 20.— 
Der erste Band gibt unter Verschmelzung Riemannschen und Weierstraßischen Geistes 

eine einheitliche Darstellung der Elemente der allgemeinen und der speziellen Funktionen- 
theorie. Er umfaßt somit einmal alle die Begriffsbildungen und Methoden, welche die 
moderne Funktionentheorie beherrschen, und reicht andererseits von den rationalen Funk- 
tionen über die periodischen Funktionen bis zu den doppelperiodischen und den ellip- 
tischen Integralen, 

Der zweite Band stellt in acht Abschnitten dasjenige dar, was in der Theorie der 
Funktionen einer komplexen Veränderlichen durch die Arbeit der letzten Jahrzehnte an 
bleibenden Ergebnissen und Methoden gewonnen worden ist. Er bevorzugt dabei die 
Dinge, über die es zusammenhängende Darstellungen noch nicht gibt. So handeln einzelne 
Abschnitte vom Picardschen Satz, von der Theorie der gauzen Funktionen, von der 
analytischen Fortsetzung, der konformen Abbildung und der Uniformisierung. 

Die Determinanten. Von Geh. Hofrat Dr. Z. Netto, weil. Prof.a.d. Univ. 
Gießen. 2., verb. Aufl., neubearb. von 'Z. Bieberbach. [VI u. 123 S.] 8. 
1925. (Samml. math.-phys. Lehrbücher Bd. 9.) Kart. #M 4.40 

Zur Geschichte der Logik. Grundlagen und Aufbau der Wissenschaft 
im Urteil der mathematischen Denker. Von Dr. 7. Enrigues, Prof. a. d, 
Univ. Rom. Deutsch von Z. Bieberbach. [V u. 240 S.] 8. 1927. (Wiss. 
u. Hypothese Bd. XXVI.) Geb, 3M 11.— 

Mathematisches Wörterbuch. Herausg. von Dr. Z. Bieberbach und 
Dr. AR. v. Mises, Proff. a. d. Univ. Berlin. [In Vorb. 1928] 

Dieses Wörterbuch will ein Hilfsmittel bei der mathematischen Lektüre sein und 
ein Nachschlagewerk für jeden, der rasche Auskunft über einen Begriff oder einen 
Satz sucht. Der Studierende, der einem neuen Ausdruck begegnet, der reife Mathe- 
matiker, der in einem ihm ferner liegenden Sondergebiet rasche Orientierung sucht, der Inge- 
nieur und jeder andere, dem die Mathematik nur ein gelegentliches Hilfsmittel ist, sie 
alle sind oft schon dadurch behindert, daß sie zunächst nicht wissen, wo eine gewünschte 
Auskunft zu holen ist. Auch dann bildet es noch eine Schwierigkeit, daß die glücklich 
gefundene Auskunft unverständlich bleibt, weil die dabei verwandten Begriffe und Ergeb- 
nisse wieder nicht geläufig sind und ein Nachschlagen in wieder anderen Werken erfor- 
dern. In diesen Fällen soll das Wörterbuch helfen. Es will keine Sammlung von Mono- 
graphien sein, sondern den Stoff auf recht viel Stichworte verteilen, dabei die Begriffe 
erklären, Sinn und Tragweite wichtiger Sätze erläutern. 
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Elementare Algebra und Analysis. Von.Dr. 7. Weber, weil. Prof. a..d. 

Univ. Straßburg. Neubearb. von Dr. P. Epstein, Prof. a. d. Univ. Frank- 

furt a.M. 4. Aufl. Mit 26 Fig. im Text. [XVI u. 568 S.] gr. 8. 1922. 

