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BIOGRAPHICAL SKETCH

Gerhard Gentzen was born in Greifswald, Pomerania, on November
24th, 1909. He spent his childhood in Bergen on the Isle of Riigen in the
Baltic Sea, where his father was practicing law. There he attended elementary
school and the local Realgymnasium. After his father’s death in the First
World War, his mother decided in 1920 to move to Stralsund, where
Gentzen completed his secondary education at the Humanistische Gym-
nasium. On February 29th, 1928, he was granted the Abitur with distinction,
having attained the highest academic standing in his school and, on the
recommendation of his headmaster, he received a university scholarship
from the Deutsche Studentenwerk enabling him to continue his higher
education.

Even as a young boy, Gentzen is said to have displayed exceptional
mathematical ability and had declared categorically that the only subject
which he would ever be able to study was mathematics. He enrolled at the
University of Greifswald for two semesters and there earned Hans Kneser’s
respect as ‘a particularly gifted student’. From Greifswald Gentzen went
to Gottingen, where he matriculated for the first time on April 22nd, 1929.
After two semesters he went to Munich, studied there for one semester,
and after a further semester at Berlin, he finally returned to Gédttingen and
worked under Hermann Weyl. Five semesters later, in the summer of 1933,
Gentzen sat his Staatsexamen and, at the age of twenty-three, was granted
a doctorate in mathematics. The great mental strain which his studies had
involved and his delicate constitution forced him to interrupt his academic
career and to return home for an extended period of rest.

The major turning point in Gentzen’s academic life came undoubtedly
with his appointment in 1934 as Hilbert’s assistant in Gottingen, where he
continued to work even after Hilbert’s retirement. During these years
Gentzen published some of his most important papers and was also given
the responsible task of reviewing numerous works of eminent researchers
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from many countries for the Zentralblatt fiir Mathematik. These reviews
attest his extraordinary range of interest and the great extent of his involve-
ment in the international community of scholars. In 1937, he was invited
to the Philosophical Congress in Paris and delivered an address on the
‘Concept of Infinity and the Consistency of Mathematics’.

At the outbreak of the Second World War, Gentzen was conscripted into
the armed forces and was given an assignment in Telecommunications in
Braunschweig. Within two years he became seriously ill and spent three
months in a military hospital. Upon his release, he was freed from military
service for reasons of ill health. After a period of rest, he rejoined the
University of Gottingen, where in 1942 he attained the Dr. phil. habil.
degree for his papers on the ‘Provability and Nonprovability of Restricted
Transfinite Induction in Elementary Number Theory’.

Upon the request of the director of the Mathematical Institute of the
German University of Prague, Gentzen was subsequently appointed Dozent
at that University in the autumn of 1943. He taught there until, on May 5th,
1945, he and all other professors at the University were taken into custody
by the new local authorities. On August 4th, 1945 amid the turmoil and
confusion that must have marked that period, Gentzen died tragically in
his cell of malnutrition after several months of extreme physical hardship.
One of his friends writes: “I can still see him lying on his wooden bunk
thinking all day about the ({mathematical)) problems which preoccupied
him. He once confided in me that he was really quite contented since now
he had at last time to think about a consistency proof for analysis. He was
in fact fully convinced that he would succeed in carrying out such a proof.
He also concerned himself with other questions such as that of an artificial
language, etc. Now and then he would give a short talk . . .. We were con-
tinually reassured that the formalities of our release would take only a few
days longer . . .. He was hoping to be able to return to Gottingen and devote
himself fully to the study of mathematical logic and the foundations of
mathematics. He was dreaming of an Institute for this purpose, perhaps
together with H. Scholz....”

M.ES.



INTRODUCTION

The papers in this collection were written during a period of approx-
imately ten years between 1932 and 1942, and comprise Gerhard Gentzen’s
extant contributions to logic and metamathematics. The editor first became
interested in collecting and translating these papers during his under-
graduate days at Oxford, when this task seemed far less arduous and
delicate than it later turned out to be. Had it not been for an encouraging
telegramme from Prof. Paul Bernays, the project would in fact never have
been undertaken and completed. This debt of gratitude is here gratefully
acknowledged.

The present introduction is intended to place Gentzen’s work in its
historical context and to trace some of the germane subsequent develop-
ments back to their origin in the papers below. These papers are not neces-
sarily discussed in the chronological order in which they appear. An attempt
has been made to provide ample cross-references between the various
papers in order to motivate the reader to proceed from the nontechnical
to the technical levels of Gentzen’s writings. In this way the study of some
lengthy and detailed arguments is postponed and the striking originality
and freshness of Gentzen’s ideas is not obscured and lost. Numerous
references to other writers have been included in order to place Gentzen’s
achievements in their proper perspective and to facilitate the locating of
relevant sources. Whenever possible, these references have been chosen
from publications that have appeared in English.

Gentzen’s public career began on the 2nd February 1932, when, at
the age of twenty-two, he submitted to the Mathematische Annalen a paper
‘On the Existence of Independent Axiom Systems for Infinite Sentence
Systems’. Today this paper is relatively unknown and it has received less
attention since its publication than it deserves. Gentzen here presented a
study of the theory of sentence systems as developed by Paul Hertz and
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at once displayed his great mathematical ability by giving a complete
answer to a difficult open question concerning the existence of ‘independent’
axiom systems for arbitrary sentence systems. He showed by the construc-
tion of a counterexample that not all sentence systems possess independent
axiom systems, whereas all ‘linear’ sentence systems do possess an in-
dependent axiomatization. In the course of his proof, Gentzen brought
about a simplification of Hertz’s rules of inference and noticed in particular
that Hertz’s ‘syllogism’ could be transformed into a special form which
he called a ‘cut’. In view of the special role which the ‘cut’ later played in
Gentzen’s celebrated discovery in predicate logic, the importance of Hertz’s
ideas for a totally new approach to logistic enquiries becomes apparent.
Gentzen himself acknowledges this fact by using not only some of Hertz’s
methodology, but also some of Hertz’s terminology in his ‘Investigations’
and in most of his other writings. In generalizing Hertz’s ‘sentences’ to
‘sequents’, for example, Gentzen speaks of the component parts of a
sequent as the ‘antecedent’ and the ‘succedent’ and in doing so follows
Hertz’s terminology. The notion of ‘logical consequence’ as used by Gentzen
is also largely inspired by Hertz’s work. In this connection Bernays
observed that Hertz’s theory of sentence systems constitutes an area of
research in axiomatics and logic in which the possibilities of enquiry and
discovery have by no means been exhausted®. It will be interesting to
observe to what extent the recent use of Gentzen-type deductive systems in
the solution of open problems in ‘categorical algebra’ by Joachim Lambek?,
for example, will give new importance to Hertz’s work and also perhaps
add yet another dimension to the remarkable influence and normative
character of Gentzen’s mathematical thinking.

It is historically significant that the semantic notion of logical consequence
which Tarski introduced explicitly in 19362, was already developed by
Gentzen to a considerable degree in #1. When Beth writes that ‘the notion
of logical consequence was introduced by Tarski (1936) as a semantical
counterpart to the syntactical notion of derivability’®, this should be com-
pared with Gentzen’s penetrating discussion of these concepts in § 4 of
#1. In a somewhat modified form the notion of comsequence is also
implicit in Gentzen’s calculus of ratural deduction developed in #3 and
published in 1934. Recently K. Schréter has in fact shown that Gentzen’s
calculus of natural deduction yields an exact formalization of the notion
of consequence, as long as this notion is understood in the sense in which
it was first used by Bolzano®*. Yet even Tarski’s notion of logical conse-
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quence is analogous to a far-reaching extent to that of Bolzano, pre-
sented over a hundred years earlier>.

Gentzen’s interest in axiom systems and, more generally, in axiomatic
methods stems in part from his concern with the aims of Hilbert’s programme
of setting classical mathematics on a secure foundation in order to eliminate
the crisis by which mathematics had been beset because of the appearance
of the antinomies of set theory. As early as 1904, one year after the publica-
tion of Russell’s antinomy, Hilbert had outlined his views on the foundations
of logic and arithmetic® and in a succession of papers he drew up what
Gentzen refers to as ‘Hilbert’s programme’’. Hilbert’s papers provide the
appropriate historical background and motivation for Gentzen’s discussion
in #4, section I, and #6 and #7. In #6, for example, Gentzen expounds
Hilbert’s ideas and classifies mathematics into three distinct levels according
to the degree to which the concept of infinity is used in the various branches
of mathematics. The classification actually goes back to Weyl®. The first
level is called elementary number theory, i.e., the theory of the natural
numbers, the second level analysis, i.e., the theory of the real numbers, and
the third level general set theory, i.e., the entire theory of Cantor’s cardinal
and ordinal numbers.

Gentzen attributes the occurrence of the antinomies of set theory to an
excessively liberal use of the concept of infinity in general set theory and
on this point finds himself in agreement with such prominent mathematicians
as Poincaré, Brouwer, and Weyl, the foremost proponents of ‘intuitionism’®.
Yet since the intuitionists also reject some rather fundamental principles of
classical logic such as the validity of the law of the excluded middle in
situations involving infinity, a careful comparison of Brouwer’s and Hilbert’s
methods of reconstructing mathematics became vital and in #2 Gentzen
establishes that at least at the first level, intuitionist and classical mathe-
matics are proof-theoretically coextensive.

#2 constitutes a natural link in the development of Gentzen’s ideas and
methods, and the editor has decided to include it in the present volume in
spite of the fact that, in 1933, Gentzen himself had withdrawn the corrected
galley proof from publication when Godel’s comparable discovery became
known'®. It should be noted, incidentally, that as early as 1925, five years
before the publication of Heyting’s formalization of intuitionist logic,
Kolmogorov had the idea of reinterpreting classical arithmetic in terms of
intuitionist arithmetic and in this way seems to have anticipated the intui-
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tionist consistency of classical arithmetic''. The essential significance of
#2, on the other hand, lies in the fact that here Gentzen begins to develop
his formalist approach to foundational problems and discusses the connec-
tion between intuitionist and classical logic which is at the heart of his
methods in #3. Also mentioned here for the first time is the question of the
consistency'?, i.e., the freedom from contradiction, of the various levels
of mathematics as seen from Hilbert’s finitist point of view, a criterion of
reliability in mathematics that became the central theme of all of Gentzen’s
further investigations. At this time, however, a consistency proof of the
different levels of mathematics seemed singularly out of reach and Gentzen
ends #2 on a pessimistic note concerning the realizability of Hilbert’s
programme in view of the obstacles presented to such an undertaking by
Godel’s proof of the impossibility of ‘internal’ consistency proofs!3. In
order to preserve its historical flavour, no attempt has been made to bring
#2 in line with Gentzen’s further work by standardizing the notations
employed. In #2, Gentzen still uses Hilbert’s quantification symbols, for
example, whereas from #3 onwards, a variety of new symbols is consistently
used, including the 3 of the Principia Mathematica for the existential quanti-
fier and, by analogy, the symbol Y'* for the universal quantifier, a notation
that is prevalent in mathematics textbooks today.

#3 is perhaps the most widely read and universally acclaimed source of -
Gentzen’s influence. Here Gentzen breaks away from the traditional
formulations of predicate logic as they were developed by Frege, Russell,
and Hilbert'® and presents two basically different versions of predicate logic
now customarily referred to as the N-systems'® and the L-systems'’. The
N-systems are the outcome of Gentzen’s attempt to find a more ‘natural’
approach to formal reasoning'®. Similar independent attempts were made by
Jaskowski in Poland, incidentally, and in 1934, the same year in which
Gentzen published his ‘Investigations’, Jaskowski published a different
version of ‘natural deduction’ based on ideas first put forward by
Lukasiewicz in seminars as early as 1926'°. In view of Gentzen’s efforts
to find more ‘natural’ methods in mathematical logic, it is not surprising
that his first consistency proof for elementary number theory (#4) is
formalized in terms of an N-type calculus (NK), where simplicity and
elegance of procedure are sacrificed to the demands of ‘naturalness’. In
#8, Gentzen reverses his methods and uses an L-type calculus (LK) in
order to simplify his consistency proof, but, in doing so, jeopardizes some
of the naturalness in procedure?®, Gentzen elicits the properties which an
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N-system should have from a detailed analysis of Euclid’s classical proof
of the nonexistence of a largest prime number. This analysis reveals very
clearly and simply how Gentzen is led to a calculus based on assumption
formulae instead of the usual axiom formulae, and how the ‘natural’
separation of the rules for the logical operators into ‘introduction’ rules
and into ‘elimination’ rules evolved. In addition, Gentzen achieves a very
natural formulation of intuitionist logic, since classical logic follows from
it by the mere inclusion of the single basic formula %[ v — 2. In this connec-
tion, Kneale justly points out?! that ‘Gentzen’s success in making intui-
tionistic logic look like something simpler and more basic than classical
logic depends . . . on the special forms of the rules he uses and that certain
rules yield the classical logic more ‘naturally’ than the intuitionistic’. This
fortuitous state of affairs is of course in harmony with Gentzen’s intention
of using intuitionist logic and intuitionist arguments in his metamathematical
investigations, feeling as he does that the intuitionists have drawn the most
radical conclusions from the crisis that had emerged in the foundations of
mathematics?2.

Several detailed studies of natural deduction have recently appeared in
the literature. Leblanc, for example, has written a lucid account of the
relationship between Gentzen’s various N-systems developed in #3 and
#423, In 1965, Dag Prawitz published perhaps the most comprehensive
survey of the developments that have taken place in natural deduction up
to 196524, Prawitz generalizes and extends to N-systems the results which
Gentzen has established for L-systems in #3. This monograph covers a
wide variety of topics including the application of natural deduction to
modal logic.

When Gentzen examined the specific properties of the ‘natural calculus’,
he was led to the conjecture that it should be possible to bring purely logical
proofs into a certain ‘normal form’ in which all concepts required for the
proof would in some sense appear in the conclusion of the proof?s. In
order to enunciate and prove his theorem which he called the Hauptsatz
(literally rendered as the main theorem and also known in English as the
elimination theorem) for both intuitionist and classical predicate logic, how-
ever, Gentzen had to abandon his natural ‘assumption’ calculi and formulate
logistic ‘sequent’ calculi in which the logical rules can be divided into
‘structural’ and ‘operational’ rules?®. The Hauptsatz then refers to the fact
that one of the ‘structural’ inference figures of the calculus, the ‘cut’, can
can be eliminated from purely logical proofs; as a corollary Gentzen obtains
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the subformula property, which says that in a cut-free proof all formulae
occurring in the proof are compounded into the ‘endsequent’, i.e., the
formula to be proved. In section 4 of #3, Gentzen gives several applications
of the Hauptsatz: a consistency proof for classical and intuitionist predicate
logic; the solution of the decision problem for intuitionist propositional
logic; and a new proof of the nonderivability of the law of the excluded
middle in intuitionist logic. In the L-systems the difference between intui-
tionist and classical logic is again characterized very simply by restricting
the number of ‘succedent formulae’ in intuitionist sequents to a single
formula?”.

The Hauptsatz can be brought into a sharper form in the case of classical
logic. Here a proof can be broken up into two parts: one part belonging
exclusively to propositional logic, and the other essentially consisting only
of application instances of the rules of quantification. Gentzen calls his
generalized Hauptsatz the ‘verschirfter Hauptsatz® (literally rendered as the
‘sharpened Hauptsatz’ and also known in English as the ‘midsequent
theoren?’, the ‘normal form theorem’, the ‘strengthened Hauptsatz’, and the
‘extended Hauptsatz’)*®.

A comparable theorem for the usual logical calculus was obtained by
Herbrand in his ‘Investigations in proof theory’*®. Thanks to the work of
B. Dreben, J. Denton and others, Herbrand’s result is now better understood,
and it has become possible to clarify the connection between Herbrand’s
theorem and Gentzen’s sharpened Hauptsatz. Gentzen himself considered
Herbrand’s theorem as a special case of his own result®, He presumably
had in mind the less general version of Herbrand’s theorem popularly known
at that time in the form in which it later also appeared in volume II of
Hilbert and Bernays. Herbrand’s full theorem, however, applies not only
to formulae in prenex form, as Gentzen had supposed, but to any formula,
and with his ‘domains’ Herbrand actually supplies more information about
the ‘midsequent’ than Gentzen’s sharpened Hauptsatz is able to provide.
However, the sharpened Hauptsatz can and has been extended to intuitionist
logic and to various modal calculi, whereas this has not been done so far
with Herbrand’s theorem3!. The possibility of extending the sharpened
Hauptsatz to modal logic was first announced by Curry in 1950 in his
A theory of formal deducibility, which also contains a new proof of the
Hauptsatz®?, and his result subsequently appeared in print in 195233,
Curry’s solution applies essentially to Lewis’s calculus S43*. Since then
the extension has also been carried out for the calculi S2, S5, and M by
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Ohnishi and Matsumoto>®, who have given a decision procedure for these
calculi as well as for S4 by means of Gentzen-type arguments.

An important achievement in another direction is Kanger’s first model
proof of the Hauptsatz®®. This result, which includes a completeness theorem
for a modified Gentzen formalism, was simplified further by Rasiowa and
Sikorski in 196037,

Since Gentzen’s sharpened Hauptsatz and Herbrand’s theorem are
analogues in certain quantificational situations, it has become customary
to refer to both theorems together as the ‘Herbrand-Gentzen theorem’,
and an interesting modification of this theorem is presented by Craig in his
Linear reasoning®, where three substantial uses of the theorem are made,
affording a valuable connection between model theory and proof theory.
The model and proof-theoretic approaches, incidentally, are exploited
fruitfully by Kleene in his Mathematical logic®® in which the advantages
of Gentzen’s L-systems are displayed for the first time at an introductory
level.

Gentzen’s analysis of the predicate calculus in terms of ‘natural deduction’
has had a marked influence on the development of logic in another direction:
Beth reformulated a system of natural deduction by means of ‘semantic
tableaux’*®, a method for the systematic investigation of the notion of
‘logical consequence’. This method is based on the construction of a counter-
example in cases in which a given formula is not a logical consequence of a
given list of formulae. Beth’s system satisfies Gentzen’s subformula property
and also brings within easy reach the theorems of Herbrand and Léwenheim-
Skolem-Gédel. Beth proves the completeness of his system of natural
deduction but not of course its decidability since it cannot be estimated in
advance how many steps in the construction will result in a formal derivation
or in a counterexample*!. The counterexample method is also discussed
and extended to a Gentzen-type L-system by Kleene in his Mathematical
logic*?. Beth himself discovered another important application of Gentzen’s
methods of #3 when he proved his well-known theorem on definability*?
by using a modified version of the sharpened Hauptsatz. Craig’s first use of
the Herbrand-Gentzen theorem in the paper mentioned earlier, incidentally,
consists of a generalization of Beth’s results on definability from ‘primitive
predicate symbols to arbitrary formulas and terms’**. Also mentioned at
this point should be Ketonen’s proof of the completeness of the predicate
calculus by a method closely akin to procedures involved in the proof of
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the Hauptsatz*® in which a strengthening of Godel's result is achieved*.
Ketonen later formulated necessary and sufficient conditions for provability
for a new version of Gentzen’s calculus LK*7. This is not of course a new
discovery for predicate logic as such, and in his review of Ketonen’s paper,
Bernays rightly noted that Ketonen’s result ‘corresponds to a condition for
provability in the usual calculus, which is one of the forms of stating the
theorem of Herbrand’*®. Ketonen’s paper represents nevertheless a desirable
refinement of Gentzen’s methods and contains also several interesting
elementary applications of these methods to plane geometry. Gentzen
himself had applied the sharpened Hauptsatz to a new consistency proof for
arithmetic without complete induction*®. However, he himself has remarked
that ‘arithmetic without complete induction is of little practical significance
since complete induction is constantly required in number theory. Yet the
consistency of arithmetic with complete induction has not been conclusively
proved to date’*°, In #4, Gentzen explains why it is precisely the inference
of complete induction which causes the difficulty in a consistency proof>!,

The year 1936 represents a significant turning point for the realizability
of the aims of metamathematics. Since one of the main objectives of Hilbert’s
programme is the vindication of classical mathematics at its various levels,
and since this requires the development of explicit consistency proofs for
these levels, Gentzen’s discovery of a way out of the impasse presented to
the feasibility of formal consistency proofs by Godel’'s theorem must be
regarded as a major achievement. In order to enable the reader to follow
the precise historical and conceptual evolution of Gentzen’s ideas, excerpts
from a galley proof are included in an appendix to #4, which give a good
indication of how Gentzen had attacked the problem initially. The crucial
part of this galley proof consists of the lemma in section 14.6 of the Appendix.
Gentzen himself had withdrawn the galley proof from publication®? when
objections were raised against an alleged implicit use of the fan theorem®3
in the proof of the lemma. Gentzen achieved his major breakthrough when
he discovered that a restricted form of transfinite induction could be used
instead of his original procedure as a method which is not formalizable
in elementary number theory, but which is nevertheless in harmony with
acceptable principles of proof in this context®*. As Gentzen puts it: ‘A
consistency proof is once again a mathematical proof in which certain
inferences and derived concepts must be used; their reliability (especially
their freedom from contradiction) must already be presupposed. There
can be no absolute consistency proof. A consistency proof can merely
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reduce the correctness of certain forms of inference to the correctness of
other forms of inference. It is therefore clear that in a consistency proof
we can use only forms of inference that count as considerably more secure
than the forms of inference of the theory whose consistency is to be proved’®>,
The following passage from Hilbert and Bernays, Grundlagen der Mathe-
matik, should serve as an illustration of the kind of criterion for reliability
which Gentzen adopted with Hilbert’s finitist point of view>®:

‘Our examination of the beginnings of number theory and algebra has
served the purpose of elucidating in its application and use the direct,
informal reasoning, free from axiomatic assumptions, as it is carried out
in mental experiments in terms of intuitively conceived objects. This kind
of reasoning we shall, in order to have a concise expression for it, call
finitist reasoning and shall also designate as the finitist attitude or the
finitist point of view the methodological attitude underlying this reasoning.
In the same sense we shall speak of finitisticly specified concepts and
assertions by expressing with the word “finitist’ in each case the fact that
the deliberation, assertion or definition proceeds within the bounds of
the conceivability in principle of objects as well as the realizability in
principle of processes and thus takes place within the realm of concrete
considerations.’

This excerpt is not intended to convey the idea that a formal ‘definition’
of the finitist point of view has here been given or that such a definition
can be given®’. Gentzen points out that it cannot be ‘proved’ that his
techniques of proof are ‘finitist’ since this concept is not unequivocably
formally defined and cannot in fact be delimited in this way. He emphasizes
that all that can be achieved in this direction is that individual inferences
are examined from the ‘finitist’ point of view and that it must be assessed
separately in each case whether the inferences concerned are in harmony with
finitist intentions.

In this connection, Kleene remarks that

‘to what extent the Gentzen proof can be accepted as securing classical
number theory in the sense of that problem formulation is in the present
state of affairs a matter of individual judgement, depending®® on how
ready one is to accept induction up to &, as a finitary method.’

Tarski, for example, states that
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‘Gentzen’s proof of the consistency of arithmetic is undoubtedly a very
interesting metamathematical result, which may prove very stimulating
and fruitful. I cannot say, however, that the consistency of arithmetic
is now much more evident to me (at any rate, perhaps, to use the termino-
logy of the differential calculus more evident than by an epsilon) than
it was before the proof was given.’>®

Black, on the other hand, ponders:

‘Is it then permissible to regard Gentzen’s leading idea as ‘“finitist’?
I believe that anybody who tries to replace the specific pattern, con-
structed in the way described above, by a series of steadily preceding
patterns, will receive a vivid impression of the elementary and intuitively
convincing character of the type of argument involved.... It seems
incredible that such types of argument should involve the mathematical
paradoxes. It seems, then, that Bernays is justified in blaming the previous
lack of success of the formalist programme upon its excessive ((liber-
spannte)) restrictions on permissible modes of research (Grundlagen der
Mathematik, vol. II, vii).”®°

Black’s account of Gentzen’s innovation in proof theory is extremely
illuminating and shows convincingly that Gentzen’s restricted transfinite
induction is entirely elementary (even though it may no longer be ‘strictly’
finitist) and independent of Cantor’s theory of the second number class.
Gentzen himself presents a careful analysis of the finitist point of view®! and
discussed in particular the intuitionist delimitation between permissible and
nonpermissible forms of inference in number theory. It turns out that in
certain respects the finitist methods are actually more restrictive than the
intuitionist methods, in spite of the fact that ‘the intuitionists (Brouwer)
even object to forms of inference customary in number theory, not only
because these inferences might possibly lead to contradictions, but because
the theorems to which they lead have no actual sense and are therefore
worthless’®2. The intuitionist objection against certain classical procedures
because of their alleged lack of ‘sense’ must not be construed to mean
that intuitionist mathematics is ‘obviously’ securer than classical mathe-
matics. One reason why Gentzen was unhappy about securing the con-
sistency of classical arithmetic by establishing its intuitionist consistency,
as was done in #2, is precisely that from the finitist point of view objections
can be raised against the use of the ‘implication’ in intuitionist reasoning®3.
In his address to the Mathematical Congress in Paris in 1937, Gentzen
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made the further point that Brouwer’s intuitionism involves such liberal
uses of complicated forms of the concept of infinity that consistency proofs
should if at all possible be carried out with more restricted techniques.
Here Gentzen may have had in mind techniques of proof of the kind
found in Brouwer’s paper ‘On the domain of definition of functions’®® some
of which are presumably no longer compatible with the narrower finitist
point of view outlined above.

In addition to the obstacles presented to metamathematical procedures
from within by the finitist condition on the methods of proof, Godel’s
‘incompleteness theorem’ imposes seemingly serious limitations on the
significance of consistency proofs from without. Gentzen assesses the effect
of Godel’s theorem on his formalization of elementary number theory by
noting that ‘whenever the present framework is transgressed, an extension
of the consistency proof to the newly incorporated techniques is required.
The consistency proof is already designed in such a way that this is to a very
large degree possible without difficulty’®®. He states further that ‘the
concept of the reduction rule has in fact been kept general enough so that
it is not tied to a definite logical formalism but corresponds rather to the
general concept of ‘truth’, certainly to the extent to which that concept has
any clear meaning at all’.

The consistency proof centres around the concept of a ‘reduction rule’
for sequents and derivations: Gentzen proves the consistency of elementary
number theory by characterizing the concept of the informal ‘truth’ of the
provable formulae, in this case the sequents, of number theory in terms of
a reduction procedure for the derivations of these formulae and shows that
every derivable sequent can be brought into ‘reduced form’®”. The con-
sistency follows from the reducibility of the derivable sequents to ‘reduced
form’. If the sequent in question is a ‘derived’ sequent, a reduction step is
carried out on the entire derivation of the sequent and this in some sense
‘simplifies’ the derivation. In order to show that a finite succession of reduc-
tion steps leads to the reduced form of the endsequent, i.e., the simplest
possible derivation consisting of only a single formula whose truth can be
decided by elementary calculation, Gentzen correlates with the derivations
finite decimal fractions order-isomorphic with a well-ordered segment of
Cantor’s transfinite ordinal numbers up to the first e-number. These decimal
fractions serve as measures for the complexity of the derivations. The
crucial step in the consistency proof consists in showing that the application
of a reduction step diminishes the decimal fractions and thus achieves a
‘simplification’ of derivations and sequents involved.
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In § 16, Gentzen explains why the inclusion of complete induction in the
formalism makes it necessary to go beyond the natural numbers for measures
of the complexity of a derivation. This complexity is surprisingly enough
not primarily determined by the number of complete inductions occurring
in a derivation, but rather by it together with the complexity of each induc-
tion proposition. This is proved in #10, where Gentzen shows that any
finite number of complete inductions in a proof can be fused into a single
complete induction.

In order to establish that a finite number of reduction steps on a derivation
leads to the reduced form of the endsequent, Gentzen carries out a
‘restricted transfinite induction’®® on the measure of complexity of the
derivation. In his address to the Mathematical Congress in Paris®?,
Gentzen explains the connection between his consistency proof and
‘restricted transfinite inductions’ as follows:

‘In my proof the number-theoretical ‘proofs’ whose consistency is to be
proved are arranged in a sequence in such a way that the consistency of
a ‘proof’ in the sequence follows from the consistency of the preceding
‘proofs’. This sequence may at once be put into one-to-one correspondence
with the transfinite ordinal numbers up to the number &,. It is for this
reason that the conmsistency of all ‘proofs’ follows from a transfinite
induction up to the number ¢, .’

In #6, Gentzen illustrates directly the fundamentally constructive nature
of the transfinite ordinal numbers up to the number &;, and explains in
detail why he considers the use of ‘restricted transfinite induction’ to be
in harmony with finitist intentions’®, He furthermore cherishes the hope
that an extension of transfinite induction over a larger segment of Cantor’s
second number class will eventually also yield a consistency proof for
analysis’!.

Unfortunately Gentzen was prevented from pursuing his investigations
of the consistency of analysis by his untimely and tragic death in 1945.
The foundations had nevertheless been laid for the work of a large number
of mathematicians who began to concern themselves with the question of
the consistency of analysis, among them Ackermann, Fitch, Lorenzen,
Schiitte and Takeuti. The first major consistency result for analysis dates
back to 1938, when Fitch proved nonconstructively the consistency of the
ramified Principia’?, i.e., a modified version of the Russell-Whitehead
system of analysis which includes the axiom of infinity, but excludes the
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axiom of reducibility. The first major constructive result was published by
Lorenzen in 1951, and furnishes a proof of the consistency of the ramified
theory of types’®. An excellent discussion in English of Lorenzen’s paper
by Hao Wang has appeared in the Journal of Symbolic Logic’4 in which
the principal steps of Lorenzen’s proof are summarized and compared with
Fitch’s earlier result. Wang points out that ‘the consistency proof for the
ramified theory of types may be considered as an extension of Gentzen’s
dissertation’® which strengthens and refines results of Herbrand’?S.
Lorenzen himself writes that?7:

“Since the lattice-theoretical ideas are used only implicitly, the consistency
proof appears as an extension of an earlier attempt by Gentzen in his
dissertation to prove the consistency of arithmetic without complete
induction. This 1s so since the consistency follows as an immediate con-
sequence of the fact that every theorem of the calculus can be derived
‘without detours’. The proof here given goes beyond Gentzen’s proof
since the calculus whose consistency is prove contains as an integral
part arithmetic including complete induction. The calculus is equivalent
with that used by Russell and Whitehead in the Principia Mathematica,
without the axiom of reducibility. Since this axiom has not been included,
our calculus does not encompass classical analysis, although the analytic
forms of inference in this calculus may be represented within the limits
imposed by the ramified theory of types. The extension of Gentzen’s
scheme to a so much richer calculus is effected without the inclusion of
new techniques. Only the notion of the ‘detourless derivability’ is extended
by admitting certain induction rules in which a conclusion with infinitely
many premisses is deduced. The progress vis-a-vis Fitch’s work lies in the
constructive character of all occurring inferences. This is the crucial point
which brings our proof within the scope imposed on consistency proofs
since Hilbert.’

One of the most thorough and comprehensive exploitations of Gentzen’s
methods and ideas began to take shape with Takeuti’s publication in 1953
of a generalization of Gentzen’s classical calculus of sequents (LK) to a
calculus (GLC) for simple type logic’®. In GLC, derivations are built up,
as in LK, from sequents by means of ‘basic sequents’ and rules of inference,
but with the quantificational rules extended to apply to a hierarchy of
‘types’. The consistency of the calculus GLC, which does not yet include the
axiom of infinity, follows from Gentzen’s consistency proof for the simple
theory of types carried out in #5 of the present volume. Gentzen here
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presents a finitist consistency proof of the simple theory of types by extending
the method by which Hilbert and Ackermann have proved the consistency
of the restricted predicate calculus’®. In his review of #S5, P. Bachmann
assesses the significance of Gentzen’s proof by observing that®°:

‘The question of the consistency of the pure simple theory of types must
be distinguished from the question of the consistency of the applied
simple theory of types, or, more precisely, the formalisms which result if
the axioms and rules of the simple theory of types are extended by the
inclusion of axioms characterizing a definite domain of objects. The pure
simple theory of types must be consistent if there exists a domain of
objects so that the theory of types remains consistent when applied to
this domain. Gentzen proves therefore the consistency of pure types
theory by showing that the simple theory of types is consistent if it is
specialized to the simplest nonempty domain of objects, i.e., the domain
consisting of a single element . ... A modification of this proof easily
yields the consistency of the simple theory of types when it is specialized
to an arbitrary finite domain of objects.’

Similar remarks apply to the consistency proof for the restricted predicate
calculus®'. H. Arnold Schmidt made the comment in his review of #3582
that Gentzen had requested him to report that after the publication of his
consistency proof for the simple theory of types, he became aware of the
existence of a similar proof for type theory by Tarski®3. The presentation
of the theory of types and its proof of consistency in Tarski’s paper forms
however part of a more general context.

The consistency of the simple theory of types represents an important
result for the applicability of formal techniques to the consistency problem
of ramified analysis as tackled by Takeuti and Schiitte. Takeuti has shown
that various mathematical theories are representable by means of his
calculus GLC if certain closed formulae are adjoined as mathematical
axioms and he has proved that if Gentzen’s Haupisaiz extends to the
calculus GLC, then the consistency of the theory of the real numbers, i.e.,
classical analysis, follows at once. Schiitte comments that he does not
think that Takeuti’s results can be extended to theorems about ‘absolute’
consistency, since the formal systems referred to in the hypotheses of
Takeuti’s key theorems have infinitely many basic objects and require the
full use of the tertium non datur as well as impredicative definitions®*.

In 1956, Takeuti nevertheless published a partial result by showing that
a certain system of ramified real numbers is consistent®3. This was done
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by proving that the ‘cut’ can be eliminated from the underlying calculus of
sequents, and the consistency then follows by a transfinite induction up to
o®. In a series of papers, Takeuti has also proved his ‘fundamental con-
jecture’, i.e., that every provable sequent in GLC is provable without cuts,
for five different subsystems of GLC®S. In his proofs, Takeuti incidentally
uses certain metamathematical concepts closely allied to the concepts of
the ‘degree of a formula in a proof figure’, and the ‘level’ and ‘order’ of a
sequent in a proof as defined by Gentzen in #8. A study of these proofs
makes it clear to what extent Gentzen-type methods can be used profitably
to push back the frontier of foundational knowledge. Schiitte seems to have
summed up the progress inherent in Takeuti’s work appropriately when he
concludes that ‘it may be said that all these investigations constitute a
remarkable advance in the research of the metamathematical properties of
simple type theory, although it appears somewhat doubtful whether it will
be possible to prove the fundamental conjecture of GLC generally’®”.
Takeuti has also generalized Gentzen’s calculus LK to numerous mathe-
matical systems®®, and, among others, obtained a metamathematical
theorem on functions, and a result on Skolem’s theorem in which he shows
that ‘if Godel’s axioms of set theory are consistent, then they are consistent
with additional axioms of denumerability’. Further extensions of the
Hauptsatz by suitable modification of the calculus GLC have also been
shown to be possible.

Schiitte himself has made significant contributions to the solution of the
consistency problem of analysis both for ramified and for type-free
analysis®®. In the case of ramified analysis, the consistency of Schiitte’s
system follows from the eliminability of the ‘cut’, i.e., an application of
Gentzen’s results of #3. Schiitte has also succeeded in generalizing Gentzen’s
theorem on the derivability of ‘restricted transfinite induction’ in elementary
number theory of #9°° by proving the following theorem about formalized
transfinite induction:

The derivation of the general transfinite induction up to « has as order at
least (i) the last critical e-number smaller than « (if such a number exists),
(ii) the number «, if « is a critical &-number.

This theorem represents a further refinement of earlier discoveries®’.
Schiitte has also obtained various consistency results for type-free analysis,
and here too the consistency follows from the eliminability of the ‘cut’.

Many other important contributions to the solution of the consistency
problem of analysis within metamathematics have been published, princi-
pally the results by Ackermann®?, one of whose contributions to the solution
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of consistency problems consisted in his adaptation of Gentzen’s method of
‘restricted transfinite induction’ to proofs involving Hilbert’s &-symbol
technique. In this way Ackermann was able to prove the consistency of
number theory and of certain special type-free systems of analysis not
involving the law of the excluded middle. The consistency followed from an
application of ‘restricted transfinite induction’ extending over a wider
segment of Cantor’s second number class than that required for the con-
sistency proof of elementary number theory. The segment involved consists
of all ordinals less than the first critical e-number, i.e., the first e-number 7
such that ¢, = . This result compares with Gentzen’s anticipation that
there exists ‘a general affinity between formally delimited techniques of
proof, their possibility of extension and newly arising incompletenesses,
on the one hand, and the transfinite ordinal numbers of the second number
class, transfinite induction and the constructive progression into the second
number class on the other’®3,

Most researchers who have extended Gentzen’s techniques of proof
to the solution of consistency problems in analysis have based their logical
calculi on Gentzen’s calculus LK. In fact, Gentzen himself re-wrote his
consistency proof for elementary number theory by couching it in terms
of the calculus LK®* and in this way was able to simplify the earlier proof
considerably. This time the consistency follows from the nonderivability
of the ‘empty sequent’, again proved by a restricted transfinite induction
up to g,. Gentzen conjectured that ‘it is reasonable to assume that by and
large this correlation ((of transfinite ordinals)) is already fairly optimal,
i.e., that we could not make do with essentially lower ordinal numbers.
In particular, the totality of all our derivations cannot be handled by means
of ordinal numbers all of which lie below a number smaller than ¢,. For
transfinite induction up to such a number is itself provable in our formalism;
a consistency proof carried out by means of this induction would therefore
contradict Godel’s theorem (given, of course, that the other techniques of
proof used, especially the correlation of ordinal numbers, have not assumed
forms that are nonrepresentable in our number-theoretical formalism).
By the same roundabout argument we can presumably also show that
certain sub-classes of derivations cannot be handled by ordinal numbers
below certain numbers of the form w-" “3. It is quite likely that one day
a direct approach to the proof of such impossibility theorems will be
found’®®.

In #9, Gentzen essentially answers these questions by giving a direct
proof for the nonprovability of transfinite induction up to ¢, in elementary
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number theory and by showing that it is impossible to prove still more
restricted forms of transfinite induction to numbers below ¢, in certain
subsystems of formalized number theory. The results of #9 not only
confirm Go6del’s incompleteness theorem, but in the special case at hand,
they illustrate the incompleteness of the number-theoretical formalism in
a direct way®’.

Gentzen’s reaction to the incompleteness of formal systems is that ‘this
is undoubtedly a very interesting, but certainly not an alarming result.
We can paraphrase it by saying that for number theory no once-and-for-all
sufficient system of forms of inference can be specified, but that on the
contrary, new theorems can always be found whose proof requires a new
form of inference. That this is so may not have been anticipated in the
beginning, but it is certainly not implausible. The ((incompleteness))
theorem reveals of course a certain weakness of the axiomatic method.
Since consistency proofs generally apply only to delimited systems of
techniques of proof, these proofs must obviously be extended when an
extension of the methods of proof takes place. It is remarkable that in the
whole of existing mathematics only very few easily classifiable and con-
stantly recurring forms of inference are used, so that an extension of these
methods may be desirable in theory, but is insignificant in practice’®®.
In the case of the consistency proof for elementary number theory, for
example, the consequences of the incompleteness have been minimized by
the requirement that as a new form of inference is introduced into the
formalism, a ‘reduction procedure’ for that form of inference is stipulated
at the same time. Gentzen cites as an example of such a new form of
inference an instance of transfinite induction up to a fixed number of the
second number class. The introduction of a new form of inference into the
number-theoretical formalism may of course necessitate a corresponding
extension of the ‘restricted transfinite induction’ that enters into the proof
of the finiteness of the reduction procedure. Gentzen’s method of dealing
with the inherent incompleteness of formalized mathematics by pairing the
‘reduction rules’ required for the forms of inference with ‘restricted trans-
finite inductions’ over different segments of the second number class is
reminiscent of Weierstrass’s method of overcoming the mystery of the
‘infinitesimals’ in the differential calculus by pairing ‘epsilons’ and ‘deltas’
and establishing functional dependences between them. This analogy makes
Gentzen’s argument extremely convincing that the formal incompleteness of
mathematical systems constitutes a relatively minor obstacle in metamathe-
matics. It must be mentioned, however, that some authors have evaluated
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the impact of Gddel’s incompleteness theorem rather more negatively®®.

An entirely different problem is that of the significance of finitist meta-
mathematical results for nonfinitist mathematics. %7 deals with this
problem and, as Curry writes,

‘the main theme of this ((Gentzen’s)) expository article is to contrast the
‘constructive’ and ‘an sich’ conception of infinity and then to defend the
opinion that the Hilbert programme makes it possible for the two sides
to agree on the retention of classical analysis in its present form’' °°.

Although some writers have begun to distinguish meticulously between
‘constructive’ and ‘finitist’ methods, presumably because they do not
consider such methods as ‘restricted transfinite induction’ to be in harmony
with the notion of “finitist’ described earlier' °*, Gentzen considers Brouwer’s
‘intuitionist’ and Hilbert’s “finitist” methods as representing only two some-
what different instances of the ‘constructive’ point of view in mathematics' °2.
The real issue does not therefore concern the question whether all ‘construc-
tive’ methods are necessarily ‘finitist’ in the narrower sense, but rather
whether ‘nonconstructive’ mathematics, based on the ‘actualist’ interpreta-
tion of infinity, can to some extent be justified by means of ‘constructive’
arguments. Gentzen here agrees with Hilbert that classical analysis, for
example, has proven itself by the successes which it has scored in physics,
and argues convincingly that nothing is lost by treating the real numbers as
‘ideal elements’. On this basis classical analysis and presumably a consider-
able portion of axiomatic set theory could be retained. A constructive
consistency proof for analysis would make it in fact quite safe to deal with
extensive parts of nonconstructive mathematics ‘as if” they were given
‘constructively’. Gentzen illustrates the benefits which accrue from the
idealization of experience by comparing ‘constructive’ analysis to the
‘natural’ geometry of Hjelmslev, while likening ‘classical’ analysis to ‘pure’
geometry' 3. As a result of its idealization, ‘pure’ geometry is a much
simpler and considerably smoother theory than ‘natural’ geometry, since
the latter is continually plagued by unpleasant exceptions. The same is
true of constructive and nonconstructive analysis. In his review of #7,
Rosser discusses the question of as if arguments in mathematics and states
that

‘the book (#7) is a well written summary of the present status of founda-
tions, and contains one of the most lucid accounts of the Brouwer
viewpoint that the present reviewer has seen. The distinction between
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the Brouwer and Hilbert schools is presented from the point of view of
their treatment of the infinite. For Brouwer, who always insists on finite
constructibility, the infinite exists only in the sense that he can at any
time take a larger (finite) set than any which he has taken hitherto.
Hilbert would treat of infinite sets by the same methods used for finite
sets, as if he could comprehend them in their entirety. Gentzen refers
to this point of view as the as if point of view. He presents various
paradoxes which arise when the as if method is used without proper care.
This of course opens the question of what is ‘proper care’. In the nature
of things, the Brouwer method must fail to produce a paradox, since it
never leaves the domain of the constructive finite. However, the Brouwer
method does not produce sufficient mathematical theory for physical and
engineering uses. So Brouwer’s method must be described as ‘excessive
care’. A proposed way out of the difficulty is to base the as if method
on an appropriate formal system, and use the Brouwer method to prove
that the formal system is without contradiction’**.

Rosser’s assessment of Gentzen’s arguments in #7 gives rise to several
important considerations. Gentzen indeed advocates that nonconstructive
methods, which he calls an sich methods, should be accepted in mathematics,
provided that they can be justified by ‘finitist’ arguments. Yet, there is a
clear distinction in German between the notion of ar sich and that of als ob.
Kant frequently speaks of Dinge an sich'®® and by this he means things in
themselves, or noumena, which lie beyond the realm of experience but
whose existence is a necessary presupposition. The expression als ob,
however, is a neo-Kantian term on which Vaihinger, an eminent Kant
scholar of recent times, has based his philosophy of the als 0b°%. It would
seem appropriate, therefore, to render als ob by as if and search for a different
English expression for an sich. The choice of terminology is made somewhat
easier by Gentzen’s own comment in his address to the Mathematical
Congress in Paris'®’ that the konstruktive Auffassung and the an sich
Auffassung of infinity can be placed in a certain parallél with the philo-
sophical views of idealism and realism. Gentzen’s an sich thus has a realist
status that corresponds in a certain sense to Lorenzen’s notion of das
Aktual-Unendliche' °®. The neologism actualist thus seems a suitable English
translation of Gentzen’s notion of an sich and it has been consistently used
in this way throughout the present volume.

It is interesting that even Rosser’s correct interpretation of Gentzen’s
as if attitude towards nonconstructive mathematics still exemplifies a
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considerable divergence from the basic tenets of the as if philosophy.
Vaihinger argues that since reality cannot be truly known, man constructs
systems of thought according to his requirements and then assumes that
reality coincides with these constructs. He therefore acts ‘as if” reality were
what he assumes it to be. Waisman paraphrases the premisses on which
Vaihinger’s philosophy is based by stating that

‘Vaihinger advances the opinion that our thinking is frequently guided
by fictions, that is, by wittingly false assumptions, which, however, have
held up by their results’'°®,

This view still differs appreciably in its ontological assessment of the reality
of mathematics from Gentzen’s as if interpretation in the case of the con-
tinuum, for example, since here Gentzen concludes merely that ‘whether
the continuum should outwardly be regarded as a mere fiction, as an ideal
construction, or whether it should be insisted upon that it possesses a
reality independent of our methods of construction, in the sense of the
actualist interpretation, is a purely theoretical question whose answer will
probably remain a matter of taste; for practical mathematics it has hardly
any further significance’!'°, Here Gentzen is not thinking of the continuum
as a ‘wittingly false’ assumption. What he does have in mind is that an
extreme formalist position is compatible with several different philosophical
points of view. Quine characterizes such an extreme formalist position by
stating that

‘the formalist ((presumably Hilbert and his followers, including Gentzen))
keeps classical mathematics as a play of insignificant notations. This play
of notations can still be of utility — whatever utility it has already shown
itself to have as a crutch for physicists and technologists. But utility need
not imply significance, in any literal linguistic sense. Nor need the marked
success of mathematicians in spinning out theorems, and in finding
objective bases for agreement with one another’s results, imply signifi-
cance. For an adequate basis for agreement among mathematicians can be
found simply in the rules which govern the manipulation of the notations —
these syntactic rules being, unlike the notations themselves, quite signifi-
cant and intelligible’* !,

Quine is saying, in effect, that the formalist can, if he so desires, evade
consistently the question of the ontological status of his ‘notations’ and
Gentzen clearly concurs with this view. There is after all a categorical
difference between the problem of existence within a framework (Bernays
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speaks of bezogene Existenz) and the problem of the existence of the frame-
work itself*'?. Gentzen’s argument is simply that his ideal as if pointof
view represents a minimal ontological commitment and thus forms a
suitable basis for agreement among practicing mathematicians.

Gentzen envisages such an agreement along the lines suggested by Weyl,
who writes that

‘in studying mathematics for its own sake one should follow Brouwer and
confine oneself to discernible truths into which the infinite enters only
as an open field of possibilities; there can be no motive for exceeding
these bounds. In the natural sciences, however, a sphere is touched upon
which is no longer penetrable by an appeal to visible self-evidence,
in any case; here cognition necessarily assumes a symbolic form. For
this reason it is no longer necessary, as mathematics is drawn into the
process of a theoretical reconstruction of the world by physics, to be able
to isolate mathematics into a realm of the intuitively certain: On this

higher plane, from which the whole of science appears as a unit, I agree
with Hilbert’**3,

This position has also been endorsed on several occasions by Curry, who
writes:

‘I agree with Weyl and Gentzen that there are purposes for which
intuitionist systems are acceptable, although they are not acceptable on
empirical grounds, for application to physics. Again acceptability is a
different question from truth; in fact, a formalist definition of mathe-
matical truth is compatible with almost any position in regard to accepta-
bility. In this sense, formalist mathematics is compatible with various
philosophical views; it is an objective science which can form part of
the data of philosophy’**,

The philosophical question of what kind of ‘actualist’ sense can be
ascribed to nonfinitist mathematics as a result of finitist discoveries,
however, cannot be settled within metamathematics. Gentzen concludes
#4 with the observation that his consistency proof for elementary number
theory, for example, shows ‘that it is possible to reason consistently as if
everything in the infinite domains of objects were as actualisticly determined
as in the finite domains. What the proof does #not answer is to what extent
anything ‘real’ corresponds to the actualist sense of a transfinite proposition
apart from what its restricted finitist sense expresses’. In this connection the
intuitionists have been particularly adamant in their insistence that actualist
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(nonconstructive) mathematics is utterly without sense and should be
abandoned altogether. Their arguments seem to be based on the Kantian
conviction that

‘all concepts, and with them all principles, even such as are possible
a priori, relate to empirical intuitions, that is, to the data for a possible
experience. Apart from this relation they have no objective validity, and
in respect of their representations ((Vorstellungen)) are a mere play of
imagination or of understanding. Take, for instance, the concepts of
mathematics . . .. Although all these principles, and the representation
of the object with which this science occupies itself, are generated in
the mind completely a priori, they would mean nothing, were we not
always able to present their meaning in appearances, that is, in empirical
objects. We therefore demand that a bare ((abgesondert)) concept be
made sensible, that is, that an object corresponding to it be presented in
intuition’!!>,

Kant considered mathematics to meet this demand automatically since its
concepts are usually illustrated by means of “figures’ and since mathematics
thus produces ‘appearances’ present to the senses. In 1926, even Hilbert
stated that

‘as a condition for the use of logical inferences and the performance of
logical operations, something must already be given to our faculty of
representation ((in der Vorstellung)), certain extralogical concrete
objects that are intuitively ((anschaulich)) present as immediate ex-
perience prior to all thought. If logical inference is to be reliable, it must
be possible to survey these objects completely in all their parts, and the
fact that they occur, that they differ from one another, and that they follow
each other, or are concatenated, is immediately given intuitively, together
with the objects, as something that neither can be reduced to anything
else nor requires reduction. This is the basic philosophical position I
consider requisite for mathematics and, in general, for all scientific
thinking, understanding, and communication. And in mathematics, in
particular, what we consider is the concrete signs themselves, whose shape,
according to the conception we have adopted, is immediately clear and
recognizable’! !,

Hilbert here states in embryonic form the “finitist’ view of formalist mathe-
matics and in this assessment finds himself in agreement with Kant and
the intuitionists. Gentzen’s decisive contribution to mathematics lies in
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his success in developing and exploring the consequences of this ‘finitist’
point of view. He showed that the adoption of finitist principles secures
extensive areas of mathematics against the destructive effect of the antino-
mies of set theory, and that these principles are also likely to provide an
adequate basis for the as if interpretation of many of those levels of mathe-
matics which can still consistently be regarded as idealizations of reality.

Montreal, June 1968 M.E.S.
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1. ON THE EXISTENCE OF INDEPENDENT AXIOM SYSTEMS FOR
INFINITE SENTENCE SYSTEMS

In the following, I intend to discuss the question raised in a paper by
P. Hertz':

Are there infinite closed sentence systems without an independent axiom
system? (Terminology vid. seq.)

I shall prove two main results, viz.:

1. There are infinite closed sentence systems for which no independent
axiom system exists.

2. For every denumerably infinite closed [linear sentence system, it is
possible to state an independent axiom system.

The proofs of these theorems form the contents of sections II and
III of the present paper; section I is devoted to the definition of the
terminology used and to the proofs of several lemmas.

A knowledge of Hertz’s papers is not assumed.

SECTION I. NOTATIONS AND SOME LEMMAS

The notations used agree largely with those of Hertz. I shall define them
once more in order to be independent of Hertz’s papers and also because
the choice of somewhat simpler rules of inference has necessitated a re-
formulation of the definitions. For the benefit of readers familiar with
Hertz’s papers, I have marked those expressions whose meanings I have
retained by an asterisk when first introducing them.

§ 1. The ‘sentences’ 2

A sentence* has the form
Uy ... U, = 0.

The u’s and v’s are called elements*. We might think of them as events,
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and the ‘sentence’ then reads: The happening of the events uy,...,u,
causes the happening of ».

The ‘sentence’ may also be understood thus: A domain of elements
containing the elements u,, . . ., %, also contains the element v.

The elements may furthermore be thought of as properties and the
‘sentence’ can then be interpreted thus: An object with the properties
Uy, ..., U, also has the property .

Or we imagine the elements to stand for ‘propositions’, in the sense of
the propositional calculus, and the “sentence’ then reads: If the propositions
uy,...,u, are true, then proposition v is also true.

Our considerations do not depend on any particular kind of informal
interpretation of the ‘sentences’, since we are concerned only with their
formal structure.

We assume the u’s to be distinct. The order of their arrangement is
unimportant, i.e., sentences which differ only with respect to the order
of the u’s, are considered identical.

It may happen, however, that v is identical with one of the #’s; such a
sentence is called trivial®.

If we denote a system of finitely many elements, which is called a
complex*, by a capital letter, we can also write a ‘sentence’ thus:

K->,

where K = (uy,4,,...,u,). This complex is called the antecedent* and
the element v the succedent* of the sentence.

A complex shall not be empty unless this has been explicitly specified.

LM denotes the set-theoretic union of L and M.

A sentence with only one antecedent element is called linear*, and a
linear trivial sentence, which therefore has the form v — v, tautologous*.

§ 2. The ‘proof’ of a ‘sentence’ from other ‘sentences’

From some ‘sentences’ we can ‘prove’ other ‘sentences’ by applying
certain ‘forms of inference’ to them. E.g., from u — v and » - w we can
infer: u — w.

An individual inference consists of a number of sentences called
premisses*, and a further sentence, called the conclusion*, which is deduced
from the premisses. We shall introduce two such forms of inference and
shall show in § 4 that, informally interpreted, they are correct and sufficient:



§ 2, THE ‘PROOF’ OF A ‘SENTENCE’ FROM OTHER ‘SENTENCES’ 31

the ‘thinning’, which has one premiss, and the ‘cut’, which has two
premisses.

1. A thinning (Hertz calls it an ‘immediate inference’) has the form:

L — v Premiss
ML — v Conclusion

M may be empty. — We shall also use the expressions: ‘to thin a sentence’,
‘a thinned sentence of . ..>. Informally, we may interpret a thinning as an
adjunction of assumptions (M ).

2. A cut has the form:

Lower sentence: Upper sentence:
L—>u Mu - v " Premisses

LM —>v Conclusion
Conclusion of the cut

M may be empty. u must not occur in M. u is called the cut element. We
shall also use the phrase: ‘To cut a sentence (called the lower sentence)
with another sentence (called the upper sentence)’.

It may happen that, given two sentences p and g, it is impossible to cut
either p with q or q with p, or that p can be cut with q but not q with p;
finally, it may be possible to cut both p with q and q with p. (In the latter
case the conclusion of the cut is trivial both ways, as is easily seen.)
Informally, a cut may be interpreted as the replacement of one assumption
(1) by another assumption (L), where the latter must include the former.

A cut of two linear sentences has necessarily the form

u—-v VoW

u-—-w

The conclusion is again linear.

By a proof of a sentence q from the sentences 9;,..., P, (v = 0) we
shall henceforth mean an ordered succession of inferences (i.e., thinnings
and cuts)® arranged in such a way that the conclusion of the last inference
is q and that its premisses are either premisses of the p’s or tautologies,
or coincide with the conclusions of earlier inferences.

The fact that we consider tautologous sentences as proved will later on
(cf. § 4) turn out to have been justified. With this exception, our definition
of a proof expresses precisely what it informally suggests.
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A sentence q is called provable from the sentences p,, ..., p,, if there
exists a proof for q from p,, ..., p,.

§ 3. The equivalence of our concept of provability with that of P. Hertz
(This paragraph will not be needed below.)

In place of the ‘cut’, P, Hertz uses a somewhat more complicated form
of inference, the ‘syllogism’ (cf. H. 4, pp. 462-463). The cut is a special
syllogism. Since our other definitions coincide with those of Hertz, the
equivalence of our concept of provability with that of P. Hertz is assured
if we can show that the syllogism may be transformed into a proof in our
sense. This will now be done.

The syllogism runs:

L, > u,
: Lower sentences
L,—u,
Mu, ...u, - v Upper sentence
L,...LM-v Conclusion

M may be empty.
We begin by transforming it into a proof consisting of a succession of
simpler syllogisms:
L, - u, Mu,...u,—»v
Ly > u,y LiMu,...u,—»v

L,— u, L,.,...LiMu,—v
L,...L,M>v '

Every single one of these syllogisms has already the form of a cut, viz.,

L,-u, L,_,...LiMu,...u,->v

Lpr—l e LlMup.,.l cec Uy 20U

According to our definition, this expression fails to be a cut only if
u,occursinL,_; ...LyMu,,, ...u,. Inthis case, however, the conclusion
is a thinning of the upper sentence.

This shows that Hertz's syllogism may be broken up into cuts and
thinnings, which proves our assertion.
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§ 4. The correctness and completeness of the forms of inference. The normal
proof

(Cf. H.3)

Our formal definition of provability and, more generally, our choice of
the forms of inference will seem appropriate only if it is certain that a
sentence ¢ is ‘provable’ from the sentences P, ..., p, if and only if it
represents informally a consequence of the p’s. We shall be able to show
that this is indeed so as soon as we have fixed the meaning of the still
somewhat vague notion of ‘consequence’, in accordance with a particular
informal interpretation of our ‘sentences’ as follows:

We first introduce an auxiliary concept:

We say that a complex of elements satisfies* (cf. H.3) a given sentence
if it either does not contain all antecedent elements of the sentence, or
alternatively, contains all of them and also the succedent of that sentence.
— In order that a complex should nor satisfy a sentence, it is therefore
necessary and sufficient that it contains the antecedent of that sentence,
but not its succedent.

We now look at the complex K of all (finitely many)elementsof p,, ..., 9,
and q, and call q a consequence of p,, ..., p,* if (and only if) every sub-
complex of K which satisfies the sentences P, ...J,, also satisfies q.

(If we are working within the framework of the propositional calculus,
then the place of a subcomplex of K is taken by an assignment of truth-
values to the elements of K in which the elements of this subcomplex take
the value ‘true’ and the others the value ‘false’. Under this interpretation,
all proofs that follow can be carried out analogously. Our concept of con-
sequence also proves adequate for the other informal interpretations of the
‘sentences’ mentioned above.)

That part of our assertion, made above, which deals with what might be
called the ‘informal correctness’ of our forms of inference, can now be
formulated as follows:

TueoreM 1.° If a sentence q is ‘provable’ from the sentences 9y, ..., 9,
then it is a ‘consequence’ of them.

The theorem is proved? in five simple steps

1. A tautologous sentence is a ‘consequence’ of any sentence.

This is so since every tautologous sentence is satisfied by any given
complex.
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2. A thinning of a sentence is a consequence of that sentence.

The thinning schema runs:

L->v
ML v
A complex satisfying the sentence L — v either does not contain the whole
antecedent L, nor therefore the whole antecedent ML of the thinned sentence,
and hence satisfies that sentence; or it contains both L and v, in which case

it also satisfies the thinned sentence, since it contains the succedent v of
that sentence.

3. The conclusion of 'a cut of two sentences is a consequence of these
sentences.

The cut schema runs:

L-ou Mu - v
LM >0 '

Thus a complex which does not satisfy the conclusion of the cut, would
have to contain LM and not v. If it also contained u, then it would not
satisfy the upper sentence; if it did not contain u, then it would not satisfy
the lower sentence L — u. A complex satisfying both premisses thus also
satisfies the conclusion of the cut.

4. A sentence which results by a thinning or a cut from (one or two)
premisses which are themselves consequences of p,,...,Db,, is also a
consequence of p,, ..., p,.

This follows since, by 2) and 3), the sentence is a consequence of its
premisses, and thus a complex which did not satisfy it would have to fail
to satisfy at least one of the premisses and hence could not satisfy all p’s.

5. Suppose now that a proof for q from p,, ..., P, is given. Each one
of the sentences p is a trivial consequence of 94, ..., d,, and so, by 1),
is every tautologous sentence; from 4) it then follows that every sentence
of the proof and q in particular, is a consequence of py, ..., p,.

The proof of the other part of our assertion, which might be called the
‘informal completeness’ of our forms of inference, is more difficult and is
expressed as follows: If a sentence g is a ‘consequence’ of the sentences
Pis...,P,, then it is also ‘provable’ from them®.
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In view of its later applications, we shall prove this theorem in a consider-
ably stronger form by showing that for every ‘proof’ there in fact exists
a proof in ‘normal form’, in a sense which we shall describe below.

We begin by pointing out that if q is trivial and if t is the tautologous
sentence with the same succedent, then q is immediately provable from
Pis. .., P, by the proof

t

q .
From now on, we can therefore confine our attention to nontrivial sentences
q.

By a normal proof of a nontrivial sentence q from the sentences
Pis..., 9, (v = 1) we mean a proof which can be written in the following
form:

T, 8o
151 8,

l:p--'l gp—l
2
q
8o
where p 2 0. (If p = 0, we mean of course the form —2.) Here

t, 3,
§}.+1

always denotes a cut with t, for its lower sentence, 3, for its upper sentence,
and 8, ., for its conclusion.

Suppose now that no trivial sentence occurs. The initial sentences
80>L05...,t,-y form part of the p’s. (Not all of the sentences p need
occur, and the same sentence may appear several times.)

We notice: In a normal proof a single thinning is carried out at the end
(which may of course leave the sentence 8, unchanged) and before it occur
only cuts (possibly none); the lower sentence of a cut must here always be
one of the p’s. The sentences 8,,...,8,, q all have the same succedent
(cf. the cut schema). In the entire proof no elements other than those of
P1,..., P, and q occur, since a cut cannot give rise to elements which did
not occur in its upper or lower sentences”’.

Our assertion may now be formulated as follows:
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TueoREM I1.2 If a non-trivial sentence q is a ‘consequence’ of the sentences
Pi,...,P,, then there exists a ‘normal proof” for q from p;, ..., p,.

PRrOOF. Suppose ¢ is of the form

L - v

We examine the system © of all those sentences which have v for their
succedent, are nontrivial, and for which there exists a normal proof from
Pys..., P, without a thinning (i.e., a proof which is of the above normal
form, but without the thinning at the end). (In particular, all of the p’s
which are of this form themselves belong to &.) The system & is finite
since with the finitely many elements of the p’s no more than finitely many
sentences can be formed and since no cut ever gives rise to new elements.

If there is a sentence in © whose antecedent is entirely contained in L
(possibly identical with L), then q is a thinning of that sentence and our
assertion is proved.

Suppose that this is not the case. Then we shall derive a contradiction
from the assumption that q is a consequence of p,, ..., p,, by producing
a subcomplex N of the complex K of the elements of p,, ..., Py, q, which
satisfies the sentences p,, ..., p,, but not the sentence q. N is formed by
constructing a sequence of complexes

M, M,,....,.M,=N

of which each results from its predecessor by the adjunction of a further
element. For M, we take L, the antecedent of q. Suppose now that M,
has been determined, we then obtain M., in the following way: From
among the p’s we choose a sentence which does not satisfy the complex
M,,. (If there is no such sentence, vid. seq.) The succedent of that sentence,
therefore, does not belong to M, (although its entire antecedent does).
This sentence we then adjoin to M, and thus obtain M, .. After finitely
many adjunctions we obviously get to the point where the last complex
M,, which we then take as N, satisfies all p’s. This is bound to happen
since the p’s have only finitely many elements and since the complex con-
sisting of all of these elements certainly satisfies every p.

If we are now able to show that the complex N obtained in this way does
not contain the succedent v of q, then we have finished since N does not
satisfy q, although it satisfies all the p’s. For this purpose, we prove by
induction the following assertion:

Each M satisfies all sentences of the system & and does not contain the
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element v. From this it follows of course at once that v does not occur
in N.

The assertion holds first of all for M,, i.e., L. L does not contain v,
otherwise q would be trivial. If the complex L did not satisfy a sentence
of &, then it would contain the entire antecedent of that sentence. This
case was ruled out earlier.

Now we assume that the assertion holds for M, and is to be proved for
M_, . Suppose that M., = uM_ and that O — u is that sentence among
the p’s which gave rise to the adjunction of u. L.e., M, does not satisfy it.
The antecedent O, therefore, belongs entirely to M,. The element v does
not occur in M, (by the induction hypothesis) and therefore not in O.
We have u # v, for otherwise O — u would be a sentence of © which is not
satisfied by M,. Hence M., does not contain the element v either.

Now suppose that there exists a sentence in & which M,,, does not
satisfy. Since the sentence is still satisfied by M., it must obviously have
the form:

Pu — v

The complex P may be empty; suppose that # does not occur in it. The
antecedent Pu belongs to M,,; and therefore P belongs to M,. Now we
consider the sentence

OP - v

which results from O — u# and Pu — v by a cut. This sentence belongs to
@, since for Pu — v (as a sentence of &) there exists a normal proof from
the p’s without a thinning, and by adjoining this cut in which O — u,
as a sentence of p, is the lower sentence, a normal proof for OP — v
without a thinning results. Furthermore, OP — v is nontrivial, since v
occurs in neither O nor P.

We thus have a sentence of & which is not satisfied by M, (O and P
belong to M,, but v does not). Hence we have a contradiction and theorem II
is proved.

The only results of this paragraph needed later are two simple corollaries
of theorems I and II, which we shall formulate as follows:

THreOREM III. If a nontrivial sentence q is provable from the sentences
P1s...,P,, then there exists a normal proof for q from py,...,P,.

This follows at once from theorems I and II together. The theorem can
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also be obtained directly without reference to the notion of consequence
by taking an arbitrary proof and transforming it step by step into a normal
proof. The reason for the approach chosen in this paper is that it involves
little extra effort and yet provides us with important additional results,
viz., the correctness and completeness of our forms of inference.

TueoreM IV. If a non-tautologous linear sentence q is provable from the
linear sentences pq, ..., P,, then among the p’s there exists a sequence of
sentences of the form

U=V, 0y D Upyunn, W (4= 0),

where u = w = q, and where v, . .., v;, #, w are pairwise distinct elements.

By theorem III there after all exists a normal proof for q from p,, ..., b,.
This proof must obviously look like this:

Xp—1 —> X, Xp > W
X = X,y Xy =W
u""’xl X1—>W
u-—-w
u-—-w

Only linear sentences can occur in it, since q and the p’s are linear and
since a cut of two linear sentences results in another linear sentence.
Already the initial sentences

U Xy, X1 = XgyennsXpuy =>X,, X, > W

of the p’s almost yield our assertion; yet the elements u, x;,...,X,, w
need not all be distinct. If several of these elements are identical, then we
omit from the sequence of sentences those that lie between the first and last
occurrence of the same element. In this way we eventually obtain a sequence
of sentences in which only neighbouring elements are equal, and this yields
our assertion. (It should be noted that since u # w, our procedure never
leads to the cancellation of all sentences.)

§ 5. Systems of sentences

A system of sentences is called closed under cuts, if every possible cut of
two sentences of the system results in another sentence of the system.
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A closed sentence system* for a given domain of elements is a system of
sentences which consists of the elements of the domain together with all
those sentences that are provable from sentences of the system (where
thinnings may be carried out only with elements of the domain).

Any closed sentence system obviously contains all trivial sentences that
can be formed from the elements of the domain. (After all, they are already
provable from 0 sentences.)

THeEOREM V. If, in a system &, closed under cuts, we incorporate all
possible thinnings of the sentences of the system by means of elements of
the system, as well as all trivial sentences (made up from the elements of
the domain), we obtain a closed sentence system ©.

This follows at once from theorem III. For suppose that ¢ is a non-trivial
sentence provable from & (i.e., from sentences of &). Then it is of course
also provable from &, and the proof may be carried out, according to
theorem III, by means of a single thinning at the end and by using only
sentences from & as initial sentences. Since the cuts of these sentences result
in sentences of &, therefore q is a sentence of &.

A sentence system is called lirnear, if every sentence of the system is a
thinning of another /inear sentence also belonging to that system.

An axiom system* for a closed sentence system is a system of sentences
belonging to the sentence system proper and from which all other sentences
of the sentence system can be proved.

A sentence system is called independent* if none of its sentences are
provable from other sentences. (Such a system contains therefore no trivial
sentences.)

In this paper we are particularly interested in the independence of axiom
systems.

§ 6. The independence of axiom systems

In this paragraph we shall state certain results without exact proof;
they will not be used later, but they facilitate the understanding of sections
IT and IIL. These results are proved in H.4 in the places referred to below.

For every finite closed sentence system there exists an independent axiom
system. (H. 4, p. 466.)°
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This is so since an independent axiom system results if all sentences
which are provable from others are systematically eliminated.

This cancellation procedure may break down if the sentence system is
infinite. It may happen, for example, that this process leads to the cancella-
tion of all sentences. (H. 4, pp. 470-471.) There may, nevertheless, exist an
independent axiom system. (H. 4, p. 471.)

Very instructive is the following example (given by Hertz) of a system
A of linear sentences closed under cuts for which no independent axiom
system of linear sentences exists. (The minor differences between Hertz’s
definition of an axiom system and ours, introduced here only for closed
sentence systems, should present no difficulty for the reader.) On the other
hand, the linear closed sentence system A (cf. § 5) which results from the
inclusion of the thinned and trivial sentences (using only the given domain
of objects) does possess an independent axiom system (which does not,
of course, consist only of linear sentences).

The system U consists of the sentences:

A:a; »a, (v>1)

W:a,->a, @A>p>1).

(H. 4, pp. 469-470, 482-483.)

The impossibility of an independent axiom system stems from the follow-
ing two facts (proved by Hertz):

1. The sentences of A, must be provable from every axiom system of U
without the use of 9;-sentences.

2. From one U,-sentence and the ,-sentences all A;-sentences with a
smaller v are provable; but none with a larger v.

The impossibility follows from these two facts since at least two 2,-
sentences must occur among the axioms, and the sentence with a smaller
v would then be provable from other axioms; this makes the axiom system
dependent.

An entirely analogous situation arises in the example of a closed sentence
system without an independent axiom system described in section II below.

If the system 9 is extended to a linear closed sentence system 9, however,
then that system, as already mentioned, possesses an independent axiom
system. Such a system is, for example, (H. 4, p. 482):

a, —a; as — a,
azal '—’aa a4'—’a3

asa,a, — a, as — a,
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The independence is achieved by including, in place of the 9, -sentences,
thinnings of these sentences from which the associated 2,-sentence is in
each case provable only with the help of earlier axioms (in the schema,
these axioms occur on the left above the sentence concerned), so that we
can now no longer prove earlier axioms from later ones (with the help of
the 90,-sentences.)

The example that will be given in section II is constructed in such a way
that this device cannot be applied. The sentence system concerned fails
to be linear and indeed cannot be linear, since linear closed sentence systems
always possess an independent axiom system, as will be shown in section III.
There we shall also employ, among other things, the device just mentioned
of taking as axioms certain thinnings of the linear sentences in order to
achieve independence.

§ 7. ‘Maximal nets’
(This paragraph will be needed only in section III.)
(Cf. H. 1, articles 10-16.)

For a given closed linear sentence system &, we introduce the following
concepts:

A non-tautologous linear sentence u — v of & with the property that
v — u also belongs to &, is called a net sentence.

An element occurring in a net sentence is called a net element.

The set of all elements v, for a given net element u, for which 4 — v and
v — u are sentences of &, is called a maximal net*'°. (A maximal net
contains at least two elements.)

THEOREM VI. Every net element belongs to exactly one maximal net.

The fact that a net element belongs to at least one maximal net is obvious.
Suppose now that u belongs to two maximal nets and that these nets are
determined by v and w respectively. (One of these may be identical with u.)
Hence u - v, v > u, u > w, w — u are sentences of &. Suppose that x
is an element which belongs to only one of the two maximal nets, say it
belongs to the one determined by v. In that case v — x, x — v are sentences
of ©. The following sentences are thus obtained by cuts from these and the
preceding sentences: w —» v, w — x and v - w, x — w. These conclusions
of cuts belong to @, since that system was assumed to be closed. Hence x
also belongs to the maximal net determined by w, in contradiction to our
assumption.
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COROLLARIES:

The elements of a net sentence both belong to the same maximal net
(by theorem VI).

If v and v are two distinct elements of the same maximal net, then u — v
and v — u are sentences of ©. (This follows trivially.)

A linear sentence of & in which one element is a net element and in which
the other is not an element of the same maximal net is called a semi-net
sentence.

SECTION II. AN INFINITE CLOSED SENTENCE SYSTEM
POSSESSING NO INDEPENDENT AXIOM SYSTEM

§ 1. Construction of the paradigm %

The elements of the system are b, ¢, @, a5, . .. (all mutually distinct).
We begin by considering a system U of sentences that are divided into
two classes:

W, a,b—>c for arbitrary v,

Ay a; > a, for A < p.
(This subdivision corresponds to that into ;- and U,-sentences in the system
stated in section I, § 6.)
A is closed under cuts.

ProOOF. A cut of two U,-sentences is not possible since ¢ does not occur
in any antecedent.
A cut of two ,-sentences has the form

A, > 4, a, = a;
3

a,— a,

where p < 0, 6 < 1, hence p < 1, i.e., the conclusion of the cut belongs
again to 9,.

A cut of an U;- and an 9,-sentence has the form (¢ cannot be a cut
element since it does not occur in an ,-sentence):

a, = a, a,b—c

apb—>c

The conclusion of the cut belongs again to ;.
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This shows that U is closed under cuts.

We now adjoin to 2, all nontrivial thinnings of 2(;-sentences (formed
with elements of %), this system we call B, ; similarly, we denote the system
which results from 2, by the inclusion of all non-trivial thinnings of ,-
sentences (formed with elements from 2[) by B, .

The systems B, and B, have no sentences in common since all B, -
sentences, but none of the $B,-sentences, have ¢ for their succedent. B, and
B,, together with the trivial sentences formed from the elements of 9,
now constitute a closed infinite sentence system 3. (Cf. theorem V, section 1,
§5) _

We intend to show that for this system 2 no independent axiom system
exists.

In order to facilitate the understanding of the following, the reader should
first read the proof in § 3, since then the purpose of the various lemmas
proved in § 2 will become clear.

§ 2. Some lemmas about the system A

The smallest subscript of the &’s in the antecedent of a B;-sentence will
be called the ‘degree’ of that sentence. (E.g. asa,a,b — ¢ has degree 2.)

LeMMA 1. A thinning of a B;-sentence by elements of the system results
in a B,-sentence whose degree is no larger than that of the original sentence
or it results in a trivial sentence, but never in a B,-sentence.

LemMMA 2. A thinning of a %B,-sentence by elements of the system results
in another B,-sentence or in a trivial sentence, but never in a B,-sentence.
Both assertions (lemmas 1 and 2) are easily recognized as true.

LeMMA 3. A cut of two B;-sentences is not possible since both have ¢
for their succedent and neither one has c in its antecedent.

LeMMA 4. A cut of two B,-sentences results in a B,-sentence or in a
trivial sentence.

This is so since the conclusion of the cut belongs to I and can therefore
not have c for its succedent.

LEMMA 5. A cut of a B,-sentence with a B,-sentence (which is therefore
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the upper sentence of the cut, cf. section I, § 2) results in a B,-sentence or
in a trivial sentence (since ¢ is not the succedent of the conclusion of the
cut).

A cut of a B,-sentence with a B,-sentence results either in a trivial
sentence or in a B;-sentence (since ¢ remains the succedent) whose degree
is no greater than the degree of the upper sentence.

Proor (of the latter assertion). Suppose the degree of the upper sentence
is u, i.e., a, is the a with the smallest subscript occurring in the sentence.
If the degree of the conclusion of the cut were greater than that of the upper
sentence, then a, would have to be the cut element. This means that the
lower sentence would have the form:

(b)c)ay, . ..a,, — a,

(b and ¢ may or may not occur). This sentence is a thinning of an 2,-
sentence and as such has the form:

a, —a

\ 7 "
From the definition of the %,-sentences it then follows that v, < u. On the
other hand, a,, also occurs in the conclusion of the cut, which therefore

has a degree smaller than g, contrary to assumption.

Lemma 6. If in a normal proof composed of sentences from ¥, a B,-
sentence occurs as an initial sentence, then b occurs in the antecedent of the
conclusion of the proof.

PRrOOF. For suppose that the B,-sentence is the sentence ¥, or 8, in the
schema of the normal proof (section I, § 4); in that case the b occurring
in the antecedent of the B,-sentence can never disappear from the sequence
of sentences 1,8,,,...38,q or 35...8,q; this follows from the fact that b
can never be a cut element, since it does not occur as a succedent in any
non-trivial sentence of U.

