88 II INDUCTION IN ROTATING SPHERES Heat gener- ated in a Let the resistance of the shell be k: required the heat W generated in it. We determine the values of u, v, w belonging to , and in particular to the term Yni A sin iwPni = spherical When u, v, w have been found, the heat generated is shell. W=k(u²+v²+w²)ds, the integral being extended over the whole surface of the sphere. and to denote currents parallel to circles the meridians in the direction of increasing Introducing of latitude and to e and w, we have น= Ω = - 1 дв R 00' 1 дов - R sin dw' u = cos e cos + sin w, v = cos sin w - - Ω cos w, w = - sin 0. Substituting for ni the value given we get u = u = w= R R - - cos iw cos w. ¿Pni. cot - sin iw sin wP'ni} cos iw sin w. ¿Pni cot + sin iw cos wP'ni}, i cos iw. P A. R ni. • But now ¿Pni cot 0 = {Pn,i+1+(n + i)(n − i + 1)Pni-1}, - - P'ni = } { − Pni+1+(n + i)(n − i + 1)Pn,i-1}. Substituted in u, v, w these give - A 2R cos (i+1)w. Pn,i+1 - +(n + i)(n − i + 1) cos (i-1)w. Pri-1},