(Enzyklopädie der Elementar-Mathematik I. Bd.) Geb. ZM# 18.— 

„Die vorliegende 4. Aufl. erfüllt alle, auch die höchstgespannten Anforderungen, die an 

eine geschlossene und bis auf die neuesten Untersuchungsergebnisse fortgeführte Darstellung 

der Elementarmathematik gestellt werden können und dem Studierenden wie auch dem 

Lehrer das Eindringen selbst in ganz abgelegene und versteckte Gebiete des behandelten 

Wissenszweiges ermöglicht, ja sogar zufolge der fesselunden Schreibweise hierzu geradezu 

herausfordert.“ (Ingenieur-Zeitschrift.) 

Arithmetik und Algebra nebst den Elementen der Differential- 

rechnung. Von Dr. Z. Borel, Prof. a. d. Sorbonne Paris. Vom Verfasser 

genehmigte deutsche Ausgabe besorgt von Geh. Hofrat Dr. P. Stäckel, weil. 

Prof. a.d. Univ. Heidelberg. 2. Aufl. Mit 56 Textfig. u. 3 Taf. [{XVI u. 404 S.] 

8. 1919. (Elemente der Mathematik Bd. 1.) Geh. AM 12.—, geb. RM 14.— 

3»... Borel und Stäckel führen uns leicht und sicher zu einem klaren Verständnis der 

elementaren Arithmetik und Algebra, dabei häufig in vortrefflichber Weise von dem an- 

schaulichen Hilfsmittel der graphischen Darstellung Gebrauch machend.‘‘ R 
(Zeitschr. d. Vereins deutscher Ingenieure.) 

Die Grundlehren der Arithmetik und Algebra. Bearb. von Geh. 

Hofrat Dr. E. Netto, weil. Prof. a. d. Univ. Gießen, und weil. Oberreal- 

schulprof. Dr. C. Färber, Berlin. (Grundlehren der Mathematik I. Teil.) 

I. Band: Arithmetik. Von C. Färber. Mit 9 Fig. [XV u. 410 S.] gr.®. 

ıg911. Geb. AM 14.— 

II. Band: Algebra. Von Z. Netto. [XIl u. 232 S.] gr. 8. 1915. Geb. AM 7.80 

„Das ganze Werk ist in allen seinen Teilen anregend und mit sicherer Klarheit ge- 

schrieben. In lückenlosem Aufbau erhebt sich vor dem Leser allmählich das ganze Gebäude 

der elementaren Arithmetik; ein Ideenzusammenhang erfordert mit logischer Konsequenz 

den nächsten. Das Buch wird namentlich dem praktischen Schulmann die besten Dienste 

leisten.“ (Jahrbuch über die Fortschritte der Mathematik.) 

Elementare Algebra. Akadem. Vorlesungen für Studierende der ersten 
Semester. Von Geh. HofratDr. Z. Netto, weil. Prof.a.d. Univ.Gießen. 2. Aufl. 
Mit 19 Fig. im Text. [X u. 200$.] gr. 8. 1913. Geh. AM 6.—, geb. AM 8.— 

Dieses Buch soll den Studierenden der ersten Semester von den in der Schule be- 
handelten Stoffen zur höheren Algebra hinüberleiten. Andererseits möchte es zugleich eine 
auch für den Nichtmathematiker wohl zugängliche Zusammenstellung der namentlich in der 
Technik vorkommenden algebraischen Probleme und Lösungsmethoden geben. Das Buch ist 
aus Hochschulvorlesungen entstanden und verzichtet demgemäß auf eine strenge Systematik; 
möchte aber namentlich zum selbsttätigen Eindringen in die dargelegten Probleme anregen. 