LemMA 7. From all sentences of %, and a single B,-sentence all other
B, -sentences of equal or lower degree are provable.

Proor. Suppose the B,-sentence is
ay,...a,,b—c

where v, is exactly the degree of the sentence, i.e., the smallest subscript.
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Now, the sentences

a,, —*a,,

a, —a

1 v3

a,, —a,,

1

are sentences from A,. If we cut the first one with the B;-sentence, the
second one with the conclusion of the first cut, the third one with the
conclusion of the second cut, etc., we finally obtain

a, b—c

(If p = 1, then this expression occurs at the beginning and the above
argument becomes redundant.)

This sentence is the (uniquely determined) %,-sentence of the same
degree as the original B,-sentence. From it all other %, -sentences of lower
degree now follow easily:

For suppose u < vy, then a, — a,, is an %,-sentence, and its cut with
the U, -sentence yields: a,b — c, the U -sentence of degree u.

The B,-sentences of the same degree follow from the ;-sentences by
thinnings, and this completes the proof of lemma 7.

§ 3. Proof of the nonexistence of an independent axiom system for A

This result now follows quickly, since the above lemmas already contain
the crucial steps. (Cf. Section I, § 6.) _

We suppose that there exists an independent axiom system & for .
Let €, be the system of those axioms which are B,-sentences.

We claim that all U,-sentences are already provable from &,. This
follows at once from § 2, lemma 6: Every U,-sentence was after all assumed
to be provable from the axioms, this proof can be brought into normal
form (theorem III) and, by § 2, lemma 6, no %B,-sentence can thus be
an initial sentence, since b does not occur in the conclusion.

No B, -sentence is provable from €,. (By theorem III and § 2, lemmas 2
and 4).

Hence the axiom system € must contain at least one B,-sentence.

From theorem III and § 2, lemmas 3, 4, 5, 1 and 2 it now follows further:

From €, and a %B,;-axiom no B,-sentence of greater degree (than that
of the axiom) is provable. On the other hand, there are B,-sentences of
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arbitrarily large degree. Hence there must exist a second B,-sentence of a
larger degree than that of the first axiom. (& must actually contain infinitely
many B,-sentences; a fact which we do not need.)

From § 2, lemma 7, it therefore follows:

The first B;-axiom is provable from the second one, together with the
axioms €, (since all 2,-sentences follow from the latter axioms).

Hence the axiom system is not independent.

SECTION III. CONSTRUCTION OF AN INDEPENDENT AXIOM
SYSTEM FOR A GIVEN DENUMERABLY INFINITE CLOSED
LINEAR SENTENCE SYSTEM

§ 1. Outline of procedure

Suppose that an arbitrary denumerably infinite closed linear sentence
system & is given.

We shall construct a subsystem ¥ of & (in § 2) which we shall prove
to be an axiom system of & (§ 3) and, moreover, an independent one (§ 4).

In developing ¥ we start with the system © of the non-tautologous linear
sentences of &. This is an axiom system of &, although in general of course
not independent.

We begin by selecting axioms from the net sentences of & (section I,
§ 7); these already form part of T (§2.1).

Since all elements of a maximal net may in some sense be regarded as
equivalent (after all, any element may be replaced by any other element
in a sentence without disturbing the membership of that sentence in @) it
therefore suffices for our purpose to select from every maximal net a repre-
sentative element and to consider only those semi-net sentences of &
whose net elements are representatives'!. (§ 2.2, step 1.)

Steps 2 and 3 (§ 2.2) which then follow, represent the nucleus of
the procedure. In step 3, we include certain thinnings as axioms (in )
in place of the linear sentences with which we had started; the method is
similar to that described in the example in section I, § 6. Step 3, however,
is not sufficient to guarantee the independence of the axioms; hence step 2,
in which sentences are cancelled and where their order is rearranged.

§ 2. Construction of the axiom system §

1. Selection of axioms from the net sentences.
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Consider all net sentences occurring in a fixed predetermined enumeration
of the sentences of ©; these form a sequence %, . This sequence is examined
step by step and modified as follows:

If a sentence is provable from a preceding sentence (in the already
modified sequence), then it is omitted. If this is not the case, then the
sentence, call it ¥ — v, is retained and next to it we write the sentence
v — u which, by the definition of net sentences, also belongs to ;.

In this way a new sequence ‘8, results, which already forms part of $.

2. Construction of the other axioms.

Step 1. (Selection of representatives from the semi-net sentences.)

To every maximal net (relative to &) we assign that one of its elements
as a ‘representative element’ which occurs first in the enumeration of the
sentences of &. Then we go through the sequence of sentences of © and
omit every semi-net sentence containing a net element which is not the
representative of its maximal net. We also eliminate all net sentences.
(These have already been dealt with separately in 1.) The sentences of &
that remain form a sequence which we shall call O, .

Step 2. (Cancellation and rearrangement of sentences.)

We go through the sequence £); and modify it as follows: Suppose we
have reached a sentence u — v. If it is provable from preceding sentences
in the modified sequence, then it is omitted. If this is not the case and if],
among the earlier sentences (in the new sequence), there exists a sentence
of the form u — w and if, furthermore, there exists in £; a sentence of the
form w — v, then we first replace u — v by w — v. If there are several such
possibilities, we choose the one determined by the first preceding sentence
with that property.

This newly obtained sentence is then examined for the same property
and may itself be replaced by a further sentence, etc. In this way no sentence
ever occurs which is provable entirely from sentences which precede it in
the sequence (obtained by modifying £,); after all, the same argument
would then obviously also apply to the sentence that was replaced, etc., up to
u — v itself which, by assumption, is not provable from preceding sentences.

After a finite number of replacements, this procedure leads to a sentence
which no longer possesses the property concerned and that sentence is
then retained (this may already be u — v itself).

If this were not the case, then an already occurring sentence would recur
at some point during the replacements, e.g., w — v. (This is so since the
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succedent (v) always remains the same and since, by the rule of replacement,
the antecedent is always the same as the succedent of one of the finitely
many earlier sentences (in the sequence).) Say that the sequence of successive
replacements from w — v up to the first reoccurrence of w — v runs:

W 0,X] 20,...,X, >0, WD

(v =2 1, for w - v cannot be replaced by itself immediately, since w — w
does not occur in £3,). Le., the following sentences, among others, occur
earlier in the sequence:

W Xy, X 2 Xp,0e.y Xy = X,, X, = W.

From these (without the first one) the sentence x; — w is now provable;
hence it, in addition to w — x;, also belongs to &; from this it follows that
both sentences are net sentences. It was assumed, however, that no net
sentence occurs in £, ; we thus have a contradiction.

The sequence which results from £, by step 2 will be called £,.

Step 3. (Thinning of certain sentences.)

We go through the sequence £, step by step and modify it as follows:
Suppose we reach a sentence u — v. If, among the earlier sentences in £,
(this time they are therefore not ‘in the already modified sequence’), there
is none with u as an antecedent element, then ¥ — v remains unchanged.
If there are such sentences, let these be the following:

U= Wi, U W, vz 1.
In that case # — v is replaced by the thinned sentence:
UWy ... W, = 0.

(No w is identical with v, since ¥ — v would otherwise occur twice in £,
and this is impossible by step 2. Hence uw, ...w, - v is a nontrivial
sentence of ©.)

The sequence which results in this way we call O;.

The sequences B, and £, together, form the system . The obvious
result: The sentences of ¥ belong to &.
§ 3. The system € is an axiom system of &

LemMMA 1. Every net sentence of & is provable from ;.
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This is trivial, since the only sentences that were eliminated from the net
sentences (P;) were those provable from sentences that had already been
taken as axioms.

LemMA 2. Every non-net sentence of & is provable from &, together
with ,.

This needs to be shown only for the semi-net sentences eliminated in
step 1. (This is, of course, due to the ‘equivalence’ between the net elements
and their representatives expressed by the net sentences (cf. § 1).)

Suppose that 4 — v is such a semi-net sentence, and that u is a net element
different from the ‘representative’ of its net, and that v is neither a net
element nor a representative. Suppose also that w is a representative of the
maximal net to which u belongs (w # u,v). Now u —» w and w — u are
net sentences and therefore, by lemma 1, provable from ‘B,. The sentence
w — v is a consequence of w — u and u — v, is therefore a sentence of &
and moreover, a semi-net sentence occurring in £,;. On the other hand,
u — v is a consequence of u » w and w — v, and u — v is thus provable
from £, and R,.

If either the succedent or both elements are not representatives of their
nets, our reasoning is quite analogous.

LemMA 3. Every sentence of £, is provable from 2, .

This is an immediate consequence of the procedure developed in step 2.
For every sentence that was here eliminated was provable from an earlier
sentence in L,, possibly with the help of a sentence by which it had been
replaced.

LeMMA 4. Every sentence of £, is provable from £;.

For the first sentence of £, this is trivial (since that sentence is also the
first sentence of £;). Suppose the lemma has been proved for the first u
sentences of £,. If the u+ 1-th sentence was not thinned in step 3, then
the lemma is also proved for that sentence. If the sentence was thinned,
suppose that it has the form 4 — v and that, in step 3, it was transformed
into

uw,...w,—»v (v21).
Then
UD Wi,...,Uu—>wW,

are earlier sentences in £, (among the first ). By the induction hypothesis,
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these sentences are already provable from £.;. From them, together with
Uw;...w, =,

the sentence u — v obviously follows by v cuts. (Analogous to section II,
§ 2, lemma 7.)
This proves our assertion.

LEMMA 5. From lemmas 2, 3, 4 and 1 it follows that every sentence of
© is provable from . The same, therefore, also holds for every sentence

of B.

§ 4. The system ¥ is independent

LemMa 1. No sentence of B, is provable from the remaining axioms.

PRroOF. Suppose that # — v is a sentence of B, which is provable from
the other sentences of B, and £.5. In place of the sentences of i3 we can
take the corresponding sentences in £, (i.e., those which have resulted
from them in step 3), since the former sentences follow from the latter by
thinnings. We are therefore dealing entirely with linear sentences.

By theorem IV, these sentences contain a sequence of sentences of the
form

UD W, W) D> Wy, o, W D> W, W, >

(v = 1). Since, in addition to u — v, the sentence v — u also belongs to &,
by being a net sentence, so do therefore the sentences provable from it
and the above list of provable sentences, viz.,

Wy DU, Wy > Wy, Wy D W, 02 W,.

Hence all these sentences are net sentences, i.e.,
US> Wi, W =Wy, oo, W, =0

belong to B, (and none to L,). It follows from the construction of P,
that in it all sentences occur in pairs. Of the v+ 2 pairs

UD 0,0 U U DWW DU ... W, 0,0 W,

occurring in ‘B,, we consider the last one. This pair contradicts the con-
struction of B,, since both of its sentences are provable from the preceding
pairs.

LemMA 2. No sentence of £; is provable from the remaining axioms.
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ProoF. Let q,,, q3,, and p,, denote the v-th sentence in the sequences
Q,, O3, and PB,, resp. This means that g3, is always a thinning of q,,,
by virtue of step 3.

Suppose, therefore, that qs, is provable from other sentences of .
Then every sentence of & is provable from ¥ without the use of axiom
qsy; for example, the sentence §,,. Suppose it has the form # — v and
that it is provable from the axioms

p2}.5""p2u’ q3p""5q3a5

and that all of these axioms are required for the proof (this can of course
always be accomplished). (Suppose also that g3, does not occur among
these axioms.)

As in lemma 1, we conclude that ¥ — v is provable from the linear sen-
tences

pZ}.:-'-5p2u:q2p:'--:q20‘

(here it is no longer mandatory that all sentences are required for the proof),
and that from these sentences we may single out a sequence of sentences
of the form

UD W, Wy > Wy, , W, D0

(theorem IV). In these sentences we replace all occurring net elements by
their representatives. This means that the sentences of £, are left unchanged
and those of B, become tautologous sentences. (The reason for this is
that both elements of a B,-sentence always belong to the same maximal
net and hence have the same representative.) If the tautologous sentences
are eliminated, then another sequence of sentences of the form

U X1,X] > Xgyene,XeD

obviously results, consisting entirely of sentences of £.,. (We have k = 1,
for if the sequence were to consist only of u — v, then this sentence would
occur twice in £,, which is impossible by step 2.)

We can suppose, without loss of generality, that # — x, is the sentence
q2,- Since the sentence x; — v (x, # v) is provable, it is a sentence of &
and, in particular, of £,. From this it follows by step 2, that u — x; does
not occur before u — v in £),, since ¥ —» v would then have been replaced
by another sentence (initially by x, — v). u - x, therefore occurs later in
£, than u — v. Hence the sentence q;, which resulted from # — x, in step 3,
runs:

U...0...> Xy,
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by the construction of step 3. For it we put
vK - x;.
According to assumption, the sentence # — v (q,,) is now provable from

PairesP2us3psev s Qags

but not without vK — x(q3,). This cannot be so. A sentence with v in the
antecedent can, in no case, be an integral component of a proof for a
sentence with v for its succedent. The following argument explains why this
is so:

By theorem III there would have to exist a normal proof for # — v in
which vK — x; occurs among the initial sentences. In that case the sentences
3 in the schema of the normal proof (cf. Section I, § 4) would all have the
succedent v. Hence vK — x; would have to belong to the t’s. It would
then be cut with one of the 8’s. Since v could not be the cut element, v would
therefore occur in the antecedent and succedent of the conclusion of the
cut, the latter would thus be trivial; however, trivial sentences are not allowed
to occur in normal proofs.

We therefore have a contradiction, and the independence of the axiom
system T is proved.



2. ON THE RELATION BETWEEN INTUITIONIST AND CLASSICAL
ARITHMETIC

INTRODUCTION

By classical arithmetic we mean the theory of the natural numbers as
it is built up from the axioms of Peano, together with classical predicate
logic (called ‘restricted predicate calculus’ in Hilbert-Ackermann)'?, and
the introduction of recursive definitions.

Intuitionist arithmetic differs from classical arithmetic, purely externally,
by accepting only part of classical predicate logic as admissible. Intuitionist
predicate logic may be extended to classical predicate logic by including,
for example, the law of the excluded middle (¥ is true or U is false) or,
alternatively, the law of double negation (if U is not false, then U is true).

In the following we intend to show that the applications of the law of
double negation in proofs of classical arithmetic can in many instances be
eliminated. The most important consequences that follow are these:

THEOREM VI. If intuitionist arithmetic is consistent, then classical arith-
metic is also consistent.

THeOREM IV!3, Every definite proposition of arithmetic which does not
involve the concepts ‘or’ and ‘there is’, and is classically provable is also
intuitionistically provable.

A definition of the expressions used will follow below.

The proofs of these and the remaining theorems will be carried out
intuitionistically. All of them are reasonably straightforward and require
mainly facility in the use of the calculus of intuitionist predicate logic.

§ 1. Terminology and notations

We shall distinguish the following symbols and combinations of symbols
(expressions):
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1.1. Logical symbols: & and, v or, > if ... then ..., — not, (r)forall g,
E(r) there is an £. The last two symbols are called quantifiers.

1.21. Symbol for definite objects: 1.

1.22. Object variables: a, b, c, . . ..

1.3. Symbols for definite functions: ' (the successor function, with one
argument place); + , * (with two argument places).

1.41. Symbols for definite predicates: = , < (with two argument places).
1.42. Propositional variables: A, B, C, . . ..

1.5. German letters will serve as syntactic variables, i.e., as variables for
our deliberations about arithmetic.

1.6. The concept of an expression involving objects, briefly called a term
(defined inductively):

1.61. Object variables and symbols for definite objects are terms.

1.621. If { is a term, so is {'.

1.622. If | and g are terms, then so are f+¢ and | * g.

1.7. Example of a term: (a+1") + x’. (The brackets serve to make the
structure of the term unambiguous.)

The numerals 2, 3, 4, ... are abbreviations for the terms 1, 1"/, 1’/, .. ..
1.8. The concept of a propositional expression, briefly called a formula
(defined inductively) — cf. H.-A.'*, p. 52 —:

1.81. A symbol for a definite predicate with terms in the argument places
is a formula (e.g.: x' < y+1).

A propositional variable, with several terms behind it, is a formula
(e.g.: Fx*y'). (Informally, such an expression stands for an arbitrary
proposition in which the mentioned objects occur.)

It is also permissible for no term to stand behind the propositional
variable.

Formulae of the kinds introduced so far will be called elementary formulae,
and the terms will be called the arguments of the predicate symbol or of
the propositional variable.

1.821. If A is a formula, so is — 2.

1.822. If A and B are formulae, so are A & B, Av B, A o B.

1.823. If ¥ is a formula and £ is an object variable occurring within the
scope of a quantifier in %, then ()% and (Ex)¥ are also formulae.

1.9. The formulae ¥ and B in 1.821-1.823 are called the scopes of the
logical symbols involved.

Brackets and dots serve to display unambiguously the scopes of the
logical symbols in a formula.

Example of a formula:
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(Ax'+1,a* & :-(x) : x"" < 1+ o Fb) o — (Ez)A.

The dots are to be understood thus: The scope of a logical symbol extends
on a given side up to the point where a larger number of dots occurs than
the number of dots next to the symbol on that side. (If no such larger
number of dots occurs, the scope naturally extends to the beginning or end
of the formula.)

For greater clarity we also use brackets () in place of dots: each pair of
brackets encloses a scope.

An object variable in a formula is said to have a bound occurrence if it
stands within the scope of a quantifier with the same object variable (or if
it stands in the quantifier itself); otherwise it is said to have a free
occurrence.

§ 2. The formal structure of arithmetic

Arithmetic is a system of ‘true’ propositions, some of which are axioms,
and from which the other propositions are obtained by repeated application
of certain inferences.

In formalized arithmetic (which we must consider in place of informal
arithmetic, in order to be able to reason about arithmetic) we have a corre-
sponding system of true formulae, some of which are axiom formulae and
from which the others are obtained by repeated application of certain
operational rules.

The formal counterpart of a proof is a sequence of formulae each of which
is either an axiom formula or results from earlier formulae by the application
of an operational rule. This formal counterpart of a proof is called a proof
figure or, briefly, a derivation. The last formula in the sequence is called the
endformula of the derivation. A formula is called derivable if there exists a
derivation of which it is the endformula. (This derivation is then also called
a ‘derivation of the formula’.)

The choice of the axiom formulae and operational rules is largely arbitrary.
In this paper we shall stipulate the following system:

2.1. Statement of the axiom formulae.
2.11. — — A+ = A. (Formal counterpart of the ‘law of double negation’.)

By introducing this axiom formula at the beginning, we obtain the
following arrangement:

All axiom formulae and operation rules that now follow constitute
together the formalism of intuitionist arithmetic. From it the formalism
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of classical arithmetic results by the inclusion of the axiom formula
—/ Ao A.

Formulae which are derivable without the use of the latter axiom formula
are called intuitionistically true; those derivable in the entire formalism,
classically true.

2.12. Axiom formulae of intuitionist propositional logic.

We adopt Heyting’s axiom formulae!®:

e
POV IR WD

A>DA&A,
A&B-o*'B&A,
ADB-D:4A&C->*B&C,
A>DB-&*BoC:o*A>oC,
Bo+A>oB,

A& A>B:>oB,
A>-AvB,

AvB:>o*Bv A,
A>DC*&*BoC:o:AvB-o(C,
—A-D-4A :.)B,
ADB-&*A> —B:>— A

2.13. Axiom formulae for ‘all’ and ‘there is’ (H.-A. p. 53):

L.
2.

(x)Fx+ > Fy,
Fy o (Ex)Fx.

2.14. Axiom formulae for the natural numbers (according to Herbrand)'®:

Nownkwmhe=

X =x,

X=y+Dy=x,
x=y- &' y=z:D°x=z2

—-x' =1,

x=J"3’x’=J",
X'=y'rorx=y,

Fl1 & :(x)* Fx o Fx' :* o (x)Fx
(axiom formula for complete induction),
— e/t X=yiDXx=Y)

(This special case of the law of double negation is intuitionistically
true.).

Any other intuitionistically true axiom formula¢ are admitted provided
that (as before) they do not contain the symbols v and E.
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For example, the following axiom formulae for addition are admissible:
x+1=x, x+y =(x+y).

Multiplication, exponentiation, the predicate ‘smaller than’, and others
may be introduced by means of similar axiom formulae. All we require
further is that for predicates the law of double negation is intuitionistically
valid; for ‘smaller than’, for example, we require that

S rx<y:ox<y

is an axiom formula.

It is easily seen that these and similar derived concepts customary in
arithmetic fulfil the stated conditions. (— —*x<y:>D°*x <y e.g,
is indeed intuitionistically valid.)

2.2. Statement of the operational rules (following H.-A., p. 53-54):
2.21. If A and A > B are true formulae, so is B.
2.22. Rules for ‘all’ and ‘there is’:

If A o B is a true formula and if g is an object variable with no free
occurrence in % and no bound occurrence in B, then % > (£)B is a true
formula.

If B> U is a true formula and ¢ is an object variable with no free
occurrence in U and no bound occurrence in B, then (Ex)B - = A is also
a true formula.

2.23. Rules of replacement:
2.231. For bound object variables:

From a true formula another true formula results if an object variable
is replaced in a quantifier and throughout the scope of that quantifier,
by another object variable, provided that the replacement variable occurs
neither in the scope of that quantifier nor in another quantifier of the
formula in which the replacement takes place.

2.232. For free object variables:

From a true formula another true formula results if every free occurrence
of an object variable is replaced by one and the same term provided that
this term contains no object variable occurring in a quantifier in whose
scope the replacement takes place.

2.233. For propositional variables:

From a true formula ¥ another true formula results by the following
replacement:

We replace all occurrences of a propositional variable %, together with
all of its arguments, in all places in % where the variable 8 occurs with the
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same number of arguments. Let us call that number v (v may be 0). For the
replacement we use a formula & which does not contain an object variable
with a bound occurrence in the scope of a quantifier of % within which the
replacement takes place. © may, in particular, contain v object variables
designated by z;,...,x,, but these variables must not be bound. (Not
all of these variables need to occur, it may happen that none of them occurs,
cf. 1.81.) By @%(&-::%) we mean that formula which results from &
by the replacement of every occurrence of z, by the term 1,. The replace-
ment as a whole may be described thus: If, in the place where it is to be
replaced, the propositional variable has for its arguments the terms
31»--.» 3, then we substitute for it (and for its arguments) the formula

(G-

2.3. Some true formulae of intuitionist propositional logic.

The following true formulae, which we shall need for the proofs in
§8 3 and 4, are derivable from the axiom formulae 2.12. by means of the
operational rules 2.21 and 2.233 (applied only to formulae without terms).
The formulae are taken from Heyting’s paper and the numbers behind them
refer to that paper!”’.

1. A&B-> A, 22

2. AoB' &' CoD:2:A&C->*B&D, 2.23
3. AoB*&A>C:o:A>*B&C, 2.24
4, A&BoC:>:A>*B>oCC, 2.27
5. Ao*BoC:o2:Bo*A>C, 2271
6. ADB*o:BoC*>*A>C, 2.29
7. AoB*'o:—B*>D 4, 42

8. ADB'D:—|——1A'D——1——1.B, 4.22
9. A> ——A4, 4.3

10. _I_I""IA':‘ﬂA, 4.32
11, W —*A&B:o¢t— —A*& — — B. 4.61

§ 3. The intuitionist validity of the law of double negation

Preliminary remarks about the connections between the theorems which
follow: Theorem II contains the essential basis of our results theorem I,
serves as a lemma for its proof. Theorem II says that the law of double
negation is to a large extent intuitionistically valid; this fact is then used
(in § 4) in order to transform an arbitrary classical proof into an intuitionist
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proof, although this transformation causes certain changes in the conclusion
of the proof. Theorem Il indicates what can be achieved in this direction.
From theorem Il then follow almost at once a number of individual
results (in § 5), among them the two theorems mentioned in the introduction.
3.1. TueoreM L. If U, B, € are any given formulae, ¥ any given object
variable not occurring as a bound variable in U, and if — <> Y
as well as — — 8B+ > B are intuitionistically true formulae, then
(—| — A& %)D(QI& %), (—| —€ D%)D(@D%), (—1 —I—I@):(“‘I@)
and (— — (£)%) = ((£)¥) are also intuitionistically true formulae.
3.11. The informal sense of this theorem can be formulated as follows:
If the law of double negation is intuitionistically valid for certain proposi-
tions, then it also holds for the conjunction of two such propositions, for
the implication of an arbitrary proposition with such a proposition, for the
negation of an arbitrary proposition of this kind, as well as for the universal
generalization of such a proposition.
3.2. ProorF of theorem I. We must deal with four individual propositions,
each of which is proved separately.
3.21. From — — % > Yand — — B - o Bwederive(— — A& B) =
(U & B) intuitionistically as follows (the numbers refer to § 2):
From — — ¥+ > Yand = — B+ > Bfollows(— A+ & — —B) >
(U & B) by 2.32 and 2.34. This, together with 2.3.11 and 2.36, yields

(——-A&B) > A &B).

3.22. From — — %+ > U we wish to derive (— — € 2 %) o (€ = ).
This is done as follows: 2.126, together with 2.34, yields

CoE@%-29).
According to 2.38, it holds that
@AW (= —EY:—=A).

Both together yield (2.36)

Eo(m—CoU:o——A).
From this follows (2.35)

(' CoWo@>—-—A).
From — — % - o U we obtain (2.35, 2.36)

€E>==%)>(@€=9,
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hence (2.36)
(——Co%) > (€ > ).

3.23. (-1 = — €) o (— €) holds by 2.3.10. (This case offers nothing new
and is included in theorem I only for the sake of completeness.)
3.24. From — — U+ o A we wish to derive: — — ()% * o - (£)A.

2.131 yields (2.231, 2.232, 2.233) (r)¥% * > U (permissible, since ¢ was
not allowed to have a bound occurrence in ).

Using 2.38, we obtain — — (£)%* > — — U; using = — A o U, we
further obtain (2.36)

-/ (g)%[ oY,

and from this, by 2.22:

— = (@A 2 (O

(The application of the operational rule is permissible since £ was assumed
to have no bound occurrence in ¥ and quite obviously has no free occurrence

3.3. TuroreM II. If ¥ is a formula without the symbols v and E, and if all
of its elementary formulae are prefixed by —, then — = U+ > Y is an
intuitionistically true formula.

3.4. The proof of this theorem follows easily from an application of theorem
I. The formula % is, after all, made up of formulae of the form

f=gbh<i...,aso =6...L

(f. 9,9, 1, f;, ..., designate terms; € designates a propositional variable)
and the logical symbols &, =, —, (z) (1.8). _

For any one of these formulae, let us call it ®, — — D+ o D isintuitionisti-
cally true (2.14 together with 2.232, 2.3.10 together with 2.233). According
to theorem I, this property is inherited by the subformulae of %, as they are
combined in the construction of %, and is finally passed on to U itself,
1.e.,, — — U+ > W is an intuitionistically true formula.

§ 4. Transformation of proofs of classical arithmetic into proofs of
intuitionist arithmetic

4.1. THeoreM III. A proof figure of classical arithmetic with the endformula
€ is transformable into a proof figure of intuitionist arithmetic with the
endformula €*, where €* results from € in the following way: Each sub-



§ 4, TRANSFORMATION OF PROOFS OF CLASSICAL ARITHMETIC 61

formula of € which has the form €v D is replaced by = : — € & — D,
each subformula which has the form (Et)€ is replaced by — (¥) — €;
and each elementary formula containing a propositional variable is replaced
by the same formula, prefixed by two negation symbols.
4.11. In classical logic, the formula €* which thus results is, as is well-
known, equivalent to €. (Cf., for example, H.-A., pp. 5, 7, 46, 61.)

The somewhat tedious arguments required for the proof of theorem III
contain nothing new; all we need to do is to carry them out rigorously
for the case at hand.

4.2, Proor of theorem [II. The transformation of the classical proof figure
~ we think of this figure as given — is carried out in four steps (4.21-4.24).
4.21. First of all we can see to it that every formula of the proof figure,
with the exception of the endformula €, is used exactly once to obtain
a new formula (by means of an operational rule).

This is done by omitting one by one those formulae that are not used
to obtain another formula, except the endformula, and by writing down
correspondingly often those formulae that are used more than once,
together with the formulae required for their derivation.

4.22. Elimination of the symbols v and E from the proof figure.

The derivation (= proof figure) is now transformed thus: Wherever a
formula of the form % v B occurs as a component of a derivation formula,
it is replaced by — : — A+ & — B, and every occurrence of a formula
of the form (Ex)¥ is replaced by — (r) — . (The order in which these
replacements are carried out is obviously immaterial.)

We must now examine to what extent the new figure which has resulted
in this way has remained a correct derivation and, where this is not the case,
modify the figure accordingly. For this purpose we examine, first, the
application of the operational rules and, second, the axiom formulae
(4.221, 4.222).

In the course of the transformation we shall adjoin to the proof figure
several true formulae from 2.3, together with their derivations, and we note
that these formulae, as may be seen from Heyting’s paper, are derivable
without the use of the symbols v and E, so that these symbols in fact no
longer occur in the proof figure. (This, incidentally, is not crucial.) We
assume that these derivations have already been modified in such a way by
the procedure described at 4.21 that every formula, with the exception of
the endformula, is used exactly once to obtain another formula.

4.221. All applications of operational rules in the proof figure have, as is
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easily seen, remained correct in the replacement described, except for those
places in which a rule for ‘there is’ (2.22, second part) was applied.

An instance of this kind, which had the form 8 o %, (Ex)B + = U before
the replacement, now has the form B* o %*, — (z) — B* + = A*¥, where
1 has no free occurrence in UA* and no bound occurrence in B*. This place
is modified as follows:

From B* o> A* we obtain — A* * > — B* by using the true formula
2.37 (which must be adjoined to the proof figure, together with its deriva-
tion); from this we obtain — UA* + = (z) — B*, by the rule for ‘all’, and this,
by means of 2.37, yields — (z) — B*+ © — — U*, which, in turn, yields
— (£) — B*- 2 UA*, by the application of — — A*+ > A* (2.11) and
(2.36), and the gap which had developed in the proof figure has therefore
once again been filled.

4.222. The replacement of the symbols v and E may also have caused
changes in certain axiom formulae, i.e., in those which had contained a
v or E. The axiom formulae affected are 2.127, 2.128, 2.129, and 2.132.
(The arithmetic axiom formulae (2.14) do not — this was explicitly stipulated
at 2.14 — contain v and E.) The formulae which have resulted from the above
four axiom formulae are now derived as follows:

4.222.1. The axiom formula 2.127 became

Ao —:—A-&—B.
By 2.31 it holds that
— A& = B:> —4;
from this, with the help of 2.37, we obtain
——Ad>:*—:1—A4°& = B;

it also holds that (2.39)

A:—I—IA,

and both together yield (2.36) the formula to be derived.
4.222.2. The axiom formula 2.128 became

—I:—IA'&—IB:.::'_|:_|B'&_|A-

From 2.122
—1B'&—1A!::—1A'&—|B

results by replacement and from this, with the help of 2.37, the desired
result follows.
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4.222.3. The axiom formula 2,129 became
(A>C-&*B>C)>(—:—A*& —-B: >0,
It can be derived thus: 2.37 yields
A>5C*>:—C*>—4 and B>C->:—C+*> B
From this, by 2.32 and 2.34, follows
(A>C+&*B>C)>(—C*>—A4:&:—C*> —B).
By 2.33 it further holds that
(wC >—4:&:—C*>—B)>5(—C*>:—A4*& —B),
and by 2.37
(wC* >:—A4-&—B)5(—:—A4"&—B:">— 0.

It we include (2.11) — — C = C, then repeated applications of 2.36 (and
a single application of 2.35) finally yield the formula to be derived.
4.222.4. The axiom formula 2.132 became

Fy > — (x) — Fx.
From (x) — Fx+ = — Fy (2.13) an application of 2.37 yields
— — Fy* > —(x) — Fx,

and from this, with the help of Fy = — — Fy (2.39) and 2.36, follows the
formula to be derived.
4.23. Now we shall modify the proof figure in such a way that replacements
of propositional variables (2.233) take place only immediately after the
application of the axiom formulae, i.e., before one of the remaining opera-
tional rules (2.21, 2.22, 2.231, 2.232) is applied. (As before, it remains
permissible to carry out several such replacements in succession immedi-
ately after the application of an axiom formula.)
4.231. Preparatory step: All places of the proof figure in which a replace-
ment of a propositional variable takes place are modified as follows:
Suppose the replacement transforms a formula § into a formula @.
The formula & (2.233) which was used as a replacement, is itself replaced
by a formula & which, in place of the object variables of &, contains other
object variables not yet occurring in the proof figure. Once ¥ has been
incorporated into the formula §¥, we carry out several replacements of object
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variables according to 2.231 and 2.232, so that finally the formula & once
again results.

4.232. Step-by-step reversal of the order of the replacements of proposi-
tional variables:

A replacement of a propositional variable which takes place after an
application of one of the remaining operational rules is moved ahead,
so that the same replacement now occurs before that application instance.
By ‘the same replacement’ we mean: For the same propositional variable
with the same number of arguments we substitute the same formula &
(2.233) into that formula, or into the two formulae (in the case of 2.21)
to which the other operational rule is applied. (If the propositional variable
is missing from one of these formulae, then the replacement becomes of
course redundant.) The replacement is correct by virtue of the preparatory
step 4.231. The application of the operational rule, which now occurs after
the replacement (or after the two replacements, in the case 2.21), is also
correct, as a consideration of all four cases (2.21 to 2.232) easily shows.
(On the basis of the preparatory step, the only new object variables that
could have been introduced at different places by the substitution of © are
at most object variables that did not yet occur in the formulae involved
in the application of the operational rule.)

By repeating this reversal of order sufficiently often, it can be achieved
that the replacements of proposition variables eventually occur only after
the applications of the axiom formulae.

4.24. The prefixing of two negation symbols in the case of propositional
variables that are not being replaced:

After having completed the replacements of propositional variables, we
carry out several further replacements of this kind in such a way that every
elementary formula with a propositional variable that still occurs is replaced
by the same formula prefixed by two negation symbols. In the remainder
of the proof figure, every occurrence of that elementary formula is then
prefixed by two negation symbols. The proof figure remains correct.

4.25. Now the proof of theorem III is easily completed:

We have achieved that in the proof figure under discussion the axiom
formula — — 4 > 4 (as well as all other axiom formulae, a fact which
will not be used here) is used only in the following form: after the axiom
formula there occur replacements of propositional variables and this leads
to a formula in which every elementary formula with a propositional
variable is prefixed by — and in which the symbols v and E no longer occur.
This formula has (in the case of the axiom formula — — 4 * D 4) the
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form — — U - o A, (After all, every replacement necessarily preserves
this form.)

This formula is intuitionistically derivable by virtue of theorem II. Thus
the axiom formula — — A4 °* > 4 can now be eliminated (as an axiom
formula) from the proof figure by writing down its intuitionist derivation
wherever the formula occurs, so that finally an intuitionist proof figure
results. In steps 4.22 and 4.24, its endformula was subjected to precisely
the modifications stated in theorem III. This proves the theorem.

§ 5. Consequences

5.1. THEOREM IV. A proof figure in classical arithmetic whose endformula
contains no propositional variables, and which does not contain the symbols
v and E, can be transformed into a proof figure in intuitionist arithmetic
with the same endformula.
5.11. The informal sense of this theorem may be formulated thus: Every
definite proposition of arithmetic which does not contain the concepts ‘or’
and ‘there is’ and is classically provable, is also intuitionistically provable.
By a ‘definite proposition’ we mean a proposition whose formula contains
no propositional variables. ‘Provability’ should always be understood as
provability in our formal system of arithmetic. Proofs using techniques
from analysis, for example, are not included.

5.2. Theorem IV follows at once from theorem III.

5.3. THEOREM V. For every formula (of arithmetic) there exists a classically
equivalent formula which is intuitionistically derivable if and only if the
former is classically derivable.

5.31. The informal sense of this theorem may be formulated thus: For every
proposition of arithmetic there exists a classically equivalent proposition
which is intuitionistically provable if and only if the former is classically
provable.

5.4. Theorem V also follows at once from theorem III. The formulae €
and &* in theorem III are classically equivalent and the true formulae
€ o €* and €* o € which, together, express this equivalence, are derivable
in our logical formalism (§ 2 without 2.14). (This derivation will not be
carried out; it is an easy consequence of H.-A. and Heyting’s paper.) Thus,
if € is classically derivable, &* is intuitionistically derivable by theorem III,
and if €* is intuitionistically derivable, then & is classically derivable with
the help of €* o §.
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5.5. THeoreM VI. If intuitionist arithmetic is consistent, then classical
arithmetic is also consistent.

5.51. The consistency of arithmetic means formally that there is no deriva-
tion with an endformula of the form U & — U, where 2 stands for an
arbitrary formula.

5.6. In order to prove theorem VI we assume such a proof figure to exist
in classical arithmetic. Then, according to theorem III, we can find an
intuitionist proof figure whose endformula is of the form 2* & — U*. Hence
intuitionist arithmetic 1s not consistent either.

5.7. THeorReM VII. For every purely logical formula there exists a classically
equivalent formula which is derivable in intuitionist predicate logic if and
only if the former is derivable in classical predicate logic.

5.71. By a purely logical formula we mean a formula which (besides logical
symbols) contains only variables (object and propositional variables), hence
no symbols for definite objects, for definite functions, nor for definite predi-
cates.

By a proof figure in classical predicate logic we mean a proof figure in
which the axiom formulae 2.11 to 2.13 and all operational rules (2.2) may
be applied, but where the operational rules may be used only to produce new
purely logical formulae (such as the axiom formulae mentioned). This
means that for free object variables only other object variables may be
substituted (2.232); for propositional variables only purely logical formulae
may be substituted (2.233).

The same holds for a proof figure of intuitionist predicate logic, except
that here the axiom formula 2.11 may not be used.

5.8. The proof of theorem VII is obtained, as was that of theorem V,
merely by specializing theorems I to Il and their proofs to derivations in
predicate logic. A brief reflection shows that this procedure is legitimate.

From theorem VII it follows, for example, that the ‘decision problem’
for classical predicate logic would be solved, if it were solved for intuitionist
predicate logic. (The converse does not follow.)

§ 6. The consistency of arithmetic. The redundancy of negation in intuitionist
arithmetic

6.1. A few remarks concerning the question of the consistency of arithmetic:
If intuitionist arithmetic is accepted as consistent, then the consistency of
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classical arithmetic is also guaranteed by theorem VI. If a narrower view
is taken as a starting point, such as Hilbert’s “finitist’ view outlined in his
paper ‘On infinity’'®, then we are still left with the task of proving the
consistency of intuitionist arithmetic from this point of view. Whether this
can be done at all is rather doubtful since Godel'® has shown that the
consistency of classical arithmetic (more precisely: an equivalent arithmetical
proposition) cannot be proved within arithmetic itself (given that arithmetic
is consistent). This does not contradict theorem VI since that theorem
merely traces the consistency of classical arithmetic back to that of intui-
tionist arithmetic and the latter still remains unproved. Applying Godel’s
result, we conclude that the consistency of intuitionist arithmetic cannot be
proved within classical arithmetic (assuming that arithmetic is consistent).
6.2. Redundancy of negation in intuitionist arithmetic.

In intuitionist arithmetic we can dispense with negation altogether by
defining — 9 as an abbreviation for % > 1 # 1, and by considering ‘non-
equality’ as a primitive predicate with the following axiom formulae:
x#y*>Di—x=yand —-x =y: >x # y(where — *x = y stands
only for x = y+ > -1 % 1). This interpretation of negation is correct since
—A*2(Ad>—*1=1)and (4 > — -1 = 1) D — 4 are intuitionisti-
cally derivable formulae (2.12.10 and 2.141, 2.125, 2.12.11 together with
2.34).

The axiom formula 2.12.11 thus becomes derivable (by means of 2.33,
2.126), and the other axiom formula for negation, 2.12.10, becomes equiv-
alent to 1 # 1 o B. This formula may be adopted as an arithmetical
formula, although it can actually be omitted altogether since 1 # 1 = 9
is always derivable if ¥ contains no propositional variable.

6.21. The latter result follows thus: It holds, first of all, that

l#1°-02:B>o-1#1

(2.125),1i.e., 1 % 1+ > — B; in particular, that 1 % 1* > :— —*x =y,
hence (together with 2.148) 1 # 1+ >+ x = y. In the same way we derive
1 # 1* o+ x < y. Furthermore, an arbitrary formula % without proposi-
tional variables (1.8) is composed of elementary formulae f = ¢,%) <14,..,
(where f, g, B, i are terms) together with logical symbols. The formula
1 # 1>Qis already valid if { =g, § <1, .., stands for € (by virtue of
the preceding together with 2.232) and, in the construction of ¥, the validity
of the formula 1 # 1 o € carries over to the various subformulae of % and
finally to U itself (in accordance with 2.33 for &; 2.127 for v; 2.125 for o;
2.22 for (£); 2.132 for (Ex)).



3. INVESTIGATIONS INTO LOGICAL DEDUCTION

SYNOPSIS

The investigations that follow concern the domain of predicate logic
(H.-A.?° call it the ‘restricted predicate calculus’). It comprises the types of
inference that are continually used in all parts of mathematics. What
remains to be added to these are axioms and forms of inference that may be
considered as being proper to the particular branches of mathematics, e.g.,
in elementary number theory the axioms of the natural numbers, of addition,
multiplication, and exponentiation, as well as the inference of complete
induction; in geometry the geometric axioms.

In addition to classical logic I shall also deal with intuitionist logic as
formalized, for example, by Heyting??,

The present investigations into classical and intuitionist predicate logic
fall essentially into two only loosely connected parts.

1. My starting point was this: The formalization of logical deduction,
especially as it has been developed by Frege, Russell, and Hilbert, is rather
far removed from the forms of deduction used in practice in mathematical
proofs. Considerable formal advantages are achieved in return.

In contrast, I intended first to set up a formal system which comes as
close as possible to actual reasoning. The result was a ‘calculus of natural
deduction’ (‘NJ’ for intuitionist, ‘NK’ for classical predicate logic). This
calculus then turned out to have certain special properties; in particular,
the ‘law of the excluded middle’, which the intuitionists reject, occupies a
special position.

I shall develop the calculus of natural deduction in section II of this
paper together with some remarks concerning it.

2. A closer investigation of the specific properties of the natural calculus
finally led me to a very general theorem which will be referred to below as
the ‘Hauptsatz’.
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The Hauptsatz** says that every purely logical proof can be reduced to
a definite, though not unique, normal form. Perhaps we may express the
essential properties of such a normal proof by saying: it is not roundabout.
No concepts enter into the proof other than those contained in its final
result, and their use was therefore essential to the achievement of that result.

The Hauptsatz holds both for classical and for intuitionist predicate logic.

In order to be able to enunciate and prove the Hauptsatz in a convenient
form, I had to provide a logical calculus especially suited to the purpose.
For this the natural calculus proved unsuitable. For, although it already
contains the properties essential to the validity of the Hauptsatz, it does so
only with respect to its intuitionist form, in view of the fact that the law of
excluded middle, as pointed out earlier, occupies a special position in relation
to these properties.

In section III of this paper, therefore, I shall develop a new calculus of
logical deduction possessing all the desired properties in both their intui-
tionist and their classical forms (‘LJ’ for intuitionist, ‘LK’ for classical
predicate logic). The Hauptsatz will then be enunciated and proved by
means of that calculus.

The Hauptsatz permits of a variety of applications. To illustrate this
I shall develop a decision procedure (IV, § 1) for intuitionist propositional
logic in section IV, and shall in addition give a new proof of the consistency
of classical arithmetic without complete induction (IV, § 3).

Sections III and IV may be read independently of section II.

3. Section I contains the terminology and notations used in this paper.

In section V, I prove the equivalence of the logical calculi NJ, NK, and
LJ, LK, developed in this paper, by means of a calculus modelled on the
formalisms of Russell, Hilbert, and Heyting (and which may easily be
compared with them). (‘LHJ’ for intuitionist, ‘LHK’ for classical predicate
logic.)

SECTION I. TERMINOLOGY AND NOTATIONS

To the concepts ‘object’, ‘function’, ‘predicate’, ‘proposition’, ‘theorem’,
‘axiom’, ‘proof’, ‘inference’, etc., in logic and mathematics there correspond,
in the formalization of these disciplines, certain symbols or combinations
of symbols. We divide these into:

1. Symbols.
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2. Expressions, i.e., finite sequences of symbols.
3. Figures, i.e., finite sets of symbols, with some ordering.

Symbols count as special cases of expressions and figures, expressions
as special cases of figures.

In this paper we shall consider symbols, expressions, and figures of the
following kind:

1. Symbols.

These divide into constant symbols and variables.
1.1. Constant symbols:

Symbols for definite objects: 1, 2,3, . ..

Symbols for definite functions: +, —, .

Symbols for definite propositions: Y (‘the true proposition’), A (‘the false
proposition’).

Symbols for definite predicates: =, <.

Logical symbols:*® & ‘and’,v ‘or’, o “if . . . then’, © < ‘is equivalent to’,
— ‘not’, V “for all’, 3 ‘there is’.

We shall also use the terms: conjunction symbol, disjunction symbol,
implication symbol, equivalence symbol, negation symbol, universal quanti-
fier, existential quantifier.

Auxiliary symbols: ), (, — .

1.2. Variables:

Object variables. These we divide into free object variables: a, b, ¢, ..., m
and bound object variables: n, . .., x, y, z.

Propositional variables: A, B, C, . . ..

An arbitrary number of variables will be assumed to be available; if the
alphabet is insufficient, we adjoin numerical subscripts, e.g., a;, C;.

1.3. German and Greek letters serve as ‘syntactic variables’, i.e., not as
symbols of the logic formalized, but as variables of our deliberations about
that logic. Their meanings are explained as they are used.

2. Expressions.

2.1. The concept of a propositional expression, called a ‘formula’ for short
(defined inductively):

(The concept of a formula is ordinarily used in a more general sense;
the special case defined below might thus perhaps be described as a ‘purely
logical formula’.)

2.11. A symbol for a definite proposition (i.e., the symbols V and A)is
a formula.

A propositional variable followed by a number (possibly zero) of free

object variables is a formula, e.g., Abab.
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The object variables are called the arguments of the propositional
variables.

Formulae of the two kinds mentioned are also called elementary formulae.
2.12. If A is a formula, then — A is also a formula.

If A and B are formulae, then A & B, A v B, A > B are formulae.

(We shall not introduce the symbol = < into our presentation; it is in
fact superfluous, since A > = B may be regarded as an abbreviation for
UA>B)&(B>oA).
2.13. A formula not containing the bound object variable ¢ yields another
formula, if we prefix either Vi or 3%. At the same time we may substitute
in a number of places for a free object variable occurring in the formula.
2.14. Brackets (or parentheses) are to be used to show the structure of a
formula unambiguously. Example of a formula:

3x (((— Abxa) v Bx) = (Vz (4 & B)))

By special convention the number of brackets may be reduced, but (with
one exception, vide 2.4) no use will be made of this, since we do not have
to write down many formulae.

2.2. The number of logical symbols occurring in a formula is called the
degree of the formula. (Thus an elementary formula is of degree 0.)

The logical symbol of a nonelementary formula that has been adjoined
last in the construction of the formula according to 2.12 and 2.13, is called
the terminal symbol of the formula.

Formulae that may have arisen in the course of the construction of a
formula according to 2.12 and 2.13, including the formula itself, are called
subformulae.

Example: the subformulae of 4 & Vx Bxa are A,Vx Bxa, A & Vx Bxa
as well as all formulae of the form Baa, where a represents any free object
variable (this variable may also be a, for example). The degree of
A & Vx Bxa is 2, the terminal symbol is &.

2.3. The concept of a sequent:

(This concept will not be used until section III, and it is only then that
the purpose of its introduction becomes clear.)

A sequent is an expression of the form

Aoy Uy > Byyen, By,

where A, ..., %A, By,..., B, may represent any formula whatever.
(The —, like commas, is an auxiliary symbol and not a logical symbol.)
The formulae Uy,..., %A, form the antecedent, and the formulae
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B,,...,B,, the succedent of the sequent. Both expressions may be empty.
2.4. The sequent A,,...,%, - By, ..., B, has exactly the same informal
meaning as the formula

U &...&A)>(Bv...vB,).

(By ¥, & A, & A; we mean (A; & A,) & A5, likewise for v.)

If the antecedent is empty, the sequent reduces to the formula
B, v...vHB,.

If the succedent is empty, the sequent means the same as the formula
(U &.. . &A)or (W &...&A)>D A

If both the antecedent and the succedent of the formula are empty, the
sequent means the same as A, i.e., a false proposition.

Conversely, to every formula there corresponds an equivalent sequent,
e.g., the sequent whose antecedent is empty and whose succedent consists
precisely of that formula.

The formulae making up a sequent are called S-formulae (i.e., sequent
formulae). By this we intend to indicate that we are not considering the
formula by itself, but as it appears in the sequent. Thus we say, for example:

‘A formula occurs in several places in a sequent as an S-formula’, which
may also be expressed as follows:

‘Several distinct S-formulae (which shall simply mean: having distinct
occurrences in the sequent) are formally identical’.

3. Figures

We require inference figures and proof figures.

Such figures consist of formulae or sequents, as the case may be. In what
follows (3.1 to 3.3, 3.5) we shall be speaking only of formulae, but whatever
is said applies analogously to sequents; all we need to do is to replace the
word ‘formula’, wherever it occurs, by the word ‘sequent’.

3.1. An inference figure may be written in the following way:

Ay oo, U,
B

where U, ..., %A, B are formulae. A,, ..., U, are then called the upper
Sformulae and B the lower formula of the inference figure. (The concepts of
the upper sequents and of the lower sequent of an inference figure consisting
of sequents are to be understood correspondingly.)

We shall have to consider only particular inference figures and they will be
stated for each calculus as they arise.
3.2. A proof figure, called a derivation for short, consists of a number of

(vz1),



TERMINOLOGY AND NOTATIONS 73

formulae (at least one), which combine to form inference figures in the
following way: Each formula is a lower formula of at most one inference
figure; each formula (with the exception of exactly one: the endformula)
is an upper formula of at least one inference figure; and the system of
inference figures is noncircular, i.c., there is in the derivation no cycle
(no sequence whose last member is again succeeded by its first member)
of formulae such that each member is an upper formula of an inference
figure whose lower formula is the next formula in the sequence.

3.3. The formulae of a derivation that are not lower formulae of an inference
figure are called initial formulae of the derivation.

A derivation is in ‘tree form’ if each one of its formulae is an upper
formula of at most one inference figure.

Thus all formulae except the endformula are upper formulae of exactly
one inference figure.

We shall have to treat only of derivations in tree form.

The formulae which compose a derivation so defined are called D-
formulae (i.e., derivation formulae). By this we wish to indicate that we are
not considering merely the formula as such, but also its position in the
derivation. In this sense we shall be using, for example, expressions such as:

‘A formula occurs in a derivation as a D-formula’. ‘Two distinct D-
formulae (i.e., formulae occurring merely in distinct places in the derivation)
are formally identical, viz., identical to the same formula’.

Thus by ‘U is the same D-formula as B’ we mean that % and B are not only
formally identical, but occur also in the same place in the derivation. We
shall use the words ‘formally identical’ to indicate identity of form regardless
of place.

For object variables, however, we shall not introduce a special term that
would associate the variable with a specific place of occurrence in the
formula. Thus we say, e.g.: ‘The same object variable occurs in two distinct
D-formulae.’

3.4. The inference figures of the derivation are called D-inference figures
(i.e., derivation inference figures).

In a derivation consisting of sequents the S-formulae of the D-sequents

are called D-S-formulae (i.e., derivation sequent formulae).
3.5. A path in a derivation is (following Hilbert) a sequence of D-formulae
whose first formula is an initial formula and whose last formula is the
endformula, and of which each formula except the last is an upper formula
of a D-inference figure whose lower formula is the next formula in the path.
We say that ‘a D-formula stands above (below) another D-formula’
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if there exists a path in which the former occurs before (after) the latter.

We are here thinking of the fact that a derivation is written in tree form
with the initial formulae above and the endformula below. (Examples may
be found in II, § 4.)

Furthermore, we say that ‘a D-inference figure occurs above (below) a
D-formula’, if all formulae of the inference figure occur above (below) that
D-formula.

A derivation with the endformula U is also called a ‘derivation of 2.

The initial formulae of a derivation may be basic formulae or assumption
Sformulae; more about their nature will have to be said as we reach the
different calculi.

SECTION II. THE CALCULUS OF NATURAL DEDUCTION

§ 1. Examples of natural deduction

We wish to set up a formalism that reflects as accurately as possible the
actual logical reasoning involved in mathematical proofs.

By means of a number of examples we shall first of all show what form
deductions tend to take in practice and shall examine, for this purpose,
three ‘true formulae’ and try to see their truth in the most natural way
possible.

1.1. First example:

(Xv(¥&Z)o(XvY)&(XVv Z)) is to be established as a true
formula (H.-A., p. 28, formula 19).

The argument runs as follows: Suppose that either X or Y & Z holds.
We distinguish the two cases: 1. X holds, 2. Y & Z holds. In the first case
it follows that Xv Y holds, and also Xv Z; hence (XvY)& (Xv Z)
also holds. In the second case Y & Z holds, which means that both Y and Z
hold. From Y follows X v Y; from Z follows X v Z. Thus (X vY) & (X v Z)
again holds. The latter formula has thus been derived, generally, from
Xv(Y&2Z),ie,(Xv(¥&Z))>((XvY)&(XvZ))holds.

1.2. Second example:

(3x Yy Fxy) o (Vy 3x Fxy).

(H.-A., formula 36, p. 60). The argument runs as follows: Suppose there
is an x such that for all y Fxy holds. Let @ be such an x. Then for all y:
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Fay holds. Now let b be an arbitrary object. Then Fab holds. Thus there is
an Xx, viz., a, such that Fxb holds. Since b was arbitrary, our result therefore
holds for all objects, i.e., for all y there is an x such that Fxy holds. This
yields our assertion.

1.3. Third example:

(—3x Fx) o (Vy — Fy) is to be established as intuitionistically true.
We reason as follows: Assume there is no x for which Fx holds. From
this we wish to infer: For all y, — Fy holds. Now suppose a is some object
for which Fa holds. It then follows that there is an x for which Fx
holds, viz., a is such an object. This contradicts our hypothesis that
— 3x Fx. We have therefore a contradiction, i.e., Fa cannot hold. But
since a was completely arbitrary, it follows that for all y, — Fy holds.
Q.E.D.

We intend now to integrate proofs of the kind carried out in these three
examples into an exactly defined calculus (in § 4, we shall show how these
examples are presented in that calculus).

§ 2. Construction of the Calculus NJ

2.1. We intend now to present a calculus for ‘natural’ intuitionist derivations
of true formulae. The restriction to intuitionist reasoning is only provisional;
we shall explain below (cf. § 5) our reasons for doing so and shall show in
what way the calculus has to be extended for classical reasoning (by in-
cluding the law of the excluded middle).

Externally, the essential difference between ‘NJ-derivations’ and deriva-
tions in the systems of Russell, Hilbert, and Heyting is the following:
In the latter systems true formulae are derived from a sequence of ‘basic
logical formulae’ by means of a few forms of inference. Natural deduction,
however, does not, in general, start from basic logical propositions, but
rather from assumptions (cf. examples in § 1) to which logical deductions
are applied. By means of a later inference the result is then again made
independent of the assumption. :

Calculi of the former kind will be referred to as logistic calculi.

2.2. After this preliminary remark we define the concept of an NJ-derivation
as follows:

(Examples in § 4.)

An NJ-derivation consists of formulae arranged in tree form (I3.3).

(By demanding that the formulae are arranged in tree form we are
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deviating somewhat from the analogy with actual reasoning. This is so,
since in actual reasoning we necessarily have (1) a linear sequence of
propositions due to the linear ordering of our utterances, and (2) we are
accustomed to applying repeatedly a result once it has been obtained,
whereas the tree form permits only of a single use of a derived formula.
These two deviations permit us to define the concept of a derivation in a
more convenient form and are not essential.)

The initial formulae of the derivation are assumption formulae. Each
of these is adjoined to precisely one D-inference figure (and in fact occurs
‘above’ (1.3.5) the lower formula of that figure, as will be explained more
fully below).

All formulae occurring below an assumption formula, but still above the
lower formula of the D-inference figure to which that assumption formula
was adjoined, the assumption formula itself included, are said to depend
on that assumption formula. (Thus the inference makes all succeeding
propositions independent of the assumption which is correlated with it.)

According to what we have said the endformula of the derivation depends
on no assumption formula.

2.21. We shall now state the permissible inference figures.

The inference figure schemata below are to be understood in the following
way:

We obtain an NJ-inference figure from one of the schemata by replacing
A, B, €, D by arbitrary formulae; and Vg Fr (3r Fr) by an arbitrary
formula containing V(3) for its terminal symbol, where ¢ designates the
bound object variable belonging to that terminal symbol; and a by the
formula obtained from $Fx by replacing the bound variable t, wherever it
occurs, by the free object variable a.

(For a we may, for instance, take a variable already occurring in $z.
For the inference figures Y-I and 3-F, this possibility will, however, be
excluded by the restrictions on variables which follow below, but it remains
for V-E and 3-1. Nor need ¢ occur at all in ¥, in which case Fa is, of
course, identical with ¥. — Fa is obviously always a subformula of V¢ 1
(3z ), according to the definition of a subformula in 1.2.2.)

Symbols written in square brackets have the following meaning: An
arbitrary number (possibly zero) of formulae of this form, all formally
identical, may be adjoined to the inference figure as assumption formulae.
They must then be initial formulae of the derivation and occur, moreover,
in those paths of the proof to which the particular upper formula of the
inference figure belongs. (I.e., that upper formula above which the square
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bracket occurs in the scheme. This formula may itself be an assumption
formula.)

The adjunction of the respective assumption formulae to a D-inference
figure in a derivation must in some way be made explicit such as by appro-
priately numbering these assumption formulae (cf. the examples in § 4).

The designations of the various inference figure schemata: &-1, &-E, etc.,
stand for the following: An inference figure formed according to a particular
schema is an ‘introduction’ (I) or an ‘elimination’ (E) of the conjunction
(&), the disjunction (v), the universal quantifier (V), the existential quanti-
fier (3), the implication (=), or of the negation (—). More about this in § 5.

The inference figure schemata:

&1 &-E v-I v-E
o] [3B]
A B A&B A&SB A B AvB € €
A&DB A B AvB AvB ¢
VI " V-E 31 I-E
[Fal
&a Ve ¥ &a e €
Ve 3t Fa I Bt ¢
o-I o-E —-1 —-E
(] (]
B A A>B A A-A A
A>B B — U A D

The free object variable of a V-I or 3-E, designated by a in the respective
schema, is called the eigenvariable. (This, of course, presupposes that there
is such a variable, i.e., that the bound object variable designated by ¢ occurs
in the formula designated by §t.)

Restrictions on variables:

An NJ-derivation is subject to the following restriction (for the significance
of this restriction cf. § 3):

The eigenvariable of an V-I must not occur in the formula designated
in the schema by V¢ $§¢; nor in any assumption formula upon which that
formula depends.
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The eigenvariable of an 3-E must not occur in the formula designated
in the schema by 3¢ ¥x; nor in an upper formula designated by &; nor in
any assumption formula upon which that formula depends, with the excep-
tion of the assumption formulae designated by $a in the schema of the
3-E.

This concludes the definition of the ‘NJ-derivation’.

§ 3. Informal sense of NJ-inference figures

We shall explain the informal sense of a number of inference figure
schemata and thus try to show how the calculus in fact reflects ‘actual
reasoning’.

>-I: Expressed in words, this schema corresponds to the following
inference: If B has been proved by means of assumption ¥, we have (this
time without the assumption): from ¥ follows B. (Further assumptions
may, of course, have been made and the result still continues to depend
on them.)

v-E (‘Distinction of cases’): If % v 8 has been proved, we can distinguish
two cases: What we first assume is that 9 holds and derive, let us say,
€ from it. If it is then possible to derive € also by assuming that B holds,
then € holds generally, i.e., it is now independent of both assumptions
(cf.1.1).

V-I: If §a has been proved for an ‘arbitrary a’, then Vi $5¢ holds. The
presupposition that a is ‘completely arbitrary’ can be expressed more
precisely as: &a must not depend on any assumption in which the object
variable a occurs. And this, together with the obvious requirement that
every occurrence of a in Fa must be replaced by an ¢ in Fr, constitutes
precisely that part of the ‘restrictions on variables’ which applies to the
schema of the V-I.

3-E: We have 3¢ Fx. We say: Suppose a is an object for which g holds,
i.e., we assume that a holds. (It is, of course, obvious that for a we must
take an object variable which does not yet occur in 3¢ §¢.) If, on this assump-
tion, we then prove a proposition & which no longer contains a and does not
depend on any other assumption containing a, we have proved € indepen-
dently of the assumption $5a. We have here stated the part of the ‘restrictions
on variables’ that concerns the 3-E. (A certain analogy exists between the
3-E and the v—E since the existential quantifier is indeed the generalization
of v, and the universal quantifier the generalization of &.)

—-E: 9 and — ¥ signifies a contradiction and as such cannot hold true
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(law of contradiction). This is formally expressed by the inference figure
——E, where A designates ‘the contradiction’, ‘the false’.

——I: (Reductio ad absurdum.) If we can derive any false proposition
( A) on an assumption ¥, then % is not true, i.e., — A holds.

The schema —g— expresses the fact that if a false proposition holds,

any arbitrary proposition also holds.
The interpretation of the remaining inference figure schemata should be
straightforward.

§ 4. The three examples of § 1 written as NJ-derivations

First example (1.1):

1 1
1 1 Y&Z &F Y&Z &-F
X — X v-1 Y v-1 z v—I
2 XvY XVZ&_I XvY XVZ&_I
Xv(Y&Z) XvY)&(XvZ) (XVY)&(XVZ)V_E1
XvY)&(XvZ) -1,

XV &2) = (Xv) & (Xv2Z)

In this example the tree form must appear somewhat artificial since it
does not bring out the fact that it is after the enunciation of Xv (Y & Z)
that we distinguish the cases X, Y & Z.

Second example (1.2):

1
Wy g
Fab 9.1
2 dx Fxb VI
dx Vy Fxy Yy Ix Fxy 1E,

Vy Ix Fxy

o -I,.
(3x Vy Fxy) = (Vy 3x Fxy)

If we were using a linear arrangement, then the assumption of the 3-F
would here also follow naturally behind the upper formula on the left,
as was the case in our treatment of that example in § 1.
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Third example (1.3):

2
Fa 3.7 1
dx Fx — dx Fx _E
A 1,
__—fFa -1
Yy o By o-I.

(— Ebf Fx) o (Yy — Fy)

§ 5. Some remarks concerning the calculus NJ. The calculus NK

5.1. The calculus NJ lacks a certain formal elegance. This has to be put
against the following advantages:

5.11. A close affinity to actual reasoning, which had been our fundamental
aim in setting up the calculus. The calculus lends itself in particular to the
formalization of mathematical proofs.

5.12. In most cases the derivations for true formulae are shorter in our
calculus than their counterparts in the logistic calculi. This is so primarily
because in logistic derivations one and the same formula usually occurs a
number of times (as part of other formulae), whereas this happens only very
rarely in the case of NJ-derivations.

5.13. The designations given to the various inference figures (2.21) make it
plain that our calculus is remarkably systematic. To every logical symbol
&, v,V, 3, o, —, belongs precisely one inference figure which ‘introduces’
the symbol — as the terminal symbol of a formula — and one which
‘eliminates’ it. The fact that the inference figures &-£ and v-I each have
two forms constitutes a trivial, purely external deviation and is of no
interest. The introductions represent, as it were, the ‘definitions’ of the
symbols concerned, and the eliminations are no more, in the final analysis,
than the consequences of these definitions. This fact may be expressed as
follows: In eliminating a symbol, we may use the formula with whose
terminal symbol we are dealing only ‘in the sense afforded it by the introduc-
tion of that symbol’. An example may clarify what is meant: We were able to
introduce the formula % > B when there existed a derivation of B from the
assumption formula . If we then wished to use that formula by eliminating
the D-symbol (we could, of course, also use it to form longer formulae,
e.g., (A o B) v €, v-I), we could do this precisely by inferring B directly,
once U has been proved, for what U > B attests is just the existence of a
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derivation of B from . Note that in saying this we need not go into the
‘informal sense’ of the >-symbol.

By making these ideas more precise it should be possible to display the

E-inferences as unique functions of their corresponding I-inferences,
on the basis of certain requirements.
5.2. It is possible to eliminate the negation from our calculus by regarding
— % as an abbreviation for A = A. This is permissible, since by replacing
every — U by A o A, and thus removing all —-symbols from an NJ-
derivation, we obtain another NJ-derivation (the inference figures —-I
and —-E then become special cases of the -/ and the >—F) and vice versa:
If, in an NJ-derivation, we replace every occurrence of % = A by — ¥,
another NJ-derivation results.

. A . .
The inference figure schema 5 occupies a special place among the

schemata: It does not belong to a logical symbol, but to the propositional
symbol A,
5.3. The ‘law of the excluded middle’ and the calculus NK.

From the calculus NJ we obtain a complete classical calculus NK by
including the ‘law of the excluded middle’ (tertium non datur), i.e.: In
addition to the assumption formulae we now also allow ‘basic formulae’
of the form ¥ v — A, where A stands for any arbitrary formula.

We have thus granted to the law of the excluded middle, in a purely
external way, a special position, and we have done this because we considered
that formulation the ‘most natural’. It would be perfectly feasible to

-

introduce a new inference figure schema, say (a schema analogous

to the one formed by Hilbert and Heyting), in place of the basic formula
schema % v — YU. However, such a schema still falls outside the framework
of the NJ-inference figures, because it represents a new elimination of the
negation whose admissibility does not follow at all from our method of
introducing the —-symbol by the —~1.

SECTION III. THE DEDUCTIVE CALCULI LJ, LK AND THE
HAUPTSATZ

§ 1. The calculi LJ and LK (logistic intuitionist and classical calculi)

1.1. Preliminary remarks concerning the construction of the calculi LJ
and LK.
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What we want to do is to formulate a deductive calculus (for predicate
logic) which is ‘logistic’ on the one hand, i.e., in which the derivations do not,
as in the calculus NJ, contain assumption formulae, but which, on the other
hand, takes over from the calculus NJ the division of the forms of inference
into introductions and eliminations of the various logical symbols.

The most obvious method of converting an NJ-derivation into a logistic
one is this: We replace a D-formula B, which depends on the assumption
formulae ,,...,%U,, by the new formula (U, & ... & U,) > B. This
we do with all D-formulae.

We thus obtain formulae which are already true in themselves, i.e., whose
truth is no longer conditional on the truth of certain assumption formulae.
This procedure, however, introduces new logical symbols & and o>, neces-
sitating additional inference figures for & and =, and thus upsets the
systematic character of our method of introducing and eliminating symbols.
For this reason we have introduced the concept of a sequent (1.2.3). Instead
of a formula (U, &...&U,) > B, e.g., we therefore write the sequent

Ay oo, A~ B,

The informal meaning of this sequent is no different from that of the
above formula; the expressions differ merely in their formal structure
(cf. L. 2.4).

Even now new inference figures are required that cannot be integrated
into our system of introductions and eliminations; but we have the advantage
of being able to reserve them special places within our system, since they
no longer refer to logical symbols, but merely to the structure of the sequents.
We therefore call these ‘structural inference figures’, and the others ‘opera-
tional inference figures’.

In the classical calculus NK the law of the excluded middle occupied a
special place among the forms of inference (II.5.3), because it could not be
integrated into our system of introductions and eliminations. In the classical
logistic calculus LK about to be presented, this characteristic is removed.
This is made possible by the admission of sequents with several formulae
in the succedent, whereas the transition from the calculus NJ just described
led only to sequents with one formula in the succedent. (For the informal
meaning of sequents in general cf. 1.2.4.) The symmetry thus obtained is
more suited to classical logic. On the other hand, the restriction to at most
one formula in the succedent will be retained for the intuitionist calculus
LJ. (Cf. below. — An empty succedent means the same as if A stood in the
succedent.)
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We have thus outlined a number of points that underlie the construction
of the calculi that follow. Their form is largely determined, however, by
considerations connected with the ‘Hauptsatz’ (§ 2) whose proof follows
later. That form cannot therefore be justified more fully at this stage.

1.2. Wenow define the concepts of an ‘LK-derivation’ and an °LJ-derivation’
as follows:

An LJ- or LK-derivation consists of sequents arranged in tree form
(L.3.3).

The initial sequents of the derivation are basic sequents of the form
D - D, where D may be an arbitrary formula.

Each inference figure of the derivation results from one of the schemata
below by a substitution of the following kind (cf. I1.2.21):

Replace 2, B, D, € by an arbitrary formula; for Yt Fr (3t Fr) put an
arbitrary formula having-V(3) for its terminal symbol, where ¢ designates
the associated bound object variable; for Fa put that formula which is
obtained from $z by replacing every occurrence of the bound object
variable ¢ by the free object variable a.

For T, 4, ©, A put arbitrary (possibly empty) sequences of formulae
separated by commas.

The following restriction is furthermore placed on LJ-inference figures
(this is the only respect in which the concepts of an LJ- and an LK-derivation
differ):

‘In the succedent of each D-sequent no more than one S-formula may
occur’.

The designations of the various schemata for operational inference figures
&-IS, &-IA, etc., are intended to mean: An inference figure formed
according to the schema is an introduction (I) in the succedent (S) or
antecedent (4) of the conjunction (&), the disjunction (Vv), the universal
quantifier (V), the existential quantifier (3), the negation (—), or the
implication ().

The inference figure schemata
1.21., Schemata for structural inference figures:

Thinning:

in the antecedent in the succedent
r-e r'—-»@

Dr—-0’° r-e,9’
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Contraction:
in the antecedent in the succedent
D,DTI > 0O F—)@,SD,SD.
DT -6’ r-e,%»
Interchange:
in the antecedent in the succedent
4,D,C T -6 r-e0,g%94,
4,6,Dr-60 r-6,964°
Cut:

Ir-6,% D,A4A- A
ra-e,4 '

1.22. Schemata for operational inference figures:

r-e0,% r-e,%

&-IS: ,
r-6,%&%
&id: — L0 Br->6,
N&B, I -0 N&B, T > 06
v-I4: Lr-0o %’F_)@,
AvB, I > O
r-6,% r-e6,%
v-IS: >
r-6,Aves r-6e,9vy
v-IS: ILQ@__,
r-e,ve
314; 8L >6
I Fe, T > 0O

Restrictions on variables: The object variable in the last two schemata,
which is designated by a and is called the eigenvariable of the V-IS (3-14),
must not occur in the lower sequent of the inference figure (i.e., not in
I, 0, and ¥1).

v-14: 0L~ 0
Vexe. T - @
—-IS: QI,F—’@

I“—»Q,—&I’



§ 2, SOME REMARKS CONCERNING THE CALCULI LJ anp LK 85

3-IS: I‘;@_,_%a_,
r-e,33;
4 20U
—.QI,F—v@
—_IS: AT ->06,8 ,
Ir-0,A>3
:—IA:F—’@’%I %,A—»A.

AP, I[,4-5060,4
1.3. Example of an LJ-derivation (using II.1.3):

dx Fx » Ix Fx
Fa —» Fa 3_IS — 3x Fx,dx Fx —»
Fa —» 3x Fx dx Fx, — 3x Fx —»

Fa, — 3x Fx —»

—-IA
Interchange
Cut

—-IS
v-IS

— 3dx Fx » — Fa

— 3Ix Fx > Vy — Fy
— (— 3x Fx) D(Vy—1 Fy)

o>-IS.

1.4. Example of an LK-derivation (derivation of the ‘law of the excluded
middle’):

413— —-IS
- A’ ; 4 - VIS
2 &AV T Interchange
S AV A, A
1 1 y v-IS
> Av o4, AV Contraction.
= Av — A

§ 2. Some remarks concerning the calculi LJ and LK. The Hauptsatz

(We shall make no further use, in this paper, of remarks 2.1 to 2.3.)
2.1. The schemata are not all mutually independent, i.e., certain schemata
could be eliminated with the help of the remaining ones. Yet if they were
left out, the ‘Hauptsatz’ would no longer be valid.

2.2. In general, we could simplify the calculi in various respects if we
attached no importance to the Hauptsatz. To indicate this briefly: the
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inference figures &-IS, v-I4, &-IA, v-1S, Y-IA, 3-1S, —-IS, —-IA, and
>-IA in the calculus LK could be replaced by basic sequents according to
the following schemata:

AB->A&LDB AvB - A B A&B - A A&LB-B
A->Av B B->AVB Vedr—> Fa  Fo-— rFr
- A, - A (law of the excluded middle)

— U, A - (law of contradiction)
A>B,UA - B.

These basic sequents and our inference figures may easily be shown
to be equivalent.

The same possibility exists for the calculus LJ, with the exception of the
inference figures v—I4 and —-IS, since LJ-D-sequents may not in fact
contain two S-formulae in the succedent (cf. V. § 5).

2.3. The distinction between intuitionist and classical logic is, externally,
of a quite different type in the calculi LJ and LK from that in the calculi
NJ and NK. In the case of the latter, the distinction is based on the inclusion
or exclusion of the law of the excluded middle, whereas for the calculi LJ
and LK the difference is characterized by the restriction on the succedent.
(The fact that both distinctions are equivalent will become evident as a
result of the equivalence proofs in section V for all calculi discussed in this
paper.)

2.4. If o-IS and the o-I4 are excluded, the calculus LK is dual in the
following sense: If we reverse all sequents of an LK-derivation (in which the
>-symbol does not occur), i.e., if for Ay, ..., A, > By, ..., B, we put
By,...,8; > A, ..., %, and if we exchange, in inference figures with
two upper sequents, the right- and left-hand upper sequents, including their
derivations, and also replace every occurrence of & by v, V¥ by 3, v by &,
and 3 by V (in the case of & and v we also have to interchange the respective
scopes of the symbols, e.g., for B v A we have to put A & B), then another
LK-derivation results.

This can be seen at once from the schemata. (Special care was taken to

arrange them in such a way as to bring out their symmetry.) (Cf. H.-A.’s
duality principle, p. 62.)
2.41. In any case, the >-symbol may, in a well-known manner, be eliminated
from the calculus N, by regarding % > % as an abbreviation for (— %) v B.
It may easily be shown that the schemata for the >-IS and the o-I4
may then be replaced by the schemata for v and —.



§ 2, SOME REMARKS CONCERNING THE CALCULI LJ AND LK 87

The calculus NJ has no corresponding property.
2.5. The most important fact for us with regard to the calculi LJ and LK
is the following:

HAuptsATZ: Every LJ- or LK-derivation can be transformed into an LJ-
or LK-derivation with the same endsequent and in which the inference
figure called a ‘cut’ does not occur.

The proof follows in § 3.

2.51. In order to give greater clarity to the meaning of the Hauptsatz,
we shall prove a simple corollary (2.513).

For this purpose we introduce a number of expressions (which will be
needed frequently later on) relating to the operational inference figures:
2.511. That S-formula which contains the logical symbol in its schema will
be called the principal formula of an inference figure.

For the &-IS and the &-IA4 this is simply the S-formula of the form
A & B; for the v—IS and the v—I4 it is A v B; for the V-IS and the V-14
it is VI §r; for the 3-IS and the I-14 it is I Ft; for the ——IS and the
——IA it is — U; and for the =>-IS and the >-I4 itis A o B.

The S-formulae designated by U, B, Fa in the schemata will be called
the side formulae of the respective inference figures.

They are always subformulae of the principal formula (according to the
definition of a subformula in 1.2.2).

2.512. We can now easily read off the following facts from the inference
figure schemata:

The principal formula occurs always in the lower sequent and the side
formulae always in the upper sequents of an operational inference figure.

If a formula occurs as an S-formula in an upper sequent of a given
inference figure, and if it is here neither a side formula nor the D of a cut,
then it occurs also as an S-formula in the lower sequent.

These two facts entail the following:

If anywhere in an LJ- or LK-derivation a formula occurs as an S-formula,
and if we trace the path of the derivation from the formula concerned up
to the endsequent, the formula can only vanish from that path if it is the
D of a cut or the side formula of an operational inference figure. In the
latter case, however, there appears, in the next sequent, the principal formula
of the inference figure of which our side formula is a subformula. To that
principal formula we can then, continuing downwards, apply the same
consideration, and so on. Thus we obtain the following corollary:

2.513. COROLLARY OF THE HAUPTSATZ (SUBFORMULA PROPERTY): In an LJ- or
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LK-derivation without cuts, all occurring D-S-formulae are subformulae of
the S-formulae that occur in the endsequent.
2.514. Intuitively speaking, these properties of derivations without cuts
may be expressed as follows: The S-formulae become longer as we descend
lower down in the derivation, never shorter. The final result is, as it were,
gradually built up from its constituent elements. The proof represented by
the derivation is not roundabout in that it contains only concepts which
recur in the final result (cf. the synopsis at the beginning of this paper).
Example: The derivation given above (1.3) for - (— 3z §r) = (V) = FY)
may be written without a cut as follows:

Fa>Fa 545
SFaran T
— dx Fx, Fa —» Interchange,

Fa, — dx Fx —»

etc., as above.

§ 3. Proof of the Hauptsatz

The Hauptsatz runs as follows:

Every LJ- or LK-derivation can be transformed into another LJ- or
LK-derivation with the same endsequent, in which no cuts occur.
3.1. Proof of the Hauptsatz for LK-derivations.

We introduce a new inference figure (in order to facilitate the proof)
which constitutes a modified form of the cut, and which we call a mix.

The schema of that figure runs as follows:

r-e 4-4
[,A4* - 0% 4

b

In order to obtain an inference figure from this schema, @ and 4 must be
replaced by sequences of formulae, separated by commas, in each of which
occurs at least once (as a member of the sequence) a formula of the form IR,
called the ‘mix formula’; and @* and A4* must be replaced by the same
sequences of formulae, save that all formulae of the form It occurring as
members of the sequence are omitted. (% may be any arbitrary formula.)
I' and A must be replaced, as in the other schemata, by arbitrary (possibly
empty) sequences of formulae, separated by commas.
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Example of a mix:

A—-B, —A BvCB,B,D,B—
A, BvC,D > — A |

B is the mix formula.

We notice at once that every cut may be transformed into a mix by means
of a number of thinnings and interchanges. (Conversely, every mix may be
transformed into a cut by means of a certain number of preceding inter-
changes and contractions, though we do not use this fact.)

In the following we shall consider only derivations in which no cuts occur,
but which may contain mixes instead.

Since derivations in the old sense may be transformed into derivations
of the new kind, it suffices, for the proof of the Hauptsatz, to show that a
derivation of the new type may be transformed into a derivation with
no mix.

Furthermore, the following lemma is already sufficient:

LemMA: A derivation with a mix for its lowest inference figure, and not
containing any other mix, may be transformed into a derivation (with the
same endsequent) in which no mix occurs.

From this the theorem as a whole easily follows:

In an arbitrary derivation consider a mix above whose lower sequent
no further mix occurs. The derivation for this lower sequent is then of the
kind mentioned in the lemma, i.e., it may be transformed in such a way
that it no longer contains a mix. In doing so, the rest of the derivation
remains unchanged. This operation is then repeated until every mix has
systematically been eliminated.

It now remains for us to establish the proof of the lemma. (This proof
extends into 3.2 incl.)

We have to consider a derivation whose lowest inference figure is a mix
and which contains no other mix.

The degree of the mix formula will be called the ‘degree of the derivation’
(defined in 1.2.2). -

We shall call the rank of the derivation the sum of its rank on the left
and its rank on the right. These two terms are defined as follows:

The left rank is the largest number of consecutive sequents in a path so
that the lowest of these sequents is the left-hand upper sequent of the mix
and each of the sequents contains the mix formula in the succedent.
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The right rank is (correspondingly) the largest number of consecutive
sequents in a path so that the lowest of these sequents is the right-hand
upper sequent of the mix and each of the sequents contains the mix formula
in the antecedent.

The lowest possible rank is evidently 2.

To prove the lemma we carry out two complete inductions, one on the
degree y, the other on the rank p, of the derivation, i.e., we prove the
theorem for a derivation of degree y, assuming it to hold for derivations
of a lower degree (in so far as there are such derivations, i.e., as long as
y is not equal to zero), supposing, therefore, that derivations of lower
degree can already be transformed into derivations with no mix. Further-
more, we shall begin by considering the case where the rank p of the deriva-
tion equals 2 (3.11), and after that the case of p > 2 (3.12), where we
assume that the theorem already holds for derivations of the same degree,
but of a lower rank.

In the following German capital letters will generally serve as syntactic
variables for formulae, and Greek capital letters as syntactic variables for
(possibly empty) sequences of formulae.

In transforming derivations, we shall occasionally meet ‘identical inference
figures’, i.e., inference figures with identical upper and lower sequents.
Since we have not admitted such figures in our calculus, they must be
eliminated as soon as they occur; we can do this trivially by omitting one of
the two sequents.

The mix formula of the mix that occurs at the end of the derivation is
designated by IR. It is of degree 7.

3.10. Redesignating of free object variables in preparation for the trans-
formation of derivations.

We wish to obtain a derivation that has the following properties:

3.101. For every V-IS (3-I4) it holds that: Its eigenvariable occurs in the
derivation only in sequents above the lower sequent of the V-IS (3-14)
and does not occur as an eigenvariable in any other V-IS (3-14).

3.102. This is achieved by redesignating free object variables in the follow-
ing way:

We take a V-IS (3-I4) above whose lower sequent either no further
inference figures of this kind occur, or if they do, they have already been
dealt with in a way still to be described.

In all sequents above the lower sequent of this inference figure we replace
the eigenvariable by one and the same free object variable which, so far,
has not yet occurred in the derivation. This obviously leaves the V-IS
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(3-14) itself correct, as is easily seen. (The eigenvariable did not in fact
occur in its lower sequent.) Furthermore, rest of the derivation remains
correct, as is shown by the lemma to follow shortly.

A systematic application of this method to every single V-IS and 3-I4,
thus leaves the derivation correct throughout and the conclusion ob-
viously has the desired property (3.101). Furthermore, as was essential,
the degree and rank of the derivation, as well as its endsequent, have
remained unaltered.

3.103. Now we give the still outstanding proof of the following lemma.
(It is enunciated in a somewhat more general form than is immediately
necessary, since we shall have to apply it again later on (3.113.33).)

An LK-basic sequent or inference figure becomes a basic sequent or
inference figure of the same kind, if we replace a free object variable which
is not the eigenvariable of the inference figure in all its occurrences in the
basic sequent or inference figure, by one and the same free object variable,
provided again that this is not the eigenvariable of the inference figure.

This holds trivially except for the V-IS, Y-I4, 3-IS and 3-IA. Even here,
however, there is no cause for concern: the restrictions on variables are not
violated, since we may neither substitute nor replace the eigenvariable.
(This is the reason why both restrictions on variables are necessary.)
Furthermore, the formula resulting from ¥a is again obtained by substituting
a for ¢ in the formula resulting from ¥z.

Having prepared the way (3.10), we now proceed to the actual transforma-
tion of the derivation which serves to eliminate the mix occurring in it.
As already mentioned, we distinguish the two cases: p = 2 (3.11) and
p>2(3.12).
3.11. Suppose p = 2.

We distinguish between several individual cases, of which the cases
3.111, 3.112, 3.113.1, 3.113.2 are especially simple in that they allow the
mix to be immediately eliminated. The other cases (3.113.3) are the most
important since their consideration brings out the basic idea behind the
whole transformation. Here we use the induction hypothesis with respect
to 7, i.e., we reduce each one of the cases to transformed derivations of a
lower degree.

3.111. Suppose the left-hand upper sequent of the mix at the end of the
derivation is a basic sequent. The mix then reads:

m-Mm 4-4
M 4*> A

b
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which is transformed into:

4 - A

= possibly several interchanges and contractions.
M, 4™ - A

That part of the derivation which is above 4 — A remains the same, and
we thus have a derivation without a mix.

3.112. Suppose the right-hand upper sequent of the mix is a basic sequent.
The treatment of this case is symmetric to that of the previous one. We have
only to regard the two schemata as ‘duals’ (cf. 2.4).

3.113. Suppose that neither the left- nor the right-hand upper sequent of
the mix is a basic sequent. Then both are lower sequents of inference figures
since p = 2, and the right and left rank both equal 1, i.e.: In the sequents
directly above the left-hand upper sequent of the mix, the mix formula IR
does not occur in the succedent; in the sequents directly above the right-hand
upper sequent SN does not occur in the antecedent.

Now the following holds generally: If a formula occurs in the antecedent
(succedent) of the lower sequent of an inference figure, it is either a principal
formula or the D of a thinning, or else it also occurs in the antecedent
(succedent) in at least one upper sequent of the inference figure.

This can be seen immediately by looking at the inference figure schemata
(1.21, 1.22).

If we now consider the hypotheses in the following three cases, we see
at once that they exhaust all the possibilities that exist within case 3.113.
3.113.1. Suppose the left-hand upper sequent of the mix is the lower sequent
of a thinning. Then the conclusion of the derivation runs:

r-oe
r-o0,m A4
r,A*- 0,4 )
This is transformed into:
Ir-e . . :
1_-——’ W possibly several thinnings and interchanges.

That part of the derivation which occurs above 4 -+ A disappears.
3.113.2. Suppose the right-hand upper sequent of the mix is the lower
sequent of a thinning. This case is dealt with symmetrically to the
previous one.

3.113.3. The mix formula I occurs both in the succedent of the left-hand
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upper sequent and in the antecedent of the right-hand upper sequent solely
as the principal formula of one of the operational inference figures.
Depending on whether the terminal symbol of I is &, v, ¥, 3, —, D,
we distinguish the cases 3.113.31 to 3.113.36 (a formula without logical
symbols cannot be a principal formula).
3.113.31. Suppose the terminal symbol of IR is &. In that case the end of
the derivation runs:
FI—’QI,QI FI—’QI’%&—IS QI’FZ—’QZ&—IA
FI—’QI,QI&% QI&%’FZ—’QZmIX
ry,r,—06,,0,
(the other form of the &-I4 is treated analogously).
We transform it into:
Fl—’Ql’QI 9'I’FZ'_’('QZ
Fl N F; hd @;k N @2
ry,r,-»6,,0,

mix

possibly several thinnings and interchanges.

We can now apply the induction hypothesis with respect to y to that part
of the derivation whose lowest sequent is I';, I';s - @7, @,, because it has
a lower degree than y. (2 obviously contains fewer logical symbols than
A & B.) This means that the whole derivation may be transformed into
one with no mix.

3.113.32. Suppose the terminal symbol of I is v. This case is dealt with
symmetrically to the previous one.

3.113.33. Suppose the terminal symbol of I is V. Then the end of the
derivation runs:

126,350 %aw v-1s 0012205y 1,
Iy - 60,,Vrt VigLl,— 0,
I',I'—>0,,0,
This is transformed into:
FI—’QI’%b %b,rz—’azmix
Fl ’ F; - @T ’ @2
Fl N Fz hd @1 N @2
Above the left-hand upper sequent of the mix, I'; - @, ¥b, we write
the same part of the derivation which previously occurred above

r, - @,,%a, yet having replaced every occurrence of the free object
variable a by b. It now follows from lemma 3.103, together with 3.101,

mix.

possibly several thinnings and interchanges.
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that in performing this operation the part of the derivation above
'y = ©,, Fb has again become a correct part of the derivation. (By virtue
of 3.101 neither a nor b can be the eigenvariable of an inference figure
occurring in that part of the derivation.) The same consideration may be
applied to that part of the derivation which includes the sequent
r, —» 0,,%b, since it too results from I'j — @,, Fa by the substitution
of b for a. It is now in fact clear that by virtue of the restriction on variables
for V-IS, a could have occurred neither in I’y and @,, nor in $t. Further-
more, Fa results from F ¢ by the substitution a for ¢, and Fb from Ft by the
substitution b for g. This is why b results from Fa by the substitution b
for a.

The mix formula Fb in the new derivation has a lower degree than 7.
Therefore, according to the induction hypothesis, the mix may be eliminated.
3.113.34. Suppose the terminal symbol of It is 3. This case is dealt with
symmetrically to the previous one.

3.113.35. Suppose the terminal symbol of It is —. Then the end of the
derivation runs:

QI,FI—’QI F2—>@2,QI
—-IS
F1—>@1,—|QI —19[,F2—>@2
r,l,—»0,,0,

—-IA

mix.

This is transformed into:
r,—-0,% AT, -0,
FstT - @;, 0,
r.,r,-e,,0,

mix

possibly several interchanges and thinnings.

The new mix may be eliminated by virtue of the induction hypothesis.
3.113.36. Suppose the terminal symbol of M is >. Then the end of the
derivation runs:

AT, -6,,% oIS r-0,% B, 4> A4
r-0,49-% AP, IA- 06,4
r,,r,A—-0,,0,4

This is transformed into:

QI,FI_’QI,$ %,A—)A .
mix
r-e,% AT, ,4* - 67,4
r,ry,4*™ - e* 07,4
FI,F,A —’@1,@,/1

o-TA

mix.

mix

possibly several interchanges and thinnings.
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(The asterisks are, of course, intended as follows: 4* and @* result from
A and @, by the omission of all S-formulae of the form B; I'*, A** and ©*
result from I'y, 4* and © by the omission of all S-formulae of the form .)

Now we have two mixes, but both mix formulae are of a lower degree than
y. We first apply the induction hypothesis to the upper mix (i.e., to that
part of the derivation whose lowest figure it is). Thus the upper mix may be
eliminated. We can then also eliminate the lower mix.

3.12. Suppose p > 2.

To begin with, we distinguish two main cases: First case: The right rank
is greater than 1 (3.121). Second case: The right rank is equal to 1 and the
left rank is therefore greater than 1 (3.122).

The second case may essentially be dealt with symmetrically to the first.
3.121. Suppose the right rank is greater than 1.

Le.: The right-hand upper sequent of the mix is the lower sequent of an
inference figure, let us call it 3f, and I occurs in the antecedent of at least
one upper sequent of Jf.

The basic idea behind the transformation procedure is the following:

In the case of p = 2, we generally reduced the derivation to one of a
lower degree. Now, however, we shall proceed to reduce the derivation to
one of the same degree, but of a lower rank, in order to be able to use the
induction hypothesis with respect to p.

The only exception is the first case, 3.121.1, where the mix may be
eliminated immediately.

In the remaifing cases the reduction to derivations of a lower rank is
achieved in the following way: The mix is, as it were, moved up one level
within the derivation, beyond the inference figure Jf. (Case 3.121.231,
for example, illustrates this point particularly well.) To speak more precisely,
the left-hand upper sequent of the mix (which from now on will be de-
signated by IT — X), at present occurring beside the lower sequent of 3f,
is instead written next to the upper sequents of Jf. These now become upper
sequents of new mixes. The lower sequents of these mixes are now used as
upper sequents of a new inference figure that takes the place of Jf. This
new inference figure takes us back either directly, or after having added
further inference figures, to the original endsequent. Each new mix obviously
has a rank smaller than p, since the left rank remains unchanged and the
right rank is diminished by at least 1.

In the strict application of this basic idea special circumstances still arise
which make it necessary to distinguish the corresponding cases and to deal
with them separately.
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3.121.1. Suppose M occurs in the antecedent of the left-hand upper sequent
of the mix. The end of the derivation runs:
-z 4= A

* , thus I occurs in IT.
O, 4> Z*, 4

This is transformed into:
A I A . . . . .
=== possibly several thinnings, contractions and interchanges.
oA - 2% A

3.121.2. Suppose M does not occur in the antecedent of the left-hand upper
sequent of the mix.(This hypothesis will be used for the first time in 3.121.222.)
3.121.21. Suppose Jf is a thinning, contraction, or interchange in the
antecedent. Then the end of the derivation runs:
¥ o5 e
X -0
mE*-z*0e

3f

mix.

This is transformed into:
InI-x Y
o,v*->x* e

Y* - 3% 0

EX,I1 - X* 0
mE*->z*e

mix
possibly several interchanges
§

possibly several interchanges.

The inference figure marked § is of the same kind as 3, in so far as the
S-formulae designated in the schema of 3f (in 1.21) by D and €, were not
equal to M. If D or € is equal to M, we have an identical inference figure
(¥* equals E*).

The derivation for the lower sequent of the new mix has the same left
rank as the old derivation, whereas its right rank is lower by 1. Thus the mix
may be completely eliminated by virtue of the induction hypothesis.
3.121.22. Suppose Jf is an inference figure with one upper sequent, but not
containing a thinning, contraction, or interchange in the antecedent. Then
the end of the derivation runs:

III,F'—)QI If
n-z 2T ->Q,
I,2%,I* - £* Q,

mix.
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Here we have collected in I' the same S-formulae that are designated by
I in the schema of the inference figure (1.21, 1.22). Hence ¥ may be empty
or consist of a side formula of the inference figure, and = may be empty or
consist of the principal formula of the inference figure.

First of all, the end of the derivation is transformed into:

n-x ¥, I-Q
o,v*r*-z* Q,
P, r* 11 - % Q
g, -z*Q,

mix

possibly several interchanges and thinnings.

The lowest inference is obviously an inference figure of the same kind as
Jf (taking I'*, IT as the I of the inference figure and including Z* in the ©
of the inference figure).

We must only be careful not to violate the restrictions on variables
(if ¥f is a V-IS or 3-14): Any such violation is precluded by 3.101, which
entails that an eigenvariable that may have occurred in Jf cannot have
occurred in IT and ZX.

The mix may be eliminated from the new derivation by virtue of the
induction hypothesis.

We therefore obtain a derivation with no mix and which is terminated
by the following inference figure:

w,r* I -*Q,
%0 -3*Q,
In general, the endsequent is not yet of the form aimed at. Hence we
proceed as follows:
3.121.221. Suppose E does not contain IN.
In that case we perform a number of interchanges, if necessary, and
obtain the endsequent of the original derivation.

3.121.222. Suppose = contains M. Then Z is the principal formula of Jf
and is identical with IN. We then adjoin:

n-3z WM, I*, 10 - *Q,
o,r*m - z*z* @,
II,r* 5> 3* Q,

mix

possibly several contractions and interchanges.

Once again, this is the endsequent of the original derivation. (Above
IT - X we once more write the derivation associated with it.) Thus we have
another mix in the derivation. The left rank of our derivation is the same
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as that of the original derivation. The right rank is now equal to 1. This
is so because directly above the right-hand upper sequent occurs the sequent

Y, r* - z%Q,.

M no longer occurs in its antecedent, for I'* does not contain IR, nor
does II, because of 3.121.2; and ¥ contains at most one side formula of
3, which cannot be equal to IR, since the principal formula of Jf is equal
to M.

Hence this mix, too, may be eliminated by virtue of the induction hypo-
thesis.

3.121.23. Suppose Jf is an inference figure with two upper sequents, i.e.,
a &-IS, v-IA, or a o-IA.

(In view of the application to intuitionist logic (3.2) we shall deal with
each possibility in greater detail than would be necessary for the classical
case.)

3.121.231. Suppose Jf is a &-IS.

Then the end of the derivation runs:

r-e,%49 Tr-0,%8

-z r-o0,%4&®s .
I,r*-z*0,A&B )

&-IS

(MM occurs in I'.) This is transformed into:
n-z r-049 . IH-2 r-6,8 .
LI oo d o LI —250,8 .
b - b b b b 3 &_IS'
ILr*->z* 0,A&B

Both mixes may be eliminated by virtue of the induction hypothesis.
3.121.232. Suppose Jf is a v-I4.
Then the end of the derivation runs:

AT - @ %,F—»@V
n-=z AvB, I - 0O
mo,(Av B\)*, I'* > *, 0

((Av B)* stands either for Av B or for nothing according as A v B is
unequal or equal to IMN.)

M certainly occurs in I'. (For otherwise I would be equal to Av B,
and the right rank would be equal to 1 contrary to 3.121.)

To begin with, we transform the end of the derivation into:

—IA
mix .
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- A Ir-6 . n-zx B,I'-6 _.
m: m

ix ix
I * * ok *
LA I > 2%, 0 possibly several inter- 11,8, 1" - 2%, 0 possibly several inter-
changes and thinnings * * changes and thinnings
A, T* > 2%, 0 8,0, T* > z* 0 vTd.

AvB, O, I'* - I* 0

Both mixes may be eliminated by virtue of the induction hypothesis.

From here on the procedure is the same as that in 3.121.221 and 3.121.222,
1.e., we distinguish two cases according as U v B is unequal or equal to JNk.
In the first case we may have to add several interchanges to obtain the
endsequent of the original derivation; in the second case we add a mix with
II - X for its left-hand upper sequent, and thus once again obtain the
endsequent of the original derivation by going on to perform a number of
contractions and interchanges, if necessary. The mix concerned may be
eliminated, since the associated right rank equals 1. (All this as in 3.121.222.)
3.121.233. Suppose 3f is a o-IA.

Then the end of the derivation runs:

r-0,%u B, 4- A4
o-IA4

-z QIDSB’F’A_’@’AmiX

o, o B)*, T* 4* > 2*,0,4

3.121.233.1. Suppose I occurs in I' and 4.
In that case we begin by transforming the derivation into:

-z B,4-> 4 mix
-z r-e,% . ,8* 4* > 3% 4 possibly several inter-
o.r*-z*e.9% mix B.I.A*S>3* A changes and thinnings
b b b 2 b b :—IA,
A>B, O, I* I,4%* > 1*60,2% 1

Both mixes may be eliminated by virtue of the induction hypothesis.
Then we proceed as in 3.121.221 and 3.121.222. (All that may happen in
the first case is that beside interchanges a number of contractions become
necessary. )
3.121.233.2. Suppose I does not occur in both I' and 4 simultaneously.
IR must occur in either I' or 4 because of 3.121. Consider the case of I
occurring in 4 but not in I'. The second case is treated analogously.

The end of the derivation is transformed into:
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-z B, 4> 4
I, 8% 4* - 2%, 4
r-e,% B, M, 4* - 2%, A
AW, IL,0O,4% > 0,254

mix

possibly several interchanges and thinnings

o-IA.

The mix may be eliminated by virtue of the induction hypothesis. We
then proceed as in 3.121.221 and 3.121.222. (In the second case, where
A o B is equal to M, the right rank belonging to the new mix equals 1 as
always, since It does not occur in B, I, A* for the usual reasons, nor does
it occur in I according to the assumption in the case under consideration.)
3.122. Suppose the right rank is equal to 1. In that case the left rank is
greater than 1.

This case is, in essence, treated dually to 3.121. Special attention is required
only for those inference figures with no symmetric counterpart, viz., the
o-IS and the o-IA4.

The inference figures I with one upper sequent were incorporated, in
3.121.22, in the general schema:

Y, I' - Q

2T - Q, )
The dual schema runs:

Q-rI,v

Q,->I,E ’

which also covers the o-IS without any further change. (I here represents
the formulae designated by @ in the schemata 1.21, 1.22.)
3.122.1. On the other hand, the case where the inference figure 3f is a
>-IA4, must be treated separately. Although this treatment will seem very
similar to that in 3.121.233, it is not entirely dual.

Thus the end of the derivation runs:

r-e6,% B,4- A4
o-IA4
NoB, I,4—-6,4 -1
UA>B,I,4,2* > % A*, 11

3.122.11. Suppose M occurs both in @ and A. In that case we transform
the end of the derivation into:
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r—0,% -1 .
* * QI* mix
r,2”-oe.,3%,1 possibly several inter- B,4 - A 211
ha: and thinni
I,z* - @* q1,9* changesanciinnings B, 4, Z* - A%, 11
* * *
A>B, [,2%,4,2" > 0%, 11,47, 1 possibly several contrac-
Ao ®B, T, 4, T* @*, A*, 11 tions and interchanges.

mix
o-IA

Both mixes may be eliminated by virtue of the induction hypothesis.
3.122.12. Suppose I does not occur in both @ and A simultaneously.
It must occur in one of them. We consider the case of I occurring in 4, but
not in ©; the alternative case is completely analogous.

We transform the end of the derivation into:

B, 44 211
r-oe,% B,4,2* > A 11
AoB,IL,4,ZF>0,4%11

mix
o>-IA4.

The mix may be eliminated by virtue of the induction hypothesis.

3.2. Proof of the Hauptsatz for LJ-derivations.

In order to transform an LJ-derivation into an LJ-derivation without cuts,
we apply exactly the same procedure as for LK-derivations.

Since an LJ-derivation is a special case of an LK-derivation, it is clear
that the transformation can be carried out. We have only to convince
ourselves that with every transformation step an LJ-derivation becomes
another LJ-derivation, i.e., that the D-sequents of the transformed deriva-
tion do not contain more than one S-formula in the succedent, given that
this was the case before.

We therefore examine each step of the transformation from that point
of view.

3.21. Replacement of cuts by mixes. An LJ-cut runs:

r-® 9D,4-4
ILA—A ’

where A contains at most one S-formula. We transform this cut into:
r-% D,4- 4
FA*> A
ra- 4

mix

possibly several interchanges and thinnings in the antecedent.

This replacement gives us a new LJ-derivation.
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3.22. By relabelling free object variables (3.10) we trivially get another
LJ-derivation from a previous one.
3.23. The transformation proper (3.11 and 3.12).

We have to show for each of the cases 3.111 to 3.122.12 that the specified
transformations do not introduce any sequents with more than one S-
formula in the succedent.

3.231. Let us begin with the cases 3.11:

In the cases 3.111, 3.113.1, 3.113.31, 3.113.35 and 3.113.36, only such
formulae occur in each succedent of the sequent of a new derivation as had
already occurred in the succedent of the sequent of the original derivation.

Essentially the same applies in 3.113.33. The only difference is an addi-
tional replacement of free object variables, which does not, of course,
alter the number of succedent formulae of a sequent.

Cases 3.112, 3.113.2, 3.113.32, and 3.113.34 were dealt with symmetrically
to cases 3.111, 3.113.1, 3.113.31, and 3.113.33, i.e., in order to get one case
from another, we read the schemata from right to left instead of from left
to right (as well as changing logical symbols, a process which is here of no
consequence). Hence in the antecedent of one case we get precisely the
same as in the succedent of another. For the antecedents of cases 3.111,
3.113.1, 3.113.31 and 3.113.33, the same applies as for the succedents, viz.,
in every antecedent of a sequent of the new derivation only such formulae
occur as had already occurred in an antecedeat of a sequent of the original
derivation.

This disposes of all dual cases: 3.112, 3.113.2, 3.113.32 and 3.113.34.
3.232. Now let us look at the cases, 3.12:

3.232.1. For the cases 3.121 it holds generally that Z* is empty, since in
II - Z, ¥ must contain only one formula, and that formula must be equal
to M.

It is now obvious that in every succedent of a sequent only such formulae

occur as had already occurred in the succedent of a sequent of the original
derivation.
3.232.2. In the cases 3.122 it is somewhat more difficult to see that from an
LJ-derivation we always get another LJ-derivation. We must direct our
attention, as was done in our earlier consideration of dual cases, to the
antecedents in the schemata 3.121.

At this point we distinguish two further subcases:

3.232.21. The case which is dual to 3.121.1 is trivial, since in every antecedent
of a sequent of a new derivation (in case 3.121.1) only such formulae occur
as had already occurred in anantecedent of asequent of the originalderivation.
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3.232.22. In the cases that are dual to 3.121.2, the mix in the end of the
derivation runs:
Q-M PO I |
Q*-0

s

where IT contains at most one S-formula, and where Q@ — I is the lower
sequent of an LJ-inference figure in which at least one upper sequent
contains I as a succedent formula.

If we now look at the inference figure schemata 1.21, 1.22, it becomes
easily apparent that such an inference figure can only be a thinning, con-
traction, or interchange in the antecedent, or a v—IA4, a &-14, a 3-IA,
a V-IA4, and a >-IA. Let us disregard for the moment the v—I4 and the
>-IA. Then all the possibilities enumerated above fall within the case dual
to 3.121.22, where both ¥ and Z always remain empty. (I" corresponds
to the @ of the inference figure.) Thus we have the case which is dual to
3.121.221. Furthermore, I' is equal to IR, i.e., I'* is empty, and II contains
at most one formula. Hence in the new derivation there never in fact occurs
more than one formula in the succedent of a sequent.

The case of a v—IA4 is dual to 3.121.231. Again, I is equal to IR, I'* is
empty, and II contains at most one formula; all is thus in order.

There now remains the case of a >-IA4, i.e., 3.122.1. In an LJ- o-IA,
the © of the schema (1.22) is empty. Thus we have the case set out under
3.122.12. A* is also empty, and II contains at most one formula, which
means that here, too, we again obtain an LJ-derivation from an LJ-deriva-
tion.

SECTION 1V. SOME APPLICATIONS OF THE HAUPTSATZ

§ 1. Applications of the Hauptsatz in propositional logic

1.1. A trivial consequence of the Hauptsatz is the already known con-
sistency of classical (and intuitionist) predicate logic (cf., e.g., D. Hilbert
and W. Ackermann, Grundzilge der theoretischen Logik (Berlin, 1928,
Ist edition), p. 65): the sequent — (which is derivable from every contra-
dictory sequent — 9 & — 9, cf. 3.21) cannot be the lower sequent of any
inference figure other than of a cut and is therefore not derivable.

1.2. Solution of the decision problem for intuitionist propositional logic.

On the basis of the Hauptsatz we can state a simple procedure for deciding
of a formula of propositional logic —i.e., a formula without object variables —
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whether or not it is classically or intuitionistically true. (For classical
propositional logic a simple solution has actually been known for some
time, cf., e.g., p. 11 of Hilbert-Ackermann.)

First we prove the following lemma:

A sequent in whose antecedent one and the same formula does not occur
more than three times as an S-formula, and in whose succedent, furthermore,
one and the same formula occurs no more than three times as an S-formula,
will be called a ‘reduced sequent’. The following lemma now holds:

1.21. Bvery LJ- or LK-derivation whose endsequent is reduced, may be
transformed into an LJ- or LK-derivation with the same endsequent,
in which all sequents are reduced (and in which no cuts occur if the original
derivation did not contain any).

PRrOOF OF THIS LEMMA: If we eliminate from the antecedent of a sequent,
in any places whatever (possibly none), all S-formulae occurring more
than once, and if we do the same independently in the succedent, so that
eventually these formulae occur only once, twice, or three times, we obtain
a sequent that will be called a ‘reduction instance of the given sequent’.

From a reduction instance of a sequent we may obviously derive all other
reduction instances of the same sequent by means of thinnings, contractions,
and interchanges such that in the course of these operations only reduced
sequents occur.

After these preliminary remarks we now transform the LJ- or LK-
derivation at hand in the following way:

All basic sequents as well as the endsequent are left intact; they are already
reduced sequents.

The D-sequents which belong to an inference figure are transformed into
reduction instances of these sequents in a way about to be indicated. By
virtue of our preliminary remark it does not matter if a sequent belonging
to two different D-inference figures is in each case replaced by a different
reduction instance, since one sequent is derived very simply from the other
by thinnings, contractions, and interchanges so that eventually another
complete derivation results. (The same holds for a sequent which, while
belonging to an inference figure, is also a basic sequent or an endsequent,
since it is of course a reduction instance of itself.)

The transformations of the inference figures are now carried out in the
following way:

If a formula occurs more than once within I', it is eliminated from I',
both from the upper sequents and the lower sequent, as many times (from
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the appropriate places) as is necessary to ensure that finally it occurs in
I' no more than once. The same procedure is used for 4, @, and A (i.e.,
those sequences of formulae that are designated by these letters in the
schema III.1.21 and 1.22, of the inference figure concerned).

Having carried out the transformations described, we have now a deriva-
tion consisting only of reduced sequents. (An interchange where D is
identical with € may form an exception, yet this figure would be an identical
inference figure and could have been avoided.)

The lemma is thus proved.

Given the Hauptsatz, together with corollary III. 2.513, and the preceding
lemma (1.21), it now holds that:

1.22. For every correctly reduced sequent, both intuitionist and classical,
there exists an LJ- or LK-derivation resp. without cuts consisting only of
reduced sequents, and whose D-S-formulae are subformulae of the S-
formula of that sequent.

1.23. Consider now a sequent not containing an object variable. We wish
to decide whether or not it is intuitionistically or classically true. We can
begin by taking in ifs place an equivalent reduced sequent €q.

The number of all reduced sequents whose S-formulae are subformulae
of the S-formulae of &q is obviously finite. The decision procedure may
therefore be carried out without further complications in the following way:

We consider the finite system of sequents in question and investigate
first of all, which of these sequents are basic sequents. Then we examine
each of the remaining sequents to determine whether there occurs an
inference figure in which the sequent in question is the lower sequent and in
which there occur as upper sequents one or two of those sequents that have
already been found to be derivable. If this is the case, the sequent is added
to the derivable sequents. (All this is obviously decidable.) We continue in
this way until either the sequent &q itself turns out to be derivable, or until
the procedure yields no new derivable sequents. In the latter case the sequent
©q (by virtue of 1.22) is not derivable at all in the calculus under considera-
tion (LJ or LK). We have therefore succeeded in establishing the validity of
that sequent.

1.3. A new proof of the nonderivability of the law of the excluded middle
in intuitionist logic.

Our decision procedure could have been formulated in a way better suited
to the needs of practical application; yet the above presentation (1.2) was
intended only to indicate a possibility in principle.

As an example, we shall prove the nonderivability of the law of the
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excluded middle in intuitionist logic by a method independent of the decision
procedure described (although this procedure would have to yield the same
result). (This nonderivability has already been proved by Heyting?* in a
completely different way.)

The sequent in question is of the form — 4 v — A. Suppose there exists
an LJ-derivation for it. According to the Hauptsatz there then exists such a
derivation without cuts. Its lowest inference figure must be a v-IS, for in
all other LJ-inference figures either the antecedent of the lower sequent is
not empty, or a formula occurs in the succedent whose terminal symbol
is not v; there might still be the case of a thinning in the succedent, but the
upper sequent would then be a —, which, by virtue of 1.1, is not derivable.

Hence either - 4 or - — A would have to be already derivable
(without cuts).

(From the same considerations, incidentally, it follows in general:
If Av B is an intuitionistically true formula, then either U or B is an
intuitionistically true formula. In classical logic this does not hold, as the
example of 4 v — A already shows.)

Now — A cannot be the lower sequent of any LJ-inference figure whatever
(if it is not a cut), unless that figure is another thinning with — for its
upper sequent. Furthermore, since — 4 is not a basic sequent, it is thus not
derivable.

The same considerations show that — — A is derivable only from 4 —
by a ——IS figure, and 4 — is in turn derivable only from A, 4 —, since 4
contains no terminal symbol. Continuing in this way, we always reach only
sequents of the type 4, A, ..., A —, but never a basic sequent.

Hence A v — A is not derivable in intuitionist predicate logic.

§ 2. A sharpened form of the Hauptsatz for classical predicate logic

2.1. We are here concerned with the following SHARPENING OF THE HAUPTSATZ:

Suppose that we have an LK-derivation whose endsequent is of the
following kind:

Each S-formula of this sequent contains V and 3-symbols at most at the
beginning, and their scope extends over the whole of the remaining formula.

In that case, the given derivation may be transformed into an LK-deriva-
tion with the same endsequent and having the following properties:

1. It contains no cuts.

2. It contains a D-sequent, let us call it the ‘midsequent’, which is such
that its derivation (and hence the midsequent itself) contains no V and
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3-symbols, and where the only inference figures occurring in the remaining
part of the derivation, the midsequent included, are V-IS, V-I4, 3-IS, 3-IA4,
and structural inference figures.

2.11. The midsequent divides the derivation, as it were, into an upper part
beolnging to propositional logic, and a lower part containing only V and
J-introductions.

Concerning the form of the transformed derivation, the following may
still be readily concluded: The lower part, from the midsequent to the
endsequent, belongs to only one path since only inference figures with one
upper sequent occur in it. The S-formulae of the midsequent are of the
following kind:

Every S-formula in the antecedent of the midsequent results from an
S-formula in the antecedent of the endsequent by the elimination of the V
and 3-symbols (together with the bound object variables beside them),
and by the replacement of the bound object variables in the rest of the
formula by certain free object variables. The same procedure is followed
in the case of succedents.

This follows from the same consideration as in II[.2.512.

2.2. PROOF OF THE THEOREM (2.1)*°.

The transformation of the derivation is carried out in several steps.
2.21. We begin by applying the Hauptsarz (II1.2.5): The derivation may
accordingly be transformed into a derivation without cuts.

2.22. Transformation of basic sequents containing a V- or 3-symbol:

By virtue of the properties of subformulae II1.2.513, such sequents can
only have the form VYr L — VrFr or 3z Fr » Ir Fr. They are trans-
formed into (suppose a to be a free object variable not yet occurring in the
derivation):

V_M V_IA _&1—’_?‘1_ 3-IS
Vi §r — Vet I Fe - I de

By repeating this procedure sufficiently often we can obviously eliminate
all V- and 3-symbols from every basic sequent of the derivation.

2.23. We now perform a complete induction on the ‘order’ of the derivation,
which is defined as follows:

Of the operational inference figures we call those belonging to the symbols
&, v, —, and o ‘propositional inference figures’, and the rest, i.e., V-IS,
V-IA, 3-1S, 3-14, ‘predicate inference figures’. To each predicate inference
figure in the derivation we assign the following ordinal number:
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We consider that path of the derivation that extends from the lower sequent
of the inference figure up to the endsequent of the derivation (including the
endsequent) and count the number of lower sequents of the propositional
inference figures occurring in it. Their number is the ordinal number.

The sum of the ordinal numbers of all predicate inference figures in the
derivation is the order of the derivation.

We intend to reduce that order step by step until it becomes zero.

Note that once this has been achieved the rest of the proof of the theorem

(2.1) is easily carried out: (The steps involved (2.232) will be such as to
preserve the properties that were established in 2.21 and 2.22.)
2.231. In order to do so we assume that the derivation has already been
reduced to order zero. From the endsequent we now proceed to the upper
sequent of the inference figure above it. We stop as soon as we encounter
the lower sequent of a propositional inference figure or a basic sequent;
that sequent we call Sq. (It will serve us as ‘midsequent’, once it has been
transformed in a way about to be indicated.)

The derivation of ©q is now transformed as follows:

We simply omit all D-S-formulae which still contain the symbols V and
3. The above derivation remains correct after the described operation
since, by virtue of 2.22, its basic sequents are not affected. Furthermore,
no principal or side formula of an inference figure has been eliminated,
for if such a formula had contained a symbol V or 3, the principal formula
would certainly have contained that symbol. But no predicate inference
figures occur (if they did, the ordinal number of the inference figure would
be greater than zero), and by virtue of the subformula property (I11.2.513)
and the hypothesis of theorem 2.1, the principal formulae of the proposi-
tional inference figures cannot contain a V or 3. Now every inference figure
remains correct if we eliminate, wherever it occurs as an S-formula in the
figure, a formula which occurs neither as a principal nor as a side formula.
This is easily seen from the schemata IIL.1.21 and II1.1.22. (At worst, an
identical inference figure may result, which is then eliminated in the usual
manner.)

The sequent ©q*, which has resulted from &q by this transformation,
differs from ©q in that certain S-formulae may possibly have been elimi-
nated. We follow the transformation up with several thinnings and inter-
changes such that in the end the sequent ©q reappears, and to it we attach
the unaltered lower part of the derivation.

We have now reached our goal: Sq* is the ‘midsequent’, and it obviously
satisfies all conditions imposed on the latter by theorem (2.1).
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2.232. It now remains for us to carry out the induction step of our proof,
i.e., the order of the derivation is assumed to be greater than zero, and
our task is to diminish it.

2.232.1. We begin by redesignating the free object variables in the same way
as in I11.3.10. As a result of this, the derivation has the following property
(111.3.101):

For every V-IS (or 3-14) it holds that the eigenvariable in the derivation
occurs only in the sequent above the lower sequent of the V-IS (or 3-14)
and does furthermore not occur in any other Y-IS or 3-I4 as an eigen-
variable.

The order of the derivation is hereby obviously left unchanged.

2.232.2. We now come to the transformation proper.

To begin with, we observe that in the derivation there occurs a predicate
inference figure — let us call it 3f1 — with the following property: If we
follow that path of the inference figure which extends from the lower
sequent to the endsequent, then the first lower sequent of an operational
inference figure reached is the lower sequent of a propositional inference
figure (that inference figure we call 3f2). If there were no such instance, the
order of the derivation would be equal to zero.

Now our aim is to slide the inference figure {1 lower down in the deriva-
tion beyond 3f2. This is easily done by means of the following schemata:
2.232.21. Suppose that 3f2 has one upper sequent.

2.232.211. Suppose that 3f1 is a V-IS. Then that part of the derivation on
which the operation is to be carried out runs as follows:

- e, %
- 0,vr3t
4—- 4
This we transform into:
- o,%

v-IS
372, possibly preceded by structural inference figures.

possibly several interchanges, as well as a thinning

Ir-— %a’ 0,V %g inference figures of exactly the same kind as above, i.e., 32,
A — % a, A possibly preceded by structural inference figures

possibly several interchanges

4248 s

A - A, Vg Fe
A—- A

The elimination of Y ¥t by contraction in the last step of the trans-
formation is made possible by the fact that in A, V¢ ¥z must occur as an

possibly several interchanges and contractions.
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S-formula. (For the S-formula Vg &t could not, in the original derivation,
have been eliminated from the succedent by means of Jf2 and the preceding
structural inference figures, since it can obviously not be a side formula of
3f2, by virtue of the subformula property II[.2.513 and the hypothesis of
theorem 2.1.)

The restriction on variables is satisfied by the above V-IS (3f1) by virtue
of 2.232.1.

The order of the derivation has obviously been diminished by 1.
2.232.212. The case where 31 is a 3-IS is dealt with analogously; all we
need do is to replace V by 3.

2.232.213. The cases where 3f1 is a V-I4 or 3-I4 are treated dually to
the two preceding cases.

2.232.22. The case where 372 has two upper sequents, i.e., &-IS, v-IA4, or
5-I4, can be dealt with quite correspondingly. At most a number of
additional structural inference figures may be required.

2.3. Analogously to theorem 2.1 there are several ways in which the Haup:-
satz may be further strengthened in the sense that certain restrictions can be
placed on the order of occurrence of the operational inference figures in
a derivation. For we can permute the inference figures to a large extent by
sliding them above and beyond each other as was done above (2.232.2).

We shall not pursue this question further.

§ 3. Application of the sharpened Hauptsatz (2.1) to a new?® consistency
proof for arithmetic without complete induction

By arithmetic we mean the (elementary, i.e., employing no analytic

techniques) theory of the natural numbers. Arithmetic may be formalized
by means of our logical calculus LK in the following way:
3.1. In arithmetic it is customary to employ ‘functions’, e.g., x’ (equals
x+1), x+y, x* y. Since we have not introduced function symbols into our
logical formalism, we shall, in order to be able to apply it to arithmetic
nevertheless, formalize the propositions of arithmetic in such a way that
predicates take the place of functions. In place of the function x’, for
example, we shall use the predicate xPry, which reads: x is the predecessor
of y,i.e.,y = x+1. Furthermore, [x+y = z] will be considered a predicate
with three argument places. Thus the symbols + and = have here no
independent meaning. A different predicate is x = y; the equality symbol
here has thus no formal connection at all with the equality symbol in the
previous predicate.
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The number 1, furthermore, will not be written as a symbol for a definite
object, since we have only object variables in our logical formalism and no
symbols for definite objects. We shall overcome this difficulty by saying that
the predicate ‘One x’ means informally the same as ‘x is the number 1°.

The sentence ‘x+ 1 is the successor of x°, for example, could be rendered
thus in our formalism:

VxVyVz ((One y & (x+y = z)) o xPrz).

All other natural numbers can be respresented by the predicates
One x & xPry; One x & xPry & yPrz, etc.

How are we now to integrate into our calculus the predicate symbols just
introduced, having admitted only propositional variables? To do so we
simply stipulate that the predicate symbols are to be treated in exactly the
same way as propositional variables. More precisely: We regard expressions
of the form

One £, tPrh, £ =9, (z+Y = 3),

where any object variables stand for t, 1), 3, merely as more easily intelligible
ways of writing the formulae

In this sense the axiom formulae that follow are indeed formulae in accor-
dance with our definition.

(We cannot, of course, regard the number 1 as a way of writing an object
variable, since in our calculus the object variables really function as variables,
which is not so in the case of propositional variables.)

As ‘axiom formulae’ of our arithmetic we shall initially take the following,
and shall later, once the consistency proof has been carried out (cf. 3.3),
state general criteria for the formation of further admissible axiom formulae:

Equality:
Vx (x = x) (reflexivity)
VxVy(x =y 2y = x) (symmetry)
VxVyVz(x =y &y =z) 2 x =2) (transitivity)
One:
Ix (One x) (existence of 1)
VxVy ((One x & One y) > x = y) (uniqueness of 1)
Predecessor:

Vx 3y (xPry) (existence of successor)
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VYx Vy (xPry © — One y) (1 has no predecessor)
Vx Vy ¥z Vu ((xPry & zPru & x = z)  y = u) (uniqueness of successor)
Vx Vy Vz Vu ((xPry & zPru & y = u) = x = u) (uniqueness of predecessor).

A formula $B is called derivable in arithmetic without complete induction,
if there is an LK-derivation for a sequent

A,.o., U~ B

in which %,, ..., Au are axiom formulae of arithmetic.

The fact that this formal system does actually allow us to represent the
types of proof customary in informal arithmetic (as long as they do not use
complete induction) cannot be proved, since for considerations of an in-
formal character no precisely delimited framework exists. We can merely
verify this in the case of individual informal proofs by testing them.
3.2. We shall now prove the consistency of the formal system just presented.
With the help of the sharpened Hauptsatz (2.1) our task is in fact quite
simple.

3.21. A ‘contradiction’ U & — U is derivable in our system if and only if
there exists an LK-derivation for a sequent with an empty succedent and
with arithmetic axiom formulae in the antecedent, viz.:

FromI' - A & — A we obtain I' — in the following way:

A—-A

Cguo A
TR &4
o interchange
QI, QI & | hed &-IA
contraction
r-%Y&—%U 191&—&1-—» cut

r—

The converse is obtained by carrying out a thinning in the succedent.
Thus, if our arithmetic is inconsistent, there exists an LK-derivation
with the endsequent
Upy oo, Uy =,

where U, , ..., Wy are arithmetic axiom formulae.

3.22. We now apply the sharpened Hauptsatz (2.1). The arithmetic axiom
formulae fulfil the requirement laid down for the S-formulae of the end-
sequent. Hence there exists an LK-derivation with the same endsequent
which has the following properties:
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1. It contains no cuts.

2. It contains a D-sequent. the ‘midsequent’, whose derivation contains
no V and 3-symbols, and whose endsequent results from a number of
inference figures V-I4, 3-IA4, thinnings, contractions and interchanges in
the antecedent. The midsequent has an empty succedent (2.11).

3.23. We then proceed to redesignate the free object variables as in II1.3.10.
All mentioned properties remain unchanged, and the following property
is added (I11.3.101): The eigenvariable of each 3-I4 in the derivation occurs
only in sequents above the lower sequent of the 3-IA4.

3.24. Then we replace every occurrence of a free object variable by one and
the same natural number in a way to be described presently. In doing so
we are left with a figure which we can no longer call an LK-derivation.
We shall see later to what extent it nevertheless has an informal sense.

The replacement of the free object variables by numbers is carried out
in the following order:

3.241. First we replace all free object variables which do not occur as the
eigenvariable of a 3-74 by the number 1 throughout. (We could also take
another number.)

3.242. Then we take every 3—I4 inference figure in the derivation, beginning
with the lowest and taking each figure in turn, and replace each eigenvariable
(wherever it occurs in the ‘derivation’) by a number. That number is deter-
mined as follows:

The 3-14 can only run:

Onea, I’ - @ or vPra, I’ - @
dx One x, I’ —» @ dy vPry, I’ —» @

(by virtue of the subformula property II1.2.513; v can be only a number,
by virtue of 3.241 and 3.23). In the first case we replace a by 1, in the second
case by the number that is one greater than v.

3.25. Now we examine the figure which has resulted from the derivation.
We are particularly interested in what the (former) midsequent now looks
like. We can say this about it:

Its succedent is empty, and each of the antecedent S-formulae either has
the form One 1 or vPrv’, where a number stands for v, and where a number
one greater than the previous one stands for v'; or it results from an arith-
metic axiom formula that has only V-symbols at the beginning, by the
elimination of the V-symbols (and the bound object variables next to them)
and the substitution of numbers for the bound object variables in the
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remaining part of the formula. (All this follows from the same consideration
as in I11.2.512, also cf. 2.11.)

Thus, the S-formulae in the antecedent of the midsequent represent
informally true numerical propositions. It further holds for the ‘derivation’
of the midsequent that it has resulted from a derivation containing no
V- or J-symbols, by having all its occurrences of free object variables
replaced by numbers. Informally, such a ‘derivation’ constitutes in effect a
proof in arithmetic using only forms of inference from propositional logic.

This leads us to the following result:

If our arithmetic is inconsistent, we can derive a contradiction from true
numerical propositions through the mere application of inferences from
propositional logic.

Here ‘true numerical propositions’ are propositions of the form One 1,
vPrv’, as well as all numerical special cases of general propositions occurring
among the axioms such as, e.g.,3 =3,4 =555 =4, 3Pr4d > — One 4.

It is almost self-evident that from such propositions no contradictions
are derivable by means of propositional logic. A proof for this would hardly
be more than a formal paraphrasing of an informally clear situation of fact.
Such a proof will therefore not be carried out save for indicating briefly
the customary procedure for it:

We determine generally for which numerical values the formulae
One u, 4 = v, uPrv, u+v = p, etc., are true and for which values they are
false; furthermore, we explain in the customary way (cf., e.g., Hilbert-
Ackermann p. 3) the truth or falsity of Y & B, Av B, — A, and A = B,
as functions of the truth or falsity of the subformulae; we then show that all
numerical special cases of axiom formulae are ‘true’; and finally, that
inference figures of propositional logic always lead from true formulae
to other true formulae. A contradiction, however, is not a true formula.
3.3. It is easy to see from the remarks made in 3.25 in what way the system
of arithmetic axiom formulae may be extended without making a contra-
diction derivable in it: Quite generally, we can allow the introduction of
axiom formulae that begin with V-symbols spanning the whole formula,
which do not contain any 3-symbols, and of which every numerical special
case is informally true. (We could also admit certain formulae containing
J-symbols, as long as they can be dealt with in the consistency proof in a
way analogous to that of the two cases occurring above.) -

E.g., the following axiom formulae for addition are admissible:

Vx Vy (xPry o [x+1 = y])
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VxVyVzVuVo (xPry & [z+x = u] & [z4+y = v]) > uPrv)
VxVyVzVu (([x+y = z] & [x+y = ul) D z = u)
VxVyVz ([x+y = z] > [y+x = z])

etc.

3.4. Arithmetic without complete induction is, however, of little practical
significance, since complete induction is constantly required in number
theory. Yet the consistency of arithmetic with complete induction has not
been conclusively proved to date.

SECTION V. THE EQUIVALENCE OF THE NEW CALCULI NJ, NK,
AND LJ, LK WITH A CALCULUS MODELLED ON THE
FORMALISM OF HILBERT

§ 1. The concept of equivalence

1.1. We shall introduce the following concept of equivalence between
Sformulae and sequents (which is in harmony with what was said in L.1.1
and 1.2.4, concerning the informal sense of the symbol A and of sequents:

Identical formulae are equivalent.

Identical sequents are equivalent.

Two formulae are equivalent if the replacement of every occurrence of the
symbol A in one of them by the formula A & — A yields the other formula.

The sequents A;, ..., A, > By,..., B, is equivalent to the following
formula:

If the Ws and B’s are not empty:

(9[1&...&9[")3(%vv...v%1);

(this version is more convenient for the equivalence proof than that with
B, v...vB,); if the Ws are empty, but the B’s are not:

B,v...vB;
if the B’s are empty, but the 2’s are not:
A & ... &%) > (4 & — A);
if the A’s and the B’s are empty: -

A& — A
The equivalence is transitive.
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1.2. (We could of course give a substantially wider definition of equivalence,
e.g., two formulae are usually called equivalent if one is derivable from the
other. Here we shall content ourselves with the particular definition given,
which is adequate for our proofs of equivalence.)

Two derivations will be called equivalent if the endformula (endsequent)
of one is equivalent to that of the other.

Two calculi will be called equivalent if every derivation in one calculus
can be transformed into an equivalent derivation in the other calculus.

In §2 of this section we shall present a calculus (LHJ for intuitionist,
LHK for classical predicate logic) modelled on Hilbert’s formalism. In the
remaining paragraphs of this section we shall then demonstrate the equiv-
alence of the calculi LHJ, NJ, and LJ (§§ 3-5) as well as the equivalence of
the calculi LHK, NK, and LK (§ 6) in the sense just explained. We shall thus
successively prove the following:

Every LHJ-derivation can be transformed into an equivalent NJ-deriva-
tion (§3); every NJ-derivation can be transformed into- an equivalent
LJ-derivation (§4); and every LJ-derivation can be transformed into an
equivalent LHJ-derivation (§ 5). This obviously proves the equivalence of all
three calculi. The three classical calculi are dealt with analogously in § 6
(6.1-6.3).

§ 2. A logistic calculus according to Hilbert?” and Glivenko?®

We shall begin by explaining the intuitionist form of the calculus:

An LHJ-derivation consists of formulae arranged in tree form, where
the initial formulae are basic formulae.

The basic formulae and the inference figures are obtained from the
following schemata by the same rule of replacement as in IL.2.21, i.e.:
For %, B, €, put any arbitrary formula; for V¢ §z or 3¢ ¥ put any arbitrary
formula with V or 3 for its terminal symbol, where ¢ designates the associated
bound object variable; for §a put that formula which results from $§z by
the replacement of every occurrence of the bound object variable L by the
free object variable a.

Schemata for basic formulae:

211, A=A

212 A>(B>A)

213, Ao UA>B)>((A>9B)

214, A>(B>2C)>(B>(A>6))
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215, A=2B)=>((B=26)>A>20))

221, U&B) oA

222, (U&B)> B

223, A=2B)o>(A=26)> A= (B&E)Y))
231, A AvY)

232, Bo>(AvY)

233, A>26)>((B=2€)>((AVvB)o0E))
241, A=2B)o>(A>2—-B)> %)

242, (U= (A>DB)

2.51. ViFroFa

2.52. Fa >3 Fr.

(Several of the schemata are dispensable, but independence does not
concern us here.)
Schemata for inference figures:

A UA>B A > Fa Fao>U
B A>vedr (v =¥

Restriction on variables: In the inference figures obtained from the last
two schemata, the object variable, designated by a in the schema, must not
occur in the lower formula (hence not in % and §1).

(The calculus LHJ is essentially equivalent to that of Heyting?®.)

By including the basic formula schema U v — U, the calculus LHK
(classical predicate calculus) results.

(This latter calculus is essentially equivalent to the calculus presented in
Hilbert-Ackermann, p. 53.)

§ 3. Transformation of an LHJ-derivation into an equivalent NJ-derivation

From an LHJ-derivation (V.2) we obtain an NJ-derivation (IL.2) with
the same endformula by transforming the LHJ-derivation in the following
way: (In this transformation all D-formulae of this derivation will reappear
as D-formulae of the NJ-derivation, and they will not depend on any assump-
tion formula. Included further will be other D-formulae dependent on
assumption formulae.)

3.1. The LHJ-basic formulae are replaced by NJ-derivations according to
the following schemata:
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1 1
A A
211) — oI 2.12 = o
( )m:msl (2.12) SB:QI:—I
A>(B oA !
1 2
(2.13) 1 A A>A>DB) —E
A A> B
= - >=-E
— -1,
A>3 o-1
@A>@>8)>U>%B)
1 3
(2.14) 2 A A>(B>0C) E
B BoE
5 E
-— -1,
A>E
—_—_— :—12
BoU>E) o
@>(®=6)>B>@>6)
1 3 1
215 X QEIB:’EB >E 2 c (2.21) AEB ok
> -E o>-1;
€ _, A&B) >
AsE ~

_IZ

CEDEICET R
@=>9)>(®=0>U=6)

_13

2.22,2.31, 2.32, 2.51 and 2.52 are dealt with analogously to 2.21.

(2.23) 2220 g 2220 Sk

B&E
US@B&) ' _
A >6)> (A>(B&E))
A>B)o(U>26)>(UA> (B &L))

"Il

2
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1 4 1 3

(2.33) 2 U ASC _ B B5C _

AvB c© c©

_E

v-E,

=~ SE
AvB) o6 2

(B>6)>(UvD=6)
A=) (B8 2(AVB)o0))

-E 3

_E1

1 3 1 2
(2.41) A %[:%:_E A %[:—.%:_E
B — B
A —F
AN
_ o-I,
(%[:—l%)D—.%[ >
A>oB) o2 (A>—=B)> %) :
1 2
(2.42) A —.%[_I_E
A
—i :_Il
A>B

o-1,.
(=% =>2A>%9)

3.2. The LHJ-inference figures are replaced by sections of an NJ-derivation
according to the following schemata:

MT:% remains as it is, since it has already the form of a o-E.
1
m becomes: A A>Fa >_E
A=V Pe B
Ve Bt 1, .

A > v Fr
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2
Ga > U becomes: 1 w >-E

CIAERY 3 e L

(IF) o U >

1

The restriction on variables for V-I and 3—F is satisfied, as is easily seen,
by virtue of the restriction on variables existing for LHJ-inference figures.

This completes the transformation of an LHJ-derivation into an equiv-
alent NJ-derivation.

§ 4. Transformation of an NJ-derivation into an equivalent LJ-derivation

4.1. We proceed as follows: First we replace every D-formula of the NJ-
derivation by the following sequent (cf. III.1.1): In its succedent only the
formula itself occurs; in its antecedent occur the assumption formulae upon
which the sequent depended, and they occur in the same order from left
to right as they did in the NJ-derivation. (It is presumably clear what is
meant by the order from left to right of the initial formulae of a figure in
tree form.)

We then replace every occurrence of the symbol A by 4 & — 4. (The
formula resulting from 4 in this way will be designated by A4*.)
4.2. We thus already have a system of sequents in tree form. The antecedent
of the endsequent is empty (I1.2.2); it is obviously equivalent to the end-
sequent of the NJ-derivation. The initial sequents all have the form D* — D*
(I1.2.2) and are thus already basic sequents of an LJ-derivation.

The figures formed from NJ-inference figures are transformed into sections
of an LJ-derivation according to the following schemata:
4.21. The inference figures v—I, V=I, and 3-I have become LJ-inference
figures as a result of the substitution performed. (In the case of a V-I,
the LJ-restriction on variables is satisfied by virtue of the NJ-restriction on
variables.)
4.22. A &-I became:

r-a* 4-9*
r,4-%* & B*

This is transformed into:
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I' - A* possibly several inter- 4 —» B* possibly several
I', A — 9* changes and contractions T, 4 — 8* g'nrllgmgs
I,4-9* &%B* '

4.23. A o-I became:
FI,QI*,FZ,...,QI*,F‘,—)%*
Iy, T3y, T, > A B

This we transform into:

* * *
Iy, A%, Iy,..., x, Fp - B possibly several interchanges and
contractions, sometimes a thinning
WX I, T,,..., T, — B* ’

o-I8S.

ry,,ry,...,r,»>4* o> %*

4.24. The same procedure applies to a —~I. Finally, we still have to consider
the figure
W T>A&— A
Ir- — Q[* ’

First we derive A & — A — in the calculus LJ as follows:

A~ 4 —-IA
~AA> g4
A& —A,A—- .
y interchange
A, A & — hd &-IA
contraction.

By including this sequent, the figure in question is transformed as follows:
W T ->A&— A A& —A-—
U T -
r- —u*

cut

—-IS.

4.25. By substitution (4.1) the NJ-inference figure % became:

'r-A& —4
F-9* '

This is transformed into:
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r-A4&—4 A& —A—
cut
I —»
I —»

thinning.

@*

The derivation for 4 & — A —, as presented in 4.24, should here still be

written above that sequent.

4.26. A V-E became:
-V 3t
r->g*a
This is transformed into:
* *
_ a3 V_IA

r-vige VeFr-oFa .

I - $*a .

4,27, The same method is used for &-E.
4.28. A o-F became:
r-A* 4-A*>B*
r,4- %* '

This is transformed into:
r-uar B* - B* —

4 - A* > B* A* > B*, T > B*

A, — B*

Ir,4 - %*

cut

possibly several interchanges.

4.29. A ——F became:

r-o¥ 4—-—A*
rA—-A&—A4

This is transformed into:

4 - — 91* — %[*, Ir-
cut
4, T —» . .
possibly several interchanges
rAa- ..
thinning.

rya-A4&—4
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4.2.10. v—E. Both right-hand upper sequents are followed up, as in the case
of a ©-Iand —-I (4.23) above, by interchanges, contractions, and thinnings
(wherever necessary) so that in each case the result is a sequent in whose
antecedent occurs a formula of the form U* or B* at the beginning (whereas
the original assumption formulae involved have been absorbed into the rest
of the antecedent). Then follows:

L * % L

A r-6 possibly several thinnings B4-€ possibly several thinnings
QI* T4 @:* and interchanges %* I'A- @:* and interchanges

T, 2L v-14

o Uq*v B QI*V%*,F,A—»@:*C
ET,4->C*

4.2.11. A 3-Eis treated quite similarly: First we move {*a in the right-hand
upper sequent to the beginning of the antecedent (cf. 4.23); then follows:

X*a, I - C*
* _—ﬁa_IA
4-3Ft F T > €
N cut.

The LJ-restriction on variables for 3-I4 is satisfied by virtue of the NJ-
restriction on variables for 3-E.

This completes the transformation of an NJ-derivation into an equivalent
LJ-derivation.

ut.

§ 5. Transformation of an LJ-derivation into an equivalent LHJ-derivation

This transformation is a little more difficult than the two previous ones.
We shall carry it out in a number of separate steps.

Preliminary remark: Contractions and interchanges in the succedent do

not occur in the calculus LJ, since they require the occurrence of at least
two S-formulae in the succedent.
5.1. We first introduce new basic sequents in place of the figures &-I4,
v=IS, Y-IA, 3-1IS, —-IA, and o-IA; these are to be formed according to
the following schemata (rule of replacement as in IIL.1.2 — the same rule
will always apply below; in addition to the letters U, B, D, and € we shall
also, incidentally, use the letters, €, ; and J):

Bl A&B - U Bs2: A&B > B
B33 A—->Av B B34: B->AvD
B35: Vr Fr — Fa B36: Fa — I Fr
Bs7: — AU A > B38: A o B, A - B.
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Thus in the LJ-derivation to be considered, we transform the inference
figures concerned in the following way:
A &-IA4 becomes:

Ba1
A&B-A AT->0
cut.
A&B, I > O

The other form of the &-I4 is transformed correspondingly, so is every
&-IA4.

v-IS and 3-IS are dealt with symmetrically.

A ——IA becomes:

Ba7
-—1%,%*
F—>9,I 91,-—191*

F, s | A - R .
==—=== possibly several interchanges.
- QI, F g
(The @ in the schema of —-I4 (IIL.1.22) must be empty by virtue of the
LJ-restrictions on succedents; the same holds for the >-I4.)
A o-IA4 becomes:

interchange
cut

838
A>B,A-> B,
——— " — interchange
r-u€ 91,91:58—»58cut
r'"A-%B-92 B, 4> 4
cut

[A-oB,4- 4
A>B, 4> 4

possibly several interchanges.

5.2. We now write the formula 4 & — A in the succedent of all D-formulae
whose succedent is empty.

In doing so the basic sequents of the form D — D, as well as B3l to
B36 and B38, also the figures &-IS, V-IS, and >-IS, remain unchanged.
The other basic sequents and inference figures are transformed into new
basic sequents and inference figures according to the following schemata:

B39: 91,-—191—)@
D.DI-9

r-9
3fl: ———= Qf2:
Sf N f DI 9
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%T3:A,‘D,@,F—>.§§ 8‘f4:F_’A&_1A
A,@,SD,F*.@ r-%
%fS:F_’@ D,4-9 8%:9[,1"—»@ B, T -9
rA-9 AvB, I -9
I, T -9 r-—«%

(For 37 the reexists the following restriction on variables: The free object
variable designated by a must not occur in the lower sequent.)

5.3. The inference figure 3f4 is now replaceable by other figures as follows
(this is mainly due to our having kept general the form of the schema 839):

B2
r-A& —4 A&—1A—’_1A3<f5 B39
Ba1 ' - — A _IA’A_’CD%TS
rA-%
r-4&—4 A&—4-4 3f5 === possibly several 3f3’s
r—-> A AT - D 35

r,r-%

-

possibly several Jf2’s and Jf3’s.

In a similar way we replace the inference figure Jf8 (wherever it occurs
in the derivation), only this time we use a new inference figure according

to the following schema:
. rA- A4 r, Ao — A

39
F—’—|A

We substitute as follows (in place of 3f8):

B3l B2
UL Tr-A&— A A&—1A—>A8<f5 U TI'-A& A A&—1A—>—1A%fs
QI,F—’A . QI,F—’ — A .
=———— possibly several 3f3’'s ====—== possibly several 3{3’s
F—»—NEI )

5.4. Now we still introduce two new inference figures schemata, viz.:

rLA->=B

310 ——
r-A-%B
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and its converse:
r-%A-%9%B

Jf11: .
raA-%

The two types of inference figures are introduced into the derivation in
order to enable us to replace a number of other inference figures by more
specialized ones (in 5.42 and 5.43).

5.41. To begin with, =-IS inference figures are now replaceable by means
of Jf10:

A o-IS is transformed into:

AT —>B
ryA-u
r-A-oPB

possibly several Jf3’s
Jf10.

5.42. The inference figures If1, J72, JF3, Jf5, Jf6, and IJ{7 are then trans-
formed in the following way:

As an example we take an 32, which is transformed into the follow/'u{g
figure (suppose I equals J;, . . ., 3p):

DD Gy e O
@’ED’SI""’Sp—I—)Sp:'b

8710

several Jf10’s
DO-% 2 2§ 29 g
D-32@2... =29

D ®
We proceed quite analogously with all other figures mentioned, i.e.,

using 3f10 and Jf11, we replace them by inference figures according to
these schemata:

several Jf11’s.

Sf12: -8 3713;%M 3714;M
D->E D€ 4,8 D€
gits: L7 D€ o0 A28 BoC o, B0
r-g¢ AvB - ¢ RFr—>C

(For Jf17 there exists a restriction on variables: The free object variable
designated by a must not occur in the lower sequent.)

5.43. In a similar way we also replace the inference figures Jf9, 3f13, and
Jf14 by the following (using 10 and Jf11):
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3,flgzl"—rﬁlzaA r-%A-—4 3“9:—»@:(39:@:)
r-—% - D€
A4-Do(EoE)

4G (Do)

8720

The basic sequents B38 and B39 may be replaced in the same way by:
A o B - A > B, this form falls under the schema D — D; as well as
B310: = A->A>H.
5.5. Now comes the final step:
Every D-sequent
Ayyoo o, Ay —» B

is replaced by the formula (U; & ... & %,) > B.

(If the ’s are empty, we mean B. An empty succedent no longer occurs,
according to 5.2.)

All basic sequents (viz. D - D, B31 to B36, B310) are thus transformed
into LHJ-basic sequents.

Of the inference figures, V-IS and 3f17 are also transformed into LHJ-
inference figures. (V-IS, however, forms an exception if I' is empty. In that
case we first derive (in the LHJ-calculus) (4 o A) o §a from Fa by means
of 2.12, and by then applying the LHJ-inference figure, we finally obtain
YV & once again by means of 2.11.)

The figures obtained from the remaining inference figures (which are
&-IS, Jf10, 11, 12, 15, 16, 18, 19, 20) by substitution, are turned into
sections of an LHJ-derivation in the following way:

An &-IS has become (suppose first that I' is not empty):

CoU CoB
CoU&B)

This is transformed into:

E=oY E>5%>(C>B)>(€>A&DB))
CoB (€ >%B) o (€ =(A&DB))
€= (U &B) '

If I' is empty, we proceed as in the case of V-IS.

The figures obtained from Bf12, 15, 16, and 19 by substitution are
dealt with quite analogously using basic formulae according to the schemata
2.12, 2.15, 2.33, and 2.13.
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In a similar way 3f18 and 320 are dealt with by means of 2.41 and 2.14
and by the application of 2.15 and 2.14, 2.13.

The only figures now left are those having resulted from 3f10 and Jf11.
Both are trivial for an empty I', hence suppose that I' is not empty. In that
case we transform these figures into sections of LHJ-derivations as follows:

(}f10): From (€ & A) o B we have to derive € = (A = B). Now 2.23
together with 2.11 yields: (€ o %) o (€ = (€ & A)). This together with
(€& A) > B and 2.15, 2.14 yields (€ o A) o (€ = B), and from this
formula together with 2.12, 2.15 yields %A o (€ > B), and by 2.14
€ o (A o B) results.

(3f11): From € = (X o B) we derive (€ & A) = B in the LHJ-calculus
as follows: 2.21 and 2.22 yield (€ & ) = € and (€ & A) > U; and from
this together with € o (% = B), we obtain (€ & A) > B (by using 2.15,
2.14, 2.15, 2.13).

This completes the transformation of the LJ-derivation into an LHJ-
derivation. Furthermore, the two derivations really are equivalent, since the
endsequent of the LJ-derivation was affected only by the transformations
5.2 and 5.5, and has thus obviously been transformed into a formula
equivalent with it (according to 1.1).

If the results of §§ 3—5 are taken together, the equivalence of the three
calculi LHJ, NJ, and LJ is now fully proved.

§ 6. The equivalence of the calculi LHK, NK, and LK

Now that the equivalence of the different intuitionist calculi has been
proved, it is fairly easy to deduce that of the classical calculi.
6.1. In order to transform an LHK-derivation into an equivalent NK-
derivation we proceed exactly as in § 3. The additional basic formulae
according to the schema % v — U remain unchanged, and are thus at once
basic formulae of the NK-derivation.
6.2. In order to transform an NK-derivation into an equivalent LK-deriva-
tion we proceed initially as in § 4. In this way the additional basic formulae
according to the schema A v — A are transformed into sequents of the
form — UA* & — A*, These we then replace by their LK-derivations
(according to IIL.1.4). The transformation of an NK-derivation into an
equivalent LK-derivation is thus complete.
6.3. Transformation of an LK-derivation into an LHK-derivation.

We introduce an auxiliary calculus differing from the LK-calculus in the
following respect:
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Inference figures may be formed according to the schemata III.1.21,
II1.1.22, but with the following restrictions: Contractions and interchanges
in the succedent are not permissible; in the remaining schemata no substitu-
tion may be performed on @ and A; these places thus remain empty.

Furthermore, the following two schemata for inference figures are added
(rule of replacement as usual: I11.1.2):

R T-%6 % 0

F, —/ QI -0
and its converse:

Sf2: rL-%4-6

r-9%e6e

(Thus, here © need not be empty.)
6.31. Transformation of an LK-derivation into a derivation of the auxiliary
calculus:

(The procedure is similar to that in 5.4.)

All inference figures, with the exception of contractions and interchanges
in the succedent, are transformed according to the following rule: The
upper sequents are followed by inference figures 3f1, until all formulae of
O or A have been negated and brought into the antecedent (to the right of
I or 4). Then follows an inference figure of the same kind as the one just
transformed, which is now actually a permissible inference figure in the
auxiliary calculus. (The formulae that have been brought into the antecedent
are treated as part of I' or 4.) Then follow Jf2 inference figures, and ©
and A are thus brought back into the succedent. (In the case of the >-I4
and the cut, we may first have to carry out interchanges in the antecedent,
but these are also permissible inference figures in the auxiliary calculus.)

Now we still have to consider contractions — or interchanges — in the

succedent. Here, as in the previous case. the whole succedent is negated and
brought forward into the antecedent. We then carry out interchanges, a
contraction, and further interchanges — or one interchange — in the antece-
dent, and then the negated formulae are brought back into the succedent
(by means of the inference figures 3f2).
6.32. Transformation of a derivation of the auxiliary calculus into a deriva-
tion of the calculus LJ augmented by the inclusion of the basic sequent
schema — Av — U:

We begin by transforming all D-sequents as follows:

Apyooo, Uy > By, ..., B, becomes



130 INVESTIGATIONS INTO LOGICAL DEDUCTION

Ay ..., A - B,v. .. v B, . Ifthe succedent was empty, it remains empty.

Now all basic sequents or inference figures of the auxiliary calculus with
the exception of the figures Jf1 and Jf2, have thus already become basic
sequents or inference figures of the calculus LJ. This is so since these
inference figures have resulted from the schemata II1.1.21, II1.1.22 (with the
exception of the schemata for contraction and interchange in the succedent)
by © and A always having remained empty. At most one formula could
therefore occur in the succedent. ' '

Hence we still have to transform the figures which have resulted from the
inference figures Jf1 and Jf2 in the course of the above modification.
6.321. First 3fl: If @ is empty, we replace the inference figure by a ——14,
followed by interchanges in the antecedent. Suppose, therefore, that @ is
not empty, where ©* designates the formulae belonging to @, in reverse
order and connected by v.

After the transformation of the succedents, the inference figure in that
case runs as follows:

r-e*vy
r,—%- e*

This is transformed into the following section of an LJ-derivation:

A->UA
o* > 0* . Cwus
“Heoso thinning o _ao interchange
_—1—’—:—; interchange :—_)—* thinning
@,-.91—»@ QI,—ﬁQI—’@ v—IA
r-e*viy O*v —UA-> OF cut
r,—%- oe* '

6.322. After the transformation of its succedents, an inference figure 3f2
runs as follows:

r,—%- e*
r-e*va’

where ©* has the same meaning as in the previous case. If © is empty,
assume O* to be empty too, and let @* v ¥ mean 2.
It is transformed into the following section of a derivation:
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%*
A->A possibly several thin- T, A- 06 possibly several
—_— " interch _
AT %[mngs and interchanges AT o* interchanges

i SEREVES £ — v-IS
AT > 6" v — %o va
S UAv A %Iv—ﬂ%I,F—»@*v%Icut
- e*vy '

It is easy to see that in the case of an empty @ all is in order.
6.33. The LJ-derivation now obtained, together with the additional basic
sequents of the form — A v — 9, may be transformed, as in § 5, into an
LHJ-derivation with the inclusion of additional basic formulae of the form
Av — A (cf. 5.5), i.e., into an LHK-derivation. This completes the trans-
formation of the LK-derivation into an LHK-derivation. At the same time,
the endsequent has been transformed (in accordance with 6.32, 5.2, and 5.5)
into an equivalent formula (according to 1.1).

By combining the results of 6.1, 6.2, and 6.3, we have now also proved
the equivalence of the three classical calculi of predicate logic: LHK, NK,
and LK.



4. THE CONSISTENCY OF ELEMENTARY NUMBER THEORY

By ‘elementary number theory’ I mean the theory of the natural numbers
that does not make use of techniques from analysis such as, e.g., irrational
numbers or infinite series.

The aim of the present paper is to prove the consistency of elementary
number theory or, rather, to reduce the question of consistency to certain
general fundamental principles.

How such a consistency proof can be carried out at all and for what
reasons it is necessary or at least very desirable to do so will be discussed
in section I.

The entire paper can be read without any specialized knowledge.

SECTION I. REFLECTIONS ON THE PURPOSE AND
POSSIBILITY OF CONSISTENCY PROOFS

In § I, I shall consider the question why consistency proofs are necessary
and, in §2, how such proofs are possible*®. In doing so, I shall briefly
restate those aspects of the problem, already familiar to many readers,
which are of particular relevance to the rest of this paper.

§ 1. The antinomies of set theory and their significance for mathematics as
a whole®!

1.1. Mathematics is regarded as the most certain of all the sciences. That
it could lead to results which contradict one another seems impossible.
This faith in the indubitable certainty of mathematical proofs was sadly
shaken around 1900 by the discovery of the ‘antinomies (or ‘paradoxes’)
of set theory’. It turned out that in this specialized branch of mathematics

contradictions arise without our being able to recognize any specific error
in our reasoning.
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Particularly instructive is ‘Russell’s antinomy’, which I shall now discuss

in detail.
1.2. A set is a collection of arbitrary objects (‘clements of the set’). An
‘empty set’, which has no elements at all, is also admitted. We now divide
the sets into ‘sets of the first kind’, i.e., sets which contain themselves as
an element, and ‘sets of the second kind’, i.e., sets which do not contain
themselves as an element.