Einführung in die höhere Algebra. (Introduction to higher algebra.) 
Von Dr. 7. Böcher, Prof. a. d. Havard-Univ. zu Cambridge. Deutsch von 
Dr. H. Beck, Prof.a. d. Univ. Bonn. Mit einem Geleitwort von Geh. Reg.- 
Rat Dr. E. Study, Prof. a. d. Univ. Bonn. 2. Aufl. [XIlu. 348S.] gr. 8. 
1925. Geb. ## 13.50 

Einleitung in die allgemeine Theorie der algebraischen Größen. 
Von Prof Dr. W. König, Budapest. [X u. 564 S.] gr.8. 1903. Geb. #H# 22.— 

Neuere algebraische Theorien. Von ZE. Z. Dickson, Prof. a. d. Univ. zu 
Chicago, U.S. A. Deutsch von Studienassessor £. Bodewig, Mörs (Rhld.) 
[In Vorb. 1928] 

Die Übersetzung des Dicksonschen'Buches wird gerade in Deutschland eine oft emp- 
fundene Lücke in der Lehrbuchliteratur ausfüllen; denn bisher fehlte besonders dem 
Studenten ein Buch, das eine wirklich klare und einfache, durch zahlreiche anregende 
Beispiele und Aufgaben erläuterte Darstellung wichtiger Theorien der Algebra, wie z.B. 
der Gruppentheorie, der Galoisschen Theorie, der Invariantentheorie und der Theorie der 
quadratischen Formen in den singulären Fällen bietet. Das didaktisch glänzend angelegte 
Buch wird daher besonders Lehrern und Studenten der Mathematik willkommen sein, 

Verlag vonB.G. Teubner in Leipzig und Berlin 



Pascals Repertorium der höheren Mathematik. 2., völlig umgearb. 
Aufl. der deutschen Ausgabe. Unter Mitwirkung zahlreicher Mathematiker 
herausg. von Dr. £. Salkowski, Prof. a. d. Techn. Hochschule in Berlin, 
u. Dr. 7. E. Timerding, Prof. a. d. Techn. Hochschule in Braunschweig. 

I. Band: Analysis. Herausg. von Z£. Salkowski. 
ı. Teilband: Algebra, Differential- und Integralrechnung. [XV u. 527S.] 

gr. 8. 19I0. Geb. AM 18.— 
2. Teilband: Differentialgleichungen, Funktionentheorie. Mit 26 Fig. 

im Text. [XII u. S. 529—1023.] gr. 8. 1927. Geb. RM 18.— 
3. Teilband: Reelle Funktionen, Neuere Entwicklungen, Zahlentheorie. 

[Erscheint Sommer 1028] 

II. Band: Geometrie. Herausg. von 7. E. Timerding. 
ı. Teilband: Grundlagen und ebene Geometrie, Mit 54 Fig. [XVII 

u. 534 S.] gr. 8. I9Io. Geb. 34 13.— 
2. Teilband: Raumgeometrie. Mit ı2 Fig. im Text. [XII u. 628 S.] 

gr. 8. 1922. Geh. AM 17.—, geb. RM 20.— 
Mit dem in Kürze erscheinenden 3. Teilbande des ersten Bandes, der die reellen 

Funktionen, die neueren Entwicklungen sowie die Zahlentheorie behandelt, kommt die Bear- 
beitung der zweiten Auflage des „Pascal“ zum Abschluß. Unter Wahrung seiner bekannten 
Vorzüge ist bei dieser Anpassung an die Gegenwart durch die, Form wie Inhalt betreffen- 
den, durchgreifenden Änderungen ein neues Werk entstanden, das nicht eine große Menge 
von Einzelheiten lose aneinanderreiht, sondern auf eine zusammenhängende und in sich ge- 
schlossene Darstellung des Gesamtgebietes Wert legt. Das Werk soll nach der Absicht 
der Herausgeber nicht bloß eine Übersicht über den weiten Bereich der Algebra, Analysis 
und Geometrie im einzelnen, sondern auch eine Darlegung ihrer allgemeinen Prinzipien und 
Methoden geben und von dem heutigen Stand der Forschungen Rechenschaft ablegen; 
es soll so nicht nur eine sichere Führung und eine zuverlässige Orientierung während 
des mathematischen Studienganges bieten, es soll auch der selbständigen wissenschaft- 
lichen Arbeit eine brauchbare Hilfe gewähren. 

Mathematisches Praktikum. Von Dr. 7.v. Sanden, Prof. a. d. Techn. 
Hochschule in Hannover. (Teubn. techn. Leitf. Bd. 27) 

ı. Band. Mit 17 Fig. im Text sowie 20 Zahlentaf. als Anhang. [V u. 122 S.] 
8. 1928. Geb. .%.H 6.80 

2. Band. [In Vorb. 1928] 
Für viele Berufe bedarf das Studium der systematischen Mathematik anerkanntermaßen 

einer Ergänzung in praktischer Richtung. Diesem Bedürfnis kommt das „Mathematische 
Praktikum“ entgegen, das in der Form einer Aufgabensammlung die Anwendbarkeit der 
mathematischen Begriffe auf Probleme der Praxis zeigt und eine gewisse Gewandtheit 
im numerischen Rechnen ausbilden will. 

Der vorliegende erste Band setzt nur die Grundbegriffe der Differential- und Integral- 
rechnung voraus und behandelt den Rechenschieber, den Lehrsatz von Taylor, die Auf- 
lösung algebraischer und transzendenter Gleichungen, die Ausgleichsrechnung, die nume- 
rische Integration und Differentistion sowie die Zerlegung und Zusammensetzung perio- 
discher Funktionen. Die wichtigsten mathematischen Grundlagen . sind jeweils kurz 
zusammengestellt und die Aufgaben selbst unter sorgfältiger Genauigkeitsdiskussion bis 
zur letzten Zahl durchgerechnet. Ein zweiter Band ist in Vorbereitung und soll in gleicher 
Weise die gewöhnlichen Differentialgleichungen behandeln. 

Das Wissenschaftsideal der Mathematiker. Von Prof. P, Boutroux. 
Autorisierte deutsche Ausgabe mit erläuternden Anmerkungen von 
Dr. H. Pollaczek-Geiringer, Berlin. [IV u. 253 S.] 8. 1927. (Wiss. u. Hyp. 
Bd. XXVIIL) Geb. 3M 11.— 

Über den Bildungswert der Mathematik. Ein Beitrag zur philo- 
sophischen Pädagogik. Von Dr. W. Birkemeier, Berlin. [VIu. 191 S.] 8. 
1923. (Wiss. u. Hyp. Bd. XXV.) Geb. %# 5.60 
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; Einleitung in die Infinitesimalrechnung. Von Prof. E. Cesaro, Neapel. 

ht Mit zahlr. Übungsbeispielen. Nach einem Manuskript des Verf. deutsch 

herausg. von Dr. G. Kowalewski, Prof. a. d. Univ. Bonn. 2., gekürzte Aufl. 

Hin mi Mit 26 Fig. [IV u.488S.] gr.8. 1922. Geb. 2M 20.— 

/ Bei der zweiten Auflage des umfangreichen Elementarbuches beschränkten sich 

y Herausgeber und Verlag auf die Wiedergabe derjenigen Teile, die für eine Einführung 

ß 0 | in die höhere Analysis besonders wichtig erscheinen, wie Determinanten, lineare und 

quadratische Formen, irrationale Zahlen, Grenzwerte, unendliche Reihen und Produkte, 

Theorie der Funktionen, komplexe Zahlen und algebraische Gleichungen. 

Höhere Mathematik für Mathematiker, Physiker und Ingenieure. 
Von Dr. AR. Rothe, Prof. a. d. Techn. Hochsch. in Berlin. (Teubn. math. 