We consider the set it which has for its elements the entire collection of
the sets of the second kind. Does this set itself belong to the first or the
second kind? Both alternatives are absurd: For if the set m belongs to the
first kind, i.e., if it contains itself as an element, then this contradicts its
definition by which all of its elements were supposed to be sets of the second
kind. Suppose, therefore, that the set m belongs to the second kind, i.e.,
that it does not contains itself as an element. Since, by definition, it has all
sets of the second kind as elements, it must also contain itself as an element
and we have thus once again arrived at a contradiction.

1.3. The result is Russell’s antinomy which shows how easily an obvious
contradiction can result from a small number of admittedly somewhat
subtle inferences.

What is the actual significance of this fact for mathematics as a whole?
We may be inclined, at first, to dismiss the entire argument as unmathematical
by claiming that the concept of a ‘set of arbitrary objects’ is too vague
to count as a mathematical concept.

This objection becomes void if we restrict ourselves to quite specific
purely mathematical objects by making the following stipulation, for
example: The only objects admitted as elements of a ‘set’ are, first: arbitrary
natural numbers (1, 2, 3, 4 etc.); second: arbitrary sets consisting of ad-
missible elements.

Example: The following three elements form an admissible set: First,
the number 4; second, the set of all natural numbers; third, the set whose
two elements are the number 3 and the set of all natural numbers.

Using this purely mathematical concep of a set, we can repeat the above
(1.2) argument and obtain the same contradiction.

1.4. The fact that we happen to have chosen the natural numbers for our
initial objects has obviously no bearing on the emergence of the antinomy.
It cannot, therefore, be said that a contradiction has been revealed in the
domain of the natural numbers; the fault must be sought rather in the
logical inferences employed.

1.5. It is thus natural to go back to look for a definite error in the reasoning
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that has led to the antinomy. We might, for example, argue that the set m
was defined by referring to the totality of all sets (which was indeed sub-
divided into sets of the first and second Kinds, and where m was formed
with sets of the second kind). The set was then itself regarded as belonging
to this totality, which raised the question of whether it belongs to the first
or second kind. Such a procedure is circular; it is illicit to define an object
by means of a totality and to regard it then as belonging to that totality,
so that in some sense it contributes to its own definition (‘circulus vitiosus’).

We might feel that the correct interpretation of the set m should rather
be the following:

If a definite totality of sets is given, then this totality may be subdivided
into sets of the first and second kinds. Yet if the sets of the second kind
(or alternatively, the first kind) are combined into a new set m, then that
set constitutes something completely new and cannot itself be regarded as
belonging to that totality.

1.6. The impression, at first sight, that the forms of inference leading to
the antinomy seem correct derives from the conception of the concept of a
‘set’ as something ‘actualistically’ ((an sich)) determined (and the totality
of all sets, therefore, constitutes a predetermined closed totality); the
critique advanced against this view implies that new sets can be formed only
‘constructively’ so that a new set depends in its construction on already
existing sets.

1.7. If we were to think that the antinomy has thus been explained away
quite satisfactorily, we must at once face up to a new difficulty: The form of
reasoning (the circulus vitiosus) which we have just declared to be inad-
missible is being used in analysis in a quite similar form in the usual proofs
of some rather simple theorems, e.g., the theorem: ‘A function which is
continuous on a closed interval and is of different sign at the endpoints
has a zero in the interval.’

The proof of this result is essentially carried out in the following way:
The totality of points in the interval is divided into points of the first and
second kinds, so that a point is of the first kind if the function has the same
sign for all points to the right of it, up to the end of the interval, and it
belongs to the second kind if this is not the case. The limit point defined
by this subdivision is then the required zero. It belongs itself to the points
of the interval. Hence we have the ‘circulus vitiosus’: The real number
concerned is defined by referring to the fotality of the real numbers (in
an interval) and is then itself regarded as belonging to that totality.

This form of inference is nevertheless considered correct in analysis
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on the following grounds: The number concerned is, after all, not newly
created by the given definition, it already actually exists within the totality of
the real numbers and is merely singled out from this totality by its definition.

Yet exactly the same could be said about the antinomy mentioned above:
The set m is already actually present in the totality of all sets (defined at 1.3)
and is merely singled out by its definition (at 1.2) from this totality.

Considerable differences certainly exist between the forms of inference

used to derive the antinomy and those customary in proofs in analysis.
Yet we must ask ourselves whether these differences are radical enough
to justify the further use of these inferences in analysis — since no contradic-
tions have so far arisen — or whether their similarity with the inferences
that have led to the antinomies should not prompt us to eliminate these
inferences also from analysis. Here the opinions of mathematicians concerned
with these questions diverge.
1.8. We can indeed challenge the correctness of other forms of inference
customary in mathematics because of certain remote analogies that may be
drawn between them and inferences leading to the antinomies. Especially
radical in this respect are the ‘intuitionists’ (Brouwer), who even object
to forms of inference customary in number theory, not only because these
inferences might possibly lead to contradictions, but because the theorems
to which they lead have no actual sense and are therefore worthless. I shall
come back to this point later in greater detail (§§ 9-11 and 17.3).

Less radical are the ‘logicists’ (Russell). They draw aline between permissi-
ble and non-permissible forms of inference, and the antinomies turn out to be
a consequence of a nonpermissible circulus vitiosus. At one time the logicists
had also disallowed the inference applied in the example from analysis cited
above (‘ramified theory of types’), but this inference was later readmitted.
1.9. Altogether we are left with the following picture:

The contradictions (antinomies) which had occurred in set theory, a
specialized branch of mathematics, had given rise to further doubts about the
correctness of certain forms of inference customary in the rest of mathematics.
Various attempts to draw a line between permissible and nonpermissible
Jorms of inference have led to different approaches to the subject.

In order to end this unsatisfactory state of affairs, Hilbert drew up the
following programme:

The consistency of the whole of mathematics, in so far as it actuslly is
consistent, is to be proved along exact mathematical lines. This proof is
to be carried out by means of forms of inference that are completely un-
impeachable (“finitist’ forms of inference).
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How such a consistency proof is conceivable at all will be discussed more
fully in § 2.

In the remainder of this paper, I shall then carry out such a consistency
proof for elementary number theory. Yet even here we shall meet forms of
inference whose closer inspection will give us cause for concern. More
about this in section III. One point should however be made clear from
the outset: those forms of inference which might possibly be considered
disputable hardly ever occur in actual number-theoretical proofs (11.4);
we must therefore not be mislead and, because of the great self-evidence of
these proofs, consider a consistency proof as superfluous.

§ 2. How are consistency proofs possible?

2.1. General remarks about consistency proofs.

2.11. The consistency of geometries is usually proved by appealing to an
arithmetic model. Here the consistency of arithmetic is therefore pre-
supposed. In a similar way we can also effect a reduction of some parts of
arithmetic to others, e.g., the theory of the complex numbers to that of the
real numbers.

What remains to be proved ultimately is the consistency of the theory

of the natural numbers (elementary number theory) and the theory of the
real numbers (analysis) of which the former forms a part; and finally the
consistency of set theory as far as that theory is consistent.
2.12. This task is basically different and more difficult than that of reducing
the consistency of one theory to that of another by mapping the objects of
the former theory onto the objects of the latter. Let us look more closely at
the situation in the case of the natural numbers:

These numbers can obviously not be mapped onto a simpler domain of
objects. Nor are we indeed concerned with the consistency of the domain
of numbers itself, i.e., with the consistency of the basic relationships between
the numbers as determined by the ‘axioms’ (e.g., the ‘Peano axioms’ of
number theory). To prove the consistency of these axioms without invoking
other equivalent assumptions seems inconceivable. We are concerned rather
with the consistency of our logical reasoning about the natural numbers
(starting from their axioms) as it occurs in the proofs of number theory.
For it is precisely our logical reasoning which in its unrestricted application
leads to the antinomy (1.4). We do not of course consider such general
constructions as those of arbitrary sets of sets (1.3) as part of number
theory. Elementary number theory comprises merely finite sets (of natural
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numbers, for example). If infinite sets of natural numbers are included, we
are already in the domain of the real numbers and hence in analysis. This
is the fundamental distinction between elementary number theory and
analysis.

From here we reach set theory by extending the concept of a ‘set’ still
further.

How can the consistency of arithmetic be actually proved?

2.2. ‘Proof theory’.

2.21. The assertion that a mathematical theory is consistent constitutes a
proposition about the proofs possible in that theory. It says that none of
these proofs leads to a contradiction. In order to carry out a consistency
proof we must therefore make the possible proofs in the theory themselves
objects of a new ‘metatheory’. The theory that has arbitrary mathematical
proofs for its objects is called ‘proof theory’ or ‘metamathematics’.

2.22. An example of a theorem in proof theory is the ‘principle of duality’
in projective geometry:

It says roughly that from a theorem about points and straight lines (in
the plane) another true theorem results if the word ‘point’ is replaced by
‘straight line’ and the word ‘straight line’ by ‘point’. The theorem: ‘For any
two distinct straight lines there exists exactly one point incident with both
straight lines (i.e., lying on them)’, for example, has for its dual the theorem:
‘For any two distinct points there exists exactly one straight line incident
with both points (i.e., passing through them)’.

The principle of duality is justified thus: The axioms of projective
geometry in the plane are such that the dual of an axiom always yields
another axiom. If any theorem has therefore been derived from these
axioms, a uniform replacement in the proof of the word ‘point’ by ‘straight
line’ and of the word ‘straight line’ by ‘point’ yields a proof for the dual
theorem.

This justification is obviously proof-theoretical since it is about the
‘proof of a theorem’.

(This example also shows that proof theory is capable of advancing
mathematics proper.) ,

2.23. The ‘formalization’ of mathematical proofs.

As the objects of our proof theory we take the proofs carried out in math-
ematics proper. These proofs are customarily expressed in the words of our
language. They have the disadvantage that there are many different ways of
expressing the same proposition, and that an arbitrariness exists in the
order of the words, sometimes even ambiguity. In order to make an exact
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study of proofs possible it is therefore desirable to begin by giving them a
uniform uniquely predetermined form. This is achieved by the ‘formaliza-
tion’ of the proofs: the words of our language are replaced by definite
symbols, the logical forms of inference by formal rules for the formation
of new formalized propositions from already proved ones.

In section II, I shall carry out such a formalization for elementary number
theory.

The example of the principle of duality (2.22) shows clearly the difficulties
that are inherent in proof theory without a formalization: the linguistic
expression of the theorem ‘for two mutually distinct straight lines there
exists exactly one point incident with both straight lines’ had to be chosen
artificially in such a way that the replacement of ‘point’ by ‘straight line’
and vice versa again resulted in another meaningful sentence. Even in
carrying out the proof of the principle of duality we are left with the
feeling that we have not offered a really rigorous proof. In order to make
this proof rigorous, we do in fact require an exact formalization of the
propositions and proofs (for the domain of projective geometry).

2.3. The forms of inference used in the consistency proof; the theorem of
Gadel.

2.31. How can a consistency proof (for elementary number theory, for
example) be carried out by means of proof theory?

To begin with, it will have to be made precise what is to be understood
by a formalized ‘number-theoretical proof’. Then it must be established
that among all such possible ‘proofs’ there can exist none which leads to a
‘contradiction’. (This is a simple property of ‘proofs’ which is immediately
verifiable for any given ‘proof”.)

Such a coasistency proof is once again a mathematical proof in which
certain inferences and derived concepts must be used. Their reliability
(especially their consistency) must already be presupposed. There can be
no ‘absolute consistency proof’. A consistency proof can merely reduce the
correctness of certain forms of inference to the correctness of other forms of
inference.

It is therefore clear that in a consistency proof we can use only forms of
inference that count as considerably more secure than the forms of inference
of the theory whose consistency is to be proved.

2.32. Of the greatest significance at this point is the following proof-
theoretical theorem proved by K. Gddel®?: ‘It is not possible to prove the
consistency of a formally given (delimited) theory which comprises ele-
mentary number theory (nor that of elementary number theory itself)
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by means of the entire collection of techniques proper to the theory con-
cerned (given that that theory is really consistent).’

From this it follows that the consistency of elementary number theory,
for example, cannot be established by means of part of the methods of
proof used in elementary number theory, nor indeed by all of these methods.
To what extent, then, is a genuine reinterpretation ((zuriickfiihrung)) still
possible?

It remains quite conceivable that the consistency of elementary number

theory can in fact be verified by means of techniques which, in part, no longer
belong to elementary number theory, but which can nevertheless be con-
sidered to be more reliable than the doubtful components of elementary
number theory itself.
2.4. In the following (sections II-IV), I shall carry out a consistency proof
for elementary number theory. In doing so, I shall indeed apply techniques
of proof which do not belong to elementary number theory (16.2). Several
different consistency proofs already exist in the literature®® all of which
reach essentially the same point, viz., the verification of the consistency of
elementary number theory with the exclusion of the inference of ‘complete
induction’ which, as is well-known, constitutes a very important and
frequently used form of inference in number theory. The inclusion of
complete induction in my proof presents certain difficulties (16.2).

SECTION II. THE FORMALIZATION OF ELEMENTARY
NUMBER THEORY

As pointed out at 2.23, it is desirable for a proof-theoretical discussion
of a mathematical theory to give that theory a precise formally determined
structure. In order to prove the consistency of elementary number theory,
I shall therefore begin by carrying out such a formalization of elementary
number theory>*.

This task falls into two parts:

1. The formalization of the propositions occurring in elementary number

theory (§ 3).

2. The formalization of the techniques of proof used in elementary number

theory, i.e., forms of inference and derived concepts (§§ 4-6).

§ 3. The formalization of the propositions occurring in elementary number
theory

3.1. Preparatory remarks.
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3.11. A formalization of mathematical propositions represents nothing
fundamentally new even outside of proof theory. It is indeed true to say
that mathematics has always undergone a successive formalization, i.e.,
a replacement of language by mathematical symbols. There are, for example,
propositions which are written entirely in symbols, e.g.,

(a+b)* (a—b) = a*—b?,

in words: ‘The product of the sum and the difference of the numbers a and
b is equal to the difference of the squares of both numbers’.

The proposition ‘If @ = b, then b = &, on the other hand, is generally
still represented by means of words. Completely formalized, it is written:
a=b>ob=a
3.12. The linguistic expression ‘If % holds, then B holds’, formally written
as A o B, is an example of the logical connection of propositions for the
purpose of forming a new proposition. Other kinds of connection are
represented by the symbols &, v, —, V, and 3, with the following meanings:
A & B means ‘A holds and B holds’; A v B: “UA holds or B holds’ (i.e.,
at least one of the two propositions holds); — UA: ‘U does not hold’;
Yz A(x): “UA(z) holds for all r’; Ax A(z): ‘There is an £, so that A() holds’.
3.13. As an example, we shall consider ‘Goldbach’s conjecture’ (‘Every even
natural number can be represented as the sum of two prime numbers’),
which can be formally written as:

Vx {2|x > 3y 3z [y+z = x & (Prime y & Prime 2)]}.

Here, Prime a stands for ‘a is a prime number’; alb, as usual, for ‘a is a
divisor of . All variables are taken to refer only to the natural numbers
(= positive integers).

3.14. The symbols =, Prime and | are ‘predicate symbols’; once their
argument places have been filled by numbers, such symbols constitute a
proposition. The symbol + is a ‘function symbol’; once its argument places
have been filled by numbers, it represents another number.

The formal counterpart of a proposition is generally called a formula’.
(Just as in mathematics, for example, (a+5)* (a—b) = a*—b? is called
a ‘formula’, although in a special sense.)

After these remarks, I shall now give a precise characterization of those
formal expressions which are to be admitted into our formalized number
theory for the purpose of representing propositions.

3.2. Precise definition of a formula®®.
3.21. The following kinds of symbol will serve for the formation of formulae:
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3.211. Symbols for definite natural numbers: 1, 2, 3, 4, 5,6, 7, 8, 9, 10, 11,
12,..., briefly called ‘numerals’. (No symbols for other numbers will be
needed.)
3.212. Variables for natural numbers: These I divide into free and bound
variables (vid. seq.). Any other symbol that has not yet been used may
serve as a variable; but it must be stated in each case whether such a symbol
is to be a free or a bound variable.
3.213. Symbols for definite functions, briefly called ‘function symbols’:
+, *, and others as needed (cf. 6.1).
3.214. Symbols for definite predicates, briefly called ‘predicate symbols’:
=, <, Prime, | and others as needed (cf. 6.1).
3.215. Symbols for the logical connectives: &, v, >, —, V, 3.
3.22. Definition of term (formal expression for a — definite or indefinite -
number):
3.221. Numerals (3.211) and free variables (3.212) are terms.
3.222. If 8 and t are terms, then so are 8+t and 3 *t; other terms may be
formed analogously by means of further function symbols that may have
been introduced (3.213).
3.223. No expressions other than those formed in accordance with 3.221
and 3.222 are terms. '
3.224. Example of a term: [(a+2)* + b]+4; where a and b are free variables.
Brackets serve as usual to avoid ambiguities in connection with the
grouping of the individual symbols.
3.23. I now define a formula (formal counterpart of a number-theoretical
proposition):
3.231. A predicate symbol (3.214) whose ‘argument places’ are filled by
arbitrary terms (3.22) is a formula.
Example: (2+a)+4 < b.
3.232. If U is a formula, then so is — U. If A and B are formulae, then so
are Y& B, Av B, and A o B.
3.233. From a given formula we obtain another formula by replacing a
free variable occurring in it by a bound variable £ not yet occurring in the
formula and prefixing Yt or 3¢.
3.234. No expressions other than those formed in accordance with 3.231,
3.232 and 3.233 are formulae.
3.24. As in the case of terms, brackets must be used to display unambigu-
ously the construction of a formula in accordance with 3.232 and 3.233.
Examples of formulae: cf. 3.13, 3.11, 3.231.
The informal sense of a formula follows from the remarks in 3.1. It should
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be observed that a formula with free variables constitutes an ‘indefinite’
proposition which becomes a ‘definite’ proposition only if all free variables
in it are replaced by terms without free variables, e.g., numerals®®.

A minimal term is a term consisting of one function symbol with numerals
in the argument places, e.g.: 1+ 3.

A minimal formula is a formula consisting of one predicate symbol with
numerals in the argument places, e.g.: 4 = 12.

A transfinite formula is a formula containing at least one V or 3 symbol.
3.25. German and Greek letters will be used as ‘syntactic variables’, i.e.,
as variables for our proof-theoretical considerations about number theory.
3.3. The question arises whether our concept of formula is wide enough for
the representation of all propositions occurring in elementary number theory.

Strictly speaking the answer is no. There certainly are propositions in
elementary number theory (examples will follow) for which no immediate
formal representation exists in terms of the methods formulated. Yet such
propositions may safely be disregarded as long as equivalent propositions
exist in each case which are representable in our formalism.

Here are a number of important examples:

3.31. The only objects of number theory which I have allowed for are the
natural numbers. Yet the rest of the integers as well as, occasionally, the
Jractions are of course also needed in number theory. It is not difficult,
however, to reinterpret all propositions about integers and fractions as
propositions about the natural numbers, by observing that the negative
integers can be made to correspond to pairs of positive integers and the
fractions to pairs of integers. (An example: g = 2 is interpreted as
a*d=c+b.) Even in the case where finite sets of natural numbers,
integers or fractions are included among the objects of number theory
(e.g., the ‘complete systems of residues’) it is still possible to reinterpret all
propositions as propositions about the natural numbers, although in this
case such interpretations are considerably more complicated. The same
holds for propositions in which diophantine equations etc. are taken as
objects.

Here I do not intend to discuss these methods of reinterpretation further;
they present no fundamental difficulties (especially for the consistency
proof) and anyone who concerns himself somewhat more closely with these
matters will easily see their feasibility (cf. also 17.2).

If infinite sets of natural numbers, integers, or fractions are admitted,
such a reinterpretation is in general no longer possible precisely because
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we are here already dealing with objects from analysis (cf. 2.12). It is,
after all, customary to define the real numbers themselves as certain infinite
sets of rational numbers.

3.32. Functions and predicates occur in number theory in a variety of forms.
In defining a formula I have taken account of this fact by admitting at
3.213 and 3.214 ‘further symbols as needed’. Further details about the intro-
duction of arbitrary functions and predicates follow in § 6.

3.33. As far as the logical connectives are concerned, finally, the following
locutions, for example, are customary:

‘The proposition A holds if and only if the proposition B holds.’
This connection of propositions is of course represented as follows:
(B> & A > B).

“There exists exactly one number £, for which the proposition 2(z) holds.’

For this we write: 3z [A(z) & Vy (A(y) = 9 = r)], with obviously the
same meaning. (Suitable bound variables are to be chosen for r and y;
where () is the expression resulting from 2A(xr) by the replacement of
T byy.)

‘There are infinitely many numbers £ for which the proposition A(x)
holds.” This simply means that ‘for every number there exists a number
greater than the former for which ¥ holds’, and in this form the proposition
is representable in our formalism.

‘There are exactly n numbers ¢ for which the proposition 2(z) holds.’

This proposition — with » left indefinite — can be represented in our
formalism only in a considerably paraphrased form, possibly as follows:
We include the finite sets of natural numbers among the objects of the theory
and paraphrase the above proposition thus: ‘There exists a set of natural
numbers with n elements such that for each one of its elements the proposi-
tion A holds and every number for which % holds belongs to the set.” Here
‘number of elements’ is a function, ‘belongs’ a predicate, and both must be
defined in advance. The concept of a finite set can once again be paraphrased
according to 3.31.

There exists of course a variety of other locutions all of which can be
reduced to immediately formalizable expressions.

3.34. I shall return to the question of the completeness of the formalism
in general after the consistency proof has been carried out (17.1).

§ 4. Example of a proof from elementary number theory

4.1. I now proceed to the formalization of the techniques of proof used in
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elementary number theory. Le., I shall have to list as completely as possible
all forms of inference and methods of deriving concepts used in proofs of
elementary number theory and assign to them a fixed formalization which
avoids all the ambiguities of their linguistic representation.

Only if a precise formal definition can then be given of what is meant by
an elementary number-theoretical ‘proof’ can we begin with the proof
theory of elementary number theory.

I shall begin by giving an example of a number-theoretical proof in this
paragraph, and shall classify the individual forms of inference according
to definite criteria by means of examples from this proof. In § 5, I shall
then give a precise general formulation to these forms of inference.

Finally, in § 6, I shall discuss the methods of deriving concepts and the
relevant number-theoretical ‘axioms’.

4.2. As an example of a proof from elementary number theory, I shall
choose Euclid’s well-known proof of the theorem: ‘There are infinitely
many prime numbers.’

I shall first carry out the proof in words in a version which has been
adapted somewhat to the purpose at hand.

In the following (throughout §4), I shall use the letters a, b, b;, ¢, d, I, m, n,
as free variables, the letters z, y as bound variables (for natural numbers).

The theorem to be proved can be formulated more precisely as follows:
‘For every natural number there exists a larger one which is a prime number.’

Suppose now that @ is an arbitrary natural number. We must then show
that there exists a prime number which is larger than a. We consider the
number a!+1. If it is a prime number then it satisfies the condition. If it is
not a prime number then it has a divisor b, (excluding 1 and itself). This
divisor is larger than @ since no number from 2 to a can divide a!+1,
any such division leaving a remainder of 1. If b, is a prime number, it
satisfies the condition. If it is not a prime number then it too has a divisor
b, other than 1 and itself. This number also divides a!+ 1, since it divides
b,. Hence b, is also larger than a. By continual repetition of this process
we obtain a sequence of numbers: a!+1, by, b,, . .. whose terms become
smaller and smaller. Hence the sequence must terminate at some point, i.e.,
its last number is a prime number which divides a!+1 and is larger than a.
The existence of a prime number which is larger than a has then been
verified. Since a was an arbitrary natural number it follows that for every
natural number there exists a larger one which is a prime number. Q.E.D.
4.3. In the proof I have presupposed various simple theorems as already
known. These can be reduced to still simpler facts by further proofs, although
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this is unimportant for our present purpose since we are interested, above
all, in the inferences which occur in the various steps of the above proof.

Here we must keep in mind that through experience we are accustomed to
carrying out entire sequences of proof at once without being conscious of
each individual inference contained in that step. In order to single out the
actual elementary inferences I shall therefore go through Euclid’s proof
once again and bring to light all individual inferences contained in some
parts of the proof. At the same time, I shall formalize, in accordance with
§ 3, the various propositions as they occur.

4.4. Detailed analysis of Euclid’s proof.

The proof contains a somewhat disguised ‘complete induction’ (cf. the
place: ‘by continual repetition of this process . . ."). The usual normal form
of the inference by complete induction is this:

The validity of a proposition is proved for the number 1; then it is shown
that if the proposition holds for an arbitrary natural number # it also holds
for n+1; hence this proposition holds for any natural number.

It will also be convenient to reduce to this normal form the disguised
complete induction which here occurs; to do this I shall choose the following
proposition as the ‘induction proposition’, formulated for a number m:
‘Either there exists a prime number among the numbers from 1 to m which
is greater than a or none of these numbers, except 1, divides a!+ 1. Formally:

{zlzsm& Primez&z > a)]}vVy [(y > 1 &y £ m) o —yl(al+1)].

The proof now runs as follows:

4.41. The induction proposition must first be proved for m = 1. Here the
second part of the alternative is satisfied automatically since there is ob-
viously no number which is larger than 1 and smaller than or equal to 1.
Explicitly: for an arbitrary ¢ it holds that — (¢ > 1 & ¢ £ 1); this we assume
as given. Then it also holds that (¢ > 1&c¢ £ 1)  — ¢[(al+1), and,
since ¢ was arbitrary, Vy [(y > 1 & y £ 1) © — y|(a!+1)]. The induction
proposition for m = 1 follows from this in accordance with the meaning
of v (3.12), viz.:

{zz21&Primez&z>a)]}vVy[(y > 1 &y £ 1) 2 —y|(al+1)].

4.42, Next comes the ‘induction step’, i.e.: we assume that the induction
proposition has been proved for an arbitrary number n, so that

{z[z<n&Primez&z>a)]}vVy [(y > 1&y £ n) > = y|(a'+1)].

holds, and that it must now be proved for n+ 1. This is done as follows:
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On the basis of the induction hypothesis two cases are possible:

l. 3z[z£n& (Primez&z > a)l;
2. Vyl(y >1&y £n)> —yl(at+1)].

In the first case it follows without difficulty that
3z[z < n+l & (Primez & z > a)].

I shall not discuss this further. In this case therefore the induction proposi-
tion has already been proved for n+1, viz.,

{3z [z < n+1 & (Prime z & z > a)]}
vVy [(y > 1&y = n+l1) o —y|(al+1)].
Let us now look at the second case:
Vy[l(y > 1&y = n) > —yl(a+1)]

It holds that (n+1)|(a!'+1)v — (n+1)|(a!+1). We can thus distinguish
two subcases:
First subcase: (n+1)|(a!+1). From this it follows that

Prime (n+1) & (n+1) > a,

which I shall briefly show since the only forms of inference here used are
those for which we already have examples in the remaining parts of the
proof:

n+1 is a prime number; for if it had a divisor other than 1 and itself,
it would be smaller than #+1, and would then also divide a!+1, con-
tradicting our assumption that Vy [(y > 1 &y < n) = —y|(al+1)].
Furthermore, n+1 is larger than a; for the numbers from 2 to @ do not
divide a!+1, such a division always leaving a remainder of 1. Hence it holds
in fact that Prime (n+1) & (n+1) > a; also n+1 < n+1, hence it holds
that n+1 < n+1 & Prime (n+1) & (n+1) > g, and consequently also that

3z[z<n+l & (Primez &z > a)l,
and thus
{3z [z £ n+1 & (Prime z & z > a)]}
vVy [(y > 1&y € n+1) 2 - yl(al+1)].
Second subcase: — (n+1)|(a!+1). Suppose that 4 is an arbitrary number

with the property that d > 1&d < n+1. From d < n+1 follows
d < nvd=n+1, which is to be taken as given.



§ 4, EXAMPLE OF A PROOF FROM ELEMENTARY NUMBER THEORY 147
Suppose first that d £ n; it also holds that
Vy[(y >1&y £n) > —yl(al+1)],

hence in particular that (d > 1 & d < n) > —d|(a!+1). From d > 1,
together with d < n, it follows that d > 1 & d < n, and together with the
preceding therefore — d|(a!+1).

If d = n+1, however, then, because of — (r+1)|(a!+ 1), it also follows
that — d|(al+1).

Thus it holds in general that — d|(a!+1), a consequence of the assump-
tiond > 1 & d £ n+1. Hence we can write

(d>1&d < n+1) o —d|(al+1)],
and further, since d was an arbitrary number,
Vyil(y>1&y = n+1) 2 —yl(a+1)],
and thus once again
{3z [z = n+1 & (Prime z & z > a)]}
vVy[(y > 1 &y £ n+l) o —yl(al+1)]).

We have therefore in all cases obtained the induction proposition for
n+1, and this completes the induction step.
4.43. The proof is now quickly completed.

From the complete induction follows the validity of the induction
proposition for arbitrary numbers. We require it only for the number
al+1:

{3z[z < a!'+1 & (Prime z & z > a)]}
vVy [(y > 1 &y £ al+1) o = yl(al+1)].
From the second case it follows in particular that
(@ +1>1&al+1 £ al+1) 2 — (al+1)i(al+1).

Yet it holds that a!+1 > 1 & a'+1 < a!+4 1, which we assume as given;
hence it follows that — (a!+1)|(a!+1). On the other hand it holds of
course that (a!+1)|(a!+1); we have thus obtained a contradiction, i.e.,
the second case cannot possibly occur; formally:

— W[y >1&y £ al+1) 2 = y|(a+1)]

Only the first case remains, i.e.: 3z [z < a!+1 & Prime z & z > a)]. Suppose
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that / is such a number so that / < a!+1 & (Prime / & / > a) holds. Then
it holds in particular that Prime / & / > @, from which 3z (Prime z & z > a)
follows. But g was an arbitrary natural number, hence this result holds for
all natural numbers, i.e., Vy 3z (Prime z & z > y). This is the conclusion
of Euclid’s proof.
4.5. Classification of the individual forms of inference by reference to
examples from Euclid’s proaof.

Let us now focus our attention on the individual inferences occurring
in the above proof. Here the following classification almost suggests itself:

For every logical connective &, v, o, —, V, and 3 there exist certain
associated forms of inference. These may be divided into forms of inference
by which the connective concerned is introduced and other forms of inference
by which the same connective is eliminated from a proposition. As examples
I shall cite, in each case, an inference from Euclid’s proof:
4.51. A V-introduction occurs at the end of the proof, viz: after
2z (Prime z & z > a) was proved for the number a, it was inferred that
Vy 3z (Prime z & z > y).

A V-elimination took place at 4.42, subcase 2, where from

Vy [(y > 1&y £ n) D —ylal+1)]

it was inferred that (d > 1 & d < n) > — d|(al+1).
4.52. A &-introduction (from 4.42, subcase 2): the two propositions d > 1
and d < n together yielded the propositiond > 1 & d < n.

A &-elimination (from 4.43): From I < a!+1 & (Prime / & | > a) it was
inferred that Prime / & ! > a.
4.53. A 3F-introduction (from 4.43): From Prime / & / > a it was inferred
that 3z (Prime z & z > a).

A 3-elimination (from 4.43): The proposition

Az[z L al+1 & (Primez & z > a)]

held. From it it was inferred that / < a!+1 & (Prime / & ! > a), where [
stood for any one of the numbers which existed by virtue of the previous
proposition.

4.54. A v -introduction (from 4.41): From

Vy[(y>1&y=1)> —yl(al+1)]
it was inferred that

{3z[z<1&(Primez&z>a)l}vVy [(y > 1 &y £1) D —yl(al+1)]
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A v-elimination (from 4.42): the proposition
{FZz[zsn& (Primez&z > a)l}vVy [(y > 1&y £ n) > —yl(a+1)]

held. It led to the distinction of cases:

Case 1: 3z[z £ n & (Prime z & z > a)];

Case 2:Vy[(y > 1 & y £ n) ® — y|(@+1)].

This distinction of cases was terminated by the fact that the same proposi-
tion

{3z[z £ n+1 & (Prime z & z > a)]}
vV[(y > 1 &y £ nt+l) 2 — yl(a+1)]

could eventually be inferred in both cases.
4.55. A D-introduction (from 4.42, subcase 2): Starting with the assumption
d > 1&d < n+1, we reached the result: — d|(a!l+1). Hence

d>1&ds n+l)> —dl(al+1)

held.

A o-elimination (from 4.42, subcase 2): From d>1&d < n and
(d>1&d < n) > —d|(al+1) it was inferred that — d|(a!+1).
4.56. For negation (—) the situation is not quite as simple; here there exist
several distinct forms of inference and these cannot be divided clearly into
—-introductions and —-eliminations. I shall come back to this later (5.26).
Here I shall cite only a single important example from Euclid’s proof,
viz., a ‘reductio ad absurdum’ — inference (from 4.43):

Yy [(y>1&y S al+1) 2 — yl(al+1)]
was inferred from the fact that the assumption
Vi(y >1&y £ n+1) 2 = y|(at+1)]
led to a contradiction, viz., to the proposition — (a!+1)|(a!+1), whereas
(a!+1)|(al+1) is indeed provable.
§ 5. The formalization of the forms of inference occurring in elementary

number theory

5.1. Preliminary remarks.
My next task is to formulate in their most general form the different kinds
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of forms of inference which have been introduced by means of the above
examples.

The determination of the individual forms of inference is not entirely
unigue, although the subdivision into introductions and eliminations of the
individual logical connectives which 1 have chosen seems to me especially
lucid and natural.

What, then, does the general pattern of a form of inference look like?

E.g., as the general form of the &-elimination we would be inclined to put
simply the following: if a proposition of the form % & B is proved (where
U and B are arbitrary formulae), then U (or B) also holds.

Yet we must still keep in mind the following: the structure of a math-
ematical proof does not in general consist merely of a passing from valid
propositions to other valid propositions via inferences. It happens, rather,
that a proposition is often assumed as valid and further propositions are
deduced from it whose validity therefore depends on the validity of this
assumption. Examples from Euclid’s proof: The ‘reductio’ (4.56), the
>-introduction (4.55), the induction step in the complete induction (4.42).

In order to describe completely the meaning of any proposition occurring
in a proof we must therefore state, in each case, upon which of the assumptions
that may have been made, the proposition in question depends.

I therefore make it a rule that, together with every (formalized) proposi-
tion B occurring in a formalized proof, the (formalized) assumptions
Ay, ..., U, upon which the proposition depends must also be listed in the
following form?37:

A, Wy, ..., U > B

which reads: From the assumptions %, ..., %, follows 8. Such an expres-
sion I call a ‘sequent’. If there are no assumptions, we write — 8.

An example from Euclid’s proof: The proposition — d|(a!+1) from 4.42,
subcase 2, must, in order to display its dependence on assumptions, be
represented by the following sequent:

VWily>1&y £ n) > —yl(a+1)], = (n+1)l(a!+1),
d>1&d < n+1 > —d|(al+1).

Since every proposition of the original proof is now represented by a
sequent in the formalized proof, we can formulate the forms of inference
directly for sequents.

Our earlier example, the &-elimination, would now have to be formulated



§ 5, THE FORMALIZATION OF FORMS OF INFERENCE 151

thus: ‘If the sequent ®;,...,®, > A& B is proved (u = 0), then
®y,...,8,>Uor G,,...,H, > B is also valid.
In the following, general schemata for the remaining forms of inference
will be given in the same way.
5.2. Precise general formulation of the individual forms of inference.
5.21. Definition of a sequent®8 (formal expression for the meaning of a
proposition in a proof together with its dependence on possible assumptions):
A sequent is an expression of the form:

A, 0, ..., A o B,

where arbitrary formulae (3.23) may take the place of A, U,, ..., ¥, and
8. The formulae A, , A,,...,A,, I call the antecedent formulae and B
the succedent formula of the sequent. It is permissible that no antecedent
formulae occur, then the sequent has the form: — B; but there must always
be a succedent formula.

5.22. Definition of a derivation (formal counterpart of a proof): A derivation
consist of a number of consecutive sequents of which each is either a “basic
sequent’ or has resulted from certain earlier sequents by a ‘structural trans-
formation’ or by the application of a ‘rule of inference’. The definition of the
various concepts follows shortly.

The last sequent of a derivation contains no antecedent formulae, its
succedent formula is called the endformula of the derivation. (It represents
the proposition proved by the proof.)

5.23. Definition of a basic sequent:

I distinguish between basic ‘logical’ and ‘mathematical’ sequents.

A basic logical sequent is a sequent of the form ® — D, where D can be
any arbitrary formula. (Such a sequent occurs in the formalization of a
proof if and when an assumption D is made in the proof.)

A basic mathematical sequent is a sequent of the form — €, where the
formula € represents a ‘mathematical axiom’. In § 6, I will explain, in partic-
ular, precisely what is to be understood by a number-theoretical ‘axiom’.
5.24. Definition of a structural transformation:

The following kinds of transformation of a sequent are called structural
transformations (because they affect only the structure of a sequent, in-
dependently of the meaning of the individual formulae):

5.241. Interchange of two antecedent formulae;

5.242. Omission of an antecedent formula identical with another antecedent
formula;

5.243. Adjunction of an arbitrary formula to the antecedent formulae;
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5.244. Replacement of a bound variable within a formula throughout the
scope of a V- or 3-symbol by another bound variable not yet occurring in
the formula.

Transformations according to 5.241, 5.242 and 5.244 obviously leave the
meaning of the sequent unchanged, since it makes no difference to the
meaning of the sequent in what order the assumptions are listed, or whether
one and the same assumption is listed more than once or, finally, what
symbol is used for bound variables. All possibilities of transformation
mentioned are thus of a purely formal nature and informally of no conse-
quence; they must be stated explicitly only because of the special character
of our formalization.

A structural transformation according to 5.243 means that to a proposi-
tion we may adjoin an arbitrary assumption upon which, besides other
possible assumptions, it is to depend. At first this may seem somewhat
strange; yet if a proposition is true, for example, we are forced to admit
that in that case it also holds on the basis of an arbitrary assumption.
(If we were to stipulate that this may be asserted only in cases where a
‘factual dependence’ exists, considerable difficulties would arise because of the
possibility of proofs in which only an apparent use of an assumption is made).
5.25. Definition of a rule of inference (formal counterpart of a form of
inference):

Altogether we require thirteen rules of inference.

5.250. The German and Greek letters used here have the following meanings:

The letters A, B, and € stand for arbitrary formulae; the expressions
Vit F(z) and 3 F(x) for arbitrary formulae of this form, with $¥(a) and
%(t) denoting the formulae which result if the bound variable £ is replaced
by an arbitrary free variable a and an arbitrary term t, resp.; the letters I,
4, and O for arbitrary, possibly empty, sequences of formulae (antecedent
formulae of the sequent concerned), separated by commas.

Now the individual rules of inference:

5.251. &-introduction: from the sequents I' - U and 4 — B follows the
sequent ', 4 - A & B.

&-elimination: from I' - A & B follows the ' » A or I' > B.

v-introduction: from I' —» U follows I' > Av B orI' » Bv A

v-elimination: from I' > Y v B and A, 4 - € and B, ® - € follows
Ir,4,0 - @.

V-introduction: from I' —» (a) follows I' — VY F(z), provided that the
free variable a does not occur in I" and V¢ F(x).

V-elimination: from I' - V¢ §(z) follows I — F(1).
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I-introduction: from I' - F(t) follows I' - 31 F(x).

3-elimination: from I -» 3t F(r) and F(a),4 - € follows I',4 - €,
provided that the free variable a does not occur in I', 4, € and 3¢ F(x).

o-introduction: from A, I’ —» B follows ' - A = B.

>-elimination: fromI' - A and 4 - U = B follows I', 4 — B.

5.252. ‘Reductio’: from U, I’ - B and A, 4 > — B follows I', 4 - — .
‘Elimination of the double negation’: from I' - —— U follows I' - .
5.253. ‘Complete Induction’: from I — F(1) and $F(a), 4 - F(a+1)
follows I', 4 — $(t), provided that the free variable a does not occur in

r,4,%(1) and F(t).
5.26. Some remarks about the rules of inference.

In general the formulation of the individual rules of inference should be
clear by reference to the appropriate examples of inferences (4.5). Several
points should however be explained:

The I', 4 and @ are required since in the most general case we must allow
for arbitrarily many assumptions.

The formulation using additional hypotheses which seems fairly natural
in the cases of the m-introduction, the ‘reductio’, and complete induction,
may appear rather artificial in the case of the v and 3-elimination, if these
rules are compared with the corresponding examples of inferences (4.5).
However, the formulation is smoothest if in the distinction of cases (v-
elimination) the two possibilities that result are simply regarded as assump-
tions which become redundant as soon as the same result (€) has been
obtained from each; in the case of the 3-elimination the situation is similar:
the proposition $(a) inferred from 3g F(r) is an assumption only in so
far as it is assumed of the variable a occurring in it that it represents any
one of the numbers with the property § existing by virtue of 3¢ F(x).
This assumption is discharged as soon as a result (§) has been deduced
from it in which the variable a no longer occurs.

This leads me at once to a further point requiring some elaboration:
it concerns the restrictions on free variables imposed in the case of the
V-introduction, the 3-elimination, and complete induction.

In each case the restriction says that in all formulae involved in the rule
of inference (including the assumption formulae) the free variable a
belonging to the rule of inference may occur only in the formula $(a) or
F(a+1). It is easily seen by means of examples that this requirement is
necessary in general and actually quite obvious; in the case of mathematical
proofs it is fulfilled automatically. (By its very purpose, the variable a
is naturally out of place in the remaining formulae.)
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The following must be said about the rules of inference for negation:
as already mentioned at 4.56, the choice of elementary forms of inference is
here more arbitrary than in the case of the other logical connectives. I should
like to mention the following simple alternative rules of inference that might
have been adopted:

From A, - B and — A, 4 - B follows ', 4 - B.

From I' > Av B and 4 - — B follows I', 4 > U (example at 4.43).

FromI' - — B and A, 4 - B follows ', 4 - — 9.

FromI' - — U follows I' » % o B (example at 4.41).

FromTI —» A and 4 - — YA follows ', 4 - B.

As basic logical sequents for the —-connective we could also have taken
the following: — %A v — A ‘law of the excluded middle’ (example at 4.42);
- (A & — A), ‘law of contradiction’.

However, the two rules of inference which I have chosen (5.252) are
sufficient; the remaining rules and the basic sequents listed here are already
contained in them (if the rules of inference for the other logical connectives
are included); this may be verified without any essential difficulties.

5.3. Are our rules of inference actually sufficient for the representation of
all inferences occurring in elementary number theory?

5.31. The completeness of the purely logical rules of inference, i.e., the rules
belonging to the connectives &, v, o, —, V, 3, has already been proved
elsewhere®® (completeness here means that all correct inferences of the
same type are representable by the stated rules).

To these forms of inference we must now, for the purpose of elementary
number theory, add ‘complete induction’. Here the question of the com-
pleteness of the rules of inference becomes a rather difficult problem;
I shall return to it after the consistency proof (17.1) has been carried out.
At this point I should merely like to observe the following: It may be
considered as fairly certain that all inferences occurring in the usual number-
theoretical proofs are representable in our system as long as no use is made
of techniques from analysis. The same may also be said of the frequently
used ‘intuitive’ inferences, even if this is not immediately obvious from
looking at them.

In order to verify this in general each individual proof would of course
have to be examined separately and this would be extremely laborious.
5.32. I shall content myself with a number of particularly important
examples:

Complete induction occurs frequently in certain modified forms, which
are reducible to our normal form as follows:
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5.321. First the ‘method of infinite descent’, which runs as follows:

From I' - $(t) and F(a+1), 4 - F(a) follows I' 4 - F(1). Again a
must not occur in I', 4, F(1) and $F(t). This sequent is transformed thus:
— §(a) > — F(a) is a basic sequent. From it follows (5.243)

Sa+1), = F(@) > — F(a),

and this, together with F(a+1),4 - F(a), by ‘reductio’ (5.252) yields
4, —F(@) > —F(a+1), and finally (5.241) — F(a), 4 - —F(a+1).
If we then include the basic sequent — F(1) > — F(1), we can apply
the rule of complete induction in its earlier form (5.253), with — & as
the induction proposition, and obtain — $(1), 4 —» — F(t). By including
I' > F(t), and thus also obtaining (5.243) — F(1), I' - F(t) as valid,
we deduce I, 4 - — — F(1) by ‘reductio’, and from it, by ‘climination
of the double negation’ (5.252): ', 4 — F(1).

5.322. A further example consists of the following modified complete
induction:

FromI' > §(1)andVr [ < a © F(1)], 4 - F(a+1)followsI', 4 — F(t).
Again a must not occur in I', 4, F(1) and F(t); ¢ designates a bound
variable not occurring in g(1).

This induction is easily turned into a normal complete induction (5.253)

with the following induction proposition (stated for an arbitrary number m):
Vi [t £ m > F(r)], in words possibly: ‘For all numbers from 1 to m,
% holds’.
5.323. The corresponding ‘infinite descent’ form runs: From I' - $(t) and
F@+1),4 - 3¢ [r £ a & F(x)] follows I', 4 —» F(1). This form can be
reduced to the normal form of a complete induction in the same way as
the two previous examples.

The induction in Euclid’s proof was originally of this kind (4.2) and was
then reduced to its normal form (4.4).

§ 6. Derived concepts and axioms in elementary number theory

6.1. In a proof there may also occur ‘derived concepts’ in addition to the
actual inferences; these are introductions of new objects, functions, or
predicates.
What kinds of derived concepts are in practice used in number theory?
The introduction of new objects such as negative numbers etc. has already
been discussed at 3.31, and it was pointed out that these objects are basically
dispensable.
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The introduction of a new function or a predicate usually takes the form
of a verbal ‘definition’ of these concepts.

Examples:

The function a® is defined as ‘the number a, taken b times as factor’.

The function a! is defined as ‘the product of the numbers from 1 to a’.

The number (a, b) is defined as ‘the greatest common divisor of @ and 5’

The predicate ‘a is a perfect number’ means the same as ‘the number a
is equal to the sum of its proper divisors’.

The predicate a # b means the same as — (a = b).

The predicate a|b means the same as 3z (¢ z = b).

The function (Z—), the ‘Legendre symbol’, is defined for the case where b

is an odd prime number as follows: (g) = 0 if bja holds; if — b|a holds,

then (g) = 1 if the number a is a quadratic residue mod b, and (g) = —1

if a is not a quadratic residue mod 5.
The function ak(a, b, c), the ‘Ackermann function’, a function significant
for certain questions of proof theory, may be defined thus*® (‘recursively’):

ak (a, b,0) = a+b,
ak (a,b,1) =a - b,
ak (a, b,2) = &,
and further for ¢ = 2:
ak(a,0,c+1) = q,
ak(a,b+1, c+1) = ak (a, ak (@, b, c+1), ¢).

1 shall not set up general formal schemata for these and other methods of
forming concepts. It will turn out that even without such schemata these
concepts may be incorporated wholesale in the consistency proof. The same
holds for the ‘axioms’, about which I shall now say a few words.

6.2. In number-theoretical proofs we start from certain simple, immediately
obvious propositions for which no further proof is offered. These are the
‘axioms’. They are closely related to the derived concepts in so far as these
axioms state basic facts abont the predicates and functions occurring in
them. Actually, a new concept may be formally introduced by merely
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stating a number of axioms about it (‘implicit definition’). An example:
The function (g, b) is completely characterizable by the axioms:

VxVy [(x,y)lx & (x,»)ly] and VxVy — 3z [(z]x &z|y) & z > (x, y)].

The choice of the axioms is not uniquely determined. Our aim might be
to make do with as few simple axioms as possible*!. For the purpose of
carrying out number-theoretical proofs in practice, however, a larger number
of axioms is usually stipulated without concern for redundancy, indepen-
dence, etc. For my consistency proof it is fairly immaterial which axioms are
chosen. As in the case of the derived concepts, I shall content myself, for
the time being, with the statement of several examples from which it can be
seen what kinds of proposition qualify as axioms:
Some axioms for the predicate = and the function +, formalized:

Vx (x = x) Vx — (x+1 = x)
y+x)
VxVyVz[(x =y &y =2z2)Dx=1z] VxVyVz[(x+y)+z = x+(y+2)].

VxVy(x =y>Dy=x) VxVy (x+y

6.3. The concept of ‘the . .. such that’.
The following special kind of construction is also worth mentioning:
If a proposition of the form

Ve VER .. VG 3Y {B(2hs 250 -0 Bs D)
&V3 [%(gl’ L2505 Ly 3) SF = t)]}’

in words possibly: ‘For every combination of numbers t,,..., %, there
exists one and only one number { such that F(Z, ..., Ly, 1) holds’,
has been proved, then a function may be introduced which represents precisely
this value (1) in its dependence on the combination of numbers (Z1, ..., &)
(‘the ... such that’). Formally: For this function one might use the expres-
sion (written for the arguments a,, ..., 4,): t,§(a;,...,a,,Y); for this
expression the following then holds:

Ve Ve T8 T b (B - -5 Bes D))

The £’s may also be empty, in which case the 1-symbol represents a single
number.

Such derived concepts which are not generally needed in practical elemen-
tary number theory, or which can be replaced by ‘definitions’ of the kind
mentioned above (6.1), are immaterial for the question of consistency since
they may always be eliminated from a derivation*2.
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SECTION III. DISPUTABLE AND INDISPUTABLE FORMS OF
INFERENCE IN ELEMENTARY NUMBER THEORY*?

The task of the consistency proof will be (2.31) to justify the disputable
forms of inference (including derived concepts and axioms) on the basis of
indisputable inferences. For a proper understanding of my consistency proof
for elementary number theory, which follows in section IV, we shall therefore
have to examine precisely what forms of inference and other techniques of
proof from elementary number theory are indeed disputable, and which
others can be accepted as undoubtedly correct. An unequivocal delimitation
is not possible (cf. 1.8); but we can certainly produce arguments which will
make the admissibility of some methods of proof very plausible, whereas a
corresponding justification fails for other methods in cases where there
exists a remote analogy to the fallacies arising in the antinomies of set
theory, and which make these techniques appear disputable.

We shall now develop such arguments by first considering the math-
ematical theory with a finite domain of objects (§ 7) and by then discussing
the peculiarities and difficulties arising from the generalization to an infinite
domain of objects (§ 8~11).

§ 7. Mathematics over finite domains of objects

7.1. The mathematical treatment of a finite domain of objects proceeds
as follows:

The objects of the domain are enumerated; in doing so, each object
receives a definite designation referring to no other object.

A function or a predicate is defined thus: Suppose the number of argument
places is v. For every ordered v-tuple of objects, it is determined which
object is the associated functional value or, in the case of predicates, whether
the predicate does or does not hold for this combination of objects.

We could also permit functions and predicates to remain undefined for
some combinations of objects; this constitutes an unimportant complication.

Since there are always only finitely many ordered v-tuples of objects,
every function and every predicate may be completely described by such a
‘definition table’.

7.2. For every definite proposition (3.24) which has been constructed in
accordance with 3.22, 3.23, from the given objects, functions, and predicates
together with the logical connectives, it can furthermore be ‘calculated’

according to the following formal rule whether the proposition is frue or
Sfalse:
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The proposition is represented by a formula without free variables. If it
contains the symbol V, then the term Vg () concerned is replaced by
[ .. [5(8:) & F(82)1 & F(g3)1 & . . .1 & F(g,)], where g;,...,8, repre-
sents the entire collection of objects of the domain. The same is done for
every Y that occurs, and each 3 is replaced by a corresponding expression
with v instead of &.

Then every term that occurs is ‘evaluated’ on the basis of the definition
tables for the functions occurring in it, i.e., the term is replaced by the
object symbol which represents its ‘value’. If several function symbols are
nested, then the calculation is carried out step by step working from the
inside to the outside.

For each occurring minimal formula (3.24) we then determine on the
basis of the definition table of the predicate concerned whether it represents
a true or a false proposition. Then follows the determination of the truth
or falsity of the subformulae built up by the various logical connectives;
this is done step by step from the inside out according to the following
instructions:

A & B is true if A and B are both true, otherwise false.

A v B is true if A is true and also if B is true; it is false only if A and B
are both false.

A o Bis falseif Wis true and B is false; in every other case A = B is true.

— W is true if A is false, but false if U is true.

The entire procedure follows at once from the actual sense which

we associate with the formal symbols. For us it is important only to realize
that in a theory with a finite domain of objects every well-defined proposition
is decidable, i.e., that it can be determined by a definite procedure in finitely
many steps whether the proposition is true or false.
7.3. 1t is easily proved that the logical rules of inference (5.2), applied to
this theory, are correct in the sense that their application to ‘true’ basic
mathematical sequents leads to ‘true’ derivable sequents. Here the concept
of the ‘truth’ of a sequent is to be determined formally in agreement with
its informal sense as follows: a sequent without free variables is false if all
antecedent formulae are true and the succedent formula is false; in every
other case it is true. A sequent with free variables is true if every arbitrary
replacement of object symbols yields a true sequent.

A verification of this statement would mean no more than a confirmation
of the fact that we have indeed chosen our formal rules of inference in such
a way that they are in harmony with the informal sense of the logical con-
nectives.
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7.4. 1t should still be noted that in practice the above method of introducing
objects, functions, and predicates and of ‘evaluating’ the propositions
is rarely used in mathematical theories with finite domains of objects; for a
large number of objects this would become far too lengthy. In such cases
the methods used are rather like those applied in the case of an infinite
domain of objects described below.

§ 8. Decidable concepts and propositions over an infinite domain of objects

8.1. What becomes different if we wish to develop the theory with an
infinite domain of objects such as the natural numbers, for example?

8.11. It is then no longer possible to enumerate the objects explicitly since
there are infinitely many of them.

The place of such an enumeration is taken by a construction rule of the
following kind: 1 designates a natural number. So does 1+1, 14+1+1,
generally: From an expression representing a natural number an expression
for another natural number is obtained by adjoining +1. (The symbols
2, 3, 4, etc. may be introduced afterwards as abbreviations for 1+1,
1+1+1, 1+1+1+1, etc.; this is of secondary importance.)

This rule, which must be expressed in finitely many words, generates the
infinite number sequence because it contains the possibility of continuing
this constructive process through a repetitive procedure. (‘Potential infinity’.)
8.12. Nor can functions and predicates, as in the case of a finite domain,
be defined by an enumeration of all individual values. If we wanted to give
a definition table for a number-theoretical function with one argument,
for example, we would have to state successively its value for the arguments
1, 2, 3, 4, etc., hence for infinitely many values. This is impossible. Instead,
we specify a calculation rule; e.g., for the function 2-a:2-1 is 2;
2-(b+1) is equal to (2 - b)+2. This rule makes it possible to calculate the
associated functional values uniquely one by one for each natural number.

Generally, a function or a predicate is considered to be decidably defined
if a decision procedure is given for it, i.e.: for every given enumeration of
natural numbers it must be possible to calculate uniquely the associated
functional value by means of this procedure or, in the case of predicates,
it must be decidable uniquely whether the predicate concerned holds or does
not hold for this collection of numbers.

For all examples of definitions of functions and predicates given at 6.1
such decision procedures can be stated. In the case of derived concepts
formed according to 6.3 this may at times no longer be possible. By elimi-
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nating these derived concepts we have transferred the doubts associated
with them to the logical forms of inference; these will be further discussed
below (§§ 9-11).

8.2, Let us now consider the propositions in the theory over the infinite
domain of natural numbers.

Of every given definite proposition in which the connectives ‘all’ and
‘there is’ do not occur it can be decided, as in the case of a finite domain,
whether it is true or false. The procedure is the same as at 7.2. Instead of
being determined by a definition table, the values of the terms of a proposi-
tion as well as the truth or falsity of the minimal formulae are now deter-
mined by the appropriate decision rule for the functions or predicates
concerned.

The application of the logical rules of inference to propositions of this
kind can also be shown to be admissible in the same way as in the case of a
finite domain.

It should still be mentioned that a corresponding result also holds for
propositions in which the connectives ‘all’ and ‘there is’ refer only to finitely
many numbers. Such propositions can be decided in the way described,
V and 3 must be replaced by & and v as at 7.2, and the appropriate forms of
inference, i.e., the V- and 3-forms of inference (5.251) as well as complete
induction (5.253) can also be shown to be admissible in the same way,
as long as the domain of the — free and bound — variables that occur is
limited to the numbers from 1 to a fixed number 1.

§ 9. The ‘actualist’ interpretation of transfinite propositions*+

9.1. Let us now turn to the essentially transfinite propositions, i.e., proposi-
tions in which the connectives ‘all’ or ‘there is’ refer to the totality of all natural
numbers. Here we are confronted with a fundamentally new state of affairs.

First we must note that the decision rule which is applicable in the case of
a finite domain (7.2, 8.2) does not carry over to such transfinite propositions.

In the case of a proposition about all natural numbers, for example, we
would have to test infinitely many individual cases, which is impossible.
No decision rule for arbitrary transfinite propositions is known and it is
doubtful whether such a rule can ever be given. If there were such a rule,
we could then decide, for example, by calculation whether ‘Fermat’s last
theorem’ (as well as Goldbach’s conjecture, etc.) is true or false.

What sense then can be ascribed to a proposition whose truth cannot be
verified?
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9.2. The traditional view is this: it is ‘actually’ predetermined whether a
transfinite proposition such as Fermat’s last theorem is ‘true’ or ‘false’
independently of whether we know or shall ever know which of the two is
the case. Every transfinite proposition is thought of as having a definite
actual sense; in particular, the sense of a V-proposition is thought to be this:
‘For every single one of the infinitely many natural numbers the proposition
concerned holds’; the sense of a -proposition: ‘In the infinite totality of the
natural numbers there somewhere eXists a number for which the proposition
concerned holds’.

Fromthisinterpretation itisinferred further that for transfinite propositions

the same logical forms of inference are valid as for the finite case, since the
‘actualist’ sense of the logical connectives in transfinite propositions corre-
sponds exactly to that in the finite case.
9.3, At this point there now exists ample cause for criticism, aslong as we
have decided to draw the utmost consequences from the insights gained in
considering the antinomies of set theory. This I will now do and shall, as a
result of a critical examination of Russell’s antinomy (1.6), lay down the
following principle:

An infinite totality must not be regarded as actually existing and closed
(actual infinity), but only as something becoming which can be extended
constructively further and further from something finite (potential infinity).
9.4. The constructive methods for the introduction of objects, functions,
and predicates stated in § 8 are in line with this principle. They were explicitly
based on the idea of a gradual progression in the number sequence, starting
at the beginning, and not on the idea of a completed totality of all natural
numbers. The same holds true for the propositions discussed at 8.2, since
they also refer to only finitely many objects and not yet to an infinite totality.
9.5. The ‘actualist’ interpretation of transfinite propositions described at
9.2, however, is no longer compatible with this principle, for it is based on
the idea of the closed infinite number sequence.

At the same time, the view that the logical forms of inference can simply
be transferred from finite to infinite domains of objects must be rejected.

I remind the reader of a similar although more trivial case of an inad-
missible generalization from the finite to the infinite, viz., the well-known
fallacy: ‘Every (finite) set of natural numbers contains a largest number;
hence the (infinite) set of all natural numbers contains a largest number.’
This argument leads to contradictions since it does not in fact hold true.
9.6. Having rejected the actualist interpretation of transfinite propositions,
we are still left with the possibility of ascribing a ‘finitist’ sense to such
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propositions, i.e., of interpreting them in each case as expressions for definite
finitely characterizable states of affairs.

Once this view has been adopted, the relevant logical forms of inference
must be examined for their compatibility with this interpretation of the
propositions.

Such an examination will be carried out in § 10 below for an extensive
portion of the transfinite propositions and their associated forms of in-
ference. In § 11, I shall discuss the remaining propositional forms and their
forms of inference; there our method will meet with difficulties and the
significance of the intuitionist (1.8) delimitation between permissible and
nonpermissible forms of inference within number theory will become
apparent; another still stricter delimitation will also turn out to be defensible.

§ 10. Finitist interpretation of the connectives V, &, 3 and v in transfinite
propositions

We start with a number theory whose propositions refer to only finitely
many numbers. Then we adjoin step by step certain types of transfinite
propositions.
10.1. The V-connective.
10.11. We shall begin with the simplest form of a transfinite proposition:
Vi &(x), where § shall not yet contain a ¥ or 3, so that the truth of F(x)
is verifiable for each individual number substituted for ¢ (8.2).

True propositions of this form are, for example:

Vx (2lxv —2|x); Vx(x = x).

Such propositions will undoubtedly be regarded as significant ((sinnvoll))
and true. After all, we need not associate the idea of a closed infinite number
of individual propositions with this V, but can, rather, interpret its sense
‘finitistically’ as follows: ‘If, starting with 1, we substitute for ¢ successive
natural numbers then, however far we may progress in the formation of
numbers, a true proposition results in each case.’

10.12. This interpretation may be generalized to the case where ¥ is an
arbitrary proposition to which a finitist sense has already been ascribed:
Vi &(x) may be significantly asserted if {(x) represents a significant and
true proposition for arbitrary successive replacements of ¢ by numbers.
10.13. The forms of inference associated with the V-connective, the V-intro-
duction, and the V-elimination (5.251), are in harmony with this inter-
pretation: AV is introduced if a proof is available that on the basis of certain
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assumptions (I') - transfinite assumptions are totally without sense at this
point and ruled out for the time being - F(a) is true, and from this is inferred
that on the basis of the same assumptions Vg () holds. This is in order,
for if an arbitrary number 1 is given, then it may be substituted for a —
in the whole proof ~ and a proof for (1) results (under the same assump-
tions I' which, by virtue of the restriction on variables for the V-introduction,
do not contain a and have thus obviously remained unaffected by this
substitution). In the case of the V-elimination, I' — $(t) is deduced from
I' - VY §(x). Once possible occurrences of free variables have been replaced
by numbers, the term { represents a definite number 1; in keeping with its
finitist sense the proposition Vg F(r) also guarantees that () holds;
hence this form of inference is also acceptable.

10.14. The usual number-theoretical axioms may be formulated in such a
way that they follow from propositions without ¥V or 3 by a number of
Y-inferences ranging over the entire proposition (cf. 6.2). The conclusion
that, in terms of the finitist interpretation of the V, and on the basis of the
decidable definitions of the functions and predicates occurring in them,
these axioms are frue is of such self-evidence that it requires no further
investigation,

It seems hardly possible that this conclusion could be reduced to something
basically simpler.

10.2. The &-connective.

A transfinite proposition of the form 9 & B is significant and may be
asserted if % and B have already been recognized as significant and valid
propositions. The rules for the &-introduction and &-elimination are
obviously in harmony with this interpretation. Here, as above, transfinite
assumptions (I, 4) are excluded for the time being.

10.3. The 3-connective.

The reader may so far have the impression that the “finitist interpretation’
attributes to transfinite propositions really only the same sense as that
usually associated with such propositions. That this is not the case emerges
from the following discussion of the 3 and v (cf. 10.6).

What sense should we concede to a proposition of the form 3¢ F(z)?
The actualist interpretation that somewhere in the infinite number sequence
there exists a number with the property & is for us without sense. If, on the
other hand, the proposition $(it) has been recognized as significant and
valid for a definite number 1, we wish to be able to conclude (3-introduc-
tion): 3¢ F(r). There are no objections to this; the proposition 3% F(x)
now constitutes only a weakening of the proposition (1) (‘Partialaussage’
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for Hilbert, ‘Urteilsabstrakt’ for Weyl) in that it now attests merely that
we have found a number 1 with the property $, although this number itself
is no longer mentioned. Thus, 3¢ §(t) acquires in this way a finitist sense.

If, instead of being introduced in $(n), the 3 is introduced in a proposi-
tion ¥(t) containing an arbitrary termt, then nothing has essentially changed.
For if the occurring free variables are replaced by definite numbers (which
is after all what free variables stand for) then, by virtue of the decidable
definitions of functions, { becomes a definite calculable number n. If a
J-introduction is accompanied by the occurrence of nontransfinite assump-
tions (I') the situation has not essentially changed.

How can we infer further propositions from a proved proposition of the
form 3% §(x) by the elimination of 3 on the basis of the finitist sense of that
proposition? In contrast with the situation in the case of V and &, it is
obviously not possible fo reclaim the proposition §(n) from 3¢ F(z), which
had provided the justification for the assertion of 3¢ $(Z), precisely because
the value of n is no longer apparent from 3¢ F(z). We can nevertheless
proceed as follows: we conclude $(a), where a is a free variable taking the
place of the number 1 whose value need not be known at this time. If we
then succeed in deducing from $F(a) a certain proposition € no longer
containing a, then this proposition holds. We have thus a 3-elimination in
accordance with 5.251.

This is the first rule, so far, in which an associated assumption, viz.,
%(a), occurs. This assumption may be transfinite. Although we have previ-
ously not granted a sense to transfinite propositions as assumptions but
only as proved propositions, we can here say: the fact that 3¢ (F) has been
proved and is significant, means that a numbker n must have been known
and is reconstructible on the basis of the proof of 3z (Fr), so that F(n)
also represents a significant true proposition. Here the assumption &(a)
is not regarded as an arbitrary assumption but as the true proposition (1),
where a merely denotes the number 1. The proof of € from the assumption
%(a) thus no longer appears as hypothetical, but as an ordinary direct proof;
and precisely this is its sense.

10.4. The v-connective can easily be handled analogously to 3, just as &
was handled analogously to V: a transfinite proposition of the form % v B
is significant and may be asserted if one of the propositions U or B has been
recognized as significant and valid. The rule of the v-introduction corresponds
completely to this interpretation. A v-elimination is carried out thus: if
A v B is given and if the same proposition € follows from the assumption
A as well as from the assumption B, then € holds. This is in order since
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A v B entails that either A or B has at some point been recognized as valid.
In this way a proof for € from ¥, or a proof for € from B, can be made
independent of the assumption ¥, or B, as was done in the case of the 3-
elimination, and we obtain a direct proof. The second proof becomes
redundant and it is thus immaterial whether it has a sense or not.

10.5. At this point it should be explained briefly how the rule of complete
induction is immediately compatible with the finitist interpretation: Suppose
that (1) is a significant valid proposition. The term £ in the conclusion
T(t) represents a definite number 1, once possible occurrences of free
variables have been replaced by numbers. By replacing a successively by
the numbers 1, 2, 3, up to n—1, in the proof of F(a+1) from F(a), we have
formed a direct proof, starting from the valid proposition (1) via F(2),
F(3), etc. up to F(n), so that finally, F(n) is now a valid, significant proposi-
tion.

This may sound trivial; what is essential is that the assumption F(a),
which may have been without sense (if it was transfinite) has been afforded a
sense by the possibility of transforming the relevant portion of the proof
into a direct proof in which F(a) no longer functions as an assumption.
10.6. The finitist interpretation given to the connectives v and 3 differs
from the actualist interpretation not only conceptually but also in its practical
consequences, as the following examples show:

According to the actualist interpretation the proposition ‘Fermat’s last
theorem is either true or not true’ is frue. According to the finitist inter-
pretation of v, however, this proposition cannot be asserted. For, this
would require that one of the two propositions has already been established
as valid. But up to now this has not been done.

A corresponding example containing a 3 is the proposition

Ix {[Vy VzVuVo (v > 2 o y°+2° # u")]
v [Ey3zu(x > 2&y*+2* = v)]},

in words, possibly: ‘There exists a number x so that either Fermat’s theorem
is true or there exists a counterexample with the exponent x’. According to
the actualist interpretation this proposition is true, but according to the
finitist interpretation of the 3, it may not be asserted since at present no
such number is known.

Consequently, neither of these two propositions is provable by the forms
of inference discussed so far, since it was possible to ascribe a finitist sense
to these forms of inference; the additional forms of inference relating to —
are needed for this purpose (cf. 11.2).
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10.7. The finitist interpretation of transfinite propositions containing the
connectives V, &, 3 and v, which has been attempted in these paragraphs,
and the justification of the associated forms of inference is in many respects
incomplete; the meaning of propositions in which a number of such connec-
tives occur in nested form, in particular, still needs to be discussed in greater
detail. I shall not do this, since I am here concerned only with examining
Sundamentals.

A purely formal consistency proof for this part of number theory could be
developed later on the basis of these considerations. Such a proof would be
of little value, however, since it itself would have to make use of transfinite
propositions and the same associated forms of inference which it is intended
to ‘justify’. Such a proof would therefore not represent an appeal to more
elementary facts, although it would of course confirm the finitist character
of the formalized rules of inference. We would, however, have to have a
clear idea beforehand of what can be considered finitist (in order to be able
to carry out the consistency proof proper with finitist methods of proof).

§ 11. The connectives > and — in transfinite propositions: the intuitionist
view

11.1. The >-connective.

We now intend to include transfinite propositions containing the connec-
tive o.

What does & > B mean? Suppose, for example, that there exists a proof
in which the proposition 8 is proved on the basis of the assumption ¥
by means of inferences that have already been recognized as permissible.
From this we infer, by >-introduction: % = B. This proposition is merely
intended to express the fact that a proof is available which permits a proof
of the proposition B from the proposition ¥, once the proposition ¥ is
proved. The o-elimination is in harmony with this interpretation: here B
is inferred from U and A > B; this is in order, since Y > B indicates
precisely the existence of a proof for B in the case where U is already proved.

In interpreting % > B in this way, I have presupposed that the available
proof of B from the assumption 9 contains merely inferences already
recognized as permissible. On the other hand, such a proof may itself
contain other D-inferences and then our interpretation breaks down. For,
it is circular to justify the >-inferences on the basis of a D-interpretation
which itself already involves the presupposition of the admissibility of the
same form of inference. The D-inferences which occur in the proof would
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in that case have to be justified beforehand; but this has its difficulties,
especially if the assumption 9 has itself the form € > D; if this happens,
we have actually no proof for D from € on the basis of which we could
ascribe a sense to € o D,

In order to cope with this difficulty, we would really have to formulate
a more complicated rule of interpretation. This represents one of the prin-
cipal objectives of the consistency progf which follows in section IV.

11.2. The —-connective presents even greater obstacles to a finitist inter-
pretation than the . Transfinite propositions were actually always inter-
preted in such a way that they could in each case be regarded as something
that had previously been recognized as valid. In its actualist interpretation,
— A does not however express the fact that something holds, but rather
purely negatively that something, viz., the proposition U, does not hold.

The following positive interpretation seems nonetheless possible: — U
is to be regarded as significant and true if a proof exists to the effect that
from the assumption of the validity of U a falsehood is certain to follow.
And here the —-connective is reinterpreted in terms of the >-connective,
since — U can certainly be defined as equivalent with % > 1 = 2. The
‘reductio’ is in harmony with this interpretation, as may be shown quite
formally: From U, I’ - B and A, 4 > B =1 =2 we wish to derive
Id— A > 1 =2 This is done as follows: By >-elimination we obtain
WL, A A4—-1=2, hence (5.242) U, I',4 > 1 = 2, and from this, by
S-introduction, I', 4 - A o 1 = 2. This completes the reduction of the
‘reductio’ to the >-forms of inference.

It should be noted that in this reinterpretation of the — in terms of the
>, all doubts associated with the = naturally carry over to the —-connective
to a corresponding degree. '

Now there actually arises a further difficulty: The ‘elimination of the
double negation’ cannot at all be shown to agree with the given —-inter-
pretation. There is no compelling reason why the validity of

UA>1=2)>1=2

should follow from the validity of 2.

This form of inference conflicts in fact quite categorically with the re-
maining forms of inference. In the case of the logical connectives V, &, 3, v
and D we had in each case an infroduction and an elimination inference
corresponding to each other in a certain way. (Cf. the discussion in § 10
and in 11.1.) In the case of the —-connective, the ‘reductio’ can be regarded
both as an introduction (of — in — %) and an elimination (of — in — B);
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the ‘elimination of the double negation’, however, represents an additional
—-elimination which does not correspond to the —-introduction by
‘reductio’. Double negation renders possible indirect proofs of positive
propositions (A) from their denials by means of contradiction, in cases where
a positive proof of the same proposition may be completely inaccessible.
In this way we can, for example, prove the two propositions containing v
and 3 given as examples at 10.6, whereas under the finitist interpretation of
v and 3 these propositions may not even be asserted.

From this it follows that there is no way at all of including the ‘elimination

of the double negation’ in a finitist interpretation of the kind given for v and
3.
11.3. Here the intuitionists draw the line in number theory by disallowing
the ‘elimination of the double negation’ in the case of transfinite propositions
. This delimitation is often also effected by disallowing the ‘law of the
excluded middle’, A v — U, in the case of a transfinite U; this comes to the
same thing*®.

The ‘finitist interpretation’ of the logical connectives V, &, 3 and Vv in
transfinite propositions described in § 10 agrees essentially with the inter-
pretation of the intuitionists. Yet they allow a more general use of the
S-connective; the —-connective is interpreted as at 11.2 by reducing it
to o, and to this corresponds the expression ‘U is absurd’ in place of
‘A does not hold’ for — A.

The ‘elimination of the double negation’ undoubtedly stands in definite
contrast to the remaining forms of inference to such a degree that it might
quite reasonably be disallowed. In fact, I consider a still more radical
critique, especially of the general use of the > (11.1), as equally well
justified.

A theorem by Gidel about the equivalence of intuitionist number theory and
elementary number theory as a whole.

As was first proved by K. G6del*$, it is possible to eliminate the ‘elimina-
tion of the double negation’ with a transfinite % from any given elementary
number-theoretical proof by a special interpretation of transfinite proposi-
tions, so that every proof of this kind becomes intuitionistically acceptable.

In this way, the whole of actualist number theory becomes reduced to
intuitionist number theory. In particular, the former is consistent if the
latter is.

The interpretation involved takes the following form: the logical connec-
tives &, ¥, o and — are ascribed their intuitionist sense. Not so for v and 3;
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Av B is interpreted as — ((— A) & — B), Iz F(z) as — Yz — F(z).
The reason for this interpretation is that the v and 3 cannot here be given
their intuitionist meaning, since the examples of propositions stated at 10.6
are provable in actualist number theory, but not in intuitionist number
theory. If v and 3 in these examples are replaced by &, ¥ and — in the way
described, then propositions result which are also intuitionistically provable.

In my consistency proof the ‘elimination of the double negation’ actually

presents no essential difficulties (13.93).
11.4. The forms of inference which we have not been able to justify so far
by means of a finitist interpretation, and which are therefore disputable for
the time being, occur very rarely in proofs carried out in practical number
theory. It follows from our discussion that such inferences are principally
the ‘elimination of the double negation’ (and the ‘law of the excluded
middle’) applied to transfinite propositions, as well as the use of transfinite
propositions containing nested - and —-connectives.

Transfinite propositions of a more complicated structure hardly ever
occur in practice. In Euclid’s proof presented in § 4, for example, the
only essentially transfinite propositions are the two propositions occurring
at the end: 3z (Prime z & z > @) and Vy 3z (Prime z & z > y). The whole
proof is entirely finitist. The other transfinite propositions which occur
in it, i.e., those containing V¥ or 3, are such that their bound variables range
only over a finite segment of the number sequence.

As an example of a more difficult proof I have looked through Rev.
Zeller’s proof of the ‘law of quadratic reciprocity’*’, and here I have also
been unable to find a ‘disputable inference’.

We are indeed justified in having the impression of an unquestionable
correctness in the case of this and similar proofs. In these proofs we tend
automatically to look more for a finitist than an actualist interpretation of
transfinite propositions.

The task of the consistency proof for elementary number theory is thus

more that of justifying theoretically possible rather than actually occurring
inferences.

SECTION IV. THE CONSISTENCY PROOF

I shall now prove the consistency of elementary number theory as a whole
as formalized in section II.

In carrying out this consistency proof we must make certain, as was
pointed out in 2.31, that the inferences and derived concepts used in the
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proof itself are indisputable or at least considerably more reliable than the
doubtful forms of inference of elementary number theory. It follows from
our discussion in section III that this requirement can be regarded as met
if the techniques of proof used are ‘finitist’ (in the sense of §§ 9-11). The
extent of our success in this direction will be examined more closely in
section V (16.1).

§§ 13-15 contain the core of the consistency proof, whereas § 12 is con-
cerned with some relatively simple preliminaries.

§ 12. The elimination of the symbols v, 3, and > from a given derivation

Suppose a number-theoretical derivation (5.22) as given. It is to be shown
that it is consistent, i.e., that its endformula cannot have the form
A& — U

We begin by stating a rule for the fransformation of the given derivation.

As a result of this transformation, the connectives v, 3 and = will no
longer occur in the derivation.
12.1. In actualist logic, which we are in effect dealing with in unrestricted
number theory, the different logical connectives can be represented by other
connectives in various ways. By means of three connectives, viz., —, any
one of the three connectives &, v and >, as well as any one of the two
connectives V and 3, all others may be expressed. I shall make use of this
fact to facilitate the consistency proof and shall retain the symbols &, V
and — and express v, 3 and o in terms of these.

This does not mean that the ambiguities (11.1) associated with the o
are thus conjured away, they stay with us in an equivalent form in the —.

The replacement takes the form:

For Av B we put — ((— A) & — B).

For A o B we put — (A & — B).

For 3¢ §(x) we put — Vi — F(z).

All v-, 3- and >-symbols occurring in the derivation are replaced in this
way. The order in which this is done is obviously immaterial.
12.2. We must now examine to what extent the given derivation has remained
correct after these replacements and, where this is not the case, modify the
derivation accordingly. That such a modification is possible is very plausible
since the new formulations for the v, 3 and > are indeed equivalent to the
original ones in the actualist interpretation. The precise formal verification
is therefore not difficult:
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Basic logical sequents (5.23) have become other basic logical sequents.

The same holds true for basic mathematical sequents, as long as we
presuppose that a mathematical axiom in which the v-, 3- and >-connectives
occur, becomes another mathematical axiom after the replacement of these
connectives by —, & and V. This requirement is easily met: the simplest
way is to formulate all axioms from the very beginning without v, 3, and >.

Structural transformations (5.24) and application instances of the rules
of inference (5.25) have obviously remained correct, as long as we are not
dealing with one of the rules involving the connectives v, 3 and >. The latter
rules must be replaced by applications of other rules of inference in accor-
dance with the following instructions:

A v-introduction: ‘From I' - U follows I’ — A v B, after the replacement
takes the form: ‘From I'* —» A* follows I'* - — ((— A*) & — B*.
A* designates the formula which has resulted from 2 by the replacement;
B* and I'* are to be understood in the same way.

In words, the new version by means of the forms of inference for & and
— reads as follows: A* holds on the assumptions I'*. If (— U*) & — B*
were to hold, then so would — 2*, in particular, and this cannot be the
case since it contradicts A*, i.e., — ((— %*) & — B*) holds on the assump-
tions I'*.

To this corresponds the following formal instruction: the appropriate
place in the derivation is to be transformed thus:

is a basic sequent; by &-elimination we obtain (— U*) & — B* -» — A*,

this together with the sequent (— U*) & — B*, I'* - A*, obtained from

T* - 9* by means of 5.243, by ‘reductio’ yields I'* » — ((— U*) & — B*).
The other form of the v-introduction is dealt with in the same way.

A v-elimination has the following form after the replacement:

‘From I'* » — ((— UA*) & — B*) and A*, 4* > €* and B*, 6* - C*
follows I'*, A*, @* — E*’,

This is transformed thus: — €* - — €* yields A*, - E* > — €%,
this together with UA*, 4* — €*, by ‘reductio’ yields 4*, — €* - — UA*;
similarly B*, — €* - — §*, together with B*, @* - €%, yields the
sequent O* — §* - — B*; taking both results together, we obtain
4*, — €*, 0*, — E* » (— U*) & — B* by &-introduction, hence (5.242,
5.241) — B*, 4*, 0* - (— U*) & — B*;from'* - — ((— A*) & — B*)
follows — €*, I'* - — ((— A*) & — B*), thus, by ‘reductio’, we obtain
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A*, @*, T'* - — — §*, and finally, by ‘elimination of the double negation’,
A%, ©*, I'* - §*, hence (5.241) I'*, 4%, O* — €*,

A Z-introduction or I-elimination is dealt with analogously to the v-
introduction or v-elimination; a V-elimination takes the place of a &-
elimination, and a V-introduction the place of a &-introduction in the
appropriate place of the derivation. The details are straightforward.

A o-introduction, after the replacement, takes the form:

‘From A*, I'* — B* follows I'* - — (A* & — B*)". This is transformed
thus: A* & B* - U* & — B* yields U* & — B* > U* as well as
A* & — B* - — B*, hence also A*, A* & — B* - — B*; this, together
with U*, I'* — B*, yields I'*, A* & — B* - — UA*, hence A* & — B*, ['* —
— UA*. By including A* & — B* — A*, we obtain I'* - — (A* & — B*).

A D-elimination, after the replacement, takes the form:

‘From I'* —» %* and 4* - — (U* & — B*) follows I'*, 4* - B¥’,

This is transformed thus: I'* - U* and — B* > — B* yield
r* — B* - Y* & — B*, hence — B*, I'* - A* & — B*; by including
— B*, 4* - — (U* & — B*), we obtain I'*, 4* - — — B* and from
this I'*, 4* — B*,
12.3. We have thus succeeded in transforming the given derivation into a
derivation in which the symbols v, 3 and D no longer occur. It should be
observed that the endformula of the derivation has undergone a change
only if it contained a v, 3 or o.
12.4. It is worth noting that according to what was said at 11.3, the given
derivation is now already essentially an intuitionistically admissible number-
theoretical derivation; for wherever the ‘elimination of the double negation’
is still used it could be replaced by other rules of inference.

§ 13. The reduction of sequents

The concept of the ‘statability of a reduction rule’ for a sequent, to be
defined below, will serve as the formal replacement of the informal concept
of truth; it provides us with a special finitist interpretation of propositions
and takes the place of their actualist interpretation (cf. §§ 9-11).

In a sequent in which the connectives v, 3 and = no longer occur, an
individual reduction step can be carried out in the following way (13.11 to
13.53):

13.11. Suppose that the sequent contains at least one free variable. In that
case we replace every occurrence of this free variable by one and the same
arbitrarily chosen numeral.
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13.12. Suppose that the sequent contains no free variables and that some-
where in one of its formulae a minimal term (3.24) occurs (e.g., as part of
a longer term). In that case we replace the minimal term by its associated
‘functional value’, i.e., by that number which, by virtue of the definition of
the function concerned (cf. 8.12), represents the value of the term for the
given numbers taken as arguments.

Thus I am now assuming of the functions that they are decidably defined
in the sense of 8.12.

13.21. Suppose that the sequent contains no free variables and no minimal
terms and that its succedent formula (5.21) has the form V¢ (). In that
case we replace it by a formula (1), i.e., by a formula which results from
&(x) by the substitution of an arbitrarily chosen numeral 1t for the variable t.
13.22. Suppose that the sequent contains no free variables and no minimal
terms and that its succedent formula has the form 9 & 8. In that case we
replace it by the formula U or by the formula B, as we please.

13.23. Suppose that the sequent contains no free variables and no minimal
terms and that its succedent formula has the form — 9. In that case we
replace it by the formula 1 = 2 *® and, at the same time, adjoin the formula
9 (in the last place) to the antecedent formulae of the sequent (cf. 11.2).
13.3. If none of the possibilities listed above applies, the succedent formula
of the sequent must be a minimal formula (3.24).

I am now assuming of predicates, as was done for functions above, that
they are decidably defined in the sense of 8.12,

We can consequently decide of a given minimal formula on the basis of

the definition of the predicate concerned, whether it represents a true or false
proposition.
13.4. Suppose that the sequent contains no free variables and no minimal
terms and that its succedent formula is a true minimal formula; or: that the
succedent formula is a false minimal formula (e.g., 1 = 2) and that one of
its antecedent formulae is also a false minimal formula.

For such an obviously zrue sequent (cf. 7.3.) no reduction step is defined.
13.5. Suppose that the sequent contains no free variables and no minimal
terms, thatits succedent formulais a false minimal formula, and that none of
its antecedent formulae are false minimal formulae. In that case the following
three different kinds of reduction step are permissible (counterpart to 13.2):
13.51. Suppose that an antecedent formula has the form Vi (). To it
we adjoin an antecedent formula (1), i.e., a formula which results from
() by the substitution of a numeral 1 for the variable g. In doing so
we may either retain or omit the formula Vg (x).
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13.52. Suppose that an antecedent formula has the form U & B. In that
case we adjoin to it either the formula 9 or the formula %B. In doing so we
may omit or retain the formula U & B.

13.53. Suppose that an antecedent formula has the form — 9. We replace
it by the succedent formula 2. In doing so we may either omit or retain
the formula — 2.

13.6. A reduction rule for a sequent in which the connectives v, 3 and >
do not occur is a rule which renders possible in each case the ‘reduction’
of a sequent in finitely many individual reduction steps (in accordance with
13.11 to 13.53) to one of the correct reduced forms (13.4) regardless of how
we may choose the numeral 1, or which of the two formulae U and B
(in the case of 13.22) we may choose when carrying out a reduction step in
which there exists an ‘option’, i.e., one of the steps described at 13.11,
13.21 and 13.22.

13.7. Wherever several possibilities are open to us in any of the other
reduction steps (e.g., in the case of 13.5), no actual option exists since
we require it to be determined by the reduction rule which kind of reduction
step is to take place; also, e.g., what numeral 1 is to be used in the adjunction
of an antecedent formula (1), and whether or not the formula Yz F(g)
is to be omitted in the process.

13.8. Comments concerning the reduction process.

13.81. The reduction of true sequents containing no variables.

In order to illustrate the reduction concept, I shall first show that for
sequents without variables and without the symbols v, 3 and =, the concept

of the statability of a reduction rule coincides with the concept of truth in
the sense of a calculation procedure (7.2,7.3):

Such a ‘true’ sequent is to be brought to its reduced form according to
the following rule: First, all terms that may occur are to be replaced by
their ‘numerical values’ (13.12). If the reduced form (13.4) has not yet been
reached, a reduction step is to be carried out by which the sequent is trans-
formed into another ‘true’ sequent in which fewer logical connectives occur
then before. This is always possible. After all, reductions according to
13.22 and 13.23 certainly meet this requirement. In the case of 13.5, the
following reduction step, among the various possibilities, is to be applied:

If a false antecedent formula of the form U & B occurs, then either U
or B must be false; in that case the formula 9 & B is replaced by ¥ or B,
resp. If a false antecedent formula of the form — 2 occurs, it is omitted
and the succedent formula is replaced by 9.

Each one of the given reduction steps obviously leads to another frue
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sequent, furthermore to one with fewer logical connectives than before.
The continuation of this process obviously leads to the reduced form of the
sequent in finitely many steps.

The fact that, conversely, every sequent without variables for which a
reduction rule is available is true follows from the fact that a false sequent,
as is easily verified, would be transformed into another false sequent by
every permissible reduction step or that, in the case of a reduction step
according to 13.22, the choice of A or B could be made in such a way that
this is the case.

13.82. These considerations can be extended without difficulty to the case
of sequents containing Y-symbols ranging over only finitely many numbers.
The reduction of the V then proceeds analogously to that of the &.

13.83. If we proceed to the infinite domain of objects of all natural numbers,
the statement of a reduction rule for an arbitrary derivable sequent is in
general no longer as simple. Since it is here no longer true that all formulae
are decidable we may, at times, be forced to make use of the option to retain
the transformed antecedent formula in reduction steps according to 13.51
to 13.53, whereas it was always possible to omit this formula in the case of
a finite domain (13.81, 13.82).

As an example, I shall give a reduction rule for the proposition ‘Fermat’s
last theorem is either true or not true’, stated at 10.6 which, according to
its finitist interpretation at that point, is not a true proposition; after the
replacement of the v and written as a sequent, this proposition has the form:

- = {[=VxVyVzVu — (u> 2 & x"+y* = z¥)]
& [ = VxVyVzVu — (u > 2 & x"+y" = 2¥)]}.

This is reduced as follows: First we obtain (13.23)

[~ VxVyVzVu — (u>2&x"+)y" = z%)]
& VxVyVzVu - (u>2&x"+y* =2")]>1=2.
By two reductions according to 13.52 we obtain
= VxVyVzVu — (u > 2 & x"+)y" = z¥),
S aVxVyVzVu — (u>2&x"+)" =2") > 1 = 2;
Further (13.53):

—VxVyVzVu— (u>2&x"+)y" = z¥)
= A VxVyVzVu— (u> 2 &x"+)y" = z¥).
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The reduction of this basic logical sequent must now be completed along
the lines described in general at 13.92.

13.90. In the following I shall prove that reduction rules can be stated for
all sequents occurring in an arbitrarily given derivation, once the derivation
has been transformed according to § 12.

From this the consistency will then follow at once:

For if a sequent of the form — A & — U were derivable, then - 1 = 2,

for example, would also be derivable. This is so since — U as wellas — — U
follow from — A & — U by &-elimination, hence also (5.243) -1 =2 - A
and — 1 =2- —U; by ‘reductio’ we obtain - — — 1 =2, and by
‘elimination of the double negation’ —» 1 = 2. (In the same way any arbi-
trary proposition can be derived from a contradiction.) No reduction rule
can however be stated for the sequent — 1 = 2, since there is no reduction
step that might possibly be applied to it, nor is it in reduced form (13.4),
since 1 = 2 is false.
13.91. In the case of basic mathematical sequents, I am assuming that the
given reduction rules have been formulated in such a way that they do not
make use of the possibility, which exists for reduction steps carried out
according to 13.5, of retaining the transformed antecedent formula.

For all customary number-theoretical axioms such rules are easily stated.
Let us, for instance, consider the examples given at 6.2: these must first
be written as sequents and the > replaced by & and —; the resulting sequent
can then be reduced by first eliminating the V-symbols according to 13.1
and by replacing their associated variables by arbitrary numerals and then
proceeding as described at 13.81. The justification is that the formulae which
result at each step are indeed ‘true’.

13.92. Basic logical sequents are to be reduced according to the following
simple rule:

Suppose that a sequent of the form U — A is given. We first replace the
free variables by arbitrary numerals (13.11), then the minimal terms by
those numerals that represent their values (13.12). The latter procedure
must be repeated until no further minimal terms occur — for it can certainly
happen that new minimal terms arise during the computation. The sequent
finally has the form UA* — A*,

The succedent formula UA* is then reduced by means of reduction steps
according to 13.21, 13.22 and, if necessary, 13.12 until it has the form
— € or is a minimal formula. In the case of reductions according to 13.21
or 13.22 the replacement numerals or formulae may be chosen ar-
bitrarily.
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If the succedent formula has become a true minimal formula, then the
reduction procedure terminates (13.4).

If the succedent formula has become a false minimal formula, then further
reduction steps must be carried out according to 13.51, 13.52 and 13.12
in such a way that the antecedent formula N* undergoes precisely the same
transformations, in the same order, as the succedent formula A* did earlier.
If the antecedent formula has taken the form Y¢ (), for example, it must
be replaced by a formula (1), and for the replacement numeral 1 the same
numeral must be taken that was chosen in the corresponding reduction of the
succedent formula. Reduction steps according to 13.52 are dealt with
correspondingly. Thus the antecedent formula eventually becomes identical
with the succedent formula and the procedure once again ferminates,
since the reduced form (13.4) has been reached.

If the succedent formula has taken the form — €, a reduction according
to 13.23 must first be carried out. The sequent then runs: %*, € - 1 = 2,
As in the previous case, this sequent is reduced in such a way that the antece-
dent formula U* is transformed in the same way as was the succedent formula
A*, so that finally — € appears in its place. Then the sequent runs
— €,8 = 1 = 2. By means of 13.53 it is reduced to & — §. This is another
basic logical sequent; the formula € contains at least one fewer logical
connective than U*, and this procedure must consequently end after finitely
many steps. A reduction rule has thus been given for arbitrary basic logical
sequents.

13.93. In a similar way arbitrary sequents of the form A & B - U,
A&B->B, AUB->A&LDB, VrF()-FE), AL, —-A->1=2, or
— — ¥ - Y may be reduced, a fact which will be used later.

Here, too, the free variables and minimal terms are first replaced according
to 13.11 and 13.12. The sequent A* & B* — A* then has a form which also
occurred in the reduction of the logical basic sequent A* & B* —» A* & B*
according to 13.92; hence the reduction of the sequent in question can be
completed in the same way as that of the latter. The same holds true for
A* & B* » B* and, correspondingly, for (Vr F(r))* - (F(t))*; here the
basic sequent (Vi (z))* - (V& F(z))* must be used. In the case of
UA*, B* - Y* & B*, a reduction step according to 13.22 must be carried out;
from it either A*, B* - A* or A*, B* - B* follows, whichever we wish.
The reduction is then continued in exactly the same way as that of the basic
sequent A* - A* or B* - B*; the additional antecedent formula is dis-
regarded and presents no problem. In the case of A*, - A* > 1 = 2, are-
duction step according to 13.53 yields q* — A*, hence another basic sequent.
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In the case of — — UA* —» A*, reduction steps are carried out on the
succedent formula according to 13.21, 13.22 and 13.12, until it has the form
— € or is a minimal formula. If it has become a true minimal formula,
then the reduction is at an end. If it has assumed the form — @, it is reduced
according to 13.23to — — U*, € —» 1 = 2, further, by 13.53,to € - — U*
then by (13.23) to €, A* — 1 = 2. The same procedure is followed in the
case where the succedent formula has become a false minimal formula;
in that case, — %* is obtained first, and then A* - 1 = 2.

In both cases we have obtained a sequent which had also occurred in the
reduction of the basic logical sequent W* — A* according to the procedure
stated at 13.92 (or by a procedure that is not essentially different). Once
again we need only follow the procedure stated there in order to complete
the reduction of the sequent at hand.

It should be noted that in any reduction steps according to 13.5 in the
reduction procedures at 13.92 and 13.93, the antecedent formula involved
was never retained.

§ 14. Reduction steps on derivations *°

In order to reduce arbitrary derived sequents we shall state a procedure
by which certain reduction steps are carried out on the entire derivation
of the sequent concerned. For this purpose I shall modify somewhat the
concept of a derivation used so far (14.1), and shall then explain how an
individual reduction step is to be carried out on such a derivation (14.2).
14.1. Modification of the concept of a derivation.

The new concept of a derivation results from the old one (5.2) as follows:
5.22 continues to apply, even though the ‘endsequent’ of the derivation may
now also contain antecedent formulae (so that we can speak of a ‘derivation
for a sequent’). The symbols v, 3 and > must not occur in the derivation.
No sequent of the derivation may be used to obtain more than one further
sequent (by the application of a rule of inference).

It is easily seen that a derivation in the old sense can be transformed
into a derivation with the same endsequent which also satisfies this condition.
We need merely work backwards from the endsequent and write down
correspondingly often those sequents which have been used more than once,
together with the sequents used for their derivation.

Basic mathematical sequents must fulfil the requirement 13.91; together
with these all their ‘reduction instances’, i.e., all sequents which may arise



180 THE CONSISTENCY OF ELEMENTARY NUMBER THEORY

in the course of a given reduction procedure, are also admitted as basic
mathematical sequents.

As basic logical sequents we may take arbitrary sequents of the form
A->A AKB->UA A&LB->B, AB->A&LB, VrF(r) - Fi),
AU A > 1=2,0or——A—- A, as well as all sequents which may occur
in the reduction of one of these sequents according to 13.92, 13.93.

Structural transformations in their old form are no longer allowed.
From the rules of inference we retain the rule of V-introduction and
‘complete induction’ with the following modification: a V-introduction or
a ‘complete induction’ in whose sequents no free variables other than a
occur, remains permissible if in all associated sequents not containing the
variable a, the minimal terms which occur are replaced by their ‘numerical
values’, until all minimal terms have been eliminated (for motivation cf.
14.22).

The following new ‘—-introduction’ rule is added: From I', ¥ - 1 = 2
results ' — — 9.

We shall adopt one additional rule of inference — the ‘chain rule’ — :
From a sequence of sequents (at least one) of a given form, a sequent of
the following kind results: for its succedent formula we take the succedent
formula of any one of the sequents of the sequence. If this formula is a false
minimal formula, any other may be taken in its place. For its antecedent
Sformulae we write down, in arbitrary order, all antecedent formulae of the
sequent concerned, together with all antecedent formulae of earlier sequents
in the sequence. In carrying out this inference, we may omit formulae for
which the following holds: the same formula occurs already among the
formulae written down (i.e. those not omitted); or: the formula is the same
as the succedent formula of a sequent occurring earlier in the sequence than
the sequent from whose antecedent formulae it is taken. Other antecedent
Jormulae may be inserted among the formulae already written down. Finally,
the completed sequent may be modified by one or more applications of the
substitution rule for bound variables as in 5.244. _

The ‘chain rule’ has thus been formulated flexibly enough to allow for
the transformation of a derivation in the old sense, which we assume to be
already freed of the symbols v, 3 and = by the method described in § 12
(and which we also suppose to fulfil the conditions for functions, predicates
and axioms in 13.12, 13.3, 13.91), into a derivation in the new sense without
any change in its endsequent.

Reason: All structural transformations are special cases of the ‘chain rule’.
The omitted rules of inference may be replaced by the new basic sequents
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that have taken their place, together with the ‘chain rule’, e.g., the &-
introduction: ' > W and 4 -» B and A, B > A & B by the ‘chain rule’
yields I', A — U & B. The V-elimination: I' » V¢ F(xr) and Yz F(z) — F(t)
by the ‘chain rule’ yields I' — (t). The &-elimination and the ‘elimination
of the double negation’ are replaced correspondingly. Finally the ‘reductio’:
from W, I - B and U, 4 - — B and B, - B — 1 = 2 we obtain by the
‘chain rule’ I', 4, % - 1 = 2, and by —-introduction finally I' 4 — — 9.
~ The new concept of a derivation is thus not narrower than the old one,
and for the purpose of stating a reduction rule for any one of the sequents
occurring in a derivation we can, without loss of generality, assume as given
a derivation in the new sense for the sequent concerned. In the following,
I shall designate as ‘premisses’ those sequents from which a new sequent,
the ‘conclusion’, results in the course of the application of a rule of in-
ference.

It is fairly obvious that in view of its informal meaning the ‘chain rule’
constitutes a ‘correct’ inference. It can actually be shown to be replaceable
by the old rules of inference together with structural transformations.

In formulating the ‘chain rule’, we have allowed for the case in which
no real use is made of some of the premisses; this turns out to be of practical
value for the reduction procedure. The extensive replacement of the rules
of inference by combinations of basic sequents and the ‘chain rule’ is also
motivated by convenience; it has the virtue of changing the original vertical
arrangement of inferences into a horizontal arrangement.

Finally, I shall also presuppose that it has been stated for each sequent
of a given derivation whether it is a basic sequent and of what kind or from
what preceding sequents and by what rules of inference it has been obtained;
1 shall assume, in general, that it has been stated how the individual sequents,
formulae, etc., involved in an application of a rule of inference, correspond
to the designations used in the associated general schema: in this way the
need for resolving possible ambiguities does not arise.

14.2. Reduction steps on derivations.

I shall now define the concept of a reduction step on a derivation (14.1)
and at the same time prove the following: in such a step the derivation
concerned is transformed into another derivation and its endsequent is
modified in the following way:

The possible occurrences of free variables are replaced by arbitrarily
chosen numerals; any minimal terms that may be present are then replaced
by their ‘numerical values’ until all minimal terms have been eliminated;
and, furthermore, at most one reduction step according to 13.2 or 13.5 is
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carried out on the sequent. (It may thus happen that an endsequent without
free variables or terms remains entirely unchanged.)

The reduction step on derivations is unambiguous, except in the cases
in which the endsequent undergoes one or more transformations according
to a reduction step on sequents involving a choice (13.11, 13.21, 13.22);
here the choice may be made arbitrarily; if this has been done, the reduction
step is then also unambiguous.

If the endsequent of the derivation is in reduced form according to 13.4,
no reduction step is defined for this derivation. In other cases we carry out
a reduction step now to be defined (recursively). In the following we there-
fore assume that the endsequent is not in reduced form.

14.21. If the endsequent of the derivation is a basic sequent then the reduc-
tion step on it is carried out according to the reduction rules 13.91-13.93,
which clearly also cover all basic sequents in their present sense: a replace-
ment of all possible occurrences of free variables and terms must here take
place, followed by precisely one step according to 13.2 or 13.5 (or none at all,
if the reduced form has already been reached). Thus the assertions about
the reduction step on derivations made above have obviously been estab-
lished.

14.22. We now consider the case where the endsequent is the result of the
application of a rule of inference and we presuppose that, for the derivations
of the premisses, the concept of a reduction step has already been defined
and the validity of the associated assertions demonstrated.

The reduction step on the entire derivation begins with the following
preliminary (replacement of free variables and minimal terms):

We begin by replacing all occurrences of free variables in the endsequent
by arbitrarily chosen numerals. Then we replace the same variables (i.e.
the variables that were replaced in the endsequent) in the entire derivation
by the same numerals, and replace the remaining free variables by 1, with
one important exception: the free variable occurring in a V-introduction or
‘complete induction’ and designated by a at 5.25 must not be replaced in the
premisses I' - F(a) or F(a), 4 - F(a+1), nor in any sequent belonging
to the derivation of that sequent.

Next we replace all minimal terms occurring in the derivation one by one
by their ‘numerical values’, with one important exception: no replacement
takes place in the premisses of a V-introduction or ‘complete induction’
containing a, nor in any sequent belonging to the derivation of that sequent.

Both replacement procedures obviously leave the derivation correct.
Essential to this in the replacement of free variables is, first, the restriction
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on the variable a in the case of a V-introduction and a ‘complete induction’
as formulated at 5.25, and the requirement (14.1) that every derivational
sequent serves as a premiss for at most one application of a rule of inference.
These two facts make it actually possible to separate completely from the
rest of the variables the variables to be replaced, so that by this distinction
no error is introduced into any application of a rule of inference.

In the case of a term replacement the special requirement formulated at
14.1 for the V-introduction and the ‘complete induction’ is important
(which is why it was introduced); for, the original normal form of these
rules of inference (5.25) may be destroyed by the replacement.

After this ‘preliminary’ comes the actual reduction step, according to the

following rules. If the endsequent is already in reduced form, the reduction
step terminates at this point.
14.23. Suppose that the endsequent is the result of a V-introduction or a
—-introduction. It is then eliminated and its premiss taken for the new
endsequent, where, in the case of a V-introduction, every occurrence of the
free variable @ must be replaced throughout the derivation of this premiss
by an arbitrarily chosen numeral and every minimal term by its ‘numerical
value’, subject to the same restrictions as at 14.22; not to be replaced,
however, are terms in which the variable a occurred earlier.

The derivation has obviously remained correct, and the endsequent has
become a reduced endsequent in the sense of 13.21 or 13.23.

14.24. Suppose that the endsequent is the result of a ‘complete induction’.
The numerical value of the term t will be denoted by the numeral n; m
shall be the numeral for the number smaller by 1 (if 1 is not equal to 1).
The free variable a in the derivation of the premiss F(a), 4 — F(a+1)
is then replaced successively by the numerals 1, 2, 3, etc. up to m, subject
to the same restriction as at 14.22, and all minimal terms that may have
resulted are then replaced by their ‘numerical values’, also subject to the
same restriction as at 14.22. The derivation as a whole is then completed
by the application of the ‘chain rule’, which makes it possible to derive the
endsequent I', 4 — (F(1))* once again from I' — (F(1))* and the newly
derived sequents (F(1))*, 4 - (F(2))* and (F(2))*, 4 - (F(3))* etc. up to
(F(m))*, 4 - (F(n))*. The asterisk denotes in each case the changes that
have occurred through the replacement of minimal terms. By virtue of the
preparatory replacement of terms (14.22) and the further replacement of
the terms carried just out, all occurrences of minimal terms have finally been
eliminated, so that the related §*-expressions have indeed become identical
with one another, even if they had not been identical before. If n equals 1,
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then we merely put 1 for a, and by the ‘chain rule’ the endsequent
r,4 — (F(1))* results from I' — (F(1))* and (F(1))*, 4 - (F(2)*.

14.25. The last case to be considered is that in which the endsequent is the
conclusion of a ‘chain rule’ inference. This is the most difficult reduction,
since the chain rule in some sense amasses the difficulties of all inferences.

The premiss whose succedent formula provides the succedent formula of
the endsequent, I shall call the ‘major premiss’. If the succedent formula of
the endsequent is a false minimal formula, we choose as major premiss the
first premiss (in the given order) whose succedent formula is also a false
minimal formula. This does not change the correctness of the ‘chain rule’,
even if a later premiss was the major premiss before; it may merely happen
that certain antecedent formulae of the endsequent can no longer be
regarded as taken from the premisses, but rather as newly adjoined.

From these preliminaries it follows that the major premiss can in no case
be in reduced form (13.4), for otherwise the endsequent would obviously
also have to be in reduced form, and this was assumed not to be the case.
Hence a reduction step can be carried out on the derivation of the major
premiss. In this respect I shall distinguish four cases to be dealt with in
turn (14.251-14.254).

14.251. Suppose that the major premiss undergoes a change according to
13.2 in the reduction step on its derivation. In that case the endsequent
is subjected to the appropriate reduction step for sequents according to
13.2; any choice that arises is to be made arbitrarily. The reduction step for
derivations is then carried out on the derivation of the major premiss and,
wherever a choice exists, the same choice is to be made as before. The
succedent formulae of both sequents are now the same once again (up to
possible redesiganations of bound variables) and the ‘chain rule’ is once
again correct. Thus, the reduction step for the entire derivation is completed.
14.252. Suppose that the major premiss undergoes a change according to
13.5 in the reduction step oaq its derivation, and that the affected antecedent
formula is one of the formulae that has been included among the antecedent
formulae of the endsequent (when the latter was formed by the ‘chain rule’)
or that it was omitted because an identical formula kad already occurred
among the antecedent formulae. In thac case the reduction step is carried
out on the derivation of the major premiss and, so that the ‘chain rule’
becomes again correct, the endsequent is modified according to the corre-
sponding reduction step on sequents (13.5). Le., if the affected antecedent
formula was itself absorbed into the endsequent, then the same reduction
step is here carried out on that formula; but if it was omitted because it
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was identical with an already existing formula, then the reduction step is
carried out on the latter formula and it is retained, regardless of whether
the corresponding formula in the reduction of the premiss is omitted or
retained.

14.253. (Principal case.) Suppose that the major premiss, say 4 — €,
undergoes a change according to 13.5 in the reduction step on its derivation
and that the affected antecedent formula (%) is a formula that was not
included among the antecedent formulae of the endsequent because it
agreed with the succedent formula of an earlier premiss; suppose further
that zhis premuss, call it I' — B, undergoes a change during he reduction
step on its derivation which, in that case, must necessarily be a change
according to 13.2. (Since B cannot be a minimal formula.) — Suppose that
the endsequent of the whole derivation has the form @ — D. I shall dis-
tinguish three subcases depending on whether B has the form Y F(r),
A& B or = A. The treatment of the three cases is not essentially dif-
ferent.

Suppose first that B has the form V¢ F(z). In that case an antecedent
formula $(n) is adjoined in the reduction step according to 13.51 on
4 — €, and V¢ F(r) is either retained or omitted; in the reduction step on
I - Yz §(r), which must be carried out according to 13.21, the same
symbol 1t may be chosen for the numeral to be substituted, so that I — F(1)
results. We now form three ‘chain-rule’ inferences: the premisses of the
first are those of the original ‘chain-rule’ inference, but with I' — (1)
in place of I' —» Y F(x); its conclusion: @ — F(1t). A correct result. The
premisses of the second are those of the original ‘chain-rule’ inference,
except that 4 — € is replaced by the sequent that was reduced according
to 13.51; its conclusion: @, F(1n) — D. This is also a correct ‘chain-rule’
inference. The third ‘chain-rule’ inference again yields the endsequent
0 - D from O - F(1n) and O, F(n) > D .— Together with each one of
the sequents used we must of course write down the complete derivation
of each sequent so that altogether we now have another correct derivation.

If B has the form % & B, then we adjoin antecedent formula ¥ or B
in carrying out a reduction step on 4 — € according to 13.52. ' - A & B
becomes either I' = U or I' - B, as desired; the choice should be made
so that the same formula occurs asin 4 — €. The procedure is then continued
exactly as in the previous case.

If B has the form — %, then 4 — € is reduced to 4* - Y, and " - — A
tol, A - 1 = 2. We now form, as before, two ‘chain-rule’ inferences with
the conclusions @, % — 1 = 2 and ® — . With their order interchanged,
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these two inferences again yield ® — D by a third ‘chain-rule’ inference.
This is so since D, like € and 1 = 2, is a false minimal formula.

14.254. We are still left with the following possibilities: the major premiss
remains unchanged in the reduction step on its derivation; or: its change is
of the kind assumed at 14.253, and the premiss I — ¥ remains unchanged
in the reduction step on its derivation. — In both cases we carry out the
reduction step on the derivation of the premisses that have remained
unchanged, and this completes the reduction. However, in the case of a
reduction step according to 14.253 on the derivation of the premisses (which
after all leaves the endsequent, i.e., the premisses unchanged) we proceed
somewhat differently, viz.: we carry out this reduction, but without com-
pleting the prescribed third ‘chain-rule’ inference; instead, we take the two
premisses, rather than the conclusion, of the ‘chain-rule’ inference and
adjoin them to the premisses of that ‘chain-rule’ inference which concludes
the derivation as a whole. This obviously leaves the ‘chain-rule’ inference
correct. The endsequent is not changed.

The definition of a reduction step on a derivation is thus complete.

§ 15. Ordinal numbers and proof of finiteness

It remains to be shown that a successive application of a reduction step
on a given derivation always leads to the reduced form (of the endsequent)
in finitely many steps, regardless of the choices made in those cases in which
a choice exists. In doing so, we shall at the same time have given a reduction
rule (13.6) for arbitrary derived sequents, since the reduction of the deriva-
tion of the sequent (according to § 14) automatically involves the reduction
of the sequent (according to § 13).

In order to prove the finiteness of the procedure we shall have to show
that each reduction step in a definite sense ‘simplifies’ a derivation. For this.
purpose I shall correlate with each derivation an ‘ordinal number’ repre-
senting a measure for the ‘complexity’ of the derivation (15.1, 15.2). It can
then be shown that with every reduction step on a derivation the ordinal
number of that derivation (in general) diminishes (15.3). However, the
finiteness of the reduction procedure is hereby not immediately guaranteed;
for the ordering of the derivations (corresponding to the well-ordering of
their ordinal numbers) is of a special kind, since it may happen that in terms
of its complexity a derivation ranks above infinitely many other derivations.
E.g., a derivation whose endsequent has taken the form — Vi (), as a
result of a ‘complete induction’ and a V-introduction, must be regarded as
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more complex than any one of the infinitely many special instances obtained
by substituting definite numerals for ¢ and decomposing the ‘complete
induction’ (14.23, 14.24). The situation may be complicated still further by
a multiple nesting of such instances. Thus the ‘ordinal numbers’ here have
the nature of ‘transfinite ordinal numbers’ (cf. footnote 21) and the inductive
comprehension of their totality is not possible by ordinary complete induc-
tion, but only by ‘transfinite induction’ whose validity requires a special
verification (15.4).

15.1. Definition of ordinal numbers (recursive).

As ‘ordinal numbers’ I shall use certain positive finite decimal fractions
formed according to the following rule:

Ordinal numbers with the characteristic 0 are precisely the following
numbers: 0.1, 0.11, 0.111, 0.1111, . . . i.e.,in general: any number with the
characteristic 0, whose mantissa consists of finitely many 1’s; also the
number 0.2.

Neither here nor below shall we permit the adjunction of zeros at the end
of an ordinal number; the representations of the numbers thus become
unique. — I shall call one mantissa smaller than another mantissa if this
relationship holds between the numbers resulting from these mantissas if
the latter are prefixed by ‘0’.

The mantissa of an ordinal number with the characteristic p+1 (p = 0)
is obtained by taking several mutually distinct ordinal numbers (at least one)
with the characteristic p, ordering their mantissas according to size, so that
the largest occurs first, the smallest last, and by then writing them down in
that order from left to right, separating any two successive mantissas by
p+1 zeros. All numbers obtainable in this way from ordinal numbers with
the characteristic p, and no others, are ordinal numbers with the char-
acteristic p+ 1.

Examples of ordinal numbers:

0.111, 1.1101, 1.2, 2.111, 2.2010011010011, 3.2010020001.

It can be determined uniquely of a given number with the characteristic
p+1 from what numbers with the characteristic p it has been generated
by the above rule. For, a number with the characteristic ¢ can obviously
have no more than ¢ consecutive zeros in any one place.

Further details about the ordering of the ordinal numbers follow at 15.4.
15.2. The correlation of ordinal numbers with derivations.

With every given derivation (in the sense of 14.1) we can correlate a
unique appropriate ordinal number calculated according to the following
recursive rule:
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The following observation must here be kept in mind: the maximum
number (v) of consecutive zeros in the mantissa is larger than 1, and all
of its segments that are separated by successions of v zeros, except for the
last one, begin with the numeral 2; the last segment consists only of 1’s.

If the endsequent of the derivation is a basic sequent, the derivation
receives an ordinal number of the form 2.2001 ... 1, where the number
of I’s must be chosen to be larger by one than the total number of logical
connectives occurring in the sequent.

Now suppose that the endsequent is the conclusion of the application of
a rule of inference and that for the derivation of the premisses their associated
ordinal numbers are already known. From these the ordinal number of
the whole derivation is calculated as follows:

If the endsequent is the conclusion of a V- or —-introduction, then the
numeral 1 is adjoined to the ordinal number for the derivation of the premiss.
By virtue of the stated properties of ordinal numbers for derivations,
we have obviously another correct ordinal number in accordance with 15.1.

If the endsequent isthe conclusion of a ‘chain rule’ inference, we focus our
attention on the mantissas of the ordinal numbers of the derivations for
the premisses; suppose that v is the maximum number of consecutive zeros
in all of these mantissas. Should there be equal mantissas among them,
we distinguish these by adjoining to one of them v+ 1 zeros and one, 1,
to the next one v+ 1 zeros and two 1’s, etc.; this principle is applied to every
occurrence of equal mantissas. The mantissas thus obtained are mutually
distinct; they are then written down from left to right according to size
(the largest one first) and two successive mantissas are in each case to be
separated by v+2 zeros; finally v +-2 zeros and one 1 are adjoined at the end.
The result is the mantissa of the ordinal number for the whole derivation.
For its characteristic we take the smallest natural number which is larger than
the maximum number of consecutive zeros in the mantissa, if any, and
which, first, exceeds by at least 2 the maximum number of consecutive zeros
in any one of the ordinal numbers for the derivations of the premisses and
which, second, is no smaller than twice the total number of logical connectives
in the succedent formula of any one of the premisses preceding the major
premiss (14.25).

If the endsequent is the conclusion of a ‘complete induction’, then the
ordinal number of the whole derivation receives a'mantissa of the form
201...10...01; where the number of consecutive 1’s is to be chosen
greater by 1 than the total number of consecutive 1’s in the corresponding
place in the larger of the mantissas of the ordinal numbers for the derivations
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of both premisses (or either one of them, if both are identical); i.e., if the
latter mantissa begins with 200, one 1 is to be taken; otherwise the mantissa
must begin with 201 . .. 10, in which case one more 1 is taken than in the
number 201 ... 10. The total number of consecutive zeros must be v+2,
where v is the maximum number of consecutive zeros in the two mantissas
mentioned. As characteristic we take the smallest natural number that
is larger than the maximum number of consecutive zeros in the mantissa,
if any, and which first exceeds by at least 2 the corresponding maximum
number of zeros in any one of the two ordinal numbers used and which
second is not smaller than twice the total number of logical connectives in
the formula $(1).

It is easily seen that this newly formed number is another correct ordinal
number (15.1) and possesses, moreover, the special properties stated above.
15.3. A reduction step diminishes the ordinal derivation.

We must now prove that with every reduction step a derivation
according to 14.2, the ordinal number of the newly resulting derivation be-
comes in general smaller than that of the old derivation. I shall show: the
characteristic does not increase; the mantissa decreases in all cases in which
the endsequent is not already in reduced form after the replacement of the
free variables and terms (14.21, 14.22); the maximum number of conse-
cutive zeros in the mantissa, furthermore, remains unchanged except in the
case of a reduction according to 14.253, where it increases by exactly two.

I shall again proceed recursively, i.e., I shall prove the assertion by com-
plete induction.

For derivations whose endsequent is a basic sequent the result follows from

“the method of correlating ordinal numbers with such derivations, together
with the fact that in the reduction step the sequent undergoes a change ac-
cording to 13.2 or 13.5, and here the total number of occurring logical con-
nectives is diminished. (If the reduced form of the derivation is attained ear-
lier, then the ordinal number remains unchanged.) What is important here
is that in changes according to 13.5, the altered antecedent formula is al-
ways omitted, cf. 13.91-13.93.

Suppose now that the endsequent is the result of the application of a rule
of inference and that the assertion has already been proved for the derivations
of the premisses.

The preliminary step (14.22) has obviously no influence on the ordinal
number of the derivation. If the reduced form of the endsequent results with
this step, then the ordinal number remains unchanged. If this is not the case,
the following holds:
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If the endsequent is the conclusion of a V- or —-introduction, then the
assertion follows at once from the method of correlating ordinal numbers
with such a derivation.

Even if the endsequent is the conclusion of a ‘complete induction’ the truth
of the assertion follows easily. The ‘complete induction’ is, after all, trans-
formed into a ‘chain-rule’ inference; this does not lead to an increase in the
characteristic of the ordinal number; although the mantissa may become
much longer, it nevertheless diminishes, since the mantissa of the ordinal
number of one of the two original derivations of the premisses must always
occur at the beginning of that mantissa. The maximum number of conse-
cutive zeros (v+2) remains unchanged.

Suppose, finally, that the endsequent is the conclusion of a ‘chain-rule’
inference. The selection of the premiss of an earlier sequent as major pre-
miss (14.25) does not alter the mantissa of the ordinal number; the charac-
teristic, on the other hand, may diminish, because certain succedent for-
mulae of the premisses no longer contribute to its calculation.

Suppose now that the reduction step takes the form of either 14.251 or
14.252. In this case one of the mantissas of the ordinal numbers for the deri-
vation of the premisses is diminished without a change in the maximum
number of consecutive zeros occurring in it. This has obviously a simulta-
neous diminishing effect on the mantissa for the ordinal-humber of the total
derivation. The number of zeros is still v+2; the diminished mantissa may
conceivably occur in a later place of the sequence, which is ordered by size;
if the mantissa was one of several identical mantissas, then one fewer 1
is adjoined to the remaining mantissas; in any case, the first mantissa in the
sequence of mantissas, each separated by v + 2 zeros, which has not remained
the same must be smaller than before; consequently the total mantissa has
certainly also been diminished. The characteristic does not increase.

In a reduction step according to 14.253, the ordinal number of the der-
ivation is altered as follows: let us first consider the ordinal numbers for
the two derivations which conclude with the newly formed first or second
‘chain-rule’ inference. For these two derivations the situation is the same as
that in the previous case, i.e.: the two mantissas are smaller than the mantissa
of the ordinal number of the original derivation; the maximum number
of consecutive zeros (v+2) has remained the same; the characteristics have
not increased. We now introduce the third ‘chain-rule’ inference and form
the ordinal number of the new total derivation: Its mantissa begins with one
of the two earlier mantissas followed by v+3 zeros (usually v+4); it is
consequently smaller than that of the original ordinal number; the maximum
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number of consecutive zeros is v+4, hence larger by two than before; the
characteristic of the total derivation, finally, cannot have increased, for the
total number of logical connectives in the succedent formula F(n), % or B,
or U, resp., is smaller than that in the formula B, i.e., in VI F(z), A & B,
or — U, resp.; hence the sum of twice the number of logical connectives in
the former formulae with v+4 zeros, which determines the new character-
istic, is not larger than the sum of twice the number of logical connectives
in the latter formulae with v+ 2 zeros; nor could the characteristic of the
original derivation be smaller than the latter sum, since B was one of the
succedent formulae contributing to its calculation.

In a reduction step according to 14.254, the situation is the same as for
14.251 and 14.252, unless we are dealing with an exception. Such an excep-
tion can be handled without difficulty on the basis of our previous consid-
erations; here one of the mantissas of the ordinal numbers for the deri-
vations of the premisses is no longer replaced by one smaller mantissa, as
was done above, but by fwo; but the effect is the same in every desired re-
spect. The characteristic is not increased; its maximum number of conse-
cutive zeros before the reduction was not smaller by two than twice the total
number of logical connectives in B so that, after the reduction, the contribu-
tions of (1), A or B, or U, resp., cannot lead to an increase.

It has thus been proved that in a reduction step the ordinal number (usual-
ly) diminishes. The most important point was our consideration concerning
the characteristic of the ordinal number in discussing the reduction steps
14.253 and 14.254; this is the idea which enables us to recognize a simpli-
fication of the derivation in such a reduction step in spite of the apparent
increase in complexity. The simplification consists precisely in the fact that
the permisses of the third ‘chain-rule’ inference are ‘interwoven’ to a lesser
degree (viz., to a degree corresponding to the total number of logical
connectives in the succedent formula of the first premiss, which is also the
antecedent formula of the second premiss) than the premisses of the first
and second and the premisses of the original ‘chain-rule’ inference. The meth-
od of correlating an ordinal number with a ‘chain-rule’ inference (15.2) is
formulated from the above point of view; all other details follow more or
less automatically.

15.4. Demonstration of the finiteness of the reduction procedure.

Some facts — needed below — about the ordering according to size of the
ordinal numbers:

With every number « having the characteristic p(p = 0) I correlate the
system &(«) of those ordinal numbers with the characteristic p+1 in whose
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formation according to 15.1 the number « was the largest of the ordinal
numbers with the characteristic p that were used. Every ordinal number with
the characteristic p+1 belongs uniquely to one such system S(a). If «; is
smaller than a5, then every number of S(a;) is also smaller than every
number of ©(a,). The ordering of the systems S(a) corresponds therefore
to the ordering of the numbers «. The following holds for the ordering of
the numbers (with the characteristic p+1) within a system &(«): the|small-
est number within &(a) is the number o+ 1. The remaining numbers of &(x)
correspond order-isomorphically to the totality of those numbers with
the characteristic p+1 which are smaller than a+1 in the following way:
Every number of &(«), except for a+ 1, results from «+1 through\the ad-
junction of p+1 zeros, followed by the mantissa of one of the numbeys with
the characteristic p+1 which is smaller than a4 1. The ordering of\these
numbers is here preserved.

The correctness of all these assertions follows easily from the definition
of the ordinal numbers. The reader may find it beneficial to examine the
ordering of the ordinal numbers with the characteristics 1, as well as 2 and
3, for example, using this definition®°.

I now assert (theorem of ‘transfinite induction’):

All ordinal numbers (15.1) are ‘accessible’ in the following sense, by our
running through them in the order of their increasing magnitude: the first
number, 0.1, is considered ‘accessible’; if all numbers smaller than a number
B have furthermore been recognized as ‘accessible’, then B is also considered
‘accessible’.

Proor. 0.1 is accessible by hypothesis, hence also 0.11, hence also 0.111,
etc., and it follows in general by complete induction thatevery number small-
er than 0.2 is accessible. Hence 0.2 is also accessible, and thus are all numbers
with the characteristic 0. I now apply a complete induction, i.e., I assume that
the accessibility of all numbers up to and including those with the characteris-
tic p (p = 0) has already been proved and that it is now to be proved for
numbers with the characteristic p+1. The first of these numbers, i.e., the
number with the mantissa 1, is accessible. It should be noted that we have
already run through the numbers with the characteristic p. To every such
number o« corresponds a system ©(a) of numbers with the characteristic
p+1; this system consists of the number a+1 and a system order-iso-
morphic with those numbers with the characteristic p+1 that are smaller
than a+1. To run through the numbers with the characteristic p+1 now
amounts merely to a running through of the systems ©(a) in the same way
in which we ran through the numbers « with the characteristic p; for if a
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number a+ 1 has been recognized as accessible, then all remaining numbers
of the system &(a) obviously become accessible at the same time; we need
merely run through this system in exactly the same way in which we have
already run through the isomorphic system of the numbers (with the charac-
teristic p+1) smaller than o+ 1. In this way we can run through all numbers
with the characteristic p+1 by virtue of having run through the numbers
with the characteristic p. To the totality of numbers o (with the character-
istic p) smaller than a number «, there corresponds, in the case of the num-
ber ag+ 1 (with the characteristic p+ 1), the totality of numbers belonging
to the systems S(a) (where o < o).

ConcLusioN. By means of the ‘theorem of transfinite induction’ the fi-
niteness of the reduction procedure for arbitrary derivations now follows at
once. If the finiteness of the reduction procedure has already been proved for
all derivations whose ordinal number is smaller than a number g, then this
also holds for every derivation with the ordinal number §; for by a single
reduction step the latter derivation is transformed into a derivation with a
smaller ordinal number or a derivation in reduced form. (If the derivation
was already in reduced form, then there was nothing more to prove.) Thus
the property of the finiteness of the reduction procedure carries over from
the totality of the derivations with the ordinal numbers smaller than f
to the derivations with the ordinal number §; by the theorem of transfinite
induction this property therefore holds for all derivations with arbitrary
ordinal numbers. This concludes the consistency proof.

SECTION V. REFLECTIONS ON THE CONSISTENCY PROOF

§ 16. The forms of inference used in the consistency proof

I shall review in the following the inferences and derived concepts used
in the consistency proof from two aspects: First I shall examine to what
extent they can be considered as indisputable (16.1); second, in connection
with the theorem of Godel (2.32), to what extent they correspond to the tech-
niques of proof contained in formalized elementary number theory and in
what way they go beyond these techniques (16.2).

16.1. In terms of the indisputability of the methods of proof used, the critical
point is the proof of the finiteness of the reduction procedure (15.4). We shall
come back to this point later. All other techniques of proof used in the con-
sistency proof can certainly be considered as ‘finitist’ in the sense outlined
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in detail in section III. This cannot be ‘proved’, if for no other reason than
the fact that the notion of “finitist’ is not unequivocally formally defined and
cannot in fact be delimited in this way. All we can do is to examine every
individual inference from this point of view and try to assess whether that
inference is in harmony with the finitist sense of the concepts that occur, and
make sure that it does not rest on an inadmissible ‘actualist’ interpretation
of these concepts. I shall discuss briefly the most relevant passages of the
consistency proof:

The objects of the consistency proof, as of proof theory in general, are
certain symbols and expressions, such as terms, formulae, sequents, deriva-
tions, ordinal numbers, not to forget the natural numbers. All these objects
are defined (3.2, 5.2, 14.1, 15.1) by construction rules corresponding to the
definition of the natural numbers (8.11); in each case such a rule indicates
how more and more such objects can be constructed step by step. — Here it
must be presupposed that in formalized elementary number theory certain
definite ‘functions’, ‘predicates’ and ‘axioms’ have been stipulated which sat-
isfy the conditions laid down for these objects (13.12, 13.3, 13.91). Strictly
speaking, this presupposition introduces a transfinitely used ‘if — then’ into
the consistency proof; but this ‘if — then’ is obviously harmless, since the
proof need not be regarded as meaningful at all until that presupposition
has actually been justified and the above conditions have been shown to
hold.

A number of functions and predicates were furthermore applied to these
objects and they were decidably defined in the sense of 8.12. E.g., the function
‘the endformula of a derivation’, the predicate ‘containing at least one V- or
3-symbol’ and many others. The following functions, in particular, were also
decidably defined, as is easily verified: ‘the derivation resulting from a deri-
vation by a transformation according to § 12°, ‘the derivation resulting from
a derivation by a reduction step in which the conditions of a possible choice
were unequivocally specified” (14.2), ‘the ordinal number of a derivation’
(15.2).

Furthermore, propositions of the following kind were proved by com-
plete induction: “for all sequents’, ‘for all derivations’ etc., whose validity for
each individual sequent or derivation was decidable. E.g.: ‘The figure re-
sulting from a derivation by a reduction step is another derivation and the
transformation of the endsequent fulfils certain conditions’ (14.2); ‘in car-
rying out a reduction step we diminish the ordinal number’ (15.3).

In applying the concept ‘all’ in the consistency proof, I have not used the
unwieldy finitist expression given for it in 10.11; here the distinction between
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the actualist and finitist interpretations has, in any case, no bearing on our
reasoning.

The negation of a transfinite proposition occurs only once in the entire
proof (at 13.90) and only in a harmless form in which the proposition con-
cerned leads to a quite elementary contradiction. The negation can actually
be avoided altogether if for ‘consistency’ the following positive expression
is used: ‘every derivation has an endformula which does not have the form
A & — U’. Here the ‘not’ is no longer transfinite.

16.11. What can be said, finally, about the proof of the finiteness of the re-
duction procedure (15.4)?

The concept of ‘accessibility’ in the ‘theorem of transfinite induction’ is
of a very special kind. It is certainly not decidable in advance whether it
is going to apply to an arbitrary given number; from the point of view ex-
plained in § 9, this concept therefore has no immediate sense, since an ‘ac-
tualist sense’ has after all been rejected. It acquires a sense merely by being
predicated of a definite number for which its validity is simultaneously
proved. It is quite permissible to introduce concepts in this way; the same
situation arises, after all, in the case of all transfinite propositions if a finitist
sense is to be ascribed to them, cf. § 10. With the statement that ‘if all num-
bers smaller than B have already been recognized as accessible, then f§ is
also accessible’, the definition of the ‘accessibility’ is already formulated
in conformity with this interpretation. No circularity is involved in this for-
mulation; the definition is, on the contrary, entirely constructive; for B is
counted as accessible only when all numbers smaller than 8 have previously
been recognized as accessible. The ‘all’ occurring here is of course to be in-
terpreted finitistically (10.11); in each case we are dealing with a totality
for which a constructive rule for generating all elements is given.

About the proof of the theorem of transfinite induction the following
must be said: From the way the concept of ‘accessibility’ was defined it
follows that in proving this theorem, a ‘running through’ of all ordinal num-
bers in ascending magnitude must take place. In dealing with the numbers
with the characteristic 0, the following is to be observed: the infinite
totality of the numbers smaller than 0.2 is transcended by one single idea:
the proof can be extended arbitrarily far into this totality; hence it may be
considered as completed for the entire totality. This ‘potential’ interpreta-
tion of the ‘running through’ of an infinite totality must be applied through-
out the entire proof.

The occurrence of a transfinite induction hypothesis in the complete
induction on p is to be interpreted in the sense of 10.5 and is therefore in-
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disputable. In the inference ‘if the number a«+ 1 has been recognized as ac-
cessible, then all remaining numbers of the system &(a) are accessible’, a
transfinite ‘if — then’ occurs. Objections were raised against this concept at
11.1; but these do not apply to the present case for the very reason that the
hypothesis is here not to be interpreted hAypothetically, but rather as follows:
only after having reached a+ 1 can we successfully run through the numbers
of G(a) (viz., in exact correspondence with the way in which we ran through
the numbers up to a+1).

Now let us consider the induction step as a whole, i.e., the reinterpreta-
tion of the running through of the (p+ 1)-systems in terms of the running
through of the p-systems. This is undoubtedly the most critical point of the
argument. Yet I believe that if we think about it deeply enough we cannot
dispute that the argument here used has considerable plausibility. We might,
for example, visualize the initial cases with the characteristics 1, 2, 3 in detail.
As the characteristic grows, nothing new is basically added; the method of
progression always remains the same. It must of course be admitted that
the complexity of the multiply-nested infinities which must be ‘run through’
grows considerably; this running through must always be regarded as
‘potential’, as was done in the case of the characteristic 0. The difficulty
lies in the fact that although the precise finitist sense of the ‘running through’
of the p-numbers is reasonably perspicuous in the initial cases, it becomes of
such great complexity in the general case that it is only remotely visualizable;
yet this surely constitutes an adequate foundation justifying the possibility
of running through the (p+ 1)-numbers.

The ‘conclusion’, finally, adds nothing essentially new. The proposition
that the reduction procedure for a derivation is finite regardless of how pos-
sible choices may be made, contains a transfinite ‘there is’, viz., with respect
to the total number of reduction steps. This proposition is of the same kind
as the proposition concerning the ‘accessibility’; in each special case it re-
ceives its definite sense only through the proof of its validity for this case;
this corresponds to the finitist interpretation (10.3). For the purpose of the
consistency proof alone, incidentally, the notion of a ‘choice’ is dispensable,
since we are here dealing only with the reduction of a derivation with the
endsequent — 1 = 2, and since all reduction steps are unequivocal and do
not depend on choices. The total number of steps is not specified in advance;
we can merely make certain statements about it and these become more
and more indefinite as the ordinal number of the derivation increases. (The
place of a direct statement of such a number is taken by its ‘statability’. This
can undoubtedly still be regarded as beingin harmony with the finitist view.
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Altogether, I am inclined to believe that in terms of the fundamental

distinction between disputable and indisputable methods of proof (§ 9), the
proof of the finiteness of the reduction procedure (15.4) can still be considered
as indisputable, so that the consistency proof represents a real vindication
of the disputable parts of elementary number theory.
16.2. In order to examine the extent to which the consistency proof coincides
with the theorem of Gédel (2.32) we would first have to correlate natural
numbers with the objects of proof theory (formulae, derivations, etc.) cor-
responding to the way in which this was done in Gédel’s paper cited in foot-
note 3, and would also have to introduce the required functions and pred-
icates for these objects as functions and predicates for the corresponding
natural numbers. Then the consistency proof becomes a proof with the nat-
ural numbers as objects. In order to obtain a formally delimited formalism
we would have to limit the possibilities of definition provided for above to
definite schemata; these can easily be chosen general enough to allow for
the definition of all functions and predicates required in proof theory; cf., for
example, Godel’s version.

The forms of inference in the consistency proof are then none other than
those presented in our formalization of number theory; only the proof of
finiteness (15.4) occupies again a special position. It is impossible to see
how the latter proof could be carried out with the techniques of elementary
number theory. For this reason the consistency proof is in harmony with
Godel’s theorem.

In this connection the following two facts, which will not be proved since
their proof would lead us too far afield, are of interest:

1. If the inference of complete induction is omitted from formalized ele-
mentary number theory, then the consistency proof can be formulated
without essential change in such a way that — after having carried out the
mentioned translation into a proof about natural numbers — the techniques
of elementary number theory (including complete induction) suffice.

2. The consistency proof for the whole of elementary number theory, trans-
lated into a theory with the natural numbers as objects, can be carried out
with techniques from analysis®*.

The special position of the inference of complete induction is due to the
following fact: if this inference is omitted, then a definite upper bound can
be given for the total number of reduction steps required for the reduction
of a given sequent. Yet if the inference of complete induction is included,
then this number, in its dependencé on choices, can become arbitrarily large.
This is so since in the reinterpretation of this rule of inference (14.24) the
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total number of required reduction steps for the sequent I', 4 - F(t) ob-
viously depended on the number 1t (the value of t) and this number may de-
pend on a choice, as is the case if t is a free variable, and must therefore first
be replaced by an arbitrarily chosen numeral 1. In this case it may happen
that there exists no general bound for the total number of reduction steps
required in the reduction of the sequent I', 4 — $F(t).

This fact seems to be the reason why the rule of complete induction could
not be included in the earlier consistency proofs (2.4).

§ 17. Consequences of the consistency proof

First 1 shall discuss the question to what extent the consistency proof re-

mains applicable if the ‘elementary number theory’ formulated in section
I is extended by the addition of new concepts and methods (17.1; then I
shall point out its transferability to other branches of mathematics (17.2),
and shall finally examine certain objections by the ‘intuitionists’ against the
significance of consistency proofs as such (17.3).
17.1. For the value of a consistency proof it is essential to know whether
the stipulated formalism for the particular mathematical theory involved,
in our case elementary number theory, really fully encompasses that theory
(cf. 3.3, 5.3). Now in practice elementary number theory is not subject to
any formal restrictions; it can always be extended further by new kinds of
specific concepts, possibly also by the application of new kinds of forms of
inference. How does this affect the consistency proof? Whenever the pres-
ent framework is transcended, an extension of the consistency proof to the
newly incorporated techniques is required. The consistency proof is already
designed in such a way that this is to a very large degree possible without
difficulties.

If new functions or predicates for natural numbers are introduced, for
example, then a decision rule in accordance with 8.12 must be given for
them; if additional mathematical axioms are introduced, then a reduction
rule must be given for them in accordance with 13.91 (cf. § 6 and 10.14).
Not effectively decidable derived concepts, in the sense of 6.3, present no
difficulties either, since they can be eliminated by the method described at
that point. All these requirements are easily fulfilled, as long as the introduc-
tions are in the generally accepted sense ‘correct’ and the axioms ‘true’.

Even new kinds of inferences may be carried out which are not represent-
able in the present formalism. In fact, every formally defined system con-
taining elementary number theory is necessarily incomplete in the sense that
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there are number-theoretical theorems of an elementary character whose
truth can be proved by plausible finitist inferences, but not by means of
methods of proof of the system proper>2. This fact was advanced as an ar-
gument against the value of consistency proofs®3. Yet my consistency proof
remains unaffected by it; quite generally, it can here be said: if an elementary
number-theoretical theorem can be proved by means of inferences not be-
longing to my formalism, then the statement of a reduction rule for thistheo-
rem according to 13.91 will include the theoremin the consistency proof. The
theorem given as an example by Goédel has the quite elementary form
Vi B(z), where B represents a decidable predicate about the natural num-
bers; the fact that the finitist truth of this theorem has been recognized
means that (1) is true for each definite 1, and from this the reducibility
of the sequent — Vi B(x) according to 13.21, 13.4 follows at once.

The concept of the reduction rule has in fact been kept general enough so
that it is not tied to any definite logical formalism, but corresponds rather to
the general concept of ‘truth’, certainly to the extent to which that concept
has any clear sense at all (cf. 13.8).

If a new form of inference is to be included as such in elementary number
theory formalized up to now, it must be suitably incorporated in the re-
duction procedure. (An example might be a ‘transfinite induction’ up to a
fixed ‘number of the second number class’.)

To be sure, if derived concepts and forms of inference from analysis (which

are also used in proofs of number-theoretical theorems) are to be included
in elementary number theory, then the consistency proof can in general
not be extended to these additions in a straightforward way; here difficulties
arise which still await solution.
17.2. The consistency proof for elementary number theory carries over without
difficulty to @ number of other branches of mathematics. This holds quite
generally for such mathematical theories whose objects are given by a con-
struction rule corresponding to that for the natural numbers (8.11). A par-
ticularly simple and universally applicable example is the following: first
a definite number of primitive symbols is given and it is then stated that each
one of these symbols designates an object; if a primitive symbol is adjoined
to the designation of an object, then this again results in the designation of
an object. (In short: “Every finite sequence of primitive symbols designates
an object of the theory”.)

In such theories functions and predicates are then introduced by decidable
definitions (8.12) and the same logical forms of inference are used as those
in elementary number theory. The consistency proof carries over at once, the
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only difference being that the place of the ‘numerals’ is taken by the ‘ob-
ject symbols’ of the theory and this changes nothing essential.

Such branches of mathematics are, for example, extensive parts of alge-
bra (polynomials as objects are indeed finite combinations of symbols);
from the realm of geometry, e.g., combinatorial topology; even large parts
of analysis may be represented in this way, if the concept of a real number is
not used in its most general form. Finally important parts of proof theory
also belong here (cf. 16.1).

The addition of negative numbers, fractional numbers, diophantine equa-

tions, etc., to the natural numbers as objects in elementary number theory
proper (3.31) can be incorporated in the consistency proof in the same way.
All propositions about these objects can of course also be translated into
propositions about the natural numbers, as mentioned at 3.31, by corre-
lating these new objects in an appropriate way with the natural numbers. The
same is also true of all other theories of the kind mentioned; a one-to-one
correspondence can always be established between ‘finite combinations of
symbols’ and the natural numbers (‘denumerability’). This, however, is
unnecessarily cumbersome and unnatural for the purpose of consistency
proofs.
17.3. (Cf. §9.) On the part of the intuitionists, the following objection is
raised against the significance of consistency proofs>*: even if it had been
demonstrated that the disputable forms of inference cannot lead to mutually
contradictory results, these results would nevertheless be propositions with-
out sense and their investigation therefore an idle pastime; real knowledge
could be gained only by means of indisputable intuitionist (or finitist, as
the case may be) forms of inference.

Let us, for example, consider the existential proposition cited at 10.6, for
which the statement of a number whose existence is asserted is not possible.
According to the intuitionist view, this proposition is therefore without
Sense; an existential proposition can after all be significantly asserted only
if a numerical example is available.

What can we say to this?

Does such a proposition have any cognitive value? To be sure, a certain
practical value of propositions of this kind lies first of all in the following
possibility of application, advanced by opponents of the untuitionist inter-
pretation:

They might possibly serve as a source for the derivation of simple pro-
positions, possibly representable by minimal formulae (3.24), which are
themselves finitist and intuitionistically significant and which must be frue
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by virtue of the consistency proof.

Furthermore, an existential proposion 3¢ (%), e.g., for which no exam-
ple is given, nevertheless serves the purpose of making a search for a proof
for the proposition V¢ — §(t) unnecessary; for there can be no such proof,
since a contradiction would otherwise result.

These are certainly reasons which make proofs of theorems by means of
‘actualist’ forms of inference seem not entirely useless, apart from the ‘aesthet-
ic value’ of mathematical research as such.

Thus propositions of actualist mathematics seem to have a certain utility,
but no sense. The major part of my consistency proof, however, consists
precisely in ascribing a finitist sense to actualist propositions, viz.: for every
arbitrary proposition, as long as it is provable, a reduction rule according
to 13.6 can be stated, and this fact represents the finitist sense of the propo-
sition concerned and this sense is gained precisely through the consistency
proof.

This “finitist sense’ can admittedly be rather complicated for even simply
formed propositions and has in general a looser connection with the (ac-
tualistically determined) form of the proposition than is the case in the realm
of finitest reasoning.

In this way the above mentioned existential proposition, e.g., also re-
ceives a finitist sense, but this sense is weaker than that of a finitistically
proved existential proposition, since it does not assert that an example can
be given.

A quite different question is what significance can still be attached to the
actualist sense of the propositions. The proof certainly reveals that it is
possible to reason consistently ‘as if* everything in the infinite domain of
objects were as actualistically determined as in finite domains (cf. § 9).
Whether and to what extent, however, anything ‘real’ corresponds to the
actualist sense of a transfinite proposition — apart from what its restricted
finitist sense expresses — is a question which the consistency proof does not
answer.

APPENDIX TO # 4

In footnote 49 Gentzen states that articles 14.1-16.11 were inserted in
February 1936 in place of an earlier text. Prof. Paul Bernays kindly com-
municated to the editor a galley proof containing the earlier passages, and
they have been collected together in this appendix. The following table should
enable the reader to locate the relevant places in # 4:
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# 4 Galley proof

13.83 coincides with 13.83

13.90 coincides essentially with 14.0

13.91 coincides essentially with 14.1

13.92 coincides essentially with 14.2

13.93-15.4 replaces 14.3-14.63

16.1 replaces 15.1

16.2 coincides with 15.2 (except for the passage ap-
pearing in this appendix)

17.1 coincides with 16.1 (except for the footnote stat-

ing that the w-consistency of
elementary number theory
follows from the consistency
proof; this note was omitted
from the final version of the
proof)

17.2 coincides with 16.2

17.3 coincides with 16.3

14.3. If a reduction rule is known for a sequent, then a reduction rule can
also be stated for every sequent which has resulted from the former by
structural transformation. Viz.: An interchange of antecedent formulae
(5.241) does not affect the reduction procedure. If an antecedent formula
was omitted which was identical with another antecedent formula (5.242),
we reduce the new sequent in the same way as the old one; but if the omitted
formula would have been subject to a reduction step according to 13.5, we
apply this reduction step to the formula identical with the omitted formula
and then retain the latter formula — this is permissible.

If a formula was adjoined to the antecedent formulae (5.243), we first car-
ry out the required reductions on it according to 13.11 and 13.12 and con-
tinue the rest of the reduction up to the reduced form as if this formula were
not even present.

A redesignating of a bound variable (5.244) does not necessitate a change
in the reduction rule.

In the following I shall repeatedly make tacit use of the fact that a reduc-
tion rule for a sequent which results from another sequent by a structural
transformation can be obtained from the reduction rule of the former se-
quent.

14.4. Now it still remains to be shown that a reduction rule can always
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be given for a sequent which results from those sequents by the application
of a rule of inference for which reduction rules are already known. After
the transformation according to § 12, the following rules of inference can
still be applied in the derivation: V-introduction, V-elimination, &-intro-
duction, &-elimination, ‘reductio’, ‘elimination of the double negation’ and
‘complete induction’. I shall deal with them in that order.
14.41. Suppose that we are given a V-introduction: ‘From I — F(a)
follows I' = V¢ %(t). Assume a reduction rule to be known for the sequent
I' > F(a). The reduction of I' —» V¢ F(r) must begin with the replacement
of any free variables that may occur by arbitrarily chosen numerals (13.11).
Suppose that I'* —» Vg F*(r) results. If no free variables occurred, then
I'* > Vg §*(r) stands again for I' > YV F(r). (Correspondingly in what
follows.) Then all minimal terms that occur must be replaced by their nu-
merical values (13.12), and this results in I'** — V¢ &**(z). This sequent is
reduced according to 13.21 to I'** — F**(11), where 1 is to be chosen ar-
bitrarily. Any new minimal terms must again be replaced by their numeri-
cal values in accordance with 13.12, and this results in I'** — F***(11).
The reduction of the sequent I' - &(a) must also begin with the replace-
ment of the free variables. For this replacement we may, in particular, use
the same numerals that were chosen in the reduction of I' - V $(r), as
well as the symbol 11 for the replacement of a, so that the sequent I'* — F*(1)
results. Then follows the replacement of possible minimal terms and from
this I'** — F***(11) obviously results, i.e., the same sequent as above. By
virtue of the reduction rule for I' - $(a), consequently, a reduction rule
is now statable for this sequent; hence a reduction rule has also been obtained
for I' - Vg F(x).
14.42. Suppose we are given a V-elimination: ‘From I' —» V¢ () results
I — $(t). The sequent I' - F(t) is again subjected to reduction steps ac-
cording to 13.11 and 13.12, if necessary; suppose that I'* — F*(1) re-
sults. In the reduction of I' —» V¢ (&), which must begin with reduction
steps according to 13.11 (if necessary), 13.12 (if necessary), and then a
step according to 13.21, possibly followed by further steps according to
13.12, the numerals to be substituted may obviously be chosen so that these
steps also yield the sequent I'* — $*(1t). We therefore have a reduction
rule for that sequent and hence also for I' = F(t).
14.43. The &-introduction and the &-elimination are dealt with analogously
to the V-introduction and V-elimination. Here the reduction step according
to 13.21 is replaced by a step according to 13.22.
14.44. In dealing with the three rules of inference still remaining, I make
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use of the following lemma: ‘If reduction rules are known for two sequents
of the formI' = D and D, 4 — € in which no free variables and no minimal
terms occur, then a reduction rule can also be given for the sequent I',
4 = €. (The meaning of the symbols I', 4, € and D is the same as that de-
fined at 5.250, D also stands for an arbitrary formula.) The proof of this
lemma, which represents the major part of the consistency proof, follows
at 14.6. Here I shall first show how the lemma is applied to the ‘reductio’,
the ‘elimination of the double negation’ and to ‘complete induction’.
14.441. Suppose that a ‘reductio’ is given: ‘From U, I' » B and
A A4 - — BfollowsI', 4 » — U’ WefirstreduceI', 4 » — U (if required)
according to 13.11 and 13.12; suppose that the result is I'*, 4* — — UA*,
This we reduce according to 13.23 to I'*, 4*, A* — 1 = 2. In the reduction
of A, I' - B, on the other hand, we can choose the numerals to be substi-
tuted in the reduction steps according to 13.11 and 13.12, which are carried
out first, so that from these steps a sequent of the form U*, '* — B* results.
In the same way it can be achieved that o, 4 - — B assumes the form
A*, A* > — B*, after the appropriate reduction steps. This then yields
the sequent U*, A*, B* - 1 = 2 by 13.23. Reduction rules are therefore
known for the sequents UA*, I'* —» B* and U*, 4%, B* - 1 = 2 and, by
the lemma, therefore also for U*, I'*, A*, 4* —» 1 = 2, i.e., (14.3) also for
I* A*, A* > 1 = 2. We have thus a reduction rule for I, 4 —» — .
14.442. Suppose that we are given an ‘elimination of the double negation’:
‘From I' > — — U follows I = Y. The reductions of I' = U according
to 13.11 and 13.12 which may first be necessary, can be carried out analo-
gously on I' » — — 9. We must therefore still reduce a sequent I'* — %*
in which free variables and minimal terms no longer occur, and this will
simultaneously yield a reduction rule for I'* - — — U*,

It is sufficient to state a reduction rule for the sequent — — U* — A*,
For we can then apply the lemma and from the availability of reduction
rules for I'* » — — A* and — — A* - A* conclude the statability of a
reduction rule for I'* — U*,

The sequent — —** — A* can be reduced easily according to the fol-
lowing rule (cf. 14.1): We reduce the succedent formula according to 13.21,
13.22, and 13.12 until it has the form — € or is a minimal formula. If it has
become a correct minimal formula the reduction is finished. If it has assumed
the form — €, we continue the reduction according to 13.23 and obtain
— — UA*, € > 1 = 2, further (by 13.53) we obtain € - — A*, then (by
13.23) €, A* - 1 = 2. In the case where the succedent formula has become
a false minimal formula we proceed in the same way; in the latter case we
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first obtain » — 2* and then ¥* - 1 = 2.

In both cases we have thus obtained a sequent which also occurs in the

reduction of the basic logical sequent H* — A* according to the procedure
stated at 14.1. We need therefore merely follow the procedure stated at 14.1
in order to complete the reduction of the sequent.
14.443. Suppose that a ‘complete induction’ is given: ‘From I' - (1) and
&(a), 4 - F(a+1) follows I', 4 = F(t).” In ', 4 > F(t) we first replace
all free variables that may occur by arbitrarily chosen numerals (13.11) and
obtain I'*, A* - F*(t*). Then we carry out reduction steps according to
13.12 (if necessary) and achieve in this way that finally every occurrence
of t* has been replaced by the numeral 1, which represents the value of the
term (the term now no longer contains a variable). The sequent has thus
becomeI'*, 4* - F*(1). Now we carry out further reduction steps according
to 13.12 (if necessary), until all minimal terms have been eliminated. The
sequent then has the form I'**, 4** — (F*(n))*.

In the reduction of I' - (1) and F(a), 4 —» F(a+1), which begins with
the replacement of free variables, we can actually choose the numerals to be
substituted so that they agree with the numerals chosen previously and can
replace the variable a, which did not occur in I, 4 - F(t), by any one of
the numerals from 1 to m, where nt denotes the number 1 smaller than 1.
It then follows that for each one of the sequents

r* - g*Q1)
(1), 4* - F*(A+1)
T*@), 4* - F*2+1)

F*(m), 4* > F*(m+1)

reduction rules are statable. If these sequents are then reduced by the re-
duction steps prescribed in 13.12, there obviously result sequents of the fol-
lowing form, for which reduction rules are therefore also statable:

I** (%*(1))*
(%*(1))*’ A** (%*(2))*
(%*(2))*’ A** o (%*(3))*

(%*(m))*’ A** o (%*(n))*
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We now apply the lemma: From the reduction rules for I'** — (F*(1))*
and (F*(1))*, 4** - (F*(2))*, we obtain a reduction rule for the sequent
r**, A** - (F*(2))* from it, and from the reduction rule for (F*(2))*,
A** - (F*(3))*, we obtain a reduction rule for I'**, A** — (F*(3))*,
etc.; finally, it follows that a reduction rule is statable for the sequent I'**,
A** — (F(n))*, hence also for I', 4 — F(t), since this sequent had actually
already been reduced above to the form of the former sequent.

14.5. Now the proof of the ‘lemma’ is still outstanding. At this point I
should like to add a few remarks which may contribute to an easier under-
standing of the proof.

What is the reason for the special position of the ‘lemma’? Let us examine
the kind of finitist interpretation afforded by the reduction concept in place
of the ‘actualist truth’: the concepts V and & are interpreted in a quite na:-
ural way (‘reduced’, 13.21 and 13.22), and the associated rules of infer-
ence (14.41-14.43) are dealt with in a correspondingly effortless manner.
Not so for —; the formula — U is interpreted as % — 1 = 2 (13.23) and
in order to reduce this form further the reduction steps on antecedent for-
mulae (13.5) are necessary. To the informal sense of the — there therefore
corresponds a comparatively artificial and less immediately comparable
reduction procedure. The difficulties which the > and — present to a fi-
nitist interpretation (§ 11) make it indeed impossible to state a more ‘natural’
procedure.