DEN NE u. techn. Leitf. Bd. 21—23) 
/ / I. Band: Differentialrechnung und Grundformeln der Integralrechnung 

nebst Anwendungen. 2. Aufl. Mit 155 Fig. im Text. [VII u. 186 S.] 8. 
1927. Kart. RM 5.— 

II. Band: Integralrechnung, Unendliche Reihen, Vektorrechnung nebst 

Anwendungen. [In Vorb. 1928] 
III. Band: Raumkurven und Flächen, Linienintegrale und mehrfache 

Integrale, gewöhnliche und partielle Differentialgleichungen nebst 

Anwendungen. [In Vorb. 1923] 
Mit dem auf 3 Bände der Sammlung verteilten, aus den Vorlesungen des Verfassers 

für Studierende der reinen und angewandten Mathematik, der Physik und der verschiedenen 
Ingenieurwissenschaften hervorgegangenen Werke soll ein das Gesamtgebiet der höheren 
Mathematik umfassender entsprechend den Grundsätzen der Sammlung knapper gehalten 
Leitfaden in freier Anordnung des Stoffes, aber mit zahlreichen Beispielen, Anwendungen 
und Übungen geboten werden. Der jetzt bereits in 2. Auflage vorliegende erste Band 
enthält einen einleitenden Abschnitt über Zahlen, Veränderliche und Funktionen, behandelt 
sodann die Hauptsätze der Differentialrechnung und die Grundformeln der Integralrechnung, 
Funktionen von zwei und mehr Veränderlichen, Differentialgeometrie ebener Kurven, 
komplexe Zahlen, Veränderliche und Funktionen. 

Lehrbuch der Differential- und Integralrechnung und ihrer An- 
wendungen. VonGeh.HofratDr.R. Fricke, Prof.a.d. Techn. Hochschule 
in Braunschweig. 2.u.3. Aufl. gr.8. 1921. Geh. je .2M 10.60, geb.je RM 13.— 
I. Band: Differentialrechnung. Mit 129 in den Text gedr. Fig., I Sammlung 

von 253 Aufg. u. ı Formeltab. [XII u. 388 S.] 
II. Band: Integralrechnung. Mit 100 in den Text gedr. Fig., ı Sammlung 

von 242 Aufg. u. ı Formeltab. [IV u. 406 S.] 
„Dieses Lehrbuch ist ein ausgezeichnetes Werk eines erfahrenen akademischer Lehrers. 

Es kann allen, die ihre mathematischen Kenntnisse auf eine sichere Grundlage stellen 
wollen, insbesondere den Studierenden auf den technischen Hochschulen wie auf den 
Universitäten aufs wärmste empfohlen werden.“ (Zeitschr.d. Vereins deutscher Ingen.) 

Lehrbuch der Differentiai- und Integralrechnung. Ursprünglich Über- 
setzung d. Lehrbuches v. /. A. Serret, seit der 3. Aufl. gänzlich neubearb,. 
von Geh. Reg.-RatDr. G. Schefers, Prof. a.d. Techn. Hochschule in Berlin. 

I. Band: Differentialrechnung. 8. Aufl. Mit 70 Fig. im Text. [XVI u. 
670 S.] gr.8. 1924. Geb. RM 22.— 

II. Band: Integralrechnung. 6. u. 7. Aufl. Mit 108 Fig. im Text. [XI 
u. 612 S.] gr.8. 1921. Geh. RM 17.60, geb. RM 20.— 

III. Band: Differentialgleichungen und Variationsrechnungen. 6. Aufl. 
Mit 64 Fig. im Text. [XII u. 732 S.] gr.8. 1924. Geb. RM 24.— 
Bei der Neuauflage sind die einzelnen Bände wiederum sorgfältig durchgesehen und 

verbessert worden. Dies betrifft besonders auch die sehr beifällig aufgenommenen ge- 
schichtlichen Anhänge, bei denen in recht ausgedehntem Maße die Originalwerke selbst 
herangezogen wurden. Gegenüber der heute in immer größeren Tiefen gesuchten Grund- 
legung, der Analysis und der zunehmenden Verschärfung ihrer Sätze hält der Verfasser 
die bei einem Lehrbuch gebotene richtige Mitte. 

Verlag von B.G. Teubner in Leipzig und Berlin 
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