A basic form of inference which genuinely reflects the informal meaning
of the — is the following: ‘From the assumptions I" follows ®. From the
assumption ® and further assumptions 4 follows €. Then € also follows
from the assumptions I’, A.” This form of inference is implicit both in the
‘reductio’ and in ‘complete induction’. Hence the reliance on the lemma
(14.44) in dealing with these two rules of inference.

In the proof of the lemma the difficulty now consists in bridging the gap
between the actualist meaning of the —, according to which the mentioned
form of inference is trivially ‘true’, and the dissimilar finitist interpretation
given by the reduction concept. The fundamental idea of the proof is this:
in reducing I' — D the D is referred back to ‘something simpler’ (13.21-
13.23). The same is done with the antecedent formula D in the reduction
of D,4— € (13.51-13.53). From this we generally obtain two new se-
quents I' - D* and D*, 4 - §; this method can be continued (complete
induction on the number of logical connectives in D) until a minimal for-
mula takes the place of D, and we have thus a trivial case. Yet this method
does not suffice if in the reduction of the antecedent formula ®© that formula
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is retained. The consideration of this possibility requires a further reduction
argument of a special kind (14.63).
14.6. PROOF OF THE LEMMA.

The lemma runs: ‘If reduction rules are known for two sequents of the
formI' - D and D, 4 —» € in which no free variables and no minimal terms
occur, then a reduction rule can also be stated for the sequent I', 4 — €.

The latter sequent will be called the mix sequent of the two other se-
quents; the formula D its mix formula.

In order to prove the lemma, I apply a complete induction on the number
of logical connectives occurring in the mix formula. I therefore assume that
the total number of these connectives is equal to a fixed number p and that
the lemma has already been proved for smaller p or that p is equal to 0.
14.60. Suppose therefore that two definite sequents I' > D and D, 4 - €
without free variables and minimal terms, with p logical connectives in the
formula 9, are given and that for each sequent a reduction rule is known.
It must then be shown that a reduction rule can also be given for the mix
sequent I', 4 — €.

14.61. I shall first deal with the case where the sequent D, 4 — € is already
in reduced form. If € is a true minimal formula, then I', 4 — € is also in re-
duced form. The same holds if € is a false minimal formula and if in 4 a
false minimal formula occurs. The case remains where € and D are false
minimal formulae. In that case I', 4 — € is reduced according to precisely
the same rule as that prescribed for I' = D. Since € and D are both false
minimal formulae, their difference is here immaterial; and the formulae
designated by 4 may be ignored altogether in the reduction (cf. 14.3).
14.62. Suppose that the sequent D, 4 — € is not yet in reduced form. Rel-
ative to the first reduction step to be carried out on the sequent, I then
distinguish three cases:

1. Suppose that € is not a minimal formula.

2. Suppose that € is a false minimal formula and that the first prescribed
reduction step for the sequent D, 4 — € (according to 13.5) does not affect
the antecedent formula D.

3. Suppose that € is a false minimal formula and that the mentioned re-
duction step (according to 13.5) affects the antecedent formula D.

I shall deal with each of the three cases separately.

14.621. Suppose that the first case arises. The first reduction step to be
carried out on the mix sequent I', 4 — € is the appropriate step from 13.21,
13.22, 13.23, where the choise of 1t, or of U or B, resp., is free if € has the
form Vr §(r) or A & B. Suppose that after this reduction step (and, if
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necessary, successive steps according to 13.12, until no further minimal terms
occur) the sequent runs I', A* —» &*. The first reduction step on the sequent
D, 4 = € must necessarily be of the same kind, and in the case of a choice,
the same choice may be made as above, so that after the first reduction step
(and possibly further necessary steps according to 13.12) this sequent as-
sumes the form D, 4A* - €*. Now the following assertion still remains to be
proved, which is again a special case of the lemma: ‘On the basis of the known
reduction rules for the sequents I’ —» D and D, 4* —» €* a reduction rule
for their mix sequent I'y A* — €* is also statable.” I shall postpone the proof
of this assertion for the time being.

14.622. Suppose that the second case arises. After its first reduction step
(according to 13.5) (and possibly successive steps according to 13.12, until
no further minimal terms occur) the sequent D, 4 — € runs D, A4* —» €*.
The reduction of I', 4 - € must then begin with corresponding steps so
that it yields I', A* — ©* from the former sequent. In that case the following
assertion still remains to be proved, which once again is a special case of the
lemma: ‘On the basis of the known reduction rules for the sequents ' - 9
and D, 4* — €*, a reduction rule for their mix sequent I', 4* — €* is also
statable.’

14.623. Suppose that the third case arises. I distinguish three subcases,
depending on whether D has the form YVt (), ¥ & B or — ¥, i.e., depend-
ing on whether the first prescribed reduction step on ®, 4 — € takes the
form of 13.51, 13.52 or 13.53. The treatment of these three cases is not es-
sentially different.

14.623.1. Suppose that D has the form Vg §(z). In that case the first re-
duction step turns the sequent D, 4 = €, i.e., VI F(z), 4 = €, into F(n),
Vi §(z), 4> € or F((n), 4 > €. The sequent I' -» D is identical with
I' - Vi §(z) and its first reduction step must therefore yield I' —» g(m)
(according to 13.21), with arbitrarily chosen m. In particular, we can choose
the numeral n for m and obtain I' —» F(n).

If F(n) contains minimal terms we subject it, and the sequent dealt with
before, to further reductions according to 13.12, as prescribed, until no fur-
ther minimal terms occur. The two sequents then run I — (F(n))* and
(F)*, Yz F(x), 4 » € or (F(n))*, 4 » €. If no minimal terms had
occurred, (F(1))* shall stand for the formula $(1t). First, I consider the
case where D, 4 - € has assumed the second form, viz., (%(n))*, A - C.
Here reduction rules for the sequents I' » (F(1))* and (F(n))*, 4 - €
are known; I now apply the induction hypothesis, according to which
the lemma is assumed to be proved for mix formulae with fewer logical
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connectives than those contained in 9¥; from this it follows that a reduction
rule is also statable for the mix sequent of the two given sequents, i.e., for
the sequent I', 4 — €. For the mix formule (F(1))* obviously contains one
fewer logical connective, viz., the V, than the formula ® which, as we know,
is identical with Yz $(x). This completes the present case.

If D, 4 - € has assumed the more complicated form (F(n))*, Ve F(z),
4 — €, however, the following assertion still remains to be proved: ‘On the
basis of the known reduction rules for the sequents I' » Vr$F(r) and
Ve F(z), (F(m))*, 4 > € a reduction rule is also statable for their mix se-
quent I', (F(n))*, 4 —» €.’ The proof for this will be postponed for the time
being; once it has been carried out, the induction hypothesis can be applied
as before, and from the fact that reduction rules are known for the sequents
I' - (F(n))* and (F(n))*, I, 4 —» € it can be inferred that a reduction rule
is also statable for their mix sequent I', I', A — €, and hence for I', 4 — €.
14.623.2. Suppose that © has the form U & B. Then the first reduction
step on the sequent D, 4 - € yields A, A& B, 4> C (or B, A& B,
4-58)orA 4> € (or B, 4> €). In the first reduction step on the
sequent I' - A & B, a choice can be made in such a way that I — 9 (or
I' > B) results (according to 13.22).

If D, 4 — € has assumed the form without A & B, we apply the induction
hypothesis at once: Since reduction rules are known for the sequents I' — 9
(or I' > B) and A, 4 » € (or B, 4 - €) and since the mix formula U
(or B) contains fewer logical connectives than % & 9B, a reduction rule is
also statable for the mix sequent I', 4 — €.

In the other case the following assertion is still to be proved: ‘On the
basis of the known reduction rules for the sequents I' = A & B and A & B,
A 4> € (or A& B, B, 4 - €) a reduction rule is also statable for their
mix sequent I', A, 4 —» € (or I', B, 4 —» €).” For, if this has been proved, it
follows once again by an application of the induction hypothesis that, given
reduction rules forI' » A (or ' > B)and A, ', 4 - € (or B, I', 4 - €),
a reduction rule is also statable for the mix sequent I', I', A — €, and hence
forI', 4 —» G.

14.623.3. Suppose that D has the form — . The first reduction step then
turns the sequent D, 4 - Cinto — A, 4 - Y or 4 — . Inits first reduction
step (according to 13.23) the sequent I" —» — A then becomes A, I - 1 = 2.

If D, 4 —» € has assumed the form 4 — 9, we apply the induction hy-
pothesis at once: Since reduction rules are known for the sequents A — U
and U, I' -» 1 = 2, and since the mix formula U contains fewer logical con-
nectives than — U, a reduction rule is also statable for the mix sequent
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A,I' = 1 = 2. The same therefore also holds forI',4 — §; for €, like 1 = 2,
is a false minimal formula.

In the other case the following assertion is still to be proved: ‘On the basis

of the reduction rules known for the sequents I' » — H and U, 4 - U,
a reduction rule is also statable for their mix sequent I', 4 — .’ If this has
been proved, it follows again by the use of the induction hypothesis that,
given the reduction rules for ', A - % and %, I’ - 1 = 2, a reduction rule
is also statable for the mix sequentI’, 4, I’ - 1 = 2, and hence alsofor I',
A4 - €,
14.63. CONCLUSION OF THE PROOF. In several of the cases discussed an assertion
was made whose proof had been postponed. In each case this assertion
was of the following form: ‘On the basis of the known reduction rules for
the sequent I' - D and a sequent of the form D, 4% —» €* which has re-
sulted from D, A — € by one or several reduction steps carried out according
to the appropriate reduction rule, a reduction rule is also statable for their
mix sequent I'y A* — §* Here the sequents I' » D and D, 4* — €* con-
tained no free variables and no minimal terms.

This assertion is quite obviously of the same kind as that made at 14.60
and it is precisely for this that the entire proof was intended. The mix for-
mula D is the same as that in the earlier assertion; the sequent I' = D plays
the same role; in place of ®, 4 — €, however, there now occurs a sequent ob-
tained from the latter by one or several reduction steps.

In order to prove the new assertion we now apply exactly the same in-
ferences as before (14.61 to 14.623.3); hence there (possibly) remains to be
proved another assertion of the same kind, where the second sequent once
again results from D, A* — C* by at least one reduction step.

Continuing in this way, we must reach the end in finitely many steps,
i.e., the completion of the proof. This is so since the continual reduction of
the sequent D, 4 — €, which proceeds according to the reduction rule stated
for that sequent, must (13.6) lead to the reduced form in finitely many steps,
so that no further reduction is required (14.61) (assuming that a further
reduction did not become unnecessary in one of the earlier steps).

15.1. The techniques of proof used in the consistency proof can certainly
be considered ‘finitist’ in the sense outlined in detail in section III. This can-
not be ‘proved’ if for no other reason than the fact that the notion of ‘fi-
nitist’ is not unequivocably formally defined and cannot in fact be delimited
in this way. All we can do is to examine every individual inference from this
point of view and try to assess whether that inference is in harmony with the
finitist sense of the concepts that occur and make sure that it does not rest
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on an inadmissible ‘actualist’ interpretation of these concepts. I shall dis-
cuss briefly the most relevant passages of the consistency proof’:

The objects of the consistency proof, as of proof theory in general, are
certain symbols and expressions, such as terms, formulae, sequents, deri-
vations, not to forget the natural numbers. All these objects are defined (3.2,
5.2) by construction rules corresponding to the definition of the natural num-
bers (8.11); in each case such a rule indicates how more and more such ob-
jects can be constructed step by step.

Several functions and predicates were furthermore applied to these ob-
jects and these were decidably defined in the sense of 8.12. E.g., the function
‘the endformula of a derivation’, the predicate ‘containing at least one V or
d-symbol’ and many others.

In the transformation of the derivation in § 12 only quite harmless, en-
tirely finitist concepts and inferences were required.

The concept of the ‘reduction rule’ which is central to the consistency
proof is of a special kind. The proposition ‘for a certain sequent a reduction
rule is known’ contains the concepts ‘all’ and ‘there exists’ in that it asserts
that the reduction rule exists, and that the reduction procedure to be carried
out according to the rule is defined for all possible choices of numerals to be
substituted in the case where a choice arises in the reduction (13.6), and that
the procedure terminates in finitely many steps, i.e., that once again there
exists a natural number in each case which indicates the total number of
steps. (This number generally depends on the choices made.)

The two instances of ‘there exists’ in the reducibility proof were actually
always used finitistically in the sense of 10.3. Hence the expressions: ‘a rule
is known, given, statable’. At 14.2, e.g., the reduction rule for basic
logical sequents was stated precisely and the fotal number of required re-
duction steps can be inferred at once. In 14.3-14.44 it was stated in each case
how an already existing reduction rule must be modified in order to obtain
from it a reduction rule for a further sequent. In the remaining proof the
transfinite ‘there exists’, in connection with ‘there exists a reduction rule’,
was always used in the finitist sense that such a rule was given or (in the case
of ‘introduction’ inferences) a new rule could be stated.

Corresponding remarks hold for the ‘there exists’ in relation to the total
number of reduction steps; with the formulation of a reduction rule on the
basis of known reduction rules, there is always connected the possibility of
determining the total number of newly arising (or disappearing) reduction
steps.

In the lemma an essentially novel element arises with the transfinite use
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of the concept ‘follows’ in expressions of the form ‘if a certain proposition
holds then a certain other proposition also holds’. Here we must recall the
objections which were raised in 11.1 against the unrestricted use of his con-
cept. It turns out however that in the consistency proof the ‘follows’ occurs
only in one context: ‘If reduction rules are known for two particular sequents,
then a reduction rule is also statable for a certain third sequent formed
from the former sequent.” From the finitist standpoint this use of ‘follows’
is unobjectionable; after all, no nesting whatever of ‘follows’ concepts
occurs; here the ‘follows’ is to be understood simply as an expression for
the fact that by means of finitistically correct inferences the validity of a pro-
position (not involving ‘follows’ concepts) is derivable from the validity of
another proposition (not involving ‘follows’ concepts). (The ‘follows’ is
interpreted ‘metatheoretically’, as it were.) The forms of inference of the
‘follows’-introduction and ‘follows’-elimination are in harmony with this
interpretation (cf. 11.1), and these are precisely the inferences occurring
in the proof of the lemma (14.6) and in its applications (at 14.441, 14.442
and 14.443).

In applying the concept ‘all’ in the consistency proof, I have not used the
unwieldy finitist expression given for it in 10.11; here the distinction between
the actualist finitist interpretations has no bearing on our reasoning in any
case.

Complete inductions occurred repeatedly in the consistency proof (at
14.6, 14.63, 14.443, and elsewhere). These are to be interpreted according to
10.5 and in this sense they are quite unobjectionable even in the case where
the induction hypothesis is a transfinite proposition.

The negation of a transfinite proposition occurs only once in the entire
proof (at 13.90) and only in a harmless form in which the proposition con-
cerned leads to a quite elementary contradiction. The negation can actually
be avoided altogether if for ‘consistency’ the following positive expression
is used: ‘Every derivation has an endformula which does not have the form
A & — U’ Here the ‘not’ is no longer transfinite.

I hope that these reflections have helped to make the finitist character of
the techniques of proof used in the consistency proof sufficiently credible.
15.11. I consider it not impossible that the inferences used in the consistency
proof can be reduced to still more elementary ones, so that the techniques of
proof that have to be presupposed as correct without further justification
can be restricted further.

15.2. In order to examine the extent to which the consistency proof ...
example, Godel’s version.
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The forms of inference in the consistency proof are then none other than
those presented in our formalization of number theory; only the concept
of the reduction rule occupies a special position. In its general form it can
not be formulated ((dargestellt)) by the techniques of elementary number
theory. For this reason the consistency proof is in harmony with Gddel’s
theorem.

In this connection ... could not be included in the earlier consistency
proofs (2.4).



5. THE CONSISTENCY OF THE SIMPLE THEORY OF TYPES

For the following I presuppose a knowledge of the basic facts of mathe-
matical logic, in particular, a knowledge of propositional and predicate
logic and of type theory>>.

The consistency of propositional logic is usually proved by the calculation
of truth values®S. The consistency of predicate logic®” is provable by a simple
extension of this procedure’®. Here the basic idea is to specialize the domain
of objects so that it contains only a single element.

Starting with the same basic idea, we shall prove the consistency of the
simply theory of types in an elementary way. By the ‘simple theory of types’
I mean the ‘extended predicate calculus’ in the sense of H.-A.%°, together
with Russell’s hierarchy of types of predicates, but without the finer sub-
division of predicates in the so-called ‘ramified theory of types’¢°. More
about this in § 1. The simple theory of types comprises essentially the system
of the ‘Principia Mathematica’ together with the ‘axiom of choice’, but with-
out the ‘axiom of infinity’®!. It is only by the inclusion of this axiom, i.e.,
by the stipulation of an infinite domain of objects, that the essential difficul-
ties, whose resolution constitutes the main task of Hilbert’s proof theory,
arise. It is noteworthy that an omission of the hierarchy of types leads to
contradictions even without the axiom of infinity, e.g., to ‘Russell’s antin-
omy’%?; the following proof will show that this is no longer possible if
the distinction of types is made.

§ 1. The formal structure of the simple theory of types®®

German and Greek letters will be used as syntactic variables.
b . . .
Subst U (c stands for the expression which results from an expression 2

if every occurrence of the symbol b in U is replaced by the symbol c.
1.1. Definition of a ‘formula’ (formal counterpart of a proposition in the
simple theory of types).
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1.11. We shall need free and bound variables of different types. As variables
we shall admit arbitrary symbols that have not yet been assigned a different
use, but it must be stated in each case whether the symbol concerned is to
represent a free or a bound variable; the type of the variables will be indi-
cated by a numerical subscript. Types are: 0, 1, 2, 3, .. .. (Informally, varia-
bles of type 0 stand for arbitrary elements of the domain of objects, varia-
bles of type 1 for arbitrary properties (= one-place predicates) of objects
and, in general (for v = 1), variables of type v+1 for arbitrary properties
of properties of type v. The properties represent at the same time the
‘classes’ (= sets) of elements for which the property concerned holds.)

Usually, multi-place predicates are used, and so are predicates of predi-

cates, etc., necessitating a further hierarchy of predicates within the various
types®4.) As observed by Godel®®, however, this second hierarchy is dis-
pensable. '
1.12. An expression of the form a,,,b,, where a,,, and b, are arbitrary
free variables (with the subscripts designating their types, v = 0), is a for-
mula. (Informal meaning: ‘The property a,,, holds for b,’; or: ’b, is an
element of the set a,,,".)

If U is a formula, then so is — 2. (Informal meaning: ‘A does not hold’.)
If A and B are formulae, then so is A & B (‘U holds and B holds’), Av B
(‘U holds or B holds’), A = B (“if A holds, then B holds’) and A > = B
(‘U holds if and only if B holds’).

If 2 is a formula in which the free variable a, occurs and in which the
bound variable g, does not occur, then Vg, Subst 91(;") and 3%, Subst

Vv

g) holds for all

v

A (a") are also formulae. (Informal meaning: ‘Subst 91(

v

aV

t,’; or: ‘there is an t,, so that Subst 91(2) holds’.)

v

1.13. No expressions other than those formed in accordance with 1.12
are formulae. Brackets will serve to display the structure of a formula un-
ambiguously. Example of a formula:

— Ay, [a1bo &Yz, (c3y2 @ < z4a5)]

a,, by, c;3 and a, are free variables, y, and z, bound variables.
A formula, or part of a formula, of the form

VEver @yr1ly D Lr15)),

where 1,, 3, and ¢, ., are variables, may be abbreviated by: t, = 8,.
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1.2. Definition of a ‘derivation’ (formal counterpart of a proof in the simple
theory of types).

A derivation is a sequence of formulae of which each is either a ‘basic
formula’ or has resulted from one of the preceding formulae in the sequence
by the application of a ‘rule of inference’. The admissible basic formulae
and rules of inference will now be stated.

1.21. (Propositional logic.) Among the basic formulae are all formulae that
result from ‘logically true combinations of propositions’, in the sense of
H.-A.®S, by the substitution of arbitrary formulae, in our sense (1.1), for the
‘basic propositions’. In addition, we use the following rule of inference:
From two formulae of the form 2 and A = B the formula B may be derived.
1.22. (Predicate logic.) Among the basic formulae are all formulae of the

form (Vz, A) o Subst A (iv) and Subst A (i") > 3¢, A, where Yz, A and

v

Jt, A stand for arbitrary formulae of that form and a, for an arbitrary free
variable; v continues to stand for an integer = O.

Rules for ¥ and 3: From a formula of the form A = B the formula
A > Vg, Subst B (

a,
Ly
occurring in B but not in %, and g, stands for a bound variable not occurring

inB. Frem aformula of the form B = U the formula (3 ¥, Subst B (Z’)) oAU

V.

may be derived, where a, stands for a free variable occurring in 9B, but not
in A, and g, for a bound variable not occurring in B.
1.23. (Equality.) Every formula of the form

vz, (@412, @ = b,432)] 20,41 = by4y
is a basic formula, where a,.; and b, , are to be replaced by arbitrary free
variables and £, by an arbitrary bound variable.
1.24. (Axioms of set formation.) Every formula of the form

agv+1 Vt)v [gv+1 t)v > < Subst Q[ (gv)]

is a basic formula; here 9 is to be replaced by an arbitrary formula in which
the (arbitrary) free variable a, occurs; ¢,.,; and 1), are to be replaced by
arbitrary bound variables not occurring in 9. (Informal meaning (‘axiom
of comprehension’): Any arbitrarily formed proposition % in which the free
variable a, occurs, determines a sez (&, 4, ), Viz., the set of those a,, for which
Z,+ holds).

Furthermore, every formula of the form

) may be derived, where a, stands for a free variable
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{IVEs 1 (Oyr 281 239, 50 19)] & V301 Vit [(@y12 341
& Oyialyss & mdyrr = Uyyr) D — 30, Byt 0y & U1 (D))}
D0y 4q V0yrg {02041 238, 10,448, &1, 148,
& —3t, (w,,t, &1,44t, & — 1, =3)]}

is a basic formula; here @, is to be replaced by an arbitrary free variable,
and Zy4 1> Yy Bvar1s Upr1s Dys Wyiy, Lay, 3y and £, are to be replaced by
arbitrary mutually distinct bound variables. (Informal meaning (‘axiom of
choice’): For every arbitrary totality (a,,,) of non-empty pairwise disjoint
sets, there exists a choice set (,,,) which has one and only one element
(8,) in common with each set in this totality.)

§ 2. The consistency proof

2.1. Underlying ideas. We shall show that the formal system developed in
§ 1 is consistent, i.e., that in it no formula of the form U & — U can be de-
rived.

Informally interpreted, the simple theory of types is intended to be valid
for every arbitrarily stipulated (non-empty) domain of objects. If it were con-
tradictory, then this would already have to become apparent in the special
case where the domain of objects consists only of a single element. In this
case, however, all propositions are decidable; this is due to the fact that every
type consists of only finitely many objects, viz.: type 0 contains one object;
type 1 contains the set containing that object and the set not containing that
object, hence two different sets; correspondingly, type 2 contains four dif-
ferent sets, etc. In this special case it can easily be verified that all proposi-
tions are ‘true’ and that, a fortiori, no contradiction can be proved.

2.2. THE PROOF PROPER. Suppose that an arbitrary derivation in the simple
theory of types (1.2) is given. We shall transform the derivation in four
steps.

We first introduce the following auxiliary symbols (standing for ‘the single
object of type 0’, the two ‘sets of type 1’, etc.):

1). (1 2). (1 2 3 4).
7675 980, v{25 782, 987 98, 9805

in general, p, symbols with the subscript v: y{* .. .y{**), where p, = 2°*-

(forv = 1).

2.21. First transformation step (replacement of the free variables by they’s).
We take an arbitrary formula % of the derivation containing the free

variable a,, and replace it by the following sequence of expressions:

* s
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a a . .
Subst U (y({)) , e Subst A (y("v“))' This transformation must be repeated

until all free variables have been eliminated; in other words, the newly re-
sulting expressions must also be dealt with in the same way if they still
contain free variables. »

2.22. Second transformation step (replacement of the bound variables by the
P’s).

Suppose that a certain part of one of the expressions that has resulted
by step 1 (or of one of the initial formulae, if these were left unaffected by
step 1) has the form Vg, % or 3, A. In that case we replace it by the con-
junction (disjunction) of the expressions

Subst A (ﬁ}’)) o .. Subst U (y(gpvv)) .

This transformation is repeated (and is applied to newly resulting expres-
sions, if necessary) until all bound variables have been eliminated. It is
easily seen that the order in which these transformations are carried out
has no bearing whatever on the final result.

2.23. Third transformation step (substitution of truth-values for the y’s).

We introduce two further auxiliary symbols: The ‘truth-values’ V (for
‘truth’) and A (for ‘falsity’).

Suppose now that some part of one of the expressions that has resulted
from the derivation formulae by the first and second transformation steps
has the form y{%,7'". It is replaced by V or A according to the following
instruction: y{Py is replaced by V, y{¥5{) by A; in general: The symbols
Y and A must be correlated with the expressions y? y¥(v = 0; 4 = 1, ...,
pv+1s 4 =1,...,p,) in such a way that to every possible distribution of
the symbols Y and A over the symbols y, there corresponds exactly one
7,41 Whose combinations with the y,’s receive the corresponding values ¥V
and A. This can be done since the total number of the y,’s equals p,, and
since the total number of possible distributions of V’s and A’s over the
p,’s is therefore 2°¥ = p,, , and thus equal to the total number of the p, . ,’s.
(Informal sense: The 7,,,’s are intended to represent all possible sets of
WS-

The same transformation is repeated until all y’s have been eliminated.
After all, the y’s could occur nowhere except in one of the y{%;7(™s (1.12).
2.24. Fourth transformation step (calculation of truth-values).

All formulae of the original derivation have now been replaced by ex-
pressions containing only the symbols V and A, linked by the propositional
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connectives —, &, v, D, o <. These expressions must now be ‘evaluated’
in the way familiar from propositional logic (i.e., V & V is replaced by V;
V & A is replaced by A, etc.) so that every expression is finally reduced to
only a single symbol V or A.

2.25. CONCLUSION OF THE PROOF. I now assert: The derivation which has
been transformed in the four described steps consists only of expressions
of the form V.

Proof: A basic formula of propositional logic (1.21) must obviously
always have taken the value V : the reason is that identical subformulae were
transformed in an identical manner in all transformation steps and whatever
truth-value they may have received in steps 3 and 4, the total value obtained
in step 4 must still have turned out to be V, since the initial formula was
‘identically true’, in the sense of propositional logic.

If, in addition, the truth-values obtained in the transformation of the
formulae U and A > B were always V, then the expressions resulting from
formula B must all eventually have become V. For suppose B* is any ex-
pression resulting from B by step 1. Then among the expressions that have
resulted from the formulae U and A = B (in step 1) there must clearly be
at least one pair of expressions of the form 2* and A* = B*. On the other
hand, U* eventually takes the value VY, so does UA* > B*; and this can
happen only if B* also assumes the value V (since V > A results in A).
(Here it is essential that identical parts of different expressions were
transformed in identical ways in steps 2 to 4.)

In step 1, a basic formula of the form (Vg, %) > Subst U (i“) resulted

in expressions of the form (Vg, A*) o Subst A* (yg(;)) ;120 Zp,.
v

In step 2, these became

[Subst g** (;f;)) &. .. & Subst U** (y(g;v))] > Subst 2** (f(:,)) .

Since one component of the square bracket must be equal to the expression
on the right of the implication symbol, the calculation (in steps 3 and 4)
must, in every case, have yielded the value V. In the case of a basic formula
for 3 (1.22) our reasoning is analogous.

Now the rule for V (1.22): In step 2, all expressions of the form U > Vg,

Subst B (av

) became expressions of the form

v
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°A* o [Subst B* (?‘1’)) & ... & Subst B* ( ,,"v))}
Py
On the other hand, every single one of the expressions
A* > Subst B* (y(")) c=1,...,p,

must obviously have occurred among the expressions which resulted from
the formula A > B by steps 1 and 2. If all of these expressions had received
the value YV insteps 3 and 4, then the above expression would also have taken
that value. (For either 2* became A, in which case our assertion follows,

or UA* became V, in which case all of the expressions Subst B* (ﬁ;)) must

also have received the value Y, so did therefore their conjunction.) Applica-
tions of the rule for 3 are dealt with analogously.

In the case of a basic formula of the kind introduced in 1.23, the first
reduction step resulted in expressions of the form

[vz, (?\(;?12\; = ?\(;212\;)] 292, =9

(120=ZLp; 1S1=Zp04).

In steps 3 and 4, the square bracket can have become Y if all of the conjuncts
Py o =99, for u=1,...,p,, arising from step 2, took the
value V; this in turn was possible only if ¢ was the same number as 7. In
that case 32, = y{0¢, i.e., (1.23) ¥9,.45(9,+29$71 2 9y42752 ) obviously
yielded the value Y. The fourth step therefore certainly resulted in the value
Y in each case. (Since Y- 2 Y yields V, and if the square bracket took the
value A, then the total value is V; in any case.)

In the case of a basic formula that is an instance of the ‘axiom of compre-
hension’ (1.24), steps 1 and 2 lead to expressions of the form:

[( ‘(’1) y‘(’l) > < Subst U* (?(1))) &

& (?51) y(pv) > < Subst A* (y?pvv))):\ v

[(y‘(,"””)y‘(,l) > < Subst ¥* (? ))

&
oo & (yf,""”)y("”) > < Subst A* ( ? )):\ .
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Suppose now that steps 3 and 4 have given rise to certain truth-values for
. a . .
the expressions Subst UA* (y(,‘:)): Whatever these expressions were, there is
v

always precisely one expression among the square brackets in which the
truth-values to be substituted in step 3 for the expressions {7 ,7” (for

v

Tt =1,...,p,) standing on the left, agree entirely with the truth-values to
be substituted for the expressions Subst U* (;‘,’)) standing on their right.

This follows from the fact that at 2.23 the truth-values for yy-expressions
were arranged in such a way that to every possible distribution of truth-
values over the numbers from 1 to p, there corresponds exactly one ¥,
whose combinations with the y,’s received precisely these truth-values.

This means that the calculation of the truth-value of the square bracket
concerned must have yielded the value V; the entire disjunction, therefore,
also takes this value.

In the case of a formula that was formed by means of an application of
the ‘axiom of choice’, step 1 leaves the structure unchanged, except for a
7%, in the place of a,, ,. Let us consider the appearance of such an expres-
sion after step 2, in which all V-expressions were replaced by certain con-
junctions and all 3-expressions by certain disjunctions. If we call to mind the
informal sense of the individual parts of which this formula is composed,
then it follows easily that the total expression is ‘true’, (since the axiom of
choice is trivially valid for finite domains) and this means formally that the
formula must receive the value Y. More precisely: If the value were A, then
the left component of the entire implication would have to have the value Y
and the right component the value A. From the former it follows that for

every Y2, (6 = 1,...,p,.,) the implication

1 v,
P9 2 G20 v v iR

has the value V and this means that if y*,7{%, has the value V, then at
least one of the expressions 2,7 (v = 1,..., p,) has the value V. It
follows analogously that the second part of the left component of the entire
implication also has the value V and so does its informal interpretation
in terms of the y’s, i.e., for two distinct y, ., for both of which y%),7,+1
takes the value V, there exists no y, which, in combination with either one
of these two, yields the value V. Now we form the ‘choice set’, i.e., we choose
for every y{7, for which y{¥,5{%, has the value V, any one of the y? for
which the y{?,7% has the value V, and consider that 72, which yields the
value V when combined with the chosen y{™’s, and which does not yield
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this value in combination with any other y{”. Such a 9{?, must exist (2.23).
By considering that component of the disjuntion obtained from 3, ...
which corresponds to this ‘choice set’, we can now see quite easily that it
must have received the value Y; the entire expression cannot, therefore,
have taken the value A, but only the value V.

We have therefore shown that by the four transformation steps the given
derivation has been transformed entirely into expressions of the form V.
From this the consistency follows at once, since a formula of the form
A & — A would obviously have had to take the value A in the course of the
transformations.

2.3. CoNCLUDING REMARKS. The arguments involved in the proof follow al-
most automatically, if we call to mind the informal sense of the y’s (2.1, 2.2)
aswell as that of the formulae and rules of inference (§ 1). It is then not difficult
to see that the entire proof can easily be extended to the case where an ar-
bitrary finite domain of objects is stipulated. Here the number of possible
sets for each type remains after all finite. From this it follows that the simple
theory of types also remains consistent if axioms are included which assert
the existence of a certain finite number of objects. If the availability of in-
finitely many objects (‘axiom of infinity’) is demanded, however, then a rad-
ically different situation results which is still unresolved at the present time.

The consistency proof which has here been carried out is obviously com-
pletely ‘finitist’ in the sense of Hilbert’s proof theory; it contains only the
most elementary kinds of inferences and concepts.



6. THE CONCEPT OF INFINITY IN MATHEMATICS

The great controversy which has flared up in recent decades in connection
with the foundations of mathematics is above all a controversy about the
nature of infinity in mathematics. In the following, I shall try to characterize
in as nontechnical a way as possible the precise problems that are here in-
volved.

I shall first give a classification of mathematics into three distinct levels
according to the degree to which the notion of ‘infinite’ is used in the various
branches of mathematics. The first and lowest level is represented by ele-
mentary number theory, i.e., by the theory of numbers that does not make
use of techniques from analysis. The infinite occurs here in its simplest form.
An infinite sequence of objects, in this case the natural numbers, is involved.
Several other branches of mathematics are logically equivalent to elementary
number theory, viz., all those theories whose objects can be put into one-to-
one correspondence with the natural numbers and which are therefore
‘denumerable’. Almost the whole of algebra belongs here — the rational
numbers, the algebraic numbers, also polynomials, can after all be proved
to be denumerable — so does combinatorial topology, for example, i.e., that
part of topology which deals only with objects whose properties are describ-
able by finitely many data. The well-known four-colour problem belongs
here. All these theories are, logically speaking, entirely equivalent. It is
therefore sufficient to deal with elementary number theory only; the theorems
and proofs in the remaining theories can be reinterpreted as number-theo-
retical theorems and proofs by a correlation of their objects with the natural
numbers. To the four-colour problem, for example, there corresponds in-
deed an equivalent number-theoretical problem, although our special in-
terest in it derives of course solely from its intuitive topological formulation.

The second level of mathematics is represented by analysis. As far as
the application of the concept of infinity is concerned, the essentially new
feature here is the fact that now even individual objects of the theory may
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themselves be infinite sets. The real numbers, i.e., the objects of analysis, are
after all defined as infinite sets, as a rule as infinite sequences of rational
numbers. In this connection it makes no difference whether the particular
definition chosen is that by nested intervals, or Dedekind cuts, or by some
other means, The whole theory of complex functions also belongs at this
level; nothing essentially new is here added. The third level of application
of the concept of infinity, finally, is encountered in general set theory. Ad-
mitted as objects here are not only the natural numbers and other finitely
describable quantities, as the first level, as well as infinite sets of these, as
at the second level, but, in addition, infinite sets of infinite sets and again
sets of such sets, etc., in the utmost conceivable generality.

1he given classification subsumes every branch of mathematics. As far as
geometry is concerned, for example, it no longer presents any special prob-
lems today in connection with the concept of infinity. What might appear
to be such problems either belong to physics or occur in an equivalent form
in analysis; the different geometries can after all always be interpreted in
terms of logically equivalent models from analysis.

There are essentially two fundamentally different interpretations of the na-
ture of infinity in mathematics, and Ishall now go on to describe them. I shall
call them the ‘actualist’ ((an sich)) interpretation and the ‘comstructivist’
((konstruktiv)) interpretation of infinity. The former is the interpretation
of classical mathematics as we have all learned it at university. Several
mathematicians have adopted the constructivist view — although not always
to the same extent — among them Kronecker, Poincaré, Brouwer and Weyl.
These names alone indicate that we are dealing with a direction of opinion
that must indeed be taken seriously. I shall try to bring out the essence of
the constructivist view vis-3-vis the actualist interpretation; in the short
time available this can be done only imperfectly, especially since it must be
kept in mind that by its very familiarity, the actualist interpretation has be-
come second nature to us and that it is not easy to adopt, for once, a quite
different way of thinking.

I shall begin with the antinomies of set theory. Here we have a situation
in which actualist considerations have led to an absurdity which could not
have resulted from the constructivist interpretation of the matter. For on the
basis of the quite general concept of a set indicated earlier it is also possible
to form, for example, the concept of the “set of all sets’; this is a correctly
defined set. Yet contradictions quite understandably follow from it: The set
of all sets must after all contain itself as an element and in a certain sense —
easily made precise — it must therefore be larger than itself, and this can
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obviously not be so. Upon closer examination it becomes easily apparent
how the absurdity comes about : Strictly speaking, the ‘set of all sets’ must
not itself be considered as belonging to the sets; it is a subsequent formation,
as it were, which produces an entirely new collection from a given totality
of sets. This is in fact the constructivist view of the situation: New sets may,
as a matter of principle, be formed only constructively one by one, on the
basis of already constructed sets. According to the actualist view, on the
other hand, all sets are defined in advance by the abstract concept of a set
and are therefore already available ‘as such’ ((an sich)), quite independently
of how individual sets may be selected from them by means of special con-
structions. This view had led to the antinomy.

If we were to try to express the essence of the constructivist view in as
general a principle as possible, we would formulate it about as follows:
‘Something infinite must never be regarded as completed, but only as some-
thing becoming, which can be built up constructively further and further.’
I recall Gauss’s well-known dictum that ‘the use of an infinite quantity as
something completed is never permissible in mathematics’.

If this principle of interpreting the infinite constructively is accepted, then
differences vis-d-vis the actualist interpretation of classical mathematics
manifest themselves not only in the theory of sets, but already in the realm
of elementary number theory. I shall now discuss these differences in greater
detail. In elementary number theory, we encounter the infinite only in its
simplest form, viz,. in the form of the infinite sequence of the natural num-
bers. According to the actualist interpretation, we may regard this sequence
as a completed infinite totality, whereas the constructivist interpretation
allows us to say only this: We can progress further and further in the number
sequence and always construct new numbers, but we must not speak of a
completed totality. A proposition such as ‘all natural numbers have the
property B’, for example, has in each case a somewhat different sense.
According to the actualist interpretation, it says: The property B holds for
any number that may somehow be singled out from the complete totality
of numbers. According to the constructivist interpretation we may say only
this: Regardless of how far we progress in the formation of new numbers,
the property % continues to hold for these new numbers.

In practice, this difference in interpretation is here, however, immaterial.
A proposition about all natural numbers is normally proved by complete
induction, and this inference certainly appears to be in harmony also with
the constructivist interpretation; particularly since complete induction is
after all based on the idea of our progressing in the number sequence. The
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situation is different in the case of existential propositions. The proposition
‘there exists a naural number with the property B’ says, according to the ac-
tualist interpretation: ‘Somewhere in the completed totality of the natural
numbers there occurs such a number.” According to the constructivist inter-
pretation, such an assertion is of course without sense. But this does not mean
that under this interpretation existential propositions must be rejected out-
right. If a definite number 1, for which the property ‘B holds, can actually
be specified, then even under this interpretation can we speak of the existence
of such a number; in reality, the existential proposition now no longer refers
to the infinite totality of numbers; it would after all suffice to speak only of the
numbers from 1 to 1. The existence proofs that occur in practice are indeed
mostly such that an example can actually be given. However, proofs are also
possible where this is not the case, viz., indirect existence proofs: It is assumed
that there is no number for which the property ¥ holds. If this assumption
leads to a contradiction, it is inferred that a number for which the property
B holds exists after all. It may then happen that an effective procedure for
actually producing such a number is altogether unobtainable. From the con-
structivist point of view, such a proof must consequently be rejected. Another
technique of proof which likewise becomes unacceptable from this point
of view and which is usually quoted in this connection, is the application of
the ‘law of the excluded middle’ to propositions about infinitely many ob-
jects. According to the constructivist interpretation, for example, we can-
not even say: ‘A property ‘5 holds for all natural numbers or it does not hold
for all natural numbers.” The rejection of thelaw of the excluded middle seems
particularly paradoxical, at first, but it is only a necessary consequence of
the principle of interpretating the infinite potentially. After all, this law is
based on the idea of the completed number sequence. This must not be inter-
preted to mean that the constructivists regard this law as altogether false;
from their point of view it is more correct to regard it as being without sense.
It thus makes no sense whatever to even speak of the totality of numbers
as something completed, precisely because ‘in reality’, the number sequence
is never completed, all that is given is an indefinitely extendable process of
progression.

In practice these forms of inference, which are nonadmissible according
to the constructivist interpretation, hardly ever occur in elementary number
theory. The situation is different in analysis and set theory. Here the differ-
ences between the two interpretations are essentially the same as those
described for the natural numbers; I shall therefore not discuss them further.
In the case of analysis and set theory, however, the significance of the dif-
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ference is considerably greater with the result that from the constructivist
point of view extensive parts of analysis and almost all of set theory cannot
be accepted.

In this connection, attention should be drawn to the fact that the delimi-
tation between what is constructively permissible and what is not cannot
be defined unequivocably in certain borderline cases and that the opin-
ions of the different mathematicians representing this point of view are not
identical. Yet these differences are not important enough to the picture as
a whole to warrant a more detailed discussion. Words like ‘intuitionist’
(Brouwer) and “finitist’ (Hilbert) denote such somewhat different construc-
tivist points of view.

Now the cardinal question becomes this: Which of the two interpretations
is actually correct? Both are defended. On the one hand, we have the intu-
itionists under the leadership of Brouwer with the totally radical thesis that
all of mathematics which is incompatible with the constructivist point of
view must be discarded. On the other hand, the majority of mathematicians
are understandably reluctant to make such a sacrifice. The antinomies, so
they say, are indeed founded oninadmissible formation of concepts; but such
concepts can be avoided by a proper delimitation; the whole of analysis and
a fortiori number theory, so they claim, is entirely unobjectionable. Unfor-
tunately, the delimitation of the inadmissible inferences can be carried out
in basically different ways without their necessarily leading to a definite
common point, and I must say that to me the clearest and most consequen-
tial delimitation seems to be that given by the principle of interpreting the
infinite constructively.

We should nevertheless be reluctant to dlscard the extensive nonconstruc-
tive part of analysis which has, among other things, certainly stood the
test in a variety of applications in physics. Hilbert sees in his proof theory a
means of resolving these difficulties. This theory is intended to clarify as far
as possible the mutual relationship between the two interpretations of the
infinite by means of a purely mathematical investigation.

How can this be done? The first and formost task is to establish the con-
sistency of mathematics, as far as such consistency exists. Here we after all
have the strongest argument of the constructivists: The actualist interpre-
tation has led to contradictions in set theory; who knows whether one day
contradictions could not also occur in analysis. This objection could be
considered as met by a consistency proof for analysis. It is in fact quite con-
ceivable that the consistency of a meghematical theory can be proved with
exact mathematical techniques. In order to see this we call to mind the fact
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that a proposition asserting consistency is formalizable as a mathematical
assertion; it says: There exists no proof within the theory which leads to a con-
tradiction. The ‘proofs’ in a theory can be made the objects of a mathemati-
cal investigation, viz., ‘proof theory’, just as the natural numbers, for exam-
ple, are made the objects of number theory. For this purpose it is customary
to formalize the proofs, i.e., we replace the linguistic expressions in the proofs
by definite symbols and combinations of symbols — to the inferences there
now correspond certain formal rearrangements of combinations of symbols ~
so that we finally obtain as counterparts of the proofs certain figures com-
posed of symbols. These figures are now susceptible of mathematical in-
vestigation in the same way as geometric figures. In order to be able to give
a precise formal delimitation of the concept of a ‘proof in a theory’ it is of
course essential, in particular, that a delimitation of the forms of inference
occurring in the proof can be given in advance.

In practice, the number of forms of inference which are used in mathemat-
ics is fortunately relatively small.

If a consistency proof is then carried out, certain forms of inference must
of course themselves be used for this proof. The correctness of these infer-
ences must be presupposed from the outset, otherwise the whole proof
would of course be circular. There can be no ‘absolute’ consistency proof.
What kinds of inference must be presupposed as correct follows at once from
our earlier considerations: The inferences must be compatible with the con-
structivist point of view. The reliability of the constructivist point of view is
presupposed and not questioned. The objective then is to prove the consis-
tency of the actualist interpretation by means of constructive inferences.

Recently I succeeded in carrying out such a proof for elementary number
theory, i.c., for the first of the three given levels of the concepts of infinityS”.
Corresponding proofs must still be worked out for analysis and, finally,
set theory in so far as the latter is actually consistent. In the course of this
proof-theoretical investigation we can expect to gain insight into how far
we can go without encountering antinomies and to find answers to further
related questions.

What would be the relationship between the two interpretations of the
infinite, if the consistency proof were complete? Even then different opinions
could be held. One possibility would be to regard the consistency proof as
still insufficiently secure by raising doubts about the constructive infer-
ences used in the proof.i Ido notregard the danger of this objection as partic-
ularly great. Something will always have been gained if the reliability of the
forms of inference of mathematics has been shown to depend on a minimum
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of fairly indisputable inferences; to do more is simply impossible; and I am
certain that this foundation is considerably more secure than that provided
by the actualist interpretation.

More important is a different obJecton raised by the intuitionists: Even
if the consistency were to have been proved, the propositions of actualist
mathematics would still remain without sense and would therefore have to
be rejected now as ever. An indirectly proved existential proposition, for
instarnce, is claimed to be without sense; the reason is that the assertion of an
existence is granted a real sense only if an example can actually be given.
How can this be countered? It will have to be admitted that an indirectly
proved existential proposition has a different, weaker sense than one that
has been proved constructively; but a certain ‘sense’ is retained neverthe-
less. Furthermore, even if we do not concede an immediate sense to non-
constructively proved propositions, the possibility still remains of using them
to prove simple propositions such as directly verifiable numerical equations,
which are certainly not without constructive sense; such propositions must
then be true by virtue of the consistency proof and it might be the case that
a direct constructive proof for the same proposition is more laborious or
altogether unobtainable. This would seem to afford the actualist forms of
inference at least a practical value which even the constructivists would have
to acknowledge. This whole question of ‘sense’ does not seem to me at the
moment to be ready for a final settlement. It is particularly from proof-
theoretical research that significant contributions towards an answering of
this question can be expected. A certain residual part will in the end always
remain a matter of opinion. The objection against the sense of actualist
propositions must in any case not be taken too lightly; it is not entirely with-
out merit. I believe that in general set theory, for example, a careful proof-
theoretical investigation will eventually confirm the view that all cardinalities
exceeding the denumerable ones are in a very definite sense only fictitious
entities ((leerer Schein)) and that it would be wise to do without these
concepts.

After these general considerations I will now discuss in detail some of
the difficulties arising in consistency proofs; I shall have to speak, in par-
ticular, of Godel’s theorem and of the significance of the transfinite ordinal
numbers for consistency proofs.

Godel has proved the important theorem: ‘The consistency of a mathe-
matical theory which contains elementary number theory cannot be proved
— given that the theory is really consistent — with the techniques of proof
of that theory itself.” At first sight it would seem that even the possibility
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of a consistency proof has thus become illusory since such a proof is intend-
ed to involve fewer techniques than those contained in the theory which is
to be proved consistent. It remains quite conceivable, however, that the con-
sistency of elementary number theory, for example, can be proved with tech-
niques which are constructive on the one hand and do not involve the ac-
tualist aspects of elementary number theory, but which, on the other hand,
still transcend the framework of elementary number theory. In my proof this
technique is the rule of ‘transfinite induction’ applied to certain ‘transfinite
ordinal numbers’. I shall indicate briefly what is meant by this and how these
concepts are connected with the consistency proof.

The concept of the ‘transfinite ordinal numbers’ goes back to G. Cantor
and really belongs to set theory. We shall, however, require only a very limit-
ed portion of the ordinal numbers developed in that theory — a ‘segment of
the second number class’ in the terminology of set theory — a segment which
can be built up strictly constructively and which has nothing in common with
the disputable aspects of the actualist interpretation which are especially
blatant in set theory and which must be avoided in the consistency
proof.

The transfinite ordinal numbers are constructed in the following way:
First comes the sequence of the natural numbers: 1, 2, 3, etc. Then a new
number w is introduced, which is defined to rank behind all natural numbers.
w is followed by w+1, then w+2, w+ 3, etc. Behind all numbers of the form
w+1 follows w-2, then w-2+1, w-2+2, etc., after these w - 3, then
w*3+1, w-3+2, etc., etc. Behind all numbers of the form w - n+n fol-
lows the number w?, then again w?+1, w?+2,..., 0*+w, o*+o+1,...,
0’ 4w 2, 0 +w- 3, .., 0*2,...,0* 3, ..., 0% 4, etc., finally »>,
and we can go on in this way to form w?, . . ., ®’, .. ., finally »®, and still
further numbers, if desired. The entire procedure — which I have only sketch-
ed here — may at first seem somewhat bewildering. Yet basically only two
operations are involved whose repeated application automatically generates
all these numbers:

1) given an already existing number, we can form its successor (addition
of 1);

2) given an infinite sequence of numbers, we can form a new number
ranking behind the whole sequence (formation of a limit).

The concern that this procedure is nonconstructive since the actualist
conception of the completed sequence of the natural numbers already seems
to enter into the formation of w, turns out to be unfounded. The concept of
infinity can here definitely be interpreted potentially by saying, for example:
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Regardless of how far we may go in constructively forming new natural
numbers, the number w stands in the order relation 1 < w to any such
natural number n. And the infinite sequences that arise in the formation of
the other ordinal numbers should be interpreted in precisely the same way.

Now to the concept of ‘transfinite induction’: This induction is nothing
more than the extension of the rule of complete induction from the natural
numbers to the transfinite ordinal numbers. Complete induction may, as is
well known, be formulated as follows: If a proposition holds for the number
1, and if it has been proved that its validity for all numbers preceding the
number 1t entails its validity for 1, then the proposition holds for all natural
numbers. If we here replace ‘natural number’ by ‘transfinite ordinal num-
ber’, we have the rule of trnasfinite induction. We can easily convince our-
selves of the correctness of this rule for initial segments of the transfinite
number sequence as follows: Suppose the proposition holds for the number
1, and that it has been proved further that if the proposition holds for all
numbers preceding a certain ordinal number it also holds for that ordinal
number. Then we argue thus: The proposition holds for the numberl hence
also for the number 2, thus also for 3, etc., hence for all natural numbers.
Consequently it also holds for the number w, precisely because it holds for
all its predecessors. For the same reason it holds for the number w+1,
thus also for w+2, etc., finally for w - 2; and, correspondingly, we show its
validity further for w - 3, - 4, etc., finally also for w?. Continuing in this
way, we can convince ourselves of the validity of the rule of transfinite in-
duction by ascending step by step in the sequence of transfinite ordinal num-
bers. As the numbers become larger, the situation admittedly begins to look
rather complicated, but the principle always remains the same.

I shall explain now how the concepts of the transfinite ordinal numbers
and the rule of transfinite induction enter into the consistency proof. The
connection is quite natural and simple. In carrying out a consistency proof
for elementary number theory we must consider all conceivable number-
theoretical proofs and must show that in a certain sense, to be formally
defined, each individual proof yields a “correct’ result, in particular, no con-
tradiction. The ‘correctness’ of a proof depends on the correctness of certain
other simpler proofs contained in it as special cases or constituent parts.
This fact has motivated the arrangement of proofs in linear order in such
a way that those proofs on whose correctness the correctness of another proof
depends precede the latter proof in the sequence. This arrangement of the
proofs is brought about by correlating with each proof a certain transfinite
ordinal number; the proofs preceding a given proof are precisely those proofs
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whose ordinal numbers precede the ordinal number of the given proof in
the sequence of ordinal numbers. At first, we might think that the natural
numbers suffice as the ordinal numbers for such a classification. In actual
fact, however, we need the transfinite ordinal numbers for the following
reason: It may happen that the correctness of a proof depends on the cor-
rectness of infinitely many simpler proofs. An example: Suppose that in
the proof a proposition is proved for al/ natural numbers by complete
induction. In that case the correctness of the proof obviously depends on
the correctness of every single one of the infinitely many individual proofs
obtained by specializing to a particular natural number. Here a natural
number is insufficient as an ordinal number for the proof, since each natural
number is preceded by only finitely many other numbers in the natural
ordering. We therefore need the transfinite ordinal numbers in order to
represent the natural ordering of the proofs according to their complexity.

Now it also becomes clear why it is the rule of transfinite induction that
is needed as the crucial rule for the consistency proof; this rule is used to
prove the ‘correctness’ of each individual proof. Proof number 1 is after all
trivially correct; and once the correctness of all proofs preceding a particular
proof in the sequence has been established, the proof in question is also
correct precisely because the ordering was chosen in such a way that the
correctness of a proof depends on the correctness of certain earlier proofs.
From this we can now obviously infer the correctness of all proofs by means
of a transfinite induction, and we have thus proved, in particular, the desired
consistency.

It turns out that this transfinite induction is precisely that inference in
the consistency proof which necessarily, in agreement with G&del’s theorem,
cannot itself be shown to be correct by means of techniques of elementary
number theory.

The correctness of transfinite induction is actually established by a special
argument of the kind used earlier up to the number w?. But even for ele-
mentary number theory we require a considerably larger segment of the
transfinite numbers, viz.: In the same way in which, in outline, I defined
w® above, we obtain @®*, then w@'“*”, etc., by extending the procedure
correspondingly; behind all these numbers follows the number &,, the
first e-number’. This number represents the upper limit of that segment of the
transfinite ordinal numbers which is required for the consistency proof of
elementary numbertheory, if that theoryisformally delimited in the usual way.

I expect - although this is only a conjecture, for the time being — that the
consistency of analysis — and of set theory, as far as possible — will become
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provable in the same way; in each case, we may of course have to advance a
considerably greater distance into the sequence of numbers of the second
number class. Altogether, the following picture would thus seem to emerge:
The increase in complexity of the concept of infinity at the three levels of
mathematics described at the beginning of this paper — elementary number
theory, analysis, and set theory — is accompanied by a corresponding exten-
sion of the sequence of transfinite ordinal numbers; in the same way in which
the number s, forms the upper limit for elementary number theory, we would
have a specific number of the second number class as the upper limit for
analysis, and another number as the upper limit for a formally delimited
set theory — in so far as such a set theory makes sense. But we should not
overestimate the absolute significance of such limit numbers: Even in ele-
mentary number theory it happens that in order to solve certain associated
problems, still further forms of inference would have to be included and
this would widen the framework of elementary number theory further; this
means that still higher ordinal numbers may be required for the consistency
proof. There can be no upper bound for this; Gddel has shown that every
formally delimited system of this kind is incomplete in the sense that certain
associated problems can be solved only by including further techniques. This
makes actually no difference for the consistency proof; we need only to ex-
tend the proof further with each inclusion of new techniques.



7. THE PRESENT STATE OF RESEARCH INTO THE FOUNDA-
TIONS OF MATHEMATICS

§ 1. The different points of view concerning the question of the antinomies
and the concept of infinity

The antinomies of set theory were discovered about forty years ago and,
up to the present time, no final explanation for this matter has been found.
Research into the foundations of mathematics has derived considerable im-
petus from this problem. The precariousness of certain fundamentals of
mathematics which has clearly revealed itself at this point has prompted
precisely some of the most prominent mathematicians — Brouwer, Hilbert,
and Weyl, to mention but a few — to concern themselves with these questions,
which are otherwise mostly foreign to the practising mathematician, who is
frequently inclined to renounce them as incongurous with mathematical
thinking because of the uncertainty and the multiplicity of opinions which
their connection with philosophy evokes.

Several attempts have been made to find a ‘solution’ to the antinomies,
i.e., to point out clearly where ‘the fallacy’ lies. These attempts have not
led to a conclusive result, and there is no reason to expect such a solution
in the future. The situation is rather such that it is impossible to speak of a
uniquely identifiable error in our thinking. All that can be said with certainty
is that the appearance of the antinomies is connected with the concept of
infinity. For no contradictions can occur, by human standards, in purely
finite mathematics, as long as it is correctly constructed. Certain analogues
of the antinomies in finite situations are founded in manifest inaccuracies
in the formation of concepts.

In order to find a way out from the unpleasant state created by the anti-
nomies, various directions have been chosen. The simplest procedure, to begin
with, is to draw a line between permissible and nonpermissible forms of
inference in mathematics, so that the inferences leading to the antinomies
turn out to be nonpermissible. There is a whole multitude of such attempts;
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in some cases the proposed delimitation is claimed to be natural on the basis
of certain rationalizations, in other cases such justifications are not even at-
tempted. Examples are axiomatic set theory and the system of the ‘Principia
Mathematica’.

This procedure is actually quite useful in practice, but not adequate
in principle. First of all, the delimitation is rather arbitrary precisely because
‘the error’ cannot be definitely specified. Second, we are immediately faced
with the question whether contradictions could not one day occur also
in the realm of the permissible forms of inference. Several arguments can
certainly be advanced which make it probable that the antinomies have been
successfully precluded; yet this certainty is not particularly great. Indeed,
it seems not entirely unreasonable to me to suppose that contradictions might
possibly be concealed even in classical analysis. The fact that, so far, none
have been discovered means very little when we consider that, in practice,
mathematicians always work with a comparatively limited part of the
logically possible complexities of mathematical constructs.

The most consequential form of delimitation is that represented by the
‘intuitionist’ point of view, which has been formulated primarily by Brouwer
and Weyl. This point of view can probably be understood most easily in
terms of the following fundamental principle: Infinity must not be interpreted
in a way that suggests that infinite sets actually exist ‘as such’ and are in
some sense only discovered by mathematicians — an interpretation which I
shall briefly call the ‘actualist interpretation’ of infinity - but merely in the
sense that an infinite totality can be built up constructively step by step starting
from finite quantities, and here infinity must never be regarded as completed,
but merely as an expression for the possibility of an unbounded extension of
the finite.

This principle has undoubtedly much in its favour and even before the
discovery of the antinomies efforts had been made in a similar direction.
Once we subscribe to this principle the antinomies disappear since they ob-
viously involve an illicit use of the actualist interpretation of infinite sets.
On the other hand, the constructivist principle leads necessarily to the limi-
tations imposed by the intuitionists on the forms of inference customary in
mathematics today®®. In order to give an example, let us consider the most
important case of this kind in practice, that of indirect existence proofs:

According to the classical interpretation, the existence of a natural number,
a number with the property B, for example, can be proved indirectly by
assuming that no number possesses the property ‘B, and by then deriving a
contradiction from this assumption. Such a proof must be rejected from the
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constructivist point of view. Here an assumption about the infinite totality
of all natural numbers is made; this is without sense — from the construc-
tivist point of view — since this totality can never be given as a completed
totality, because it can be conceived only as an uncompleted sequence which
is extendable indefinitely. Even from this point of view, however, the exis-
tence of a natural number with the property ¥ can indeed be proved, pro-
vided that such a number can be directly stated, or that a procedure for its
calculation can be produced. After all, the concept of the totality of all num-
bers here no longer enters into the proof.

An easily readable survey of the intuitionist point of view has recently
been published by Heyting®°.

I believe that we must grant the intuitionists that they have drawn the
most uncompromising conclusions from the unpleasantness caused by the
antinomies. Serious objeetions can nevertheless be raised against a radical
intuitionism which dismisses categorically as without sense everything in
mathematics which does not correspond to the constructivist point of view.
I shall discuss this point in greater detail in § 4. Here, I should like to mention
only the following: If this point of view is adopted, then the whole of clas-
sical analysis is reduced to a field of rubble. Many, particularly a number of
basic theorems, become invalid or have to be rephrased and proved in a
different way. Added to this must be the fact that the formulations become
mostly more cumbersome and the proofs more tedious. Existence proofs, for
example, such as that of the ‘fundamental theorem of algebra’, must now be
rephrased in such a way that a procedure for the calculation of the number
whose existence is asserted is given, and special cases in which this cannot
be done must be discarded.

We could certainly not shirk even the greatest sacrifice if it were really
necessary. But is such a sacrifice actually necessary?

This brings me to Hilbert’s view of the matter. Hilbert set up the program-
me of extricating the whole of classical mathematics as far as possible from
what has become its critical state by proving its consistency along exact
mathematical lines.

The realization if this programme is unfortunately in large measure still
outstanding. It has turned out that the difficulties involved in such consisten-
cy proofs are greater than had at first been expected. (Cf. § 2, G6del’s theo-
rem.) In 1936, I published a proof for the consistency of elementary number
theory”®; earlier partial results date back to Ackermann, von Neumann and
Herbrand; but the most important proof of all in practice, that for analysis,
is still outstanding.
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In order to carry out a consistency proof, we naturally already require
certain techniques of proof whose reliability must be presupposed and can
no longer be justified along these lines. An absolute consistency proof, i.e.,
a proof which is free from presuppositions is of course impossible. The ques-
tion therefore arises what techniques of proof can be taken as a foundation
in this sense. The answer follows from what has been said earlir: We should
be able to use those techniques of proof in which infinity is applied only in a
constructive sense and avoid strictly everything that is based on the actualist
interpretation of infinity and which is therefore of a suspect nature. This
restriction amounts to about the same as what Hilbert calls the ‘finitist point
of view’. As far as consistency proofs are concerned, however, it seems that
somewhat stronger methods are required than those originally invisaged by
Hilbert and which he had thought of as forming the ‘finitist techniques
of proof’. The required methods remain nevertheless in harmony with the
constructivist interpretation of infinity; this is the point that matters and
which distinguishes them fundamentally from the disputable techniques of
proof.

A foremost characteristic of Hilbert’s point of view seems to me to be the
endeavour to withdraw the problem of the foundations of mathematics from
philosophy and to tackle it as far as in any way possible with methods proper
to mathematics. The problem cannot, of course, be solved entirely without
extramathematical presuppositions. Hilbert’s plan limits these to a mini-
mum: It requires that we recognize the fundamental difference between the
constructivist and the actualist interpretations of infinity and that we un-
derstand why the reasoning along constructivist lines enjoys a considerably
greater measure of reliability, so that it can be chosen as a sufficiently se-
cure basis for the consistency proof of those parts of mathematics that make
use of the actualist interpretation of infinity.

I shall continue to avoid all philosophical issues whose discussion has no
bearing on practical mathematics, and which frequently tend to blur the
nature of the problem unnecessarily and make it seem difficult.

We must still mention briefly the so-called ‘logicism’, usually listed beside
intuitionism and Hilbert’s point of view as the third important approach to
the question of the foundations of mathematics. Its tenets are founded in
certain philosophical attitudes which, in accordance with what was said
above, will not be discussed here. In connection with the problem of the
antinomies and infinity, which is more important for practical mathematics
than any other, the logicists have adopted an essentially noncommittal or
undecided position; and their contribution to the solution of this problem
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is therefore negligible since they are basically interested in different questions,
e.g., the definition of the concept of a number.

§ 2. Exact foundational research in mathematics: axiomatics, metalogic,
metamathematics. The theorems of Giodel and Skolem

In the following, I shall discuss some of the more recent findings and,
in particular, some of the especially important earlier results obtained in
the exact foundational research in mathematics, i.e., in that branch of
mathematics in which the foundations of mathematics are investigated. The
objects of inquiry are, for example, axiom systems for mathematical theories—
a topic of ancient vintage — with special emphasis, in recent times, on the
logical forms of inference and, generally, the methods of proof of mathe-
matics.

In the last decades, a large number of scholars from all countries have
concerned themselves with these questions and have obtained a multitude
of results. It seems fair to say that in Germany metalogical and meta-
mathematical research is, at the present time, carried out regularly only in
Miinster; abroad we must mention primarily 4America and Poland as the
main centres of this type of research in mathematics.

A main task of metamathematics is the development of the consistency
proofs required for the realization of Hilbert’s programme. Other major
problems are: The decision problem, i.e., the problem of finding a procedure
for a given theory which enables us to decide of every conceivable assertion
in that theory whether it is true or false; further, the question of complete-
ness, i.e., the question of whether a specific system of axioms and forms of
inference for a specific theory is complete, in other words, whether the truth
or falsity of every conceivable assertion of that theory can be proved by means
of these forms of inference.

Highly pertinent to these fundamental problems are several important
theorems which Gédel proved about eight years ago”*, and which have
attracted much attention and have sometimes also been misinterpreted.

To begin with, we have the theorem about consistency proofs which says
that the consistency of a mathematical theory in which elementary number
theory is contained, and which really is consistent, cannot be proved with
the techniques of proof of that theory itself and naturally therefore not with
any part of those techniques. This theorem has frequently been taken as
conclusive proof that Hilbert’s programme is unrealizable. This view is
based on the conviction — and there seemed to be some evidence in its favour
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— that the “finitist’ or ‘constructivist’ forms of inference by which the con-
sistency proofs were to be carried out, merely represent part of the precisely
formalizable forms of inference occurring in elementary number theory.
If this were the case then, according to Gddel’s theorem, these forms of
inference would no longer be sufficient to prove the consistency of number
theory. I am of the opinion, however, that there are forms of inference which
are still in harmony with the constructivist interpretation of infinity and
which, nevertheless, transcend the framework of formalized number theory,
indeed, by their very nature, these techniques can presumably be extended
beyond the framework of any formally delimited theory. I have already
stated the relevant inferences in # 4, as far as they were required for the
consistency proof of elementary number theory’2. They are closely connect-
ed with the ‘transfinite induction’ occurring in set theory, but this does not
mean that they are subject to the same contingencies as that rule; on the
contrary, they are proved constructively in a way entirely independent of set
theory. — Quite unscathed by these facts, Godel’s theorem retains of course
great significance as a very valuable result which renders a great service,
particularly in connection with the discovery of consistency proofs, by telling
us specifically which techniques do not lead to the desired end.

Another of Go6del’s theorems concerns the decision problem, particularly
as it applies to the so-called ‘predicate logic’. It says that there are theorems
of this system which cannot be decided by certain very strong mathematical
techniques.

This theorem has recently been considerably strenghtened by Church
in this respect that by introducing a very general notion of ‘procedure’ he
was able to show that there can be no general decision procedure for predicate
logic at all and that thus the decision problem is therefore not generally
solvable’>. The situation is actually such that if the decision problem were
solved for predicate logic, then the truth or falsity of Fermat’s last theorem,
for example, and similar number-theoretical problems could, in principle,
simply be calculated, and it seems fair to say in advance that it is not very
probable that such a decision procedure can ever be found. Nevertheless,
it is of course very valuable to have this suspicion confirmed by an explicit
proof. Church’s proof is actually based on the assumption that the notion
of a ‘calculation procedure’ which he has introduced is the most general
possible. If someone were to succeed in finding yet another kind of calculation
procedure, then it would be conceivable that a general decision procedure
could after all be obtained. It is fairly clear, however, that the concept in-
troduced by Church is so general that it is practically impossible to think
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of any kind of procedure that might not fall under this concept. Also in
favour of Church’s formulation points the fact that even by taking quite
different starting points, we always end up with the same concept, or one
that is equivalent to it.

A third result by Gbdel concerns the completeness problem. 1t says that
every formally delimited consistent mathematical theory is incomplete in the
sense that number-theoretical theorems can be stated which are frue, but
which are not provable with the techniques of that theory. This is undoubt-
ably a very interesting, but certainly not an alarming result. We can para-
phrase it by saying that for number theory no adequate system of forms of
inference can be specified for once and for all, but that, on the contrary,
new theorems can always be found whose proof requires new forms of
inference. That this is so may not have been anticipated in the beginning,
but it is certainly not implausible.

The theorem reveals of course a certain weakness of the axiomatic method.

Since consistency proofs generally apply only to delimited systems of tech-
niques of proof, these proofs must obviously also be extended when an ex-
tension of the techniques of proof takes place.

It is remarkable that in the whole of existing mathematics only very few
easily classifiable and constantly recurring forms of inference are used, so
that an extension of these methods may be desirable in theory, but is insig-
nificant in practice. In fact, the nonprovable number-theoretical theorems
presented by Godel were in each case specially constructed for this purpose
and are of no practical importance; with one notable exception, however:
The assertion of the consistency of a theory, which also belongs to the theo-
rems that are not provable within the theory. For this reason the consisten-
cy proof must indeed make use of new forms of inference which, in this case,
must moreover be of a constructive nature; this has already been discussed.

1 shall now mention some results which concern the theory of sets.

In an attempt to salvage set theory from the damaging blow of the antino-
mies, certain restrictive conditions have been formulated by which the
contradictions are eliminated. For this purpose several axiom systems for
set theory have been developed; the most well-known is the system of Zerme-
lo and Fraenkel. For part of this system, the so-called ‘general set theory’,
Ackermann recently carried out a consistency proof, or rather, traced the
consistency of this system back to the consistency of elementary number
theory’#. ‘General set theory’ results, if we omit from the full axiom system
the ‘axiom of infinity’ which asserts the existence of infinitely many objects
of the theory. Ackermann’s proof is based on the fact that for this part of
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set theory a model consisting of natural numbers can be constructed, a result
which has been known for some time. If the axiom of infinity is included,
the same kind of construction does not seem possible since this intro-
duces precisely the existence of nondenumerable cardinalities into set
theory.

In this connection we must, however, mention a theorem which is at first
sight rather surprising and which leads to interesting consequences. It was
first formulated by Skolem about fifteen years ago and he called it the ‘theo-
rem concerning the relativity of the concept of a set’”>. In contrast with the
metamathematical theorems mentioned earlier, Skolem’s theorem is no
longer compatible with the constructivist interpretation of mathematics and
must be considered as falling under the actualist interpretation if for no other
reason than that it deals with nondenumerable cardinalities. (This fact in
no way detracts from the significance of the theorem, which lies precisely
in its application to actualist mathematics.) Skolem’s theorem says: If a
model of arbitrarily high cardinality exists at all for an axiom system of a
particular type, then there exists a denumerable model which also satisfies
the axiom system. — All axiom systems that have been used up to now belong
to this type or can, at any rate, be converted to it; nor is it apparent how
an axiom system could be formulated which did not fall within the range of
Skolem’s concept.

If this theorem is applied to any axiom system of set theory, it follows that
if the system is satisfiable at all, which we naturally wish to assume, it is al-
ready satisfiable by a denumerable model. It seems fair to say that this result
is no an exactly pleasant one for axiomatic set theory. It says, after all, that
all nondenumerable cardinalities with which set theory is concerned arein a
certain sense only fictitious entities to this extent that, without altering the
validity of any theorem, such sets may simply be replaced by certain denu-
merable sets.

At first sight, this discovery appears certain to lead to contradictions. In
axiomatic set theory it is proved, for example, that the set of all real numbers
is nondenumerable. More precisely, the following theorem is actually pro-
ved: There exists no one-to-one correspondence between the natural num-
bers and the real numbers. Let us, therefore, examine the denumerable
model for set theory which, by Skolem’s result, exists. This model contains
objects which representthe natural numbers of the axiom system, others which
represent the real numbers, and still others which represent the correspon-
dences which can be set up between these numbers on the basis of the axiom
system; here each type comprises at most denumerably many objects. Nev-
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ertheless, the mentioned theorem remains valid for this model for the very
reason that among the correspondences available in the model there is, in
fact, none which correlates the denumerably many representatives of the
‘natural numbers’ one-to-one with the denumerably many representatives
of the ‘real numbers’. Such a correspondence certainly exists in principle,
but it is not contained among the correspondences occurring in the
model.

Perhaps this rather intricate state of affairs will become somewhat clearer
if it is examined from a different angle and here I shall, at the same time,
confine myself to the continuum of the real numbers as the prototype of a
‘non-denumerable’ cardinality: For the sake of argument, we adopt the ac-
tualist position and maintain that the continuum is actually given a priori,
as the set of all arbitrary infinite decimal fractions, for example. By Cantor’s
method we can show the nondenumerability of this system. On the other
hand, we can say the following: Every axiom system for analysis which is
constructive is in a certain sense insufficient for the purpose of encompassing
completely this conceived continuum. Skolem’s theorem after all entails
that by specifying a particular axiom system, this continuum can be replaced
by a denumerable model which satisfies in the same way all properties of
the continuum determined by the axiom system. According to this point of
view, Skolem’s result does not, so to speak, exhibit a weakness of the con-
tinuum or of higher cardinalities, but rather a weakness in man’s ability
to comprehend these cardinalities.

How abstract cardinal set theory can be extricated from the Scylla of the
antinomies and the Charybdis of Skolem’s theorem of relativity, indeed,
whether it can be extricated at all, only the future will decide.

It should be explicitly mentioned that other parts of set theory (point
sets, the second number class) are affected only to a lesser degree by these
difficulties and will definitely always retain a certain significance.

If Skolem’s theorem is compared with Gddel’s incompleteness theorem,
it can be said that both theorems illustrate certain imperfections inherent
in formally delimited axiom systems (which now also include the permissible
techniques of proof). What might appear, at first sight, to be a rather surpris-
ing state of affairs arising from Godel’s theorem, viz., that even by specifying
the most complicated axiom systems of analysis etc. there remain number-
theoretical theorems which are unprovable, is to some extent explained by
Skolem’s theorem: According to this theorem the most complicated axiom
systems are basically reducible to a denumerable model and hence also to
the natural numbers; the theorems of these systems can therefore be re-
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interpreted collectively as number-theoretical theorems; all these systems
are therefore basically number theory.

Another result by Skolem’® clearly illustrates the imperfection of the
axiomatic method in connection with number theory; it says: If any axiom
system of the above quite general type is given for the natural numbers, then
these numbers may be replaced by a model which is nonisomorphic to the
natural number sequence and which also satisfies the axiom system.

§ 3. The continuum

In this and the following paragraphs, I shall now examine somewhat
more closely the differences between the actualist interpretation and the
constructivist interpretation of analysis, which is the most important branch
of practical mathematics. In this paragraph, I shall, in particular, contrast
the two approaches to the definition of real numbers and real functions and,
in § 4, propose a possible reconciliation between the various points of view.

The concept of an irrational number may, as is well known, be obtained
roughly as follows: The interval from O to 1 is divided into two parts, each
part again into two parts, etc.; in this way finer and finer subdivisions are
progressively obtained. A sequence of such intervals in which each term forms
part of the term preceding it tends to contract more and more to a point as
the process is continued. This is where the actualists take the plunge into the
class of completed infinities by declaring that an infinitely long sequence of
this kind is a ‘real number’.

From this interpretation some unusual consequences follow, which, apart
from the general disputability of the actualist interpretation arising from the
antinomies, could be advanced as additional arguments against this view:
On the one hand, it may be proved in the usual way that these real numbers
form a nondenumerable set. On the other hand, however, all theorems, all
definitions, and all proofs which can ever be formulated or carried out are
denumerable since they can always be characterized by finitely many sym-
bols. This leads to the conclusion that there are real numbers which can in
no way be individually defined and valid theorems which are unutterable
and which no one will ever be able to prove. If Skolem’s theorem of relativity
is invoked, it follows further that the whole of conventional analysis re-
mains quite generally valid in all of its parts if it is interpreted in a certain
denumerable model.

Here we might well be tempted to say: If ‘the nondenumerable continuum’
in this way succeeds in completely eluding our comprehension, is there
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then any point at all in speaking of it as something real/? In § 4, I shall show
how, in a restricted sense, we can nevertheless answer this question in the
affirmative.

At first it will be examined what the constructivist ‘point of view has to
offer as a replacement for the actualist concept of irrational numbers.

The sequence of divisions of intervals may be begun as before. The notion
of the completed infinite sequence of intervals, however, must be rejected as
being without sense. The infinite is after all to be regarded only as a possibili-
ty, as an expression for the unboundness of the finite. We can therefore rea-
sonably say: It is possible to push this subdivision further and further.
However, no irrational number is obtained in this way; at each stage of the
subdivision we are left with a collection of eventually rather proximate ra-
tional numbers. It is in this sense that Kronecker maintained that ‘there are
no irrational numbers at all’’’. Even a constructivist, however, does not
have to be this narrow-minded; there are possibilities of going further. An
irrational number can after all be regarded as given if a rule is available
which permits the computation of a sequence of intervals of the mentioned
kind arbitrarily far. (Here it is convenient, in order to avoid certain formal
difficulties, to base the argument on double dyadic intervals, i.e., those which
result from pairing two neighbouring dyadic intervals of the same subdi-
vision.)

Such a rule is easily stated, for example, for ~/2, generally for %/m, but
also for transcendental numbers such as 7 and e, in fact, quite generally, for
practically all numbers which are needed in analysis as individually defined
numbers; viz., in all cases in which the number concerned can actually be
calculated to any desired degree of accuracy.

In order to remain faithful to the constructivist point of view, however,
the ‘numbers’ defined in this way must be handled with care. The temptation
must be resisted of regarding such a number as a completed infinitely long
dyadic fraction; what is given in this sense is not really the entire number,
but only the rule for its progressive realization; the rule itself is finite and
merely a suitable representative, in certain contexts, of an infinitely long num-
ber of which it can be said, now as ever, that it actually does not really exist.

In his paper entitled ‘Das Kontinuum’, Weyl has attempted to construct
an analysis on the basis of this kind of number concept’®. (In this paper,
Weyl has not exploited the full consequences of the constructivist attitude
toward the natural number sequence; but this was later remedied’®.) One
of the difficulties arising in this connection is that of deciding what techniques
should be permitted in the computation and hence the definition of numbers.
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Initially, Weyl carried out a definite delimitation of techniques; usually,
however, intuitionists avoid such a delimitation altogether, a point of view
which is not entirely inappropriate since a universally valid delimitation
involves fundamental difficulties analogous to those existing for delimited
axiom and inference systems, already discussed above, viz: That such delim-
itations are always open to and in need of further extensions. This actually
represents no serious shortcoming; in cases of immediate practical impor-
tance it is perfectly clear how the concept of ‘calculability’ is in-
tended.

Church, as already mentioned in § 2, made this concept of calculability
more precise; independently of Church, Turing formulated an equivalent
concept and also applied it, in particular, to the calculability of real num-
bers’®. The greater precision consists here in the formulation of a unified
concept embracing all ‘calculation procedures’; this makes it feasible to carry
out an impossibility proof of the kind mentioned in § 2; even at this level of
precision, however, it cannot be decided of every procedure falling under this
concept whether it is a ‘calculation’ procedure or not.

An extension of the constructivist concept of areal number was devised
by Brouwer with his ‘free choice sequences’” 8, These sequences are the logical
outcome of an attempt to introduce the concept of a function of real numbers.
In actualist mathematics this concept, is, as is well-known, defined simply
as a relation which correlates with every arbitrary real number a second real
number as its functional value. The concept of a completed infinity is here
involved threefold: first in the two real numbers, and second in the univer-
sal abstract ‘correlation’. This concept is therefore of no use to the construc-
tivist. One of the ways open to him is to define a function as a rule which
correlates with every rule defining a real number a second rule defining an-
other real number. It is easily seen, however, that the following less re-
strictive version, which is closer to the actualist function concept, is still
entirely compatible with constructivist principles: In place of the concept
of an individual real number given by a rule, the procedure of subdividing
intervals is once again taken as a starting point, by defining a function spe-
cifically as a rule with the following properties: As the sequence of intervals
of the above described kind is chosen in some way, the functional rule cor-
relates with a certain finite initial segment of this sequence a first interval
of the ‘functional value’, and after having continued the sequence up to a
certain further point, a second such segment, etc. The correlated intervals
are therefore once again designed to form a ‘nest of intervals’. — In short:
In each case a desired finite number of initial places of the functional value
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should be calculable by the function rule from a sufficiently large number of
initial places of the argument value.

That this function concept is still considerably narrower than the actualist
one can already be seen from the fact that such a ‘function’ is always a con-
tinuous function. Brouwer proves moreover the uniform continuity of these
functions and, in doing so, he makes a rather extensive use, for a constructiv-
ist, of ‘transfinite’ induction®°.

The argument values occurring in connection with this function concept
are what Brouwer calls ‘free choice sequences’, viz., sequences of intervals
in which successive terms can in each case be freely chosen — subject only to
the restriction imposed by the fundamental conditions for nested intervals.

Even this number concept must be handled with care; it really has no in-
dependent meaning, but only a meaning within a proper context. After
all, the concept of a completed infinite sequence is still entirely without sense;
free choice sequences may thus be used only in contexts in which a finite
initial segment of them or, at most, the possibility of their arbitrary extension,
is involved. This is guaranteed in the case of the stated definition of a func-
tion.

By means of Brouwer’s function concept the most frequently used functions
in analysis can now be given suitable constructivist definitions without
difficulty. Most of them are after all such that their functional values can
be calculated more and more accurately as the argument value is progres-
sively narrowed down.

Considerable differences between intuitionist and classical analysis nev-
ertheless manifest themselves in the further development of the theory, es-
pecially in connection with existence theorems, as already mentioned in
§ 1. Constructivists must, after all, insist that a calculation rule is specified
for the number whose existence is asserted; actualist existence proofs often
do not meet this requirement.

Intuitionist analysis thus becomes much more complicated than classical
analysis. This may already have been noticed in connection with the defini-
tions of the fundamental concepts. Constructivists require, for example,
different concepts of real numbers for different uses, whereas a single simple
concept suffices in actualist analysis.

Nevertheless, a constructivist consistency proof for classical analysis is
urgently needed because of the fundamental disputability of the actualist
interpretation. I anticipate that such a proof will most likely be obtained
by a further extension of the same techniques which made the consistency
proof for number theory possible. It might be supposed that by being non-
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denumerable, the continuum introduces a fundamentally new difficulty. To
this it can be replied, for example, that every formally delimited system of
analysis — and only for such unequivocably fixed systems the consistency
needs to be proved - is already satisfied by a denumerable model, according
to Skolem’s theorem of relativity, so that even for the question of the con-
sistency the non-denumerability presents only an apparent problem.

§ 4. The possibility of reconciling the different points of view

I am of the opinion that once the consistency proof for analysis has been
successfully carried out, there should be no obstacle in the way of an agree-
ment among the representatives of the different tendencies — i.e., among the
constructivists or intuitionists on the one hand, and Hilbert’s supporters,
as well as the representatives of a purely actualist interpretation, on the
other — to retain classical analysis in its existing form. At present, however,
the situation is such that the radical constructivists do not agree with this
conclusion, and it is here that the actual fundamental difference of opinion
between Brouwer and Hilbert reveals itself. That is to say, the intuitionists
regard all theorems of mathematics that are based on the actualist interpre-
tation of infinity as without sense and all associated forms of inference as
the components of a futile game with symbols without meaning.

In the preceding paragraphs, I have mentioned several facts which lend
some support to the latter view. On the other hand, the tremendous wealth
of successful applications of classical analysis in physics, to mention only
one aspect of greatest significance, weighs heavily against this conclusion.
In the following, I shall try to make clear how someone, even upon acknowl-
edging the fundamental thesis of constructivism, can still reach the conclu-
sion that actualist analysis should be retained and continued.

Hilbert himself has here shown the way: viz., by the method of ideal ele-
ments®!.

Le.: propositions which talk about the infinite in the sense of the actualist
interpretation are regarded as ‘ideal propositions’, as propositions which do
not really mean at all what the words in them purport to mean, but which
can be of greatest value in rounding off a theory, in facilitating its proofs,
and in making the formulation of its results more straightforward. In pro-
Jjective geometry, for example, ideal points are introduced for the same rea-
son, with the advantage that many theorems are simplified which would
otherwise be plagued by exceptions. In the bargain, we must of course ac-
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cept the fact that in some cases the sense of a theorem is now no longer
the usual one. The following is asserted, for example: ‘“Two straight lines
always have a point in common’. If the straight lines happen to be parallel,
however, then they plainly have no point in common in reality. The proce-
dure is harmless, because it has been precisely specified what, in such excep-
tional cases, is to be understood by the notion of a ‘point’, which has now a
wider sense.

We might consider still another example which, in its relation to physics,
seems to provide even more striking analogies to the relationship between
constructivist mathematics and actualist mathematics:

I am thinking of the occasional attempt to construct a ‘natural geometry’,
i.e., a geometry which is better suited to physical experience than the usual
(Euclidean) geometry, for example32. In this natural geometry, the theorem
‘precisely one straight line passes through two distinct points’ holds only
if the points are not lying too close together. For if they are lying very close
together, then several adjacent straight lines can obviously be drawn through
the two points. The draftsman must take these considerations into account;
in pure geometry, however, this is not done because here the points are idealiz-
ed. The extended points of experience are replaced by the ideal, unextended,
‘points’ of theoretical mathematics which, in reality, have no existence.
That this procedure is benefical is borne out by its success: It results in a
mathematical theory which is of a much simpler and considerably smoother
form than that of natural geometry, which is continually concerned with
unpleasant exceptions.

The relationship between actualist mathematics and constructivist math-
ematics is quite analogous: Actualist mathematics idealizes, for example,
the notion of ‘existence’ by saying: A number exists if its existence can be
proved by means of a proof in which the logical deductions are applied to
completed infinite totalities in the same form in which they are valid for
finite totalities; entirely as if these infinite totalities were actually present
quantities. In this way the concept of existence therefore inherits the ad-
vantages and the disadvantages of an ideal element: The advantage is, above
all, that a considerable simplification and elegance of the theory is achieved
— since intuitionist existence proofs are, as mentioned, mostly very complicat-
ed and plagued by unpleasant exceptions—, the disadvantage, however, is
that this ideal concept of existence is no longer applicable to the ;same de-
gree to physical reality as, for example, the constructive concept of exis-
tence.

As an example, let us consider the equation a - x = b over the real num-
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bers. According to the actualist interpretation, the following may simply be
asserted: The equation has a root, as long as a is not equal to 0. The in-
tuitionist, however, says: The equation has a root if it has been determined
that a is different from 0. It may happen, however, that from the way a is
given it cannot be anticipated whether a is equal to 0 nor whether q is dif-
ferent from 0.

In this case the question of the existence of a root remains open. It must
certainly be admitted that this interpretation corresponds more to the po-
sition of the physicist who may have to determine the coefficient a from an
experiment which is not precise enough to establish with certainty a dif-
ference between a and 0.

The question now arises: What use are elegant bodies of knowledge and
particularly simple theorems if they are not applicable to physical reality
in their literal sense? Would it not be preferable in that case to adopt a pro-
cedure which is more laborious and which yields more complicated results,
but which has the advantage of making these results immediately meaning-
ful in reality? The answer lies in the success of the former procedure: Again
consider the example of geometry. The great achievements of mathematics in
the advancement of physical knowledge stem precisely from this method
of idealizing what is physically given and thereby simplifying its investiga-
tion. In any application of the general results to reality, their special status
due to this idealization must, of course, be kept in mind and a corresponding
reinterpretation must be carried out. This is where applied mathematics
has its realm of activity.

For the sake of comparison, I quote from Heyting and Weyl:

Heyting, the intuitionist, says in one place®3:

‘From the formalist standpoint the aim of physics can be characterized
as the mastering of nature. If this aim can be achieved by formal methods’ —
i.e., by actualist mathematics — ‘then no argument is tenable against them’.

In the dispute between Brouwer and Hilbert®*, Weyl formulates his po-
sition as follows:

‘In studying mathematics for its own sake one should follow Brouwer and
confine oneself to discernible truths into which the infinite enters only as an
open field of possibilities; there can be no motive for exceeding these bounds.
In the natural sciences, however, a sphere is touched upon which is no longer
penetrable by an appeal to visible self-evidence, in any case; here cognition
necessarily assumes a symbolic form. Forthis reason itis no longer necessary,
as mathematics is drawn into the process of a theoretical reconstruction
of the world by physics, to be able to isolate mathematics into a realm of
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the intuitively certain: On this higher plane, from which the whole of science
appears as a unit, [ agree with Hilbert’.

I am under the impression that certain fundamental intuitionist concepts,
e.g., the concept of existence or that of a real number, are strictly speaking
already ‘ideal elements’. Yet this may remain debatable; it is difficult to
discuss and not that important. In any case, it would not mean that the ap-
plication of such concepts also requires a consistency proof, they are after all
applied only in such a way that their precise constructive sense always re-
mains apparent (cf. § 3). The same is true of the ‘ideal points’ in projective
geometry; the situation is different in the case of the ideal concepts of actual-
ist mathematics which — looked at from the constructivist point of view —
do not involve any inherent ‘sense’ at all, but which, in spite of this, are
used as if, by their very wording, they were endowed with such a sense.

While the constructivists, on the one hand, are thus conceding a purpose
to actualist mathematics, it seems reasonable that the constructivist point
of view should, on the other hand, be given a greater role in mathematics
than it has at present. In foundational research it is already customary to
carry the proofs out along constructivist lines whenever possible, not only
because of their greater indisputability — this is not always the aim of a proof
— but also because of the greater tangible content of the result. For it is clear
that a constructivist existence proof means more than an indirect actualist
proof. Particularly in elementary number theory and, generally, in all theo-
ries dealing only with finitely describable objects, it is natural to take as
a basis the constructivist point of view®5. In the past this was done quite
automatically, in any case; the genuinely naive reasoning in which no spe-
cial attention is paid at all to the methods of proof, is by nature chiefly con-
structive, i.e., it shuns the ‘infinite’. In these areas, moreover, the applica-
tion of transfinite actualist forms of inference serves hardly any practical
purpose. Not so in the realm of the continuum, in analysis and geometry:
Here the actualist approach celebrates its triumphs; here the constructivist
approach is inferior in practise.

In conclusion, it can therefore be said: The constructivist (‘intuitionist’,
“finitist’) mathematics constitutes an important realm within the whole of
mathematics because of its great self-evidence and the particular significance
of its results. Yet no compelling reasons exist why all parts of analysis that
are based on the actualist interpretation should be radically rejected; on the
contrary, they are afforded a great significance in their own right, above all in
view of their physical applications.

Whether the continuum should ultimately be regarded as a mere fiction,
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as an ideal construction, or whether it should be insisted upon that it possess-
es a reality independent of our methods of construction, in the sense of
the actualist interpretation, is a purely theoretical question whose answer
will probably remain a matter of taste; for practical mathematics it has
hardly any further significance.



8. NEW VERSION OF THE CONSISTENCY PROOF
FOR ELEMENTARY NUMBER THEORY

In the following I shall present a new version of the consistency proof
contained insection IV of #4; only this time the main emphasis will be placed
on developing the fundamental ideas and on making every single step of
the proof as lucid as possible. For this purpose I shall in places dispense with
the explicit exposition of certain details, viz., in those places where this is un-
important for the understanding of the context as a whole and where it can
furthermore be supplied by the reader himself without much difficulty.

Sections I and III of # 4 contain considerations the knowledge of which
need not be presupposed for an appreciation of the logic of the consistency
proof, even though they are indispensable for the understanding of its
purpose. In section 11, I developed a quite detailed formalization of elemen-
tary number theory which preserves a close affinity with mathematical prac-
tice. This formalization is of great value now as ever; although a complete
formal system could have been written down from the start, it seems to me
that by doing so an essential part of the context as a whole would have fal-
len by the wayside.

Added to this must be the fact that the formal representation of the forms
of inference (# 4, §5), directly based, as it was, on mathematical prac-
tice, with the characteristic concept of the ‘sequent’, already proves quite
suitable for metamathematical investigations, in fact, judging by my own
experience, it is better suited to most purposes than the methods of represen-
tation generally customary to date.

Nevertheless it cannot be said that the ‘most natural’ logical calculus,
simply because it corresponds most closely to real reasoning, is also the most
suitable calculus for proof-theoretical investigations. For the consistency
proof, in particular, a somewhat different version has proved to be even more
suitable and will therefore be adopted in this paper. I am referring to that
formalization of the logical forms of inference which I had already developed
in # 3 as the ‘LK-calculus’®®, A knowledge of that paper is not however
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presupposed. I shall merely require a few basic concepts from section II of the
earlier consistency proof and shall, in each case, give the appropiate reference.

The constructivist proof of the ‘theorem of transfinite induction’ (up to
go), article 15.4 of # 4, is retained unchanged as the conclusion of the con-
sistency proof and will not be revised for the time being; cf. the concluding
remarks at the end of the present paper.

§ 1. New formalization of number-theoretical proofs

I shall formulate the concepts involved and in each case include some
explanatory remarks.
1.1, ‘Formula’.

The definition of a formula is adopted from the earlier paper (article
3.2), but with the following simplification:

Only ! is used as a numeral. Functions are not admitted (cf. however the
concluding remarks) with the exception of a single one, the successor func-
tion, which is denoted by a prime: a’ has the same informal meaning as a+1.
By means of this function symbol the natural numbers can now be represent-
ed 1,1, 1", 1" etc. Terms are therefore now always of the form 1 or 1’ or 1"’
etc. or a or &’ or a’’ etc., where a stands for an arbitrary free variable. The
former we call numerical terms and they therefore correspond to the earlier
numerals; the latter variable terms. Predicate symbols are admitted as be-
fore according to need; it is required only (# 4, article 13.3) that they are
decidably defined i.e., that it can be decided of every definite natural number
whether the predicate does or does not hold. On the basis of these concepts
of term and predicate the old definition of a formula (article 3.23) is now
preserved, but the logical connective = will no longer be used. This represents
no significant restriction since it is well known that > can be replaced by &
and —, or v and —. In addition we could still eliminate v and 3, as was
done in # 4 (§ 12); but this is unnecessary since by being in exact corre-
spondence with & and V, these connectives cause no difficulties whatever
in the ‘LK-calculus’.

Example of a formula:

Vx (x > 1" &3y (y'"' = a))

where a is a free variable and x and y are bound variables.
Three simple auxiliary concepts will still be needed below:
A prime formula is a formula containing no logical connectives.
Example: @' = 1",
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The terminal connective of a formula which is not a prime formula is that
logical connective which is adjointed last in the construction of that formula
(according to article 3.23 of # 4).

The degree of a formula is the total number of logical connectives oc-
curring in it.

Examples: A prime formula has degree 0. The formula VYx (x >1'&
3y (5" = a)) has degree 3 and its terminal connective is the Y.

1.2. ‘Sequent’.
A sequent is an expression of the form

%1;%2,~-~,QI“_*§31,§32,---,§BV,
where arbitrary formulae may take the place of
Ay Uy oo, U, B4, 8B,,...,8,.

The U’s are called the antecedent formulae, the B’s the succedent formulae
of the sequent. Both the antecedent and the succedent may be empty.

Suppose that it is known of each antecedent and succedent formula of a
sequent without free variables whether it is ‘true’ or ‘false’. Then the se-
quent is ‘false’ if all of its antecedent formulae are true and all of its succe-
dent formulae are false. (Moreover, a sequent which has neither antecedent
nor succedent formulae is also false.) In every other case the sequent is
‘true’.

Explanatory Remarks. We shall make use of the definition of ‘true’ and
‘false’ only in connection with the concept of a ‘basic sequent’ and here
the ¥ and B will be prime formulae without free variables and therefore
immediately decidable. In general the concept of the ‘truth’ of a formula
is of course not formally defined at all. The definition can nevertheless serve
quite generally to explain the informal sense of a sequent, but it should still
be added that a sequent with free variables is considered to be true if and
only if every arbitrary substitution of numerals for free variables yields a
true sequent. The informal meaning of a sequent without free variables can
be expressed briefly as follows: ‘If the assumptions ‘Y,’, .. ., ‘%’ hold, then
at least one of the propositions ‘B,’, . . ., ‘B, holds.’

In # 4, T had introduced the concept of a sequent with only one succedent
formula for the immediate purpose of providing a natural representation
of mathematical proofs (§ 5). Considerations of this kind will in fact also
lead to the new symmetric concept of a sequent in situations where the aim
is a particularly natural representation of the distinction of cases (cf. § 4 of
# 4, and 5.26 in particular). For, a v-elimination can now be represented
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simply as follows: From — % v 8 we infer —» 2, B, which reads: ‘One of
the two possibilities, % or B, holds.” It must be admitted that this new con-
cept of a sequent in general already constitutes a departure from the ‘natural’
and that its introduction is primarily justified by the considerable formal ad-
vantages exhibited by the representation of the forms of inference following
below which this concept makes possible.

It should still be pointed out that the informal sense of a sequent is to be
considered to coincide with the given definition in those cases in which the
sequent possesses no antecedent formulae or no succedent formulae: if
there are no antecedent formulae, the sequent expresses the fact that at least
one of the propositions ‘B,’, . . ., ‘B,” holds, this time independently of any
assumptions. If there are no succedent formulae, the sequent expresss the
fact that on the basis of the assumptions %, , . . ., %, no possibility remains
open, i.e.: the assumptions are incompatible, they lead to a contradiction.
A sequent without antecedent and succedent formulae, the ‘empty sequent’,
therefore indicates that without any assumptions at all a contradiction re-
sults, i.e.: if this sequent is derivable in a system then that system itself is
inconsistent.

Example of a sequent.

Vx(x'>1) > a>1va=1,1>11"=b,

where a and b are free variables and x a bound variable.
1.3. ‘Inference figure’.

An inference figure (the formal counterpart of an inference) consists of
a line of inference, a lower sequent, written below the line, and upper se-
quents (one or more), written above the line. The lower sequent here stands
for the conclusion of the inference which has been drawn from the premisses
represented by the upper sequents.

The only inference figures admitted into our formalism are those obtaina-
ble from one of the following twenty inference figure schemata by a substitu-
tion of the following kind:

The variables %, B, D, and € may be replaced by arbitrary formulae;
the formulae V¢ () and 3¢ F(x) by arbitrary formulae of the same form;
the formulae $(a) and F(t) by the formulae resulting from F(r) by the
substitution of an arbitrary free variable a and an arbitrary term t, resp.,
for the bound variable g. The letters I', 4, @ and 4 may be replaced by ar-
bitrary, possibly empty sequences of formulae, separated by commas.

The following restriction on variables is to be observed: the free variable
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designated by a-which we call the eigenvariable of the inference figure con-
cerned — may not occur in the lower sequent of this inference figure.

The Inference Figure Schemata.
1.31. Schemata for structural inference figures:

r-o r-o

Thinning :
I -0 r-e0,%
. D,D,Ir—>06 r-0,99%9
Contraction:
DI -6 r-e60,9
4,9,ETI -6 r-0,9G64
Interchange:
4,8 D, I -6 Ir-0,69%,4
r-e,% D, A4-A4
Cut: .

' A4-6,4

The two formulae in the last schema designated by D are called cut for-
mulae, their degree the degree of the cut.
1.32. Schemata for operational inference figures:

&.:I‘—>(~),QI r-0,%8 AT -0 B,I' -6
) r-0,A&%B AN&B, T >0 A&B, T -6
V,:%I,r-»e B, > 6 r-e,9% r-e6,38

) AvB, I - O r-0,9v8 T -60,AvS
V.=T - 0, F(a) g, I -6

r-oe,vegrx vigk.r-o

3:: &), - 6 Ir - 0, {(t)

iJ@).r -0 I ->0,kJ{

_l_{at,r—»@ r-e,u
Ir-e0,—% - U T -6

That formula in the schema which contains the logical connective is called
the principal formula of the operational inference figure concerned.
1.33. Schema for CJ - inference figures (the formal counterparts of complete
inductions):
%(a)’ I'-eo, %(a’) .
1), T - 0,%(1)
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The degree of the CJ-inference figure is the degree of that formula in the
schema which is designated by (1) — and which is, of course, the same

as that of F(a), F(a’) and F(t).

Example of an inference figure:

sa=1,1<1"&a=1"
»a' =1,3z1<z&a=1")"

where a is a free and z a bound variable.

Explanatory remarks about the inference figure schemata will follew below
in connection with the concept of a derivation.
1.4. ‘Basic sequents’.

We shall distinguish basic ‘logical’ and ‘mathematical’ sequents.

A basic logical sequent is a sequent of the form ® — D, where an arbitrary
formula may stand for ®.

A basic mathematical sequent is a sequent consisting entirely of prime
formulae and becoming a ‘true’ sequent with every arbitrary substitution
of numerical terms for possible occurrences of free variables.

In accordance with our assumption of the decidability of all predicates,
the ‘truth’ of a prime formula without free variables is always verifiable.
Whether or not a sequent with free variables is a basic mathematical sequent
is of course not generally decidable; nor is this actually essential.

Examples of basic sequents:

Vxdy(x' =a&y>x)->Vxdy(x" =a&y > x)
a=bb=co>a=c
a<l-o
-1 >1
a=b-oa=5b>
—»a >a
- 1" =1(mod1").
1.5. ‘Derivation’.

A derivation is a figure in tree-form consisting of a number of sequents
(at least one) with one lowest sequent, the endsequent, and certain uppermost
sequents which must be basic sequents; the connection between the upper-
most sequents and the endsequent is established by inference figures.

It should be intuitively obvious how this is meant; yet let me paraphrase
it again as follows: suppose that an endsequent is given. This sequent is
either already an uppermost sequent — in which case it alone constitutes
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at once the entire derivation - or it is the lower sequent of an inference
figure. Every upper sequent of this inference figure is in turn either an up-
permost sequent of the derivation or the lower sequent of a further inferen-
ce figure, etc.

The reader should always visualize a derivation quite intuitively as a
tree-like structure, then the transformations on a derivation to be performed
in § 3 become most easily intelligible.

Example of a derivation:

874729 =4 ) inference figure
>1=1 1l=1->b=0»b cut

— b = b 1lll _ 1lll — 1lll = 1”’ V_inference

= Yx(x = x) ¥x(x =x)->1"=1" gﬁ':res
S>1U7 =1 *

For a further example, cf. 1.6.

Another auxiliary concept which will be needed later:

A ‘path’ in a derivation is, briefly speaking, a sequence of sequents which
we must run through in descending from a given uppermost sequent to the
endsequent. At each step, we pass from an upper sequent of an inference
figure to the lower sequent of that inference figure.

It is furthermore immediately obvious what is meant by the following:
a sequent in the derivation stands above or below another sequent occurring
in the same path (i.e., not only immediately above or below it, but any num-
ber of steps apart). It is understood that wherever the notion of ‘above’ or
‘below’ is used, the sequents concerned belong to a common path; otherwise
the concept is without sense.

1.6. Explanatory remarks about the new formalizatiorn of number-theoretical
proofs.

As a result of the revised concept of a derivation a formalization of
number-theoretical proofs is given which distinguishes itself from my ear-
lier ‘natural’ version mainly in two points. First: the rules of inference belong-
ing to the logical connectives, i.e. the ‘introduction’ and ‘elimination’ of a
logical connective, have now been reformulated throughout in such a way
that the Jower sequent always contains the ‘principal formula’, whereas the
upper sequents contain the associated side formulae. To the earlier ‘intro-
duction’ of a logical connective now corresponds the occurrence of that con-
nective in a succedent formula of the lower sequent, to the ‘elimination’ of
a logical connective corresponds the occurrence of that connective in an
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antecedent formula of the lower sequent. The reader should convince him-
self of the equivalence of the old and new versions by examining, for exam-
ple, the V-rules of inference (disregarding, for the time being, the occurrence
of several succedent formulae). The ‘cut’ and the basic logical sequents must
be used in the proof of equivalence. Cf. the derivation with the V-introduction
on the left and the subsequent ‘V-elimination’, given as an example in 1.5.

This part of the conversion from the former to the new rules of inference
amounts to an abandoning of the ratural succession of the propositions in
number-theoretical proofs and to the introduction, in its place, of an arti-
ficial arrangement of the propositions along special lines with the result that
in operational inferences the simpler proposition now always comes first and
is followed by the more complex proposition, viz., the proposition with the
additional connective. This rearrangement proves of practical value for the
consistency proof because of the essential role which the concept of the com-
plexity of a derivation and, with it, the complexity of a particular formula
(which increases as the degree of the formula increases) plays in the consis-
tency proof.

The second important distiction vis-a-vis the old concept of a derivation
consists in the symmetrization of the sequents by the admission of arbitrar-
ily many succedent formulae. This makes it unfortunately more difficult to
grasp the informal sense of the various inference schemata and to persuade
oneself of their -correctness’. To overcome this difficulty the reader should
first conceive of the presence of only one succedent formula and should
then convince himself that the inference remains correct even if several suc-
cedent formulae occur and also if no succedent formula occurs. As the reader
becomes more familiar with this concept of a derivation, he should be able to
realize that transformations of derivations and other proof-theoretical in-
vestigations can be carried out particularly simply and elegantly with this
concept. The decisive advantages are these:

There exists complete symmetry between & and v, ¥V and 3. All of the con-
nectives &, v, V, dand — have, to alarge extent, equal status in the system; no
connective ranks notably above any other connective. The special position
of the negation, in particular, which constituted a troublesome exception
in the natural calculus (cf. articles 4.56 and 5.26 of # 4), has been complete-
ly removed in a seemingly magical way. The manner in which this ob-
servation is expressed is undoubtedly justified since I myself was completely
surprised by this property of the ‘LK-calculus’ when first formulating that
calculus. The ‘law of the excluded middle’ and the ‘elimination of the double
negation’ are implicit in the new inference schemata ~ the reader may con-
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vince himself of this by deriving both of them whithin the new calculus — but
they have become completely harmless and no longer play the least special
role in the consistency proof that follows.

If we think of the I, 4, @, A as absent from the inference figure schemata,
we see that the schemata are of the greatest simplicity and likeness in the
sense that none of them any longer contains anything that is not absolutely
essential; the I', 4, @, A constitute an appendage which signifies merely
that additional antecedent and succedent formulae are carried forward un-
changed from the upper sequent to the lower sequent.

The new formulation of the concept of the ‘basic mathematical sequent’
still requires an explanation. In # 4, this concept was defined differently
.(articles 5.23 and 10.14). It turns out however that the former basic sequents
are derivable in the new system. An example which typifies the general as-
pects of the situation may make this clear:

The following ‘basic mathematical sequent’ in the old sense

S VxVy —(x=y&—y=x)
is derivable thus:

a=b-ob=a

a=b& —b=a—->b=a

-—|b=a, a=b&-—|b=a—>

a=b& —b=a, a=b& —~b=a-

a=b&—b=a—
—+—(a=b& —b=a)
»Vy—(@=y&—y=a)
SVxVy m(x=y&—y=x)

All usual ‘basic mathematical sequents’ in the old sense are derivable
in the same way from informally synonymous basic mathematical sequents
in the new sense®”. The fact that the new concept of a derivation is actually
equivalent with that of the earlier paper — apart from the restriction which
results from the initially limited admission of functions in the new system —
can be verified without great difficulty from the observations made above,
and I shall discuss it no further®®.

§ 2. Outline of the consistency proof

It is to be shown that every derivation is consistent®®; this may be para-
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phrased by saying that no derivation has an empty endsequent. For from a
contradiction, = ¥ and — — U, we can first of all derive the sequents
— — Y and — A —, and from them, by means of a cut, the empty sequent.
(Conversely, from the empty sequent every arbitrary sequent can be derived
by ‘thinnings’.)

It makes sense that we should begin by proving the consistency of simple
derivations, then of more complex ones, using the consistency of the simpler
derivations, and so forth. We thus proceed ‘inductively’. It is furthermore
not implausible that this procedure repeatedly requires the examination of
an already infinite sequence of derivations before a more complex class can
be tackled; for example, first all derivations consisting of only one sequent,
then all derivations consisting of two sequents, etc. This actually means that
we are applying a ‘transfinite induction’. In practice the pattern of this anal-
ysis is of course considerably more involved than in the case of the given
example.

The proof is carried out in three stages:

1. The consistency of an arbitrary derivation is reduced to the consistency
of all ‘simpler’ derivations. This is done by defining an - unambiguous -
reduction step for arbitrary ‘contradictive derivations’, i.e. derivations with
the empty sequent as endsequent;, this step transforms such a derivationinto a
‘simpler’ derivation with the same endsequent. The definition of this reduc-
tion step forms the contents of § 3.

2. Then a transfinite ordinal number is correlated with every derivation
and it is shown that in a reduction step the contradictive derivation concern-
ed is turned into a derivation with a smaller ordinal number. In this way the
so far only loosely determined concept of ‘simplicity’ receives its precise
sense: the larger the ordinal number of a derivation, the greater is its ‘com-
plexity’ in the context of this consistency proof. This forms the contents of §4.

3. From this the consistency of all derivations then obviously follows by
‘transfinite induction’. The inference of transfinite induction which, at first,
is a rather ‘disputable’ inference, may not be presupposed in the consistency
proof nor proved as in set theory. This inference requires rather a separate
justification by means of indisputable ‘constructive’ forms of inference. At
the end of § 4, the reader is at this time referred to # 4 in this connection.

§ 3. A reduction step on a contradictive derivation

3.1. Underlying ideas.
Suppose that a derivation is given whose endsequent is the empty sequent.
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This derivation is to be transformed into a (in some sense) simpler derivation
with the same endsequent. What is here meant by ‘simpler’ can at present
only be stated roughly and will be made precise later through the ordinal
numbers.

What are the considerations that make us suspect at all that, given a
proof for a contradiction, there already exists an even simpler way of proving
such a contradiction? By a contradiction is meant a proposition of a quite
simple structure, for example ‘1 = 2. If such a simple proposition can be
proved by means of a complex proof, it is reasonable to suspect that the
proof can be simplified. The following argument might conceivably be used:
Somewhere in the proof there must after all occur a proposition of maximal
complexity. In that case it must be assumed that this ‘complexity extremum’
(formally, this might be a formula of maximal degree occurring in the der-
ivation) must somehow be ‘reducible’. The only way in which this propo-
sition could in general enter into the proof is by an ‘introduction’ of its
terminal connective and a subsequent ‘elimination’ of the same connective.
But if a connective is first introduced and then again eliminated it can
be left out altogether by direct passage from the preceding sub-propo-
sitions to the corresponding succeeding sub-propositions®°.

This is the basic idea underlying the ‘operational reduction’ to be out-
lined below. In actual fact, however, the situation will turn out not to be
quite as simple as assumed in the argument just sketched. One of the difficul-
ties that may arise is the occurrence of a complete induction in the proof; viz.,
in the case where the proposition with the maximal number of conectives
in question is not directly proved by an ‘introduction’ inference, but rather
by a complete induction. This requires a further special kind of reduction step
which will be called a ‘CJ-reduction’. The form of this reduction step is ex-
tremely simple and precisely what we would expect: if the term t in the schema
of the CJ-inference figure is a numerical term, thus denoting a fixed number,
the complete induction can naturally be replaced by a number of ordinary
inferences ~ in our formalization a number of ‘cuts’. This constitutes the
‘CJ-reduction’.

If a CJ-inference figure occurs in the derivation whose t is a variable
term — and this is in fact normally the case — then this figure cannot of course
be reduced immediately in this way. The reduction procedure may be arran-
ged in such a way that with successive reduction steps more and more va-
riable terms are gradually replaced by numerical terms so that eventually
even initially irreducible CJ-inference figures become in turn reducible. This
remark is incidental. Here we are actually concerned only with the definition
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of one single reduction step so that regardless of the nature of the given con-
tradictive derivation, at least one place can be found in it to which a reduc-
tion can be applied.

Let us suppose theretore that there is no place in the derivation in which
a CJ-reduction can be carried out. Then, as will be shown in detail below,
an ‘operational reduction’ is always feasible. On the other hand, it cannot be
expected that a formula of highest degree in the entire derivation is always
amenable to a reduction. As mentioned before, this formula may have been
introduced by a CJ-inference figure and this figure can contain a variable t.
It is nonetheless possible in each case to locate a formula in the derivation
which represents a ‘relative extremum’, viz., a formula which is introduced
by the introduction of its terminal connective and whose further use in the
derivation then consists in the elimination of that connective, and which
is therefore reducible. Why such a formula must exist is best seen within
the context of the proof following below (3.43).

A special phenomenon should still be mentioned: it may happen that the
formula which is intended to form the starting point of the operational re-
duction is used again in the derivation not only once but several times. (An
example: suppose that the formula has the form Vg $(t), and from it are
inferred (1) and $(1’”) or in another place perhaps even V¢ F(z) v A.)
In the general case all that can be achieved is that in one place of applica-
tion the formula is used in the form of an elimination of its terminal connec-
tive. About the remaining places nothing can be said. In this general case the
formula can therefore not be reduced away completely; we can merely bring
about a simplification of this one place of application which, at this point,
makes the passage via the formula redundant. The occurrence of this for-
mula in the remaining places, remains unaffected. It turns out that this is
sufficient.

These preliminaries have been carried out against the background of the
‘natural proof’ with the natural succession of the individual propositions.
For their application to our formalism developed in § 1, a corresponding
translation must be made: To the ‘introduction’ of a connective here corre-
sponds its occurrence in a succedent formula of the lower sequent, to the
‘elimination’ of that connective its occurrence in an antecedent formula of
the lower sequent of the operational inference figure. All other details will
follow from the precise formal development now to be carried out; the pre-
liminaries ought not and cannot of course do more than indicate to the reader
in a superficial way the main ideas of the procedure and in doing so facilitate
the understanding of the actual presentation.
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3.2. Elimination of redundant free variables in preparation for the reduction
step. — The ‘ending’.

We begin with the definition of the ‘reduction step on a contradictive
derivation’ by stipulating: before the reduction step proper the following sim-
ple transformation must be carried out:

All free variables in the derivation are to be replaced by the numeral 1;
except that the eigenvariable (1.3) of an inference figure is retained in all
derivation sequents occurring above the lower sequent of the inference fig-
ure concerned.

What is the effect of this preliminary step? Actually, a free variable nor-
mally serves as eigenvariable of an inference figure and may here occur only
above the lower sequent of this inference figure; its occurrence in the lower
sequent itself is even expressly forbidden by the restriction on variables (1.3).
Wherever else free variables may occur they are completely redundant and
can equally well be replaced by 1. It is fairly obvious that this leaves the der-
ivation correct. The empty endsequent remains of course unchanged.

We furthermore require a simple auxiliary concept — the ending of a der-
ivation — which is defined thus: the ending consists of all those derivation
sequents that are encountered if we ascend each individual path (1.5) from
the endsequent and stop as soon as we arrive at the line of inference of an
operational inference figure. Thus the lower sequent of this inference figure
in each case still belongs to the ending, but its upper sequents do so no
longer. If a path crosses no line of inference of an operational inference
figure at all, then it is of course completely included in the ending.

Among the inference figures, the ending obviously contains only structural
and CJ-inference figures.

We now distinguish two cases:

1. The ending of our contradictive derivation contains at least one CJ-in-
ference figure. In that case a CJ-reduction is carried out, cf. 3.3.

2. The ending contains no CJ-inference figure. In that case an operational
reduction is carried out (3.5) after a further preparatory step (3.4).

3.3. The CJ-reduction.

If the ending of the given contradictive derivation contains at least one
CJ-inference figure after the stated preparatory step, then the reduction
step proper consists of the transformation of the derivation described next.

We select a CJ-inference figure in the ending which is such that it occurs
above no other CJ-inference figure. (i.e.: the derivational path which goes
through the lower sequent of the selected CJ-inference figure must not cross
the line of inference of any CJ-inference figure between that sequent and



§ 3, A REDUCTION STEP ON A CONTRADICTIVE DERIVATION 265

the endsequent.) In order to make the reduction step unambiguous, an ap-
propriate procedure for the unique determination of the CJ-inference figure
to be selected must still be given; there is a simple way in which this can be
done.

The CJ-inference figure has the form:

3@, > 0,3(«)
FO), I - 0,30

where 1t designates a numerical term. For, by virtue of the preparations
made no variable term could here possibly occur; in fact the lower sequent
cannot contain a single free variable: after the preparatory step, free vari-
ables can occur only above inference figures with one eigenvariable and
no such figure occurs below our CJ-inference figure. Indeed, the section
of the derivational path between the lower sequent and the endsequent of
this figure from here on crosses only lines of inference of structural inference
figures.

This CJ-inference figure is now replaced by a system of structural infer-
ence figures of the following kind:

1), r-06,51) F)I-0e,351")
%(1)’ r,r-0,6, %(1”) possibly several interchanges and contractions
BO.C-6,517)  H1),r->6,31")
%(1)’ rr-e,0, %(1”’) possibly several interchanges
%(1) oo %(1,,,) and contractions

cut

etc.

%(1)’ r-e, %(”) .

Above the sequents F(1), I' > O, F(1') and F(1'), I - O, F(1") etc.,
we write in each case that section of the derivation which precedes $(a),
I' - 0, F(a’), where we replace the free variable a in the entire section —
except in the case where it at the same time happens to be the eigenvariable
of an inference figure occurring in that section, in all sequents occurring
above the lower sequent of that inference figure — by the numerical terms 1
or 1’ or 1” etc. From the sequent (1), I' » &(n) downwards, the ending is
finally continued by adjoining the unchanged remainder of the old deri-
vation. To put it precisely: all derivational paths which did not go through
this sequent have been preserved unchanged and those which did go through
it remain unchanged from the endsequent up to this point.
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If n is equal to 1, then the reduction proceeds somewhat differently: in
that case the lower sequent of the CJ-inference figure runs (1), I —
©, F(1), This sequent is derived from the basic logical sequent F(1) - F(1)
by thinnings and interchanges, as required. Whatever preceded this lower
sequent in the derivation is omitted; everything else is retained unchanged,
as in the general case.

It is easily seen that in the CJ-reduction step the given contradictive der-
ivation is in all parts transformed into another correct contradictive der-
ivation. All we need to realize here in essence is that the replacement of
a by a numerical term turns every inference figure into another correct in-
ference figure.

Comments about the nature of the reduction step should no longer be
required; as stated at 3.1, its informal significance is exceedingly simple: a
complete induction up to a definite number is replaced by a corresponding
number of ordinary inferences.

3.4. Preliminaries and preparatory step for an operational reduction.

We must now deal with the case whesre the contradictive derivation con-
tains no CJ-inference figure in its ending after the preparatory step 3.2.

The ‘operational reduction’ to be carried out in this case is preceded by a
further preparatory step (3.42) whose purpose it is to eliminate all pos-
sible occurrences of thinnings and basic logical sequents from the ending,
since these would otherwise give rise to bothersome exceptions in the actual
operational reduction.

For this purpose, and also for the sake of its further use, we must first

examine the structure of the ending more closely.
3.41. The ending of our derivation contains only structural inference figures.
Its uppermost sequents are the uppermost sequents of the entire derivation,
or the lower sequents of operational inference figures. The ending contains
no free variables (since it contains no inference figures with eigenvariables).
This is all quite obvious.

We now introduce two simple auxiliary concepts:

Identical sequent formulae in the upper sequents and the lower sequent of
a structural inference figure corresponding to one another according to the
inference figure schema will be called ‘clustered’.

Clustered are, for example, the three formulae designated by ® in the
schema of a contraction; likewise the first of the formulae designated by I’
in the upper sequent with the first of the formulae designated by I' in the
lower sequent; the second formula of the upper sequents with the second for-
mula of the lower sequent; etc.; the twocutformulae of a cutareclustered;etc.
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The totality of all formulae in the ending of the derivation obtained by
starting with a particular formula and collecting all of its clustered formulae,
then all formulae clustered with these, etc., is called a cluster of formulae;
we can also say: the cluster associated with the relevant initial formula.

About the form of this cluster we can say the following:

With every cluster is associated a cut in the sense that its cut formulae
belong to the cluster. This is so since every formula which occurs somewhere
in the ending, as is evident from the structural inference figure schemata, is
always clustered with a formula in the sequent standing immediately below
it, except when it is a cut formula. Since the endsequent of our derivation
is empty, we must at some point reach such a cut in tracing a cluster down-
wards towards the endsequent.

We now start with this cut and trace the location of the cluster upwards
from the two cut formulae belonging to the cluster. With the following re-
sult: That portion of the cluster which is obtained by starting with the left
cut formula — we call it the left side of the cluster —isin tree-form; a branch-
ing takes place if, in coming from below, we reach a contraction whose
D belongs to the cluster; a branch may terminate at some point if the D
of a thinning or the uppermost sequent of the ending is reached; in that
case we speak of an uppermost formula of the cluster. All formulae of theleft
side of the cluster are succedent formulae of the sequents concerned. Exactly
analogous remarks apply to the right side of the cluster, obtained by starting
with the right cut formula; it too is in tree-form, etc., all its formulae are
antecedent formulae. It follows further that no cut formulae other than the
two formulae from which we started belong to the cluster; hence the cut
associated with a cluster is uniquely determined and so are therefore the
concepts of the left side and the right side of the cluster. No formulae of the
cut other than the cut formulae belong to the cluster. All formulae belonging
to the cluster occur above the lower sequent of the cut. (Le.: all sequents
containing cluster formulae occur above that sequent.) The left and right
sides together therefore constitute the whole cluster.

The correctness of all these assertions is easily seen by tracing the cluster
mentally from the cut formulae upwards and by visualizing with the help
of the schemata of the structural inference figures the kinds of procedure
which alone lead to new clustered formulae.

3.42. We can now turn to the preparatory step for the operational reduction
which, as said earlier, is intended to accomplish the elimination of all thin-
nings and basic logical sequents from the ending. This can clearly be done.
After all, a ‘thinning’ represents only a weakening of the informal sense of a
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sequent; if a contradiction can be derived from the weakened sequent, the
same can obviously also be derived from the stronger upper sequent alone;
and a basic logical sequent, being a pure tautology, is also dispensable in
the context of mere structural transformations.

The procedure almost suggests itself. Let us begin with the thinnings:
We select a thinning above which — in the ending — no other thinning occurs.
We then simply cancel its lower sequent and then use the upper sequent in
its place. In order to leave the derivation correct, we continue downwards
and in the next lower sequent cancel the formula clustered with the formula
® in the thinning, as well as the formula clustered with the latter in the sub-
sequent lower sequent, etc. Can this procedure lead to new difficulties? Ac-
tually, a contraction may arise in which a D of the upper sequent is to be
cancelled. All the better, the upper sequent becomes then identical with the
lower sequent; the contraction becomes redundant and we have finished.
There may be other occasions in the procedure in which the upper and lower
sequents of an inference figure become identical; in that case we simply omit
the inference figure and write the sequent down only once. If we encounter a
cut in which the formula to be cancelled is a cut formula, we cancel the other
upper sequent of the cut, together with whatever stands above it, and derive
the lower sequent from the remaining upper sequent alone by thinnings
and interchanges (as far as necessary).

The new thinnings which arise are again eliminated by the same procedure.
That this procedure terminates, thus ridding the ending of thinnings com-
pletely, follows from the fact that with each reduction step we find ourselves
lower down in the derivation (measured in terms of the total number of
cuts up to the endsequent, for example).

We leave it to the reader to give an exact demonstration of the feasi-
bility of the indicated procedure, as well as to formulate it unambiguously;
this presents no essential difficulties.

Next we eliminate the basic logical sequents: In the ending such a se-
quent can now occur only as the upper sequent of a cut since no contrac-
tions and interchanges are applicable to it; the lower sequent of the cut is
therefore, as is easily seen, identical with the other upper sequent. We
therefore simply omit the cut and have thus finished.

As a result we finally obtain a contradictive derivation whose ending
has the same properties as those stated above with the additional property
of containing no thinnings and no basic logical sequents (as uppermost deri-
vation sequents).

3.43. Further preliminaries to the operational reduction.
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I now assert: There exists at least one cluster of formulae in the ending
of our derivation, with at least one uppermost formula both on its left
side and on its right side, which is the principal formula of an operational
inference figure.

At this point the connection between our formal procedure and the fun-
damental ideas sketched in 3.1 becomes apparent: the concept of the cluster
of formulae makes it possible for us to grasp in its entirety the collection of
all occurrences of a ‘proposition’ in the ‘proof” (i.e.: formula in the derivation).
A principal formula as the uppermost formula on the left side corresponds
to an introduction instance of the terminal connective of the proposition
concerned; a principal formula on the right side — which is, after all, an an-
tecedent formula — corresponds to a subsequent elimination instance of that
connective. The cut associated with the cluster represents nothing more
than the formal establishment of the connection between the two instances
made necessary by the particular structure of our formalism. The fact that
branchings of a cluster occur, corresponds to the difficulty discussed at the
end of 3.1; branchings on the right side, for example, represent a multiple
application of the proposition. The fact that branchings can appear both on
the left and the right is due to the general symmetry of our formalism and
renders it more difficult to carry over the fundamental ideas to each indi-
vidual detail of the reduction. It suffices, however, if we have a reasonable
conception of the fundamental ideas and continue to let ourselves be guided
simply by formal analogies; this is precisely what I have done in formulating
the consistency proof.

We must now prove the above assertion which can be interpreted as asser-
ting the existence of a suitable place for an operational reduction in our deri-
vation.

In this connection we first observe that our derivation must contain at
least one operational inference figure. If this were not the case, the ending
would represent the entire derivation. This would mean that a ‘false’ se-
quent has been derived from basic mathematical sequents which contain no
free variables, and are therefore ‘true’ sequents, by means of the application
of structural inference figures alone and without thinnings. At the same time
the only formulae occurring in the whole derivation are prime formulae
without free variables, thus decidable formulae, so that it can be decided of
each sequent whether it is true or false. (A formula with logical connectives
cannot occur because no such connective occurs in the basic sequents, and
because none could have been introduced by the possible inference figures.)
This would mean that at least one inference figure occurs whose lower se-
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quent is ‘false’ whereas its upper sequents are ‘true’. This is easily seen to be
impossible.

In order to prove the above assertion, we now examine all those paths
of the ending whose uppermost sequent is the lower sequent of an operational
inference figure. We follow these paths from the top down and record wheth-
er in the sequents which we encounter a formula occurs which belongs
to the same cluster as one of the principal formulae standing immediately
above it (or whether it itself is a principal formula). This is so in the case
of the uppermost sequents of our paths and, as we continue downwards in
a path, this property is generally inherited. It is preserved trivially in passing
through contractions and interchanges (by the definition of cluster). If we
reach a cut in which two paths of the considered type meet, it may happen,
however, that this property is not transferred to the lower sequent; but this
can arise at most in the case where the cluster belonging to the cut formulae
contains a principal formula on both sides. This is precisely the case speci-
fied in the assertion. Since the empty endsequent does not possess the men-
tioned property in any case, the assertion is proved as long as this case real-
ly is the only possible one in which the property under discussion fails to
be passed on as we trace out the paths under examination. To this needs to
be added only one more case, viz., the case in which, coming from above,
a cut is encountered whose other upper sequent belongs to none of the paths
examined and can therefore occur only in paths of the ending that are bor-
dered above by basic mathematical sequents. This upper sequent can then
contain only prime formulae, and the cut formulae are therefore also prime;
indeed, a formula occurring in the traced upper sequent and belonging to
the same cluster as a principal formula cannot be a cut formula since its
degree is greater than 0, and it is therefore clustered with a formula with the
same property in the lower sequent.

This concludes the proof of the existence of a cluster of formulae suitable
for an operational reduction.

Now one last auxiliary concept that will be of central importance for
the definition of the ‘measure of complexity’ of a derivation:

By the level of a derivation sequent we mean the highest degree of any cut
or of a CJ-inference figure whose lower sequent stands below the sequent
concerned. If there is no such inference figure, then the level is equal to 0.

Comments about the importance of this concept will follow below.

3.5. The operational reduction.

Now the operational reduction proper can be defined. Given is contra-

dictive derivation whose ending includes at least one cluster of formulae
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containing on each side at least one principal formula of an operational in-
ference figure. We select such a cluster of formulae and from each of its sides
one uppermost formula of the kind mentioned. In order to make this step
unambiguous, a certain procedure concerning the type of choice to be made
must be specified; this is not difficult. We shall first deal with the case in
which the terminal connective of the clustered formulae is a V. The remaining
cases are dealt with almost in the same way and can be disposed of later in
a few words. The derivation therefore looks like this:

@ _
ry-e,,%a %(n), [, » @, The two operational
ry- 0., %E) v (), I, > O, inference figures

r-o0,vi3() Veig(),4 - A The cut associated

level
e r,dA-0,4 with the cluster
level : . )
ove ? level line’
level 6 < p I, 0,
- the empty sequent.

Explanatory remarks:

The dots are intended to indicate that further paths may enter into the
traced paths from both sides in arbitrary fashion. In addition, entire deri-
vational sections of a certain kind may stand above the operational inference
figures. The term 1 can only be a numerical term since no inference figure
with an eigenvariable can occur below it (3.2, 3.41). Suppose that I'; — 0,
is the first sequent encountered, as we trace the path from I', 4 - 6,
A to the endsequent, which is of a lower level than the upper sequents of the
cut belonging to the cluster. (Such a sequent must always exist since the level
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of the endsequent equals 0, while that of the upper sequents of the cut in ques-
tion is at least 1, since the degree of the cut itself is at least 1.) It may happen
that the sequent I', 4 — @, A is already the desired sequent; the above dia-
gram must then be interpreted correspondingly. It may of course equally
well happen that an upper sequent of the cut is itself already the lower se-
quent of the operational inference figure; and, finally, the sequent I'; — @3
may be identical with the endsequent; none of this makes any difference
to the reduction.

The reduction step consists now of the transformation of the derivation
into the form indicated by the following diagram:
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How the diagram is intended should basically be obvious. The old deri-
vation for I'y; - @, is written down twice side by side and the first instance
is modified in such a way that the left operational inference figure vanishes,
in the section of the derivation standing immediately above it, every occur-
rence of the free variable a is replaced by the numerical term 1 — except, again,
where it happens to be used simultaneously as the eigenvariable of an occur-
ring inference figure in the sequents standing above the lower sequent of
that inference figure —; the formula V() is reintroduced nevertheless, but
this time by a thinning; everything else is left exactly as it was before, with
the single exception that in the path going through I'y - &(n), @, Vr ()
the formula $(1) is carried along as an additional succedent formula. It can
be seen at once by reference to the inference figure schemata that this leaves
all inference figures correct; the same is true of the replacement of a by n.
The second copy of the old derivation of I'y — @5 is then modified is anal-
ogously. Here the right operational inference figure vanishes without neces-
sitating the replacement of a variable; and the formula &(n) is carried along
as an additional antecedent formula. From the two sequents I'; —» §(1),
©; and I';, F(1n) - O, the old sequent I'y — O; is then obtained by a new
cut, together with the applications of interchanges and contractions, and the
rest of the old derivation is then added unchanged.

The reader can convince himself without difficulty that the reduction
step here defined turns the given derivation into another entirely correct
derivation in the sense of our formalism.

Remarks about the significance of this reduction step.

Let us recall the fundamental ideas of the operational reduction (3.1) and
compare them with the formal procedure just described. The two operational
inference figures represent an introduction and elimination of the V in
VEH(L). According to the original fundamental idea, the two inference fig-
ures should have been omitted and the V& (x) replaced by the ‘simpler’
&(n)—whose degree is smaller by 1—; the place of the cut with the cut formulae
VI 3(z) should have been taken by a new cut with the cut formulae F(i).
There remains, however, the difficulty already mentioned that the formula
Vi $&(x) may have several application instances, even several introduction
instances — i.e., the formula cluster may have branchings on both sides and
contain several uppermost formulae. It is therefore actually necessary, both
in connection with the cancellation of the left operational inference figure
and that of the right operational inference figure, to retain also the old cut
with VI §(xr); a “simplification’ has nevertheless been achieved in each case
by the omission of an operational inference figure above this cut. (Although
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interchanges and a thinning have taken the place of this figure, these ‘do
not count’ in the determination of the ‘complexity’ of the derivation. - The
fact that Vy F(z) is reintroduced by a thinning is motivated only by
convenience since its reappearance further down in the derivation must be
expected in any case, and since this is the most convenient way of obtaining
the new form of the derivation from the old one.)

Further down in the new derivation then follows the ‘new cut’ with the
cut formulae (). Precisely why has this cut been placed below the ‘level
line’? (Basically, it could have been introduced at any stage below the two
Vi F(r)-cuts up to the end of the derivation; we would merely also have
had to write down twice the section of the derivation from these cuts up to
the new cut with $(1t) as an additional antecedent or succedent formula
and to leave the section below the new cut unchanged.)

This leads us to the purpose of the concept of a level in general. What
actually matters here is that in the reduction a ‘simplification’ of the der-
ivation is achieved in a sense to be made precise in the next paragraph
through the ordinal numbers. At first glance, to be sure, the new form of
the derivation looks more complex than the old form: one and the same
section of the derivation now occurs twice, although in each case in some-
what simpler form than before because of the omission of an operational
inference figure. In defining a measure of complexity for derivations, it
will therefore be easy to achieve that each individual section standing above
the new cut is valued somewhat lower than the corresponding section
of the old derivation. How is it to be accomplished, now that a new cut
has been adjoined, that the entire section of the derivation up to I'; — @4
is valued lower than the old derivation up to the same sequent? The new cut
has a lower degree than the old cut; it is this feature to which we must cling.
The new cut is thus placed below the collection of all cuts whose degree is
equal to that of the old cut, so that after the reduction the collection of cuts
above any one of these cuts of high degree is no larger than before, but is
at most the same or, in a certain sense, ‘simplified’. On the other hand, the
new cut and everything below it now extends over a larger collection than
before. This is compensated for by the fact that all of these cuts are of lower
degree than the old cut. Our success in achieving a lowering of the ordinal
number of the derivation through the reduction depends merely on our ex-
ploiting these facts properly when assigning ordinal numbers below.

Especially great weight will thus have to be attached to the degree of a
cut in this connection.

In this discussion it was tacitly assumed as normal that cuts of higher
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degree generally occur above cuts of lower degree in the derivation. Since,
in reality, this need of course not be the case, the ‘degree’ is replaced by the
concept of ‘level’, and all this means is that cuts of a lower degree above cuts
of a higher degree are treated as if they also possessed the higher degree; once
this has been done, the main ideas stated above carry over without dif-
ficulty.

In determining the level of arbitrary derivation sequents, the CJ-inference
figures are furthermore treated like cuts, since in the course of their reduction
they would be resolved into cuts of the same degree in any case.

The form of the reduction step for other connectives.

We must still specify how the reduction step is to be modified if the ter-
minal connective of the cluster formulae is not a V, as in the case explicitly
presented, but a &, 3, v or —. The differences are only minor:

If the cluster formulae have the form A & B, we imagine the above
diagrams suitably modified; in place of Vi &(r) stands U & B, and the
operational inference figures run thus:

Fl—)QI,QI Fl—)al’%and QI,Fz"’@s or %,Fz"’@z
FI—)QI,QI&% QI&%,F:Z—)@:Z %&%,Fz-—)@z.

In the new derivation, A & B now takes the place of V¢ F(&), and in
place of (1) occurs U or B, depending on which of the two possible forms
the right operational inference figure (the ‘&-elimination’) has had. In the
place from which the left operational inference figure was omitted, we retain
only the derivation of I'y - @,, A or I'; —» @,, B, resp., the other deriva-
tion being omitted. (This corresponds to the replacement of a by 1t in the
V-case.) The rest of the procedure is exactly the same as above; even the in-
dicated differences completely suggest themselves.

If the terminal connective of the cluster formulae is a 3 or v, the reduc-
tion proceeds completely symmetrically to the cases V and &. Right and
left are here interchanged.

If the cluster formulae finally have the form — 2, nothing changes essential-
ly: the formula (1) in the new derivation then corresponds to the formula 2,
except that, as a consequence of the omission of the left operational inference
figure, the latter formula occurs as an additional antecedent formula and,
correspondingly, as a consequence of the omission of the right operational
inference figure, as a succedent formula. In both cases the formula U is
carried forward up to the sequent I'y — @, as usual; the only difference is
that now the left and the right upper sequent of the ‘new cut’, i.e., the com-
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plete derivational sections standing above it, must be interchanged with one
another.

This completes the definition of a reduction step on a contradictive der-
ivation.

§ 4. The ordinal numbers — concluding remarks

4.1. The transfinite ordinal numbers below g, .

I shall now define the ordinal numbers to be used. These will not be writ-
ten as decimal fractions, as in # 4; this time I shall adopt the notation cus-
tomary in set theory. (In spite of this all definitions and proofs given in the
following paragraphs are entirely “finitist’ and are of an especially elemen-
tary nature in this respect, as were the corresponding sections in the earlier
proof. Here we are not really concerned with a study of transfinite induction;
cf. below.)

Recursive definition of the ordinal numbers, also of equality and the order
relation (<) between them:

The system S, consists of the number 0. We define: 0 = 0 and not 0 < 0.

Suppose that the numbers of the system &, (where p is a natural number
or 0) are already defined, as well as =, and the <-relation between them. An
arbitrary number of the system &, then has the form

wa1+waz+ PR +w¢v’

where the «’s are numbers of the system ©,, with o; = a, 2 ... 2 a,;
v designates a natural number. The number 0 also belongs to the system
@p+ 1 .

A &, -number B is equal to a &, -number y if their representations
coincide. A &, -number B is smaller than (larger than) a &, ;-number
¥, if the first non-coinciding ‘exponent’ « in the representation of § is smaller
than (larger than) the corresponding exponent in the representation of y.
If =9+ ---, then B > y. The ordinal number 0 is considered to be smaller
than any other number. § > y means of course the same as y < p.

This completes the definition. It is easily seen that each system includes
all preceding systems, and that the relations of ‘smaller than’ and ‘equal
to’ between two numbers are independent of the system to which these
numbers are considered to belong. It also follows quite clearly that of a
given expression it can always be decided whether it is an ordinal number or
not, and that of two given ordinal numbers it can be decided (in a simple way)
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whether they are equal or which is the smaller one. (These concepts are there-
fore indeed “finitist’.)

For our purposes, the symbols ‘0, ‘+°, and ‘w’, as well as the ‘exponen-
tiation’, which occur in the representations of ordinal numbers, should be
interpreted quite formally without our having to associate with them any
particular sense such as that of regarding w as ‘an infinite number’ or ‘+ as a
symbol for ‘addition’. Such visualizations are of use merely for the under-
standing of the context as a whole. Solely for the purpose of comparing the
size of the individual systems, the following might still be said if we make use
of concepts and results from set theory:

The system &, consists of the numbers: 0, ©°, ©°®+w? ... i.e., in the
usual notation: 0, 1, 2, ...; that is to say, of 0 and the natural numbers.

The limit number of the system is .

&, contains all numbers below ©®, viz:

O 0
0, 0%, 0°+° ..., 0% 0+ ..., 0+,
wm°+wm°+m0 o™+ o’ te’ta®
thus: 0, 1, 2,...,0, wo+1,..,02, ®-2+1,...,0%...,0%...; in
eneral, all polynomials @™ - yy+ - * +@" - u,; the v’s and u’s designate
g 1 (4 g
natural numbers or 0; v, > v, > -+ > v,.
@&; contains all numbers below »®“(i.e., ®®*?; in the following, multiple
3 g
exponentiations are to be interpreted correspondingly).

@&, contains all numbers below ®, etc.

The limit number of all systems taken together is the number g4, the
“first e-number’.

We shall use the symbol 1 as an abbreviation for ®°. We also need the
concept of the ‘natural sum’ of two (non-zero) ordinal numbers, which is
defined as follows:®!

Suppose that « = 0" +w@”+ -+ +0’* and f = & +0®+ -+ +o®
(0 =1, v 2 1). The ‘natural sum « 4 B’ is then obtained by arranging
the u+v terms o’ and @’ by size and joining them back together again by
‘+’-symbols, the largest term first, the smallest last, with equal terms of
course side by side. In this way another correct ordinal number obviously
results.

An example: If

@bt 1+l ey

v=0"""+1 and f=o +0" Mol

then
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wltltl

a#ﬁ=w“’ +1+wm1+1+wm1+1+wl+1.

In all cases « # B = B % a. The natural sum of arbitrarily many ordinal
numbers is independent of the order of the individual summations. « # > a.
If «* < o then o* 4 B < « 4 B. These facts are easily proved.

4.2. The correlation of ordinal numbers with derivations.

Suppose that an arbitrary derivation is given. Its ordinal number is cal-
culated by passing downward from the uppermost sequents and assigning
to each individual derivational sequent as well as to each line of inference
an ordinal number (> 0) on the basis of the following stipulations:

Each uppermost sequent receives the ordinal number 1 (i.e., ®°).

Suppose that the ordinal numbers of the upper sequents of an inference
figure have already been determined. The ordinal number of the line of
inference is then obtained as follows:

If the inference figure is structural, then the ordinal number of the upper
sequent is adopted unchanged or, in the case of a cut, the natural sum of the
ordinal numbers of the two upper sequents is formed.

If the inference figure is operational, then +1 is adjoined to the ordinal
number of the upper sequent; if the figure has two upper sequents, the larger
of the two ordinal numbers is selected and +1 is adjoined to it.

If a CJ-inference figure is finally encountered — whose upper sequent has
the ordinal number @™ + - - - +w™ (v = 1), thenw™ * ! is taken as the ordinal
number of the line of inference. If @, = 0, then this number is of course ®'.

From the ordinal number of a line of inference — call it « - the ordinal
number of the lower sequent of the inference figure concerned is obtained in
the following way:

If the Jevel of the lower sequent is the same as that of the upper sequent,
then the ordinal number of the lower sequent is equal to a. If its level is
lower by 1, then the ordinal number of the lower sequent is »*. If lower by

2, the ordinal number is w®*, if lower by 3: 0®", etc.

The ordinal number which is finally obtained for the endsequent of the
derivation is the ordinal number of the derivation.

The reader can easily convince himself that the operations mentioned real-
ly do yield ordinal numbers as defined above. For the time being I shall not
comment on this method of correlating ordinal numbers; it is really quite
simple; of special interest is only the evaluation. of the CJ-inference figures
and that of the different levels; in both cases this evaluation will be most
easily understood through its effect later on.
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4.3. The decrease of the ordinal number in the course of a reduction step on a
contradictive derivation.

It still remains to be shown that in the course of a reduction step accord-
ing to § 3, the ordinal number of an inconsistent derivation decreases.
This no longer presents any special difficulties; all we need to do is 70 exam-
ine the correctness of this assertion carefully for each individual case.

The preparatory step 3.2. obviously leaves the ordinal number entirely
unaffected. What is the situation in the case of a CJ-reduction (3.3)?

Suppose that the ordinal number of the upper sequent of the CJ-inference
figure is w* + * * * +@* (v 2 1), that of the line of inference therefore w*'*!.
This is also the ordinal number of the lower sequent whose level cannot be
lower than that of the upper sequent, since the cuts associated with the clus-
ters to which §(1) and (1) belong, and which have the same degree as the
CJ-inference figure, must still occur further down in the derivation. Let us
now examine the figure which has replaced the CJ-inference figure in the
reduction (first for 1t not equal to 1). In the new derivation each one of its
uppermost sequents obviously receives the same ordinai number o* + - - -
+ ™. Furthermore, all sequents of the replacement figure have the same
level, viz., that level which the two sequents of the CJ-inference figure had
before. (The newly occurring cuts have of course the same degree as that of
the CJ-inference figure.) The ordinal number of the lowest sequent of this
figure is therefore obviously equal to the natural sum of all numbers
@®+ -+« +o*™. Consequently it begins: w* + - - -. It is therefore smaller than
o**1, according to the definition of ‘smaller than’ for ordinal numbers.

From this it now follows easily that the ordinal number of the entire
derivation has also been decreased. After all, from the CJ-inference figure
downwards nothing has changed in the derivation; in fact, all levels have
here also remained the same. The decrease which has occurred at one
place is preservedin the calculation of the ordinal number further down to the
endsequent; what is essential is that in proceeding downwards only structural
inference figures are encountered and that the following holds: If a* < «,
then w* < w® and o«* # B < a # B. (Suppose that «, a* and § # 0.) Both
requirements are satisfied at once by definition.

Now the purpose of @**! in the evaluation of a CJ-inference figure also
becomes clear: in the reduction the figure is broken up into a number of
cuts; and in some sense the #-fold multiple of one and the same derivational
section occurs. In order to achieve a decrease in the ordinal number, we
must therefore choose as the ordinal number of the original derivational
section up to the CJ-inference figure the ‘limit number’ of all ‘n-fold multiples’
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of the ordinal number of the upper sequent, i.e., @**! = ‘©* + w’. (The
expressions in ¢ ’ serve of course only as illustrations; they are not even
defined in this context.)

Now there remains only the case where 1t equals 1: in the new derivation
the sequent (1), I' = &, F(1) receives the ordinal number 1. In the old
derivation its ordinal number was at least equal to w'. Here we have an
obvious decrease which is at the same time passed on to the ordinal number
of the entire derivation.

This proves the decrease of the ordinal number of a contradiction deriva-
tion in a CJ-reduction. There still remains the case of the operation reduction.
Here it must first be observed that the further preparatory step (3.42) can-
not cause an increase in the ordinal number.

The proof of this fact presents certain difficulties in spite of the obvious
external simplification of the derivation in this step. I shall sketch only
briefly what kind of reasoning is here required — the reader interested only
in bare essentials may skip this paragraph —:

The omission or adjunction of formulae and other transformations within
structural inference figures except cuts have no influence whatever on the
ordinal number. This is different in the case of the cancellation of a cut
through the omission of an upper sequent together with everything standing
above it. If we disregard for the time being the change of levels which this
cancellation entails, then a decrease in the ordinal number results from the
replacement of the natural sum of two numbers by only one of these two
numbers. Added to this must be the fact that through the omission of a cut
the level of a whole collection of sequents above this cut may be reduced
to a greater or lesser extent (not only in the ending, but in the entire deri-
vation). In order to recognize that this rather entangled transformation can-
not effect an increase in the ordinal number of the entire derivation we argue
thus: we imagine that we can fix the levels quite arbitrarily. We begin with
the old derivation, omit the cut and, at first, leave all levels untouched.
Then we gradually change these levels to the values which the transformed
derivation really should have, according to the definition of level, by carry-
ing out a succession of single steps of the following kind: the level of the
upper sequents of one inference figure whose lower sequent has a lower level
than the upper sequent is in each case diminished by 1. It is easily seen that
the entire change of levels can in fact be made up of such operations. (We
begin from below.) What exactly happens to the ordinal numbers in the course
of a single such change of levels? Suppose that before the change the or-
dinal numbers of the upper sequents are o and f (if there is only one such
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number, we simply think of the second number below as not being present).
After the change they then take the form w® and w?. (Except if one upper
sequent is an uppermost sequent of the derivation, in which case its ordinal
number was and remains equal to 1, and this simplifies the following dis-
cussion further.) Before the change, the ordinal number of the line of in-
ference was thus either a, « 4 B, max («+1, B+1), or @™ (where o =
@™+ - -, in the case of a CJ-inference figure), depending on the kind of
inference figure involved. After the change, the ordinal number takes the
form of either 0, w* # @, max (w*+1, @f +1), or w***. Now to the lower
Sequent: If the difference in levels between it and the upper sequent was 1
before and is therefore now 0, then the change of levels has brought about a
change in the ordinal number of this sequent from w* to »*, from ™8 to
o* # @f, from max (@**!, @**!) to max (w*+1, @ +1), or finally from
@ to @'* * " *1 In each case the ordinal number has either remained
the same or has become smaller; this should be verified by the reader from
case to case from the definition of ‘smaller than’. If the difference in levels
between the upper and lower sequents was greater than 1, nothing has es-
sentially changed: in each case the numbers mentioned are augmented by an
equal number of exponentiations with w, This property of not becoming
larger carries over to the ordinal number of the entire derivation, and this num-
ber can therefore increase neither in a single step of the described change of
levels nor, quite generally, in the preparatory step for the operational re-
duction as a whole.

We now come to the operational reduction proper (3.5), in which we must
demonstrate a decrease of the ordinal number. We shall again base our
discussion upon the case presented in detail above (with V¥ as the connective
to be reduced). The ordinal number of each of the two lines of inference
standing immediately above the sequents 'y - F(11), @5 and 'y, F(11) > O,
in the new derivation — which we denote by oy and «, —is smaller than the
ordinal number o« of the ‘level line’ in the old derivation. This is so since
the derivational sections standing above the lines of inference essentially
correspond to one another; all levels, in particular, are the same as those
in the old derivation — the levels of the sequents standing immediately above
the mentioned lines of inference are equal to p throughout —; in each
case only one operational inference figure has disappeared and been replaced
by structural inference figures which have no influence on the ordinal num-
ber. At this point a decrease in the ordinal number has therefore taken place
which is preserved as we pass through the subsequent structural inference
figures up to the mentioned lines of inference. Also: the sequent I'; — @,
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has of course the same level o in the new derivation as in the old one;
o < p.ThesequentI's, I3 —» @4, O has of course the level o. The level 7 of the
upper sequents of the ‘new cut’ satisfies p > t = o. The inequality on the
right is trivial; and that p > 7 is recognized thus: by the definition of level,
7 is the maximum of the two numbers o and ‘the degree of F(n). If 7 = o,
then T < p, since 0 < p. If 7 equals the degree of F(n), then T < p, since
the degree of (1) is smaller than the degree of Vi $(x), and since p is at
least equal to the latter.

Let us first suppose that the differences between the levels p, T and o are
minimal, i.e., that p = 7+1 and 7 = 0. In this case our demonstration is
completed as follows: In the old derivation the level line had the ordinal num-
ber «, the sequent I'; — © 4 therefore the ordinal number »*. In the new der-
ivation the lines of inference corresponding to this level line have the ordinal
numbers o, and «,, both are smaller than «, and the upper sequents of the
new cut therefore have the ordinal numbers w** and w™; the sequent I'y — O,
receives the ordinal number w* +*. (Without loss of generality we may
assume that o, = o,.) The latter number is obviously smaller then »*; and
we have thus finished. For, on the basis of an already repeatedly applied
argument this decrease carries over to the ordinal number of the endsequent
and therefore to the derivation as a whole. (Below I'; - ©; nothing has of
course changed.) If the distances between the levels p, T and o are greater,
our argument is not essentially different. The place of the inequality

o > 0"+ o™ (where ¢ > oy 2= o)

is then simply taken by the inequality

wa wa: waz

w > o
and the latter inequality is also easily seen to be valid.

It now becomes apparent how through the method of definition of the
ordinal numbers, together with the concept of level, the difficulties asso-
ciated with the apparent increase in complexity of a derivation as a result of
the operational reduction have been overcome. The main idea is: in the
reduction the same derivational section occurs twice, although both times
somewhat simplified. In the general case, however, « < «, +«,, where a,
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and o, are assumed to be smaller than a. For the exponential expression,
however, it holds that @* > 0™ +w@*. (Just as in the case of the natural
numbers, we can put any number = 3 for w.)

The ‘simplification’ of the figure as a whole has thus been achieved, as
long as it is always possible to insert an exponentiation; and this is made
feasible by the fact that the degree of the new cut is smaller than the degree
of the old Vi §(z)-cut. It was for the purpose of exploiting this fact that
the general concept of level was introduced and applied in the correlation of
ordinal numbers.

The cases where the connective to be reduced is a &, 3, v, or —, are so
similar that a special discussion of them becomes superfluous.

The decrease of the ordinal number of a contradictive derivation in the
reduction step has thus been proved.

4.4. Concluding remarks. .

If we had not admitted CJ-inference figures into our formalism, it would be
possible to make do with the natural numbers as ordinal numbers. In order to
realize this, the reader should omit 4.1 and in 4.2 replace w by 3 throughout
and ‘natural sum’ simply by ‘sum’. Sums and powers are to be understood
in the way customary for the natural numbers. 4.3 then remains valid through-
out, as is easily verified; the CJ-reduction must here of course be left out.
The consistency proof could then be concluded by an ordinary complete
induction instead of a transfinite induction.

As soon as we admit CJ-inference figures, thus obtaining our full for-
malism, the following remarkable connection between the magnitude of the
ordinal number of a derivation and the highest degree of the formulae oc-
curring in the derivation holds: the ordinal number of a derivation in which
only formulae of degree 0 occuris smaller than w® (i.e., »® in our notation).
If the highest degree of a formula equals 1, then its ordinal number is smaller
than w®” if the degree equals 2, then the ordinal number is smaller than
©®””, etc. This is not difficult to prove.

These theorems are of course meaningful only relative to our special
correlation of ordinal numbers. Yet it is reasonable to assume that by and
large this correlation is already fairly optimal, i.e., that we could nof make do
with essentially lower ordinal numbers. In particular, the totality of all our
derivations cannot be handled by means of ordinal numbers all of which lie
below a number which is smaller than ¢,. For transfinite induction up to
such a number is itself provable in our formalism; a consistency proof car-
ried out by means of this induction would therefore contradict Godel’s
theorem (given, of course, that the other techniques of proof used, especially
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the correlation of ordinal numbers, have not assumed forms that are non-
representable in our number-theoretical formalism). By the same round-
about argument we can presumably also show that certain subclasses of
derivations cannot be handled by ordinal numbers below certain numbers
of the form o™ . It is quite likely that one day a direct approach to such
impossibility proofs will be found.

If we include arbitrary functions in our formalism, then the consistency
proof remains valid with minor modifications: all that needs to be shown is
that at some point in the reduction, following the first preparatory step,
for example, all terms without free variables can be evaluated and replaced
by their numerical values. It is presupposed that all functions can be ef-
fectively calculated for all given numerical values. There still arise certain
formal difficulties from the fact that although a term may be calculable, a
corresponding term in another place in the same inference figure may still
contain a variable (cf. article 14.22 of # 4); these difficulties do not affect
the main ideas involved.

In its purpose and intention, section V of # 4 continues to apply to this
new version of the consistency proof. I have not given a new proof of the
‘reducibility’ of arbitrary derivable sequents; nor do I attach any special
importance to this. (I had previously advanced it as an argument against
radical intuitionism — article 17.3 -, but it is not particularly essential for
this purpose.)

Transfinite Induction.

I have not given a new proof of the transfinite induction which concludes
the consistency proof, since I intend to discuss the question involved at this
point separately at some later date. For the conclusion of the present proof,
the earlier proof of the ‘theorem of transfinite induction’ (articles 15.4 and
15.1) is therefore to be adopted for the time being. For this purpose the new
ordinal numbers must be made to correspond to the decimal fractions used
in the earlier paper; this presents no special difficulties. (Both systems are
after all of the same ‘order type &,’.)

The transfinite induction occupies quite a special position within the con-
sistency proof. Whereas all other forms of inference used are of a rather
elementary kind, from the point of view of being “finitist’ — this applies to
the new proof as much as it does to old one — this cannot be maintained of
the transfinite induction. Here we therefore have a task of a different kind:
we are not merely required fo prove transfinite induction — this is not par-
ticularly difficult and possible in various ways — but rather to prove it on
a finitist basis, i.e., to establish clearly that it is a form of inference which
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is in harmony with the principle of the constructivist interpretation of in-
finity; an undertaking which is no longer purely mathematical, but which
nevertheless forms part of a consistency proof.

We might be inclined to doubt the finitist character of the ‘transfinite’
induction, even if only because of its suspect name. In its defense it should
here merely be pointed out that most somehow constructivistically orien-
tated authors place special emphasis on building up constructively (up to
w®, for example) an initial segment of the transfinite number sequence (within
the ‘second number class’). And in the consistency proof, and in possible
future extensions of it, we are certainly dealing only with an initial part, a
‘segment’ of the second number class, even though this is an already compar-
atively extensive segment, and must probably be extended considerably
further for a consistency proof for analysis. I fail to see, however, at what
‘point’ that which is constructively indisputable is supposed to end, and
where a further extension of transfinite induction is therefore thought to
become disputable. I think, rather, that the reliability of the transfinite num-
bers required for the consistency proof compares with that of the first initial
segments, say up to @2, in the same way as the reliability of a numerical cal-
culation extending over a hundred pages with that of a calculation of a
few lines: it is merely a considerably vaster undertaking to convince oneself
of this certainty from beginning to end. A detailed discussion of these mat-
ters (which seem to me now to have been discussed somewhat too sketchily
in # 4, article 16.11) will as said before, follow at a later date.



9. PROVABILITY AND NONPROVABILITY OF RESTRICTED
TRANSFINITE INDUCTION IN ELEMENTARY NUMBER THEORY

The impossibility of proving transfinite induction up to the ordinal
number &, with elementary number-theoretical techniques may be inferred
indirectly from the following two facts:

1. Goédel’s theorem: The consistency of elementary number theory can-
not be proved with the techniques of that theory®2.

2. The consistency of elementary number theory has been proved by
applying transfinite induction up to &4, together with exclusively elementary
number-theoretical techniques®3.

In the following I shall give a direct proof for the nonprovability of
transfinite induction up to &g in elementary number theory. The procedure
of proof will, in addition, make it possible to show that still further restricted
forms of transfinite induction to numbers below &, are not provable in cer-
tain subsystems of the number-theoretical formalism.

On the other hand, it is known that transfinite induction up to any ordinal
number below g, is provable in elementary number theory®*. In § 2, I shall
indicate how such proofs are formalized in the number-theoretical formalism.

I shall make frequent use of # 8, which will simply be referred to as ‘New’.

§ 1. TJ-derivations

We begin by defining the concept of an elementary number-theoretical
proof for the validity of transfinite induction up to a definite ordinal number
below &q. The formalized version of such a proof will briefly be called a
‘TJ-derivation’.

For this purpose we must extend the concept of a number-theoretical
derivation as it was formalized, for example, in my earlier papers, in two.
ways: In the first place we must adjoin the transfinite ordinal numbers
to the natural numbers as further objects, as well as certain associated func-
tions, predicates and mathematical axioms.
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Second, a formalized version of the rule of transfinite induction must be
stated, and it must be explained what is to be understood by a derivation
for this rule of inference.

This will now be done formally by extending New, § 1. It will be stated ex-
plicitly, in each case, what is to be adopted from that paper.

All ordinal numbers below g, can be represented uniquely by means of 0,
, addition, and w-exponentiation in the way described in New, 4.1. Expres-
sions of this form will be called ‘numerical terms’. (They designate the objects
of our theory; the natural numbers are special cases of such terms.)

Numerical variables, briefly called ‘variables’, are subdivided into free
and bound variables. They may be designated by arbitrary symbols, provided
that these symbols have not yet been used in another sense; in each case
it must, however, be specified whether such a symbol is to designate a free
or a bound variable.

An arbitrary number of function symbols and predicate symbols may occur;
but we require that these functions and predicates are decidably defined,
i.e., that a procedure is given at the same time which enables us to calculate
for every given combination of numerical terms, from the number of argu-
ment places of the function or predicate, what is the functional value -
again in the form of a numerical term — or, in the case of a predicate, whether
the predicate does or does not hold for the given numbers.

In the following, we shall make use of the following specific predicate and
function symbols (& and 8 indicate the argument places):

Predicate symbols: « = 8, a < 8, « > f#, « < B, « = B. (Decidably de-
fined in New, 4.1).

Function symbols: First, a+ 8, « * B and @ These (as well as the predi-
cate symbols) are considered to have the meanings customary in set theory;
to define these symbols decidably for the numbers below g, presents no es-
sential difficulties; I shall assume that such definitions have been given and
shall discuss this point no further®°.

The occurrence of sums and powers of w in the numerical terms must be
shown to be in harmony with the definition of these functions; again this
presents no significant difficulty.

We furthermore use the single-place function symbol @, with the follow-
ing meaning: wy = 0, w, = 1 (as in New 4.1, 1 is to be considered as an
abbreviation for ®?, and  as an abbreviation for w*, wherever it occurs with-
out an exponent or subscript), w, = w, w3 = @® etc. (2 and 3 are, of course,
abbreviations for 1+1 and 1+1+1) in general, w,,; = ©®, where @ < .
If « = w, we define w, = 0.
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Finally, we require two somewhat more complicated functions of the fol-
lowing kind:

If « < B+’ and y > O (were a, 8,y are ordinal numbers of our domain)
then there exist two numbers fit, (o, B,7) and fu,(«, B, y) such that fi, <y,
fu, < o and a £ B+w'™ - fu,. These can be decidably defined as follows:
Written as a numerical term, S+’ has the form o®+0®+ -+ +0®
(0, = 8, +* = 8,, where v is a natural number).

Here J, = 7y, according to the arithmetical rules for addition. If & < B,
then we simply assign to fi; and fir, the value 0. Yet if « > B, then o, writ-
ten as a numerical value, has the form

Ot e OO L. F O e, where y > k¥ > 4.

(If v equals 1, then the terms occurring before the first w® are simply disre-
garded. At least one w*-term must occur. w* and the other places on the
right may be empty.) The summand @* is considered to occur u times, where
U is a natural number.

We now put fiy = k, fu, = p+1, with the restrictions satisfied, since

B+o™ fu, 2 0”+ ¢ +0> 0" (ut1) >

(If « = B+w? ory = 0, then, fu, and fu, are assumed to be 0.)

Recursive definition of a ‘term’ (in the customary way): Numerical terms
and free variables are terms. If the argument places of a function symbol are
filled by arbitrary terms, then another term results.

Recursive definition of a ‘formula’:

If the argument places of a predicate symbol are filled by arbitrary
terms, then a formula results. Such a formula is called a ‘prime formula’.

A formula also results if a term is placed in the argument place of the one-
place ‘predicate variable’ &. (The symbol & is required for the formulation
of the TJ-derivations, cf. below. It is not counted among the ‘variables’,
these are intended to refer to numerical variables only.)

If A and B are formulae, then A & B, A v B, A = B and — A are also for-
mulae. From a formula another formula results if every occurrence of a free
variable is replaced throughout by a bound variable ¢ not yet occurring in
the formula and if Y or 3¢ are at the same time placed in front of the result-
ing expression. (Brackets are used as usual in order to display unambiguously
the scope of a logical or functional symbol.)

The definition of a ‘sequent’ is to be adopted verbatim from New, 1.2.

The concept of an ‘inference figure® is also adopted from New, 1.3, with
the following modifications:
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Since we now also wish to use the logical connective = (in § 2), we in-
troduce the following additional inference figure schema:

ra-=s
Ir-%A-%B

The schema for CJ-inference figures also requires a modification because
of the inclusion of the transfinite numbers; it shall now run:

a< w0, I - 06,Fa+l)
t <o, F0), I - 6,F{)

with the following rule of replacement: For {(a) we may put an arbitrary
formula containing a free variable a. Then F(a+1), F(0), or F(t), resp.,
are to be replaced by those formulae which result from $(a) if the free
variable a is replaced throughout by a+1 or 0 or an arbitrary term t. The
remaining parts of the schema are to be understood in the obvious way. As
usual, the eigenvariable @ must not occur in the lower sequent.

As ‘basic sequents’ we shall use the following:

Basic logical sequents are sequents of the form ® — D, where D stands for
an arbitrary formula, as well as (in§2) A > B, A - B (where A and B
are arbitrary formulae).

Basic mathematical sequents are, as in New, 1.4, sequents consisting of
prime formulae which become ‘true’ sequents in the sense of the decidable
definition of functions and the decidability of predicates, together with the
definition of the truth of a sequent (New, 1.2), with every arbitrary substitu-
tion of numerical terms for possible occurrences of free variables. (Such se-
quents may therefore not contain the symbol &.)

Here, as in my earlier papers, I shall dispense with the statement of def-
inite basic mathematical sequents (as mathematical ‘axioms’). I shall never-
theless make use of a number of such axioms in § 2; that these are ‘true’ will
be assumed as proved, since this involves no essential difficulties.

We furthermore introduce a third kind of basic sequent, viz., ‘basic
equality sequents’, to be formed according to the following schema:

8 =1,J6) - ()

together with the replacement rule: 3 and t may be replaced by arbitrary
terms, $%(8) by an arbitrary formula containing (at least) one occurrence of
the term 8, F(t) by a formula which results from $(8) by the replacement of
one occurrence of 3 by t.

E
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(N.B.: The basic equality sequents would be superfluous if the calculus
did not contain the predicate variable &, since the latter sequents would then
be derivable from basic mathematical sequents.)

The concept of a ‘derivation in the ordinary sense’ is adopted verbatim
from New, 1.5, with the following addition: The symbol € may not occurina
derivation of this kind.

TJ-derivations.

In order to make the concept of a TJ-derivation precise, I shall begin by
formulating a ‘schema for TJ-inference figures’, similar to the schema for
CJ-inference figures:

0>0Vt[t<a>FWLI > 6, F@a)
0. I — 6, F()

The replacement rule is analogous to the rule for the CJ-inference figures;
8 must be replaced by a numerical term.

This schema formalizes ‘transfinite induction up to the ordinal number
represented by the numerical term 8. (The only use that will be made of this
schema is that of elucidating the definition that follows.)

Now the definition: '

A ‘TJ-derivation up to 3’ (where 8 is a numerical term) is a derivation in the
ordinary sense, but with the following modifications of that concept: The
predicate variable & occurs in the derivation (which means, of course, that it
may occur in certain derivation-sequent formulae by virtue of the defini-
tion of a formula); the endsequent of the derivation runs

é(0) » £(3);

where, in addition to basic sequents, sequents of the following form, called
‘TJ-upper sequents’, are admitted as uppermost sequents:

t>0,Ve[r <t > &()] - &),

here t stands for an arbitrary term and ¢ for an arbitrary bound variable.

It ought to be fairly clear that this concept really reflects that which is in-
formally understood by a proof for the validity of transfinite induction up
to the number designated by 3. The following connection exists, in particular,
with the stated ‘schema for TJ-inference figures’: If in addition to the kinds of
inference figures admissible in a ‘derivation in the ordinary sense’ a ‘TJ-
inference figure’, according to the above schema, were to occur, and if there
were also available a ‘TJ-derivation up to 8°, then this TJ-derivation could be
‘substituted’ for the occurrence of the TJ-inference figure in such a way that
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altogether a correct ‘derivation in the ordinary sense’ would result, now with-
out a TJ-inference figure.

This substitution would simply have to be carried out in such a way that
all expressions of the form &(v) in the ‘TJ-derivation up to 8’ are replaced
by F(b) (here b designates any arbitrary expression standing in the argu-
ment place of &), that the sequences I' and © of formulae are adjoined to
the TJ-upper sequents, and that I and @ are then ‘carried forward’, so that
they finally also occur in the endsequent of the TJ-derivation; that sequent
has then already the form §(0), I' — ©, F(8), and we can adjoin to it that part
of the original derivation which followed the TJ-inference figure; finally, we
must place above the TJ-sequents that part of the derivation which occurred
above the upper sequent of the TJ-inference figure, with every occurrence of
the free variable a replaced by the term t occurring in the appropriate 7J-up-
per sequent. (Possible conflicts in the labelling of variables can be avoided
by trivial redesignations.)

This consideration shows at the same time that it is appropriate to regard
a ‘TJ-derivation’ in our sense as a derivation still belonging to elementary
number theory, in spite of the fact that it contains a ‘predicate variable’
(‘formula variable’, ‘set variable’) &: This variable occurs only as a free
variable, and the TJ/-derivation becomes an elementary number-theoretical
derivation in the ordinary sense as soon as it is specialized to a definite
‘number-theoretical’ predicate .

As far as the extension of ‘elementary number theory’ by the inclusion of
transfinite ordinal numbers, together with the specification of a designatory
schema for them, is concerned, incidentally, we note that it is basically of
the same kind as the inclusion of negative numbers, fractions, etc., and that
it introduces in no way elements incompatible with elementary number
theory?$.

§ 2. Characterization of TJ-derivations

I shall now state a procedure for the systematic construction of TJ-in-
ference figures up to wy = 0,0, = 1, w, = ®, w3 = ©®; in general up to
,,, where 1 designates an arbitrary natural number.

The letters a, B, y, & will be used as free variables, the letters &, 1 as bound
variables.

I shall not list all inference figures and basic sequents individually, but
enough of them to enable the reader to supply those missing; all inference
figures and basic sequents that are needed below, as will as those explicitly
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written down, will be labelled in the following way by means of special
symbols according to the individual schemata to which they belong:

L: Basic logical sequent; M: Basic mathematical sequent; G: Basic equality
sequent; J: TJ-upper sequent; S: One or several structural inference figures;
CJ: CJ-inference figure. For the operational inference figures I shall use
the combinations of symbols & —1I, &—E, v—1I, v—E, etc., where I-(‘intro-
duction’ of the connective) designates that kind of inference figure in whose
schema the connective occurs in a succedent formula of the lower sequent,
whereas E (‘elimination’ of the connective, in the sense of the ‘natural’ suc-
cession of inferences) denotes that kind of inference figure in whose schema
the connective occurs in an antecedent formula of the lower sequent. (It
should be noted that for the m>-elimination, we now use the second kind of
the basic logical sequents.)

The ‘truth’ of the occurring basic mathematical sequents is, as said earlier,
assumed as known.

2.1. Characterization of a TJ-derivation up to 0:

&(0) - &(0) L.

2.2. Transformation of a TJ-derivation up to w, into a TJ-derivation up to
0ys1 = 0. (Here t designated a natural number or 0.)

Suppose that a TJ-derivation up to w, is given.

We may assume, without loss of generality, that this derivation does not
contain the variables introduced below. (This can be achieved by a trivial
relabelling, in any case.)

We first replace the symbol & in the entire derivation as follows: &() is
in each case turned into VE[E*(£) > &*(£+ w®)), where b in each case des-
ignates the expression standing in the argument place of &, and where
&*(i) is an abbreviation for Va[n < v > &(n)), with v arbitrary.

It is easily seen that all inference figures, all basic logical sequents and all
basic equality sequents remain correct, also of course the basic mathematical
sequents, which remain entirely unaffected by this modification.

TJ-upper sequents, however, are turned into sequents of another kind and
the endsequent also undergoes an essential change. In those places the deri-
vation must be augmented in the way now to be described.

2.21. After the replacement, the endsequent obviously runs:

VELE*(E) = *(E+0")] » VE[E%(Z) > E*(E+w™)).

We adjoin the following new conclusion:



RESTRICTED TRANSFINITE INDUCTION IN ELEMENTARY NUMBER THEORY

294

(o) < (02

s Aﬂ.—.—-ev « T+¥%p W T+¥g QAOV

STAT

(o) < (0)2

S‘W*D
A:S

0+0),2 « (0)2

T+u8p W T+%m

Vs

s

A:83+Ov*% - AOv*%

S‘g-A"
T [

I-A‘I-=

0,2 < (02
®2« 052 9(0)2

s

$ 1@ +2).2 = ().212A < LU +2,2 < (9,21 2A

uawdejdas oy Jaye
UOIIBALISP PO 9Y) JO juanbaspus ay],

O+2)? < (2)212A < g <2 ©=0 »n=0<0S0»
D nw
A e [(1+2)2 = (2124 <
e (1+%),2 < (0,2
W2 «1+0 5L ()2
SWo— (@9 4=140A054 L=1+0ADS L« J+0 S U

TA'S

W)g « 4 =1+00),2

SO T Gr0p < @9

o oSt ‘(n),.2
(on0qe sB) F-A T

SIAS TN

(1+0)2 « [(W2 = 1+2 > U] Up

[()p = 142 > U] bp « (), 2

S (G+0)g <« [(Wg = 140> U]bp 0 < 1+0
r

S FPATS gy 140> g (.2
V@2 -n5d ()2 nSdeitr>g
TAQg—nsSgd@ocnsy W
T
0< 1+P «
W



§ 2, CHARACTERIZATION OF TJ-DERIVATIONS 295

We have therefore obtained the desired endsequent of the new derivation.
2.22. After the replacement, one of the TJ-upper sequents obviously runs:

>0,z [1 < v 2 VE[E(E) = £ (¢ + )] - VE[ET(E) @ £* ¢+ )]

This sequent is derived as follows:

Suppose that € is an abbreviation for its second antecedent formula. The
meanings of 8 and t (both of which designate certain zerms) will be explained
later.

L,V-E
C.8<t - VEHEXE) = £ e+ 0] L V_E. S
€ 8<r1,8(y+o* a) - E(y+o° a+a) G’MS"
€8 <t,&*y+a*a) > EXy+° - (x+1)) s’ ’

< 0,6C8<t, &y+o o) > E*(r+0* - (a+1)) cJ. S
t<w,€8<1, Y+ 0)> EXy+o* 1) ’
t<w@38<r ) - &*(y+®t)
t<w,€38<r1, %), S v+t > E&P)

G, M,S
L,V-E,S.

The symbols 8 and t are given the following meanings: 3 is an abbreviation
for fu,(B,y, ), t for fu,(B, v, t); fu; and fu, have the meanings stated in
§ 1; accordingly, the following basic mathematical sequents are valid:

1>0,f<yto" > Byt taswellast >0, <yt 28 <1

andt >0, <y+0" >t <o

From these and the earlier derived sequents we obtain the following by
three cuts and further structural inference figures:

t>0,C &*(%), B <y+a" — &B)
further: t > 0, €, {*(y) - V¢[€ < y+ o o &(8)]

o, V—I

By cutting this sequent with the lower sequent of the following derivation:

M J
-7+0°>0  y+o">0, W[ < y+o0" 2 E¢)] - S+
VE[E < y+of D EE)] > E(y+0)

we obtain, on the one hand, the sequent:

t>0,C 8*(y) - fy+od)

G, S.
further: t > 0, €, £*(y), 6 = y+ 0" - &(5)




296 RESTRICTED TRANSFINITE INDUCTION IN ELEMENTARY NUMBER THEORY

On the other hand, by means of L, V-E, and S, the above sequent — whose
derivation must therefore be written down a second time — yields:

t> 0,6, &*y), 6 < y+o° —» &)
From this, together with the previous sequent, we obtain by v—F and S:

t>0,C 8%7),6 =y+0°vé < y+o' - &)

further:

M,v-I,v-E, S l

S+ >0 =9+0°Vvdé < y+of
t>0,C &*Y),d = y+0° > &)
t>0,6, 8*y) - &+
1>0,8 - V&) o £*(¢E+0)]

o-I, V-1
o>-1, V-I.

This completes the description of the transformation of a TJ-derivation
up to w, into a TJ-derivation up to w4, -

It should be noted, moreover, that our TJ-derivations are essentially ‘in-

tuitionist’ LJ-derivations, i.e., LK-derivations with at most one succedent
formula in each sequent. The formal exceptions occurring in the case of
basic mathematical sequents could easily be eliminated by a different for-
mulation of these concepts.
2.3. For the sake of comparison it should also be pointed out how a TJ-
derivation up to g, can be obtained by including techniques from analysis.
(In this case &, would, of course, also have to be included in the domain of
numbers.)

(In the following, & and { stand for bound, and v and u for free numerical
variables.)

We write:

®(v) for VE[E*(E) o E*(¢E+w”)];
Se for VI[{{>0&VI9 <> &V} 2E0]

(compact formulation of the TJ-upper sequents).
From the section of the derivation given at 2.21, we easily obtain a
derivation for

v < o, $(0) o §(w,), Js - £(0) o &(w,4,)-

From the section of the derivation given at 2.22, we furthermore obtain
a derivation for 3y — Sg.
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Both sequents together, with the help of the basic sequent
Js = [6(0) = G(w,)], Js ~ B(0) > G(w,),
and structural inference figures, as well as a o1, yield:
v < 0,36 2 [6(0) = G(w,)] - Je = [6(0) = E(y+1)].

We now leave the elementary number-theoretical formalism by allowing
bound predicate variables. Thus we obtain, by V-E and V-I:

v < 0, ¥6{J; = [£(0) = &(w,)]} » VE{Is = [6(0)  E(wy+)]}
and now by a CJ-inference figure:
b < @, V&S, 2 [£(0) 2 EO)]} » VES: = [6(0) = &(0,)]}
and from this easily:
B < @ V&S, = [60) = &,)])-
From this we obtain

Ses 6(0) > V[ < & = &(0)]

without essential difficulties and, finally, §, — &(0) = &'(g,), i.e., the validity
of transfinite induction up to &;.

§ 3. Demonstrations of nonprovability

We shall now prove that transfinite induction up to certain ordinal num-
bers is not provable in certain subsystems of elementary number theory;
in particular, that transfinite induction up to the number g, is not provable
in the full system of elementary number theory.

The procedure resembles the consistency proof. This is natural since in
both cases we are in fact dealing with the demonstration of a nonprovability,
and since the statement of the nonprovability of transfinite induction up to
&, in elementary number theory entails the consistency of that theory; this is
so since anything is provable from a contradiction, hence also transfinite
induction. I shall, therefore, rely considerably on my consistency proof
(New).

3.1. The general schema for the demonstration of the nonprovability of trans-
finite induction is this:

We define ‘reduction steps’ for arbitrary TJ-derivations whose terminal
number is not 0. (By the ‘terminal number’ of a TJ-derivation we mean the
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number designated by the term 3.) A reduction step transforms a 7J-deri-
vation into another TJ-derivation. In this process the terminal number of
the derivation is, in general, preserved. But if the derivation is ‘critical’
(what this means will be explained later), then the terminal number dimin-
ishes; in this case the new terminal number can moreover be specified ar-
bitrarily (smaller than the old number); the reduction step can always be
carried out in such a way that the newly specified terminal number results.
(Apart from this dependence on the specification of a a new terminal num-
ber, the reduction step can in each case be stated unequivocably.)

We furthermore correlate an ordinal number with each TJ-derivation, to-
gether with a rule for its calculation; we call it — in contrast with the terminal
number — the ‘value’ of the derivation. It is then proved that with each re-
duction step the value diminishes. As values only transfinite numbers below
&0 will be used.

Once these concepts have been defined and the stated assertions proved,
the following fundamental theorem follows:

The terminal number of a TJ-derivation cannot be larger than its value.

In order to see this we apply a transfinite induction on the value of the
derivation:

If the value is 0, then the assertion is obviously true. (Since there is no
smaller value, it is evident that no reduction step is applicable to such a
derivation, i.e., it must have the terminal number 0.) Now suppose that the as-
sertion has been recognized as true for all derivations whose value is smaller
than an ordinal number a«. (Where « is assumed to be larger than 0.) Sup-
pose that an arbitrary derivation with the value o is given. If its terminal
number is 0, then the assertion holds for that derivation. If this is not the
case, and if the derivation is not critical, then a reduction step may be car-
ried out which reduces a derivation to a derivation with the same terminal
number and a smaller value. The assertion holds for the reduced derivation;
hence also for the former derivation. If the derivation is critical, and if its
terminal number were larger than its value, contrary to assumption, then
the value could be taken as its new terminal number and the associated
reduction step could be carried out: The result would be a derivation of
smaller value, so that its value is therefore once again smaller than its ter-
minal number, contrary to the induction hypothesis.

From this theorem the desired nonprovability theorems can be deduced
immediately.

3.2. This deduction will now be carried out.
To begin with, the formalism of § 1 must be modified in several respects:
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First, the connective = will no longer be used; this does not, of course,
represent a restriction, since U = B can be replaced by its equivalent
(— ) v B. (If this is done, the >-inference figures and the basic m-sequents
become derivable from the inference figures for v and —.) The concept of the
‘TJ-upper sequents’ must be modified correspondingly at the same time;
these therefore now have the form:

t>0,Vi[(—z < v) v &@F)] - E(v).

Second, we now admit further inference figures according to the following
schemata (‘substitutions of terms’):

Fn%(g),rz-*@ or F"’@u%@),@z
Fl,%(t),rz—’@ F"’@l,%(t),gz

where 8 and t may be replaced by terms without free variables, as long as
they designate the same number. (It is easily seen that these inference figures
could be replaced by applications of basic equality sequents and basic math-
ematical sequents of the form — 3 = £, and are thus dispensable in princi-
ple, but convenient for the discussion that follows.)

Third, the concept of the 7J-derivation is finally modified as follows:
The endsequent of a 7J-derivation shall now have the form:

E(0) - £(38)), £(8,), . . -, £(5,),

the 8’s must be numerical terms (v a natural number); as ‘terminal number’
we taken the smallest of the ordinal numbers represented by 3’s,

The old form of the endsequent of a 7J-derivation is a special case of the
new form; therefore, all nonprovability theorems that are proved for the
new form also hold for the old form. We now develop one by one the defi-
nitions and proofs required for the demonstration of the nonprovability
(according to 3.1).

3.3. Definition of the reduction steps for TJ-derivations.
3.31. Suppose that a TJ-derivation is given and that its endsequent is

&(0) > EGy), . . ., £(3).

Suppose that none of the numerical terms 3 are ‘0.

The definition of a reduction step will, in essence, be taken over from
New, § 3. Let us therefore first examine the essential differences between
our present concept of a derivation and its counterpart in New:

The numerical terms now extend up to &, (exclusively); in New they range
only over the natural numbers. Functions are now admitted in arbitrary
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number; in New only the successor function was admitted. The predicate
symbols are supplemented by the separate symbol &, the basic sequents
by the basic equality sequents, the inference figures by the ‘substitutions of
terms’; also noted must be the somewhat modified version of the CJ-in-
ference figures. Finally the TJ-upper sequents are introduced, and so is the
special form of the endsequent.

It will turn out that none of this necessitates any radical changes vis-a-vis
the procedure employed in New, apart from the entirely new addition of
critical reduction steps.

3.32. The reduction step begins with the same preparatory step as in New,
3.2: the replacement of ‘redundant’ free variables by 1.

The ‘ending’ of the given derivation is defined somewhat differently from
New, 3.2, as follows:

The ending includes all those derivational sequents which are encountered
if we trace each individual path from the endsequent upwards and stop as
soon as we reach the line of inference of an operational or CJ-inference
figure.

The ending can therefore contain only structural inference figures and
substitutions of terms and, after the preparatory step, no free variables. The
uppermost sequents of the ending may be lower sequents of operational or
CJ-inference figures as well as basic sequents of any one of these three kinds
and TJ-upper sequents.

We now add to the preparatory step an additional step made necessary by
the admission of function symbols:

All terms occurring in the ending are to be replaced by the numerical terms
which result from the ‘evaluation’ of the occurring function symbols. (The
function symbols occurring in the numerical terms themselves are, of course,
retained.)

This replacement obviously turns all structural inference figures into cor-
rect inference figures of the same kind, as well as all basic sequents and
TJ-upper sequents into other correct sequents of the same kind.

In the ‘substitutions of terms’ upper and lower sequents become identical
with one another; these inference figures are deleted.

Each basic equality sequent either assumes the form

8 =38 %) > F@E or 3=t F) - F),

where 8 and t are mutually distinct numerical terms. The first form is in
each case replaced by
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F(3) — F(3) (basic logical sequent)
3 = 3, (8) - F(8) (thinning),

the second one by

g=1t—> (basic mathematical sequent)
8 = t, (3) » F(t) (thinnings and interchange).

After this, basic equality sequents no longer occur in the ending.

Now, however, we must still amend those places of the derivation in
which the uppermost sequent of the ending is the lower sequent of an in-
ference figure. Here the evaluation of terms in general destroys the correct-
ness of the inference figure, since the replacement is carried out only in the
lower sequent. In such cases the change-over from the original lower sequent
to the new form resulting from the evaluation of terms must be brought about
by a number of ‘substitutions of terms’ according to the above schemata (to
be inserted in the derivation). (Inference figures of this kind are therefore
once again included in the ending. Their order is easily unambiguously
determined.)

Finally, we require that in the case of a CJ-inference figure the term des-
ignated by t in the schema of that figure must be retained in its evaluated
form in the lower sequent of the CJ-inference figure. This clearly leaves the
CJ-inference figure correct.

This completes the ‘first preparatory step’.

3.33. We continue as in New:

If an uppermost sequent of the ending is the lower sequent of a CJ-in-
ference figure, then a CJ-reduction is carried out. (In this case the entire re-
duction step has then been completed.)

Let us therefore consider such a CJ-inference figure (in order to make
our choice unequivocable, we might select the figure standing on the ex-
treme right). It has the form

a< o Fa), > 0,Fa+l)
t < 0, F0), I - 0, F{)

>

where t is a numerical term by virtue of the preparatory step. Of this term
it can be decided whether the number designated by it is smaller than  or
not. If t < w is not true, we simply form

t<w- (basic mathematical sequent)
t <, F0), T - 0, () (thinnings and interchanges).
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The derivation continues downwards as before; whatever had occurred
above it is omitted; the reduction step has then been completed.

If t < w is true, we replace the CJ-inference figure by structural infer-
ence figures as in New, 3.3, and above each figure we furthermore write
(where m equals 0, 1, 1 +1, 1+1+1, etc.):

(Basic mathematical sequent)

sm<o m<ogm),I-0o,Fm+l)
F(m), I - 6, F(m+1)

(cut),

and below it:
3(0), I - 6, F(1)
t < o, F0), I - 6, F(t)

3.34. If the ending is nowhere bounded above by a CJ-inference figure,
then the actual reduction step is preceded by a second preparatory step as
in New, 3.4.

Here we can once again begin by introducing the concepts ‘clustered’
and ‘cluster of formulae’. In the ‘substitutions of terms’, the formulae
&F(8) and F(t) are considered to be clustered, so are the formulae of I'y,
I',, etc., occurring in the same places in the upper and lower sequents (as
usual).

Now the formulae of a cluster therefore need not be entirely identical, but
may differ formally in the values of their terms. The ‘cut associated with a
cluster’ need now no longer exist in all cases, since the endsequent is not
empty.

The second preparatory step is carried out precisely as in New, 3.42;
it must be observed, however, that in the elimination of thinnings the
omission of sequent formulae could eventually also affect the endsequent.
If this should happen, we require that the original form of the endsequent
is restored by carrying out thinnings at the end of the derivation. For the
elimination of the basic logical sequents it is essential that the endsequent is
not a basic logical sequent and that it is not derivable from such sequents by
thinnings; this requirement is met, since the terminal number is not 0.

For the ending the following therefore holds: the only inference figures
which it contains are ‘substitutions of terms’ and structural inference figures,
with thinnings at most immediately above the endsequent. It contains no
free variables. Its uppermost sequents are lower sequents of operational in-
ference figures or basic mathematical sequents or TJ-upper sequents.

3.35. If the second preparatory step produces in the ending a ‘cluster of for-

(thinning).
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mulae suitable for the application of an operational reduction’ — i.e. (cf.
New, 3.43), a cluster of formulae which possesses an associated cut and whose
right and left sides contain at least one formula which is the principal for-
mula of an operational inference figure (definitions of these concepts as in
New, 3.41 and 1.32) — then an operational reduction as in New, 3.5, is carried
out.

For this purpose we adopt the concept of ‘/evel’ from New, 3.43. The sche-
ma of the reduction step is taken over without essential change; the only
additional point that needs to be observed is that the operational inference
figures may now be followed by ‘substitutions of terms’. These are simply
retained in the reduction step and any further ‘substitutions of terms’ that
may be required for the ‘evaluation’ of the terms occurring in $(1t) — or
A, or B - are adjoined, so that both cut formulae in the ‘new cut’ are really
identical with one another.

With this operational reduction, the entire reduction step has once again

been completed.
3.36. We shall now examine the question of what a derivation looks like
to which none of the described reductions is applicable. In this case, we
shall call the derivation ‘critical’ and shall state ‘critical reduction steps’ for
it.

In New it was proved (3.43) that such cases could no longer arise; but
now the former proof cannot be carried over completely. Here the essentially
newly feature is that 7J-upper sequents can also occur as uppermost sequents
of the ending and that the endsequent is not empty.

To begin with, it holds analogously to New: It is impossible for the
derivation to contain neither an operational inference figure nor a 7J-upper
sequent. For if this were the case, the endsequent £(0) - &(3,), .. ., (3,)
would have been derived from basic mathematical sequents alone without
the use of logical connectives and variables. &(t) could then be replaced
by t = 0 throughout the entire derivation; this does not change the basic
sequents, since & does not occur in basic mathematical sequents; the end-
sequent would thus become

0=0-8=0,....,8, =0.

Since, by hypothesis, none of the numerical terms 8 are ‘0’, the endsequent
would be ‘false’, whereas all uppermost sequents would be ‘true’; this is
impossible.

We can therefore be certain that at least one operational inference figure
or TJ-upper sequent occurs in our derivation. We shall now try to adapt the



304 RESTRICTED TRANSFINITE INDUCTION IN ELEMENTARY NUMBER THEORY

proof from New, 3.43, in such a way that the 7J-upper sequents are given
equal status with the lower sequents of operational inference figures, and
we shall call their succedent formula the ‘principal formula’. The concept
of a prime formula will furthermore be restricted to formulae without & (as
was done in § 1) so that the observations made at that point remain valid;
although the formula belonging to the same cluster as a principal formula may
now also have the form &(t), and is thus of degree 0, it can nevertheless not
be a ‘prime formula’.

The ‘substitutions of terms’ cause no difficulties in the process if, as stip-
ulated above, $(3) is considered as clustered with F(t).

Thus the considerations from New carry over; we must merely bear in
mind that now the endsequent is not empty. As a result of this, there may
not occur any cut which is suitable for an operational reduction; instead,
one additional case can still arise: The endsequent contains a formula belong-
ing to the same cluster as a principal formula. That formula can then only
be a succedent formula of the endsequent since, by not containing logical
connectives, a principal formula &(t) is necessarily the succedent formula of
a TJ-upper sequent and all formulae belonging to the same cluster as it are
also succedent formulae (cf. New, 3.41), provided of course that the cluster
extends up to the endsequent and therefore contains no ‘cut formulae’.
(From the same considerations it follows also that if both cut formulae of a
cut belong to the same cluster as the principal formulae standing above them,
then these principal formulae belong to operational inference figures and cer-
tainly not to TJ-upper sequents: For in the latter instance they would have
to have the form &(t), and on the ‘right-hand side’, where such a formula oc-
curs only as an antecedent formula, it could not even be a principal formula.)
3.37. Thus, a ‘critical derivation’ necessarily has the following property:

One of the succedent formulae of the endsequent belongs to the same
cluster of formulae as the succedent formula of one of the TJ-upper sequents
belonging to the ending.

If there are several such formulae, we shall agree to choose that TJ-
upper sequent with the above property which stands furthest to the right.
Suppose that its succedent formula is é”(t) We now define the ‘critical re-
duction steps’:

We first specify an arbitrary ordinal number which is smaller than the
terminal number of the derivation. Let it be designated by the numerical
term 8*.

Then we replace the mentioned 7J-upper sequent — suppose that it runs:
t >0, Vei[(— £ < r)v &(x)] = &(xr) - by the following derivational section:
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Basic mathematical sequent

*
2F < — —inference figure
—8* <t ..
thinning . -
—8* <t £(3% &%) - 6(8%)

* (3 S 2(a v—inference figure
(28" <9V EE) = () V-inference figure

Vil(—x <yv @] - &%
t>0,Ve[(—z <1)vEQF)] -~ ), €v)

thinnings.

The new formula &(3*) is ‘carried forward’ in the derivation (i.e., it is
written down as the first succedent formula of each individual sequent in the
derivational path leading from the above sequent to the endsequent). This
leaves all inference figures correct (possibly by inserting interchanges) and
the endsequent assumes the form:

£(0) > £(3*), By, . . ., &(3,).

We therefore obtain another correct TJ-derivation, in particular, a deriva-
tion with a lower terminal number, viz., the number designated by the term
8%,

This completes the definition of the reduction steps, and it meets the re-
quirements laid down at 3.1.

3.4. Now follows the correlation of ‘values’ with the TJ-derivations, as well
as the proof that with each reduction step the value of the derivation di-
minishes.

In both cases we can adopt the results from New, § 4, with minor modifi-
cations. The correlation of ordinal numbers proceeds as in New, 4.2, with
the following additions:

Each TJ-upper sequent receives the ordinal number 5 (i.e,
0®+0° +0° +©° +w°), whereas all basic sequents receive the ordinal num-
ber 1, asin New. A ‘substitution of terms’ is given the same value as a struc-
tural inference figure (i.e., no value at all).

We must now verify that in a reduction step the value of the TJ-derivation
diminishes (cf. New, 4.3).

In the ‘first preparatory step’ (3.32) the value of the derivation remains
unchanged (since ‘substitutions of terms’, thinnings and interchanges do
not ‘count’).

For the CJ-reduction (3.33) the following holds: In the simple case where
t < w is not true, the ordinal number of the (former) CJ-lower sequent after
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the reduction is 1 and was at least @ before (the same is true in the case where
t is equal to ‘0’). The main case is dealt with as in New. The adjoining of
— M < w may lead to several additions of 1 to the ordinal number for the
lower sequent obtained after the reduction; but this does not prevent it from
remaining smaller than the ordinal number of this sequent before the re-
duction.

The second preparatory step (3.34) is carried out as in New. The same
holds for the operational reduction (3.35). In both cases the same minor
modifications of the present version have obviously no influence on the cal-
culation of value.

Still to be dealt with are the critical reduction steps (3.37): In the case of
such reduction steps the place of a TJ-upper sequent with the ordinal num-
ber 5 is simply taken by a derivational section whose lowest sequent was
correlated with the ordinal number 4. Thus the value of the total derivation
is here also guaranteed to diminish.

3.5. Conclusion. Now all verifications required for the general proof schema
(3.1) have been carried out and the theorem, stated in 3.1, follows:

The terminal number of a TJ-derivation cannot be larger than its ‘value’,
as defined at 3.4,

This theorem, taken together with the relationship, stated in New, 4.4
(paragraph 2), between the degrees of the formulae occurring in a derivation
and the ordinal number, i.e., the value of the derivation, yields the following
individual results:

The terminal number of a 7J-derivation in which all formulae are at most
of degree 0, or 1, generally: v, is always smaller than w®, or w,, generally:
Wy 43

These results can obviously still be considerably sharpened; I hope to
be able to follow this up sometime in the future.

In the present context, however, the important theorem follows from the
fact that the values are always smaller than &4:

Transfinite induction up to &, and higher ordinal numbers is not provable
in elementary number theory.

On the other hand it holds (cf. § 2 and the beginning of this paper):
Transfinite induction up to any ordinal number below g, is provable in ele-
mentary number theory.

These theorems call for a number of further observations. In § 2, we proved
only the existence of 7J-derivations up to the numbers w,. Yet from a
TJ-derivation another TJ-derivation with an arbitrarily smaller terminal
number is easily obtained by replacing &£ (v) throughout by £*(b) (in the sense
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of 2.2) and by making a number of simple additions to the endsequent and
to the TJ-upper sequents. For every arbitrary terminal number below ¢,
a TJ-derivation with precisely this terminal number is therefore statable.
(Every such number is, after all, smaller than a suitable w,.)

A further remark is made necessary by the fact that the number &, and
higher ordinal numbers were not included in our domain of numbers so
that in the system stated in § 1, transfinite induction up to &, could not even
be formulated. This is unimportant since the whole proof is obviously com-
pletely independent of this limitation of the domain of numbers. Arbitrarily
many further ordinal numbers can indeed be introduced, as long as the fol-
lowing conditions are satisfied:

Precisely specified expressions (numerical terms) must be given for the
unique designation of such numbers; all functions and predicates that are
introduced must be decidably defined; finally, all basic mathematical se-
quents must be ‘true’ in the sense of these decidable definitions.

If these conditions are fulfilled, then our proof obviously remains fully
applicable. From this it follows that if restricted transfinite induction is un-
provable, according to our results, it cannot become provable by an exten-
sion of the domain of numbers as described above. It is in this sense that the
following theorem is intended:

Transfinite induction up to &, and higher ordinal numbers is not provable
in ‘elementary number theory’.

The mentioned conditions imposed on the domain of numbers — which are
not required in their full strength for the validity of our proof, incidentally —
correspond to the framework of ‘clementary number theory’. The extent to
which we can advance into the ‘second number class’ with ‘elementary
number-theoretical methods’ is difficult to anticipate. We can, without
doubt, go far beyond &,. Each ‘segment of the second number class’ ob-
tained in this way becomes a domain of objects which must, by its very na-
ture, be included in number theory or in theories logically equivalent to
it (algebra etc.). This could be documented even more distinctly by mapping
the ordinal numbers concerned onto the natural numbers®’; the predicate
< then becomes a more or less complicated predicate between the natural
numbers, etc. This makes it completely clear that for such a segment of the
second number class transfinite induction is a form of inference which, in
substance, belongs to elementary number theory. The fact that transfinite in-
duction even up to the number ¢, is no longer derivable from the remaining
number-theoretical forms of inference therefore reveals from a new angle
the incompleteness of the number-theoretical formalism, which has already
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been exposed by Godel®® from a different point of view (viz., in relation
to the nonprovability of number-theoretical theorems).

We might think that by including transfinite induction up to g, in elemen-
tary number theory as a new form of inference, the incompleteness could be
overcome. Yet an analogous incompleteness then no doubt arises in relation
to a higher transfinite induction, etc. It seems likely that our result here is only
a special case of a general affinity which exists between formally delimited
techniques of proof, their possibilities of extension and newly arising incom-
pletenesses, on the one hand, and the transfinite ordinal numbers of the sec-
ond number class, transfinite induction and the constructive progression
into the second number class on the other.



10. FUSION OF SEVERAL COMPLETE INDUCTIONS

In the following we intend to show that every mathematical proof in which
the rule of complete induction is applied several times, can be so rearranged
by means of certain simple fusions of inferences and concepts that only a
single application of complete induction occurs in it.

For this purpose it is not necessary to specify a particular kind of formali-
zation of mathematical proofs. It shall merely be presupposed that the
concept of a ‘mathematical proof’ encompasses all forms of inference of
‘predicate logic’ and it must, of course, include the rule of complete induc-
tion. No further number-theoretical results need to be presupposed except
for the admission of the primitive predicate ‘=" and its associated basic
formulae (axiom formulae) 1 = 1, as well as — (m = 1), for arbitrary
numerals 1t and tit, where 1t and m are distinct. Further mathematical con-
cepts and their associated axioms may be admitted as desired. Note that the
theorem to be proved is significant primarily for ‘elementary number theory’.
If elementary number theory is extended to ‘analysis’, then, as Dedekind
has shown, complete induction becomes reducible to other forms of in-
ference and the assertion of the theorem therefore loses its significance.

The proof runs as follows:

Let there be given a derivation (i.e., a formalized proof) with several
occurrences of formalized complete induction. Each application of complete
induction is logically equivalent to an application of the ‘induction axiom’
to a certain special proposition about the natural numbers, i.e., it can be
expressed formally in such a way that a formula of the following form is as-
serted to hold:

(D) &V [ = BE+ D1} = VY Fuly),

where g, stands for an arbitrary formula with one argument place for a
numeral designating a natural number, and the formula is thus the formal
counterpart of a proposition about natural numbers; the subscript v serves
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to distinguish the different complete inductions occurring in the derivation,
1.e., it runs through the numbers 1, 2, ..., p, where p stands for the total
number of complete inductions occurring in the derivation. ( and Y des-
ignate arbitrary bound variables. The formulae $, can of course also con-
tain free variables.)

We shall now deduce all of these p induction axiom formulae by applying
a single formalized complete induction that fuses all of these formulae.
This is done as follows: We construct the formula

b=1>F@] &b =2>F@)] &...&[b=p = F/(a)],

briefly referred to as $(a). (Here a and b designate two free variables not
yet occurring in the derivation.) By a single formal application of complete
induction we obtain the formula:

{95(1) & Ve[H(x) = D+ 1)1} = Vb H(y).

(Here it makes no difference whether complete induction is to be admitted
in the form formalized in this axiom formula or whether any other version,
possibly that of an inference figure, is chosen; by means of the latter we would
then simply derive the above formula.)

From this formula we can now derive all of the p induction axiom for-
mulae cited above along purely logical lines, i.e., without requiring another
application of complete induction. Once this has been done, we have reached
our goal. In order to prove this derivability, it should suffice to outline
the main steps of the formal argument: In order to derive the induction axiom
formula for &, from that of §, for example, we would have to begin by sub-
stituting 1 for b in the latter formula (this is formally possible by means of
successive Y-introductions and Y-eliminations in the case where no provision
has been made for direct substitution as a permissible form of inference in
the formalism). $(1), for example, yields

[M=1>5FM]&[1=2>FMD] &... &[1 =p >F,1)]

a formula which can be proved to be equivalent to ,(1) by means of pro-
positional logic alone, with the additional appeal to the truth of 1 = 1 and
the falsity of 1 = 2,...,1 = p. The same holds for $(a) and F,(a), for an
arbitrary a. The entire induction axiom formula, therefore, may be rear-
ranged in such a way, by applications of purely logical formalized forms of
inference, that eventually $; replaces every occurrence of §, as was to be
shown.
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It might seem as though all that has been achieved is that one and the
same formalized complete induction now occurs in p different places in the
derivation, with the result that there are once again p individual, although
identical, occurrences of complete induction. This observation, however,
does not touch the heart of the matter, for we could fuse these duplicate
induction inferences in a trivial way not only in thought, but also in form, so
that only a single formalized induction actually occurs. In order to accom-
plish this we would have to prefix the induction axiom formula for § with
universal quantifiers quantifying all the free variables of . We might denote
the resulting formula by 3, and the endformula of the derivation by €. This
would yield a purely logical derivation with several formulae of the form
3 as initial formulae (as well as possibly other mathematical axiom formulae
as initial formulae; this does not affect our argument); the derivation can
then be transformed in the familiar way into a (purely logical) derivation
without such initial formulae and with & o € for its endformula, (‘deduction
theorem’ or, in the calculus of sequents, a trivial observation) and this,
with the inclusion of a single derivation for &, once again yields a derivation
for the original endformula €.

Our result shows that the number of complete inductions occurring in
a number-theoretical proof is no measure of the ‘complexity’ of the proof in
the context of metamathematics; although it does have some bearing on
this point, it is not the number of inductions but their ‘degree’, i.e., the com-
plexity of the induction proposition, that counts.



NOTES

P. Hertz, Uber Axiomensysteme fiir beliebige Satzsysteme, Math. Ann. 101 (1929);
in connection with the above question cf., in particular, §§ 1 and 7. Other papers by
P. Hertz on the same subject can be found in Math. Ann. 87 (1922) and 89 (1923) and
in Ann. d. Philos. 7 (1928); in the following I shall refer to the last three papers as
H.1, H.2, H.3, and to the first paper as H.4.

¢ Cf. note 1.

CS

@

-

Our definition of a ‘proof’ (and, correspondingly, of ‘provability’) differs from that
of Hertz only with respect to Hertz’s use of the ‘syllogism’ in place of the ‘cut’. Cf.
the next §.

Hertz uses the expression (cf. H.3): ‘q wird von by, . .., P, impliziert’.

If the words ‘sentence’ (‘theorem’) and ‘proof’ are used informally as constituents of
our language they are of course intended to mean something quite different from the
purely formally introduced concepts of ‘sentence’ (‘theorem’) and ‘proof’ (and even
under an intuitive interpretation the latter concepts are still considerably narrower than
the former); the context should make it clear in each case how these concepts are
intended.

In H.3, Hertz proves the analogous theorem for his forms of inference. By virtue of
§ 3 we could appeal to Hertz’s theorem, but we shall give a new proof since the ‘normal
form’ of the ‘proof” which emerges in the process will be needed later. Hertz’s proof
leads to an ‘Aristotelian normal form’ which is unsuitable for our purposes.

Our normal proof corresponds roughly to the ‘Goclenian normal proof” in Hertz.
A corresponding analogue to the ‘Aristotelian normal proof’ could be formulated,
but for it no theorem corresponding to theorem 2 would hold, as the following example
shows:

d-—+b ab ¢

e-—>a da —~>c¢

ed ¢

where P, =d-—>b; b, =ab -+ c; Py =e —>a; P, =ed —c. It is easily seen that in
this case no proof (by means of cuts and thinnings) is possible in which each upper
sentence belongs to the p’s.

8 Cf. note 6.

©

10

1

[

Sentence systems consisting only of trivial sentences need not be excluded if an empty
axiom system is admitted.

Hertz’s ‘maximal nets’ also include the associated net sentences; our propositions
remain valid under this interpretation.

An analogous procedure for finite systems is applied by Hertz in H.1, articles 36,
42, 43.
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12 Hilbert and Ackermann, Grundziige der theoretischen Logik, Berlin, ist ed. 1928,

13

14
15

16
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<

19
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21
22

24
25

cited in the following as H.-A.

Herr P. Bernays must be considered as the effective co-author of this theorem. When
I communicated to him a proof of theorems VI and V, Herr Bernays noticed that the
latter theorem could be brought into the considerably stronger form given in theorem
IV. By making use of Bernays’s argument, I was able to choose a way of proving all of
these theorems jointly on the basis of theorem III, which is proved first.

Cf. note 12.

A. Heyting, Die formalen Regeln der intuitionistischen Logik und Mathematik,
Sitzungsber. d. Preuss. Akad. d. Wiss., phys.-math. KI1. 1930.

J. Herbrand, Sur la non-contradiction de larithmétique, J. Reine Angew. Math.,
166 (1932) (§ 2).

Cf. note 15. Heyting actually uses the additional rule: If % and B are true formulae,
then U & B is a true formula. As Bernays observed, this rule can be derived by means
of the axiom formulae and the other rules as follows: From ¥ and axiom formula
2.125 B oA follows by rules 2.233 and 2.21; from axiom formula 2.123
BoUAo:B&B:->-UA&DB follows by replacement (2.233); both together yield
B&B o A& DB; from B and 2.121 follows B & B; and the last two results taken
together therefore yield % & B.

D. Hilbert, Uber das Unendliche, Math. Annalen 95 (1926), pp. 161-190.

K. Gbdel, Uber formal unentscheidbare Sitze der Principia Mathematica und ver-
wandter Systeme I, Monatsh. Math. u. Phys. 38 (1931), pp. 173-198.

Cf. note 12.

Cf. note 15, pp. 42-65.

An important special case of the Hauptsatz has already been proved by Herbrand in a
completely different way, cf. section IV, § 2.

We take the symbols v, =, J from Russell. Russell’s symbols for ‘and’, ‘equivalent’,
‘pot’, ‘all’ viz: +, =, v, (), are already being used with different meanings in mathe-
matics. We shall therefore take Hilbert’s &, whereas Hilbert’s symbols for equivalence,
all, and not, viz.: «, (), ~, again have already different meanings. Besides, the negation
symbol represents a departure from the linear arrangement of symbols and is incon-
venient for some purposes. We shall therefore use Heyting’s symbols for equivalence
and negation, and for ‘all’ we shall use a symbol (namely Y) corresponding to 3.
Cf. note 21, p. 56.

The following special case of theorem 2.1 has already been proved by Herbrand in a
completely different way: If a formula B, in which the symbols ¥ and J occur only at
the beginning and span the whole formula (as we know, for every formula there exists
a classically equivalent formula of this kind, cf. for example H.—A., p. 63), is classically
derivable, then there is a sequent (the above midsequent) whose antecedent is empty
and each one of whose succedent formulae results from 9 by the elimination of the
V and 3 symbols (including the variables next to them) and by the replacement of the
bound object variables by free variables. Furthermore, this sequent is classically deriv-
able without the use of ¥ and J symbols, and from it we can derive — P simply by using
those of our inference figures which we have designated by \-IS, 3-IS, contraction in
the succedent and interchange in the succedent. (In addition to theorem 2.1, we would
still have to consider the case of a thinning in the succedent, but it is easy to see that
such instances can always be avoided.) Cf. also: J. Herbrand, Sur le probléme fonda-
mental de la logique mathématique, Comptes rendus de la Société des sciences et des
lettres de Varsovie, (Classe III), 24 (1931), p. 31, n.1.

Earlier proofs may be found in the writings of J. von Neumann, On Hilbert’s proof
theory, Math. Zeitschrift 26 (1927), pp. 1-46; J. Herbrand, Sur la non-contradiction
de I'arithmétique, J. Reine Angew. Math. 166 (1932), pp. 1-8.
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D. Hilbert, Die Grundlagen der Mathematik, Abh. math. Sem. Univ. Hamburg
6 (1928), pp. 65-85.

V. Glivenko, Sur quelques points de la logique de M. Brouwer, Acad. Roy. Belg.
Bull. Cl. Sciences, Se. série, 15 (1929), pp. 183-188.

Cf. note 15.

A detailed and very readable discussion of these questions is contained in D. Hilbert’s
paper cited in note 18.

In this connexion cf. also:

H. Weyl, Uber die neue Grundlagenkrise der Mathematik, Math. Zeitschrift 10 (1921),
pp. 39-79; and A. Fraenkel, Zehn Vorlesungen iiber die Grundlegung der Mengen-
lehre (or the relevant sections in Fraenkel’s textbook on set theory).

K. Gbdel, cf. note 19.

W. Ackermann, Begriindung des ‘tertium non datur’ mittels der Hilbertschen Theorie
der Widerspruchsfreiheit, Math. Ann. 93 (1925), pp. 1-36;

J. von Neumann, Zur Hilbertschen Beweistheorie, Math. Zeitschrift 26 (1927), pp.
1-46,

J. Herbrand, Sur la non-contradiction de P’arithmétique, J. Reine Angew. Math. 166
(1932), pp. 1-8;

G. Gentzen, #3 of this volume.

There already exist several such formalizations and the present one follows more or
less the established lines.

Since the concept of a ‘formula’ is used quite generally for formalized propositions,
the special case defined here should really be called a ‘number-theoretical formula’.
However, since no other ‘formulae’ occur in this paper, this modifier may be omitted.
Corresponding remarks apply to the concepts of ‘term’, ‘function symbol’ etc.

I shall not interpret such a formula as ‘valid for arbitrary substitutions of numbers’,
as is usually customary in formal logic, since free variables are used in a more general
sense in mathematical proofs; for example, cf. 4.53. Here, as in the case of bound
J-variables, we should more appropriately speak of ‘indeterminates’ instead of ‘vari-
ables’, yet, for better or worse, ‘variable’ has become the generally accepted expression.
For this we could write a single formula of the form

G (@ &) &...) &AY S B.

However, this would obscure the original structure of the mathematical proof; after all,
in the proof the proposition “if %; and %, . . . and ¥, hold, then B holds’ never occurred
explicitly, the various propositions %, %,, ... ,‘l[u occurred rather as assumptions
and the proposition B as a consequence of these assumptions.

In #3, I am using the word ‘sequent’ in a more general sense than is necessary in the
present context. The logical formalism developed here corresponds essentially to the
‘NK-calculus’ of the ‘Investigations’. The ‘LK-calculus’ is also suitable for the con-
sistency proof. In fact, the proof then becomes even simpler in parts, although less
‘natural’,

For ‘propositional logic’ (&, v, o, —) cf. H.—A., p. 33; for ‘predicate logic’ (V, 3
included) cf. K. Gédel, note 19. The formalizations of the forms of inference used
there can easily be shown to be equivalent with the formalization which I have chosen.
(Cf. the proofs of equivalence in section V of my ‘Investigations into logical deduc-
tion’.)

Cf. W. Ackermann, Zum Hilbertschen Aufbau der recllen Zahlen, Math. Ann. 99
(1928), pp. 118-133.

The ‘Peano axioms’ for the natural numbers are the result of such efforts (for example,
cf. E. Landau, Grundlagen der Analysis, 1930). These axioms also contain complete
induction, which I have included in the forms of inference. There is no fundamental
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difference between forms of inference and axioms, since logical forms of inference can
also be formulated as ‘logical axioms’ such as ¥ & B — U for the &-climination, etc.
A proof for the ‘redundancy of the ¢ can be found in the book: Hilbert-Bernays,
Grundlagen der Mathematik, I, Springer, 1st ed. 1934, pp. 422-457.

Cf. the papers by Hilbert and Weyl cited in notes 30 and 31.

Cf. D. Hilbert, Uber das Unendliche, cited in note 18.

Cf. A. Heyting, cited in note 15.

K. Gdadel, Zur intuitionistischen Arithmetik und Zahlentheorie, Ergebnisse eines math.
Koll., Heft 4 (1933), pp. 34-38. — The result mentioned above was also discovered
somewhat later by P. Bernays and myself independently of G&del. Gddel also replaces
A>B by — @A & — B), this is unnecessary in my system of rules of inference since
I am not using propositional variables.

For example, cf. P. Bachmann, Die Elemente der Zahlentheorie, 111, 10.

I could here also use any other false minimal formula.

Footnote added during the correction of the galley proof: Articles 14.1 to 16.11 were
inserted in February 1936 in place of an earlier text. Ed.

Readers acquainted with set theory should note: The system of ‘ordinal numbers’
here used is well-ordered by the <:-relation, and the numbers with the characteristics
0, 1, 2, 3, 4, 5, etc. correspond, in that order, to the transfinite ordinal numbers
w4120+ = gpt@;20T0 =@ - @ 200 = ge; 20°) = @(a®); 2Ae(@)] = glo>™)];
etc.; the entire system corresponds to the ‘first e-number’. (In order to prove this the
reader need merely consider the fact that the transition from the numbers with the
characteristic p to the numbers with the characteristic p+1 described above correspond
to the definition rule of the power of 2, and then apply the rules of transfinite arithmetic.)
The ‘theorem of transfinite induction’ asserts nothing but the validity of transfinite
induction for this segment of the second number class. The disputable aspects of
general set theory do not, of course, enter into the consistency proof, since the corre-
sponding concepts and theorems are here developed quite independently in a more
elementary form than in set theory, where they are used in a much greater generality.
— Similar connections between mathematical proofs or theorems and the theory of
well-ordering, especially of the numbers of the second number class, are established
in a paper by A. Church, A proof of freedom from contradiction, Proc. Nat. Acad.
Sci. U.S.A. 21 (1935), pp. 275-281; and: E. Zermelo, Grundlagen einer allgemeinen
Theorie der mathematischen Satzsysteme I, Fund. Math. 25 (1935), pp. 136-146.
Also cf. K. Gbdel, Uber Vollstindigkeit und Widerspruchsfreiheit, Ergebnisse eines
math. Koll., Heft 3 (1932), pp. 12-13.

Cf. P. Finsler, Formale Beweise und die Entscheidbarkeit, Math. Zeitschrift 25 (1926),
pp. 676—682, and the paper by K. Gédel cited in note 19.

Cf. the paper by P. Finsler cited in note 52.

For example, cf.: L. E. J. Brouwer, Intuitionistische Betrachtungen iiber den Formalis-
mus, Sitzungsber. d. Preuss. Akad. d. Wiss., phys.-math. KI1. (1928), pp. 48-52; and
A. Heyting, Mathematische Grundlagenforschung — Intuitionismus — Beweistheorie,
Erg. Math. Grenzgeb. 3 (1935), No. 4.

Cf., e.g.: Hilbert-Ackermann, cited in note 12;

R. Carnap, Abriss der Logistik;

H. Behmann, Mathematik und Logik.

H.—A., pp. 29-31.

H.-A. call it the ‘restricted predicate calculus’.

H.-A_, p. 65.

Cf. note 55.

Carnap, Abriss der Logistik, p. 21. - I am using the expressions ‘Stufe’ ((translated as
‘type’ in keeping with modern English usage, ed.)) and ‘Typ’ in the same sense as
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Carnap and Behmann (in using ‘Stufe’ I am following Frege).

8L Cf. B. Russell, Introduction to Mathematical Philosophy.

82 H.-A., p. 93.

& Cf. K. Godel, Uber formal unentscheidbare Sitze der Principia Mathematica und
verwandter Systeme I, cited in footnote 19, especially pp. 176-178, and R. Carnap,
Logische Syntax der Sprache, Vienna, 1934, chapter 1I1.

8 Carnap, Abriss der Logistik, article 13.

8 Cf. the paper cited in note 63, p. 176.

8 Cf. p. 11 (H.-A.).

% Mathematische Annalen 112.

88 As far as number theory is concerned, a detailed discussion of these points can be
found in section III of 744 of the present volume — Cf. also § 3 of #7.

8 A. Heyting, Mathematische Grundlagenforschung — Intuitionismus — Beweistheorie.
Erg. Math. Grenzgeb. 3 (1935), No. 4.

70 G. Gentzen, #4 of the present volume. ~ It should be noted that in contrast with the
rigour of proof found in the rest of the paper, section IV turned out to be rather sketchy
due to a lack of space and time. A new version of the proof, together with a detailed
exposition of the basic ideas involved, is presented in #8 of the present volume.

71 K. Gddel, cited in note 19.

2 Cf. note 70. I had to keep the presentation deliberately short, and believe that a
detailed discussion of this point, which constitutes the crucial idea of the whole argu-
ment, would enhance the clarity of the exposition of the proof; I am hoping to be able,
at some point, to publish such a discussion covering the case of the consistency proof
for analysis at the same time.

78 A. Church, An unsolvable problem of elementary number theory. Amer. J. Math.
58 (1936), pp. 345-363.

A. Church, A note on the Entscheidungsproblem, J. Symb. Logic 1 (1936), pp. 4041.
A. Church, Correction to a note on the Entscheidungsproblem, J. Symb. Logic 1
(1936), pp. 101-102.

Cf. also: A. M. Turing, On computable numbers, with an application to the Ent-
scheidungsproblem, Proc. London Math. Soc. 2, 42 (1937), pp. 230-265.

% W. Ackermann, Die Widerspruchsfreiheit der allgemeinen Mengenlehre, Math. Ann.
114 (1937), pp. 305-315.

% Th. Skolem, Einige Bemerkungen zur axiomatischen Begriindung der Mengenlehre,
Proc. 5th scand. math. congr. (1922), pp. 217-232.

Th. Skolem, Uber einige Grundlagenfragen der Mathematik, Skr. Norske Vid.-Akad.
Oslo, I, mat.-nat. Kl., 4 (1929).

% Th. Skolem, Uber die Unmoglichkeit einer vollstindigen Charakterisierung der
Zahlenreihe mittels eines endlichen Axiomensystems, Norsk. mat. forenings skr.,
Ser. I, articles 1-22 (1933), pp. 73-82.

Th. Skolem, Uber die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder
abzihlbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen, Fund. Math.
23 (1934), pp. 150-161.

" Cf. H. Poincaré, Wissenschaft und Hypothese, German Edition, note by F. Lindemann,
D 246 of the first and second editions.

78 Cf. H. Weyl, cited in note 31.

* Cf. note 73.

% .. E. J. Brouwer, Beweis, dass jede volle Funktion gleichmissig stetig ist, Proc. Akad.
Wet. Amsterdam 27 (1924), pp. 189-193 and pp. 644-646.

8 Cf. D. Hilbert, cited in note 18.

82 Cf. J. Hjelmslev, Die natiirliche Geometrie, Hamb. Math. Einzelschriften 1 (1923);
also: Abhandl. Math. Sem. Hamburg 2 (1923), pp. 1-36.
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8 Tn the paper cited in note 69, p. 68.

8¢ H, Weyl, Die Stufen des Unendlichen, Jena 1931, p. 17.

8 Also cf. the Preface to the second edition of part I of van der Waerden’s ‘Moderne
Algebra’.

% @G. Gentzen, #3. In Gentzen #4 of the present volume, a formalism was introduced
in section IV that differs somewhat from the formalism developed in section II. It was
specifically designed for the proof in question and has no general significance.

87 It should be mentioned, incidentally, that all basic logical sequents are also derivable
in the new system and I therefore do not really have to admit such sequents any longer.
Their retention has of course certain formal advantages.

8 The proof of equivalence is to a large extent already given by the proof for the equiv-
alence of the calculi NK and LK carried out in section V of my dissertation.

8% In the earlier paper I have proved more generally the ‘reducibility’ of the endsequent of
arbitrary derivations. Here I shall confine myself to consistency; this makes certain
simplifications possible.

90 The same reasoning, incidentally, underlies the proof of the ‘Hauptsatz’ of my disserta-
tion.

1 Cf, G. Hessenberg, Grundbegriffe der Mengenlehre, Sonderdruck a. d. Abh. d.
Friesschen Schule, N.F. Vol. I, Book 4, pp. 479-706, Gottingen 1906.

22 X. Godel, cited in note 19.

%8 Cf. especially 744 article 16.2 of this volume.

% Cf. Hilbert-Bernays, Grundlagen der Mathematik, Vol. II, § 5 and 3c.

% Such calculation procedures for the above functions, even for general powers, can
easily .be taken from §§ 78 and 79 of Hessenburg’s Grundbegriffe der Mengenlehre
cited in note 91.

% Cf. #4 of the present volume, article 17.2.

97 This has been done, for example, for the numbers below ¢, in Hilbert-Bernays, Grund-
lagen der Mathematik, Vol. II, §§ 5 and 3c.

%8 In the paper cited in note 93.
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— and the empty endsequent 261
—and Godel's theorem 197, 229, 232,
233, 236, 238-240, 284, 287
— and non-denumerability 247
— and the axiom of infinity 222
- and the statability of a reduction rule
11, 177, 211, 213
- of analysis 12, 15, 16, 136, 227 seq.,
232,236
— of arithmetic 8, 66, 67, 69, 112, 136, 197
— of elementary number theory 4, 132,
136, 228, 287
— of geometries 136
— of intuitionist arithmetic 67
— of predicate logic 14, 103, 214
— of propositional logic 214
— of ramified analysis 14
- of set theory 136, 232, 240, 241
- of the actualist interpretation 228
— of the ramified theory of types 13
— of the simple theory of types 13, 14, 214
- proof 8, 229, 239, 250

also: logical conse-

— proof and algebra 200
—proof and complete induction 8, 139,
194, 197, 198, 212, 262
— proof and existential propositions 201
— proof and G&del’s theorem (cf. G&del’s
theorem)
- proof and Hilbert’s programme (cf.
Hilbert’s programme)
— proof and indisputable forms of infer-
ence 138, 171, 193, 228
~ proof and the natural calculus 252
— proof and the statability of a reduction
rule 11, 177, 211, 213
— proof and transfinite induction 8, 231,
232, 261, 286, 297
— proof for analysis 227, 228, 236, 246,
247, 316
— proof for elementary number theory
21, 27, 252
— proofs and incompleteness 17, 240
absolute — 9, 14, 138, 228, 237
difficulties involved in — proofs 229 seq.
intuitionist objections to — theory 200, 201
sense of the results established in — proofs
200
significance of - denumerability for -
proofs 247
transferability of the — proof 198, 199
value of - proofs 200, 201
Constant symbols 70, 111
Construction rule 160, 194, 211, 244
Constructive
—analysis and natural geometry 18
— concept of a set 134
—, finitist, and intuitionist methods 18,227
—forms of inference in consistency proofs
261
Constructivism (cf. also: idealism)
— and complete induction 225
actualist mathematics and — 248, 250
fundamental principle of — 225, 235, 247
Constructivist 227, 239, 250
- and indirect existence proofs 250
— concept of 2 number 244
— interpretation and Skolem’s theorem
241
~ interpretation of analysis 243
— interpretation of infinity 224 seq., 237,
286
— objections to classical analysis 226, 227
— point of view and indisputable forms of
inference 228
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- principle of set formation 225
— proof of the theorem of transfinite
induaction 253, 261, 285, 286
- techniques and Godel’s theorem 239
- techniquesin proof theory 228, 237, 239
need for a — consistency proof for clas-
sical analysis 246
significance of the — point of view 250
Continuum 20, 243 seq., 250, 251
actualist interpretation and the — 242
Contraction 84, 256
~in the antecedent (cf. also: omission) 84
- in the succedent 84, 129
Contradiction (cf. also: empty sequent)
- in mathematics 114, 133, 138, 241, 255
derivability of a — 112
law of — 79, 86, 154
proof by — (cf. reductio (ad absurdum))
Contradictive derivation 261
reduction step on a — 264
Correctness of the rules of inference (cf.
also: informal -) 159
Correlation
- of ordinal numbers with derivations
11, 16, 187, 188, 261, 279
- of values 305
Counterexamples 7
Critical
— derivation 298, 303
- reduction step 300, 303, 304
property of a — derivation 304
Cut 2, 5, 15, 31, 32, 84, 256, 312
— and complete induction 262
— and the syllogism 32
- and the Hauptsatz 5
— associated with a cluster 267, 302
- element 31
~ formula 256
degree of a ~ 256
eliminability of the — 15, 28

Decidable
— formula in a proof 269
- functions and predicates 160, 174, 194,
199, 211, 288
- propositions 160
Decidability of the predicate calculus and
Fermat’s last theorem 239
Decision
- problem 6, 66, 69, 238, 239
- procedure 7, 69, 160, 161 seq.
~ rule 161, 198

Dedekind cut 224
Deduction (cf. also: natural ) theorem 311
Definability and the Herbrand-Gentzen
theorem 7
Definite
— function 54, 141
— number 141
- object 54, 111
- predicate 54, 141
~ proposition 53, 65, 142, 158
Definition 14, 156, 160
- of the objects of proof theory 194, 211
~ table 158
~ tables and decision rules 161
Degree
- of a CJ-inference figure 257
~of a cut 256
- of a derivation 89
~ of a formula 15, 71, 254
- of an induction proposition 311
~ of a sentence 43
level and - 276
Denumerability 29, 200, 223, 229, 241-243,
246, 247
- and algebra 223
- and Skolem’s theorem 241
significance of — for consistency proofs
247
Dependent formulae and propositions 76,
150, 152
Derivable formula in arithmetic 55, 112
Derivability and logical consequence 2, 3,
24, 33
Derivation (cf. also: proof) 55, 72, 74, 151,
179, 216, 257, 258, 287, 309
— in the ordinary sense 291
~ in tree form 73, 258
comparison of different concepts of a -
181, 260
complete induction in a — 309
comaplexity of a ~ 259, 275
contradictive — 261
critical ~ 298, 303
degree of a — 89
equivalence of -s 116
LJ--83
LK- - 83
modified concept of a — 179, 287
NJ--175
NK- - 81
order of a - 107, 108
ordinal number of a —- 11, 187-189, 279
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rank of a — 89
reduction step on a — 179 seq.
simplification of a — 11, 186, 191, 262,
263, 274, 275, 284
TJ- - 287, 291, 293
value of a — 298
Derived concept 57, 139, 144, 155-157, 160,
193
Description operator (cf. ‘the . . . such that’)
D-inference figure 73
D-formula 73
Disjunction (cf. also: V) 70, 77
Disputable forms of inference 158, 170, 197,
261
Distinction of cases (cf. also: V-E) 78, 153,
254
Dots 54
Double negation
elimination of the — 168-170
law of — 53, 55, 57
D-S-formula 73
Dual(ity) 86, 137, 138, 259

ET7
E 54
& 289
Eigenvariable 77, 84, 255
Element
cut — 31
ideal — 18, 247, 250
net - 41
sentence — 29, 30
Elementary
— formula (cf. also: minimal formula;
prime formula) 54, 71
— inference 145
~ number theory 3, 8, 68, 132, 136-138,
154, 197, 198, 223 seq., 239, 250, 287,
292, 309
— number theory and bound predicate
variables 297
— number theory and transfinite inducti-
on 292, 307
axioms of — number theory 155-157
consistency of ~ number theory 4, 8, 132,
136, 228, 240, 287
derived concepts in - number theory
155-157
formalization of — number theory 138,
139, 252
forms of inference in — number theory
148, 149

functions in — number theory 143, 156
incompleteness of — number theory 307,
308
indisputable forms of inference of -
number theory 158
predicates in — number theory 143, 156
Eliminability
- of negation 66, 67, 81
— of the cut 15
Elimination
— of double negation 81, 153, 168-170,
181, 204, 259
- of logical connectives 5, 80, 82, 148,
150, 168, 258, 259, 262, 263, 269, 293
- theorem (cf. Hauptsatz)
Empty
~ antecedent 72
— endsequent and consistency 261
—sequent 16, 72, 103, 255, 261
- succedent 72, 82, 112
nonderivability of the — sequent 16, 103
Endformula 55, 73, 151
Ending 264, 300
Endsequent 6, 257
— after the reduction step 181
- and the subformula property 6
empty — 261
ordinal number of the — 279
reducibility of the — 317
Equality 110, 111, 216, 309
axiom formulae for — 309
basic — sequent 290, 300
Equivalence 70
— between formulae and sequents 115
- of classical calculi 128 seq.
— of derivations 116, 260
- of formulae 115
— of intuitionist calculi 116 seq.
- of logical calculi 69, 115, 116, 128, 131
— of net elements 49
- of sequents 115
Examples
arithmetic axiom formulae 56, 57, 111,
112, 114, 115
axioms of elementary number theory
157
basic logical sequents 180
basic mathematical sequent 260
basic sequents 86, 257
circulus vitiosus in analysis 134
contradiction 262
degrees of formulae 254
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derivations 258, 260
forms of inference 148
formulae 54, 141, 215, 253
inference figure 257
LJ-derivation 85
LK-derivation 85
mix 89
natural deductions 74, 75
natural sum 296, 297
NJ-derivations 79, 80
ordinal numbers 187
prime formula 253
proof 144
reduction rule 176
sentence system without an independent
axiom system 40
sequent 255
subformulae 71
subformula property 88
terms 54, 141
theorem in proof theory 137
true formulae 74
true numerical propositions 114
Existence 246, 248-250
Existential
— proposition 201, 226
— quantifier (cf. also: E-symbol; J-sym-
bol) 4, 54, 70, 77
Excluded middle (cf. law of the —)
Expression 53, 54, 70, 211
Extended Hauptsatz (cf. sharpened Haupt-
satz)
Extension of a formalism 17, 114
Extremum
complexity - 262
relative — 263

False
— formula 79, 114
— sequent 254, 269
Falsity (cf. truth)
Fan theorem 8, 26
Fermat’s last theorem 161
— and provability 166
—and the decidability of the predicate
calculus 239
— and the existence of a decision rule 161
— and the reduction rule 176
actualist interpretation of — 162
finitist interpretation of — 166
Figure 70, 72
inference — 72, 73, 82, 83, 249, 289

inference — schema 77, 83, 84, 117, 125,
129, 255, 256, 290, 291
proof — 66, 72
Finite
— mathematics 158 seq.
— sentence system 39
- sets of natural numbers 142, 143
Finiteness
— of the reduction procedure 186, 191,
193
proof of — 191 seq., 195, 197
Finitist 10, 18, 169, 227, 250
— forms of inference 135, 139
— interpretation of V, &, 3, v 163-165,
169
- interpretation of >, — 167-170
— interpretation and the statability of a
reduction rule 173, 201, 206
- interpretation of complete induction 166
- interpretation of Fermat’s last theorem
166
- interpretation of number-theoretical
axioms 164
- nature of transfinite ordinal numbers
2717, 278, 285
- sense of actualist propositions 201
— sense of transfinite propositions 162
— techniques of proof 171, 193, 194, 210,
212 :
Hilbert’s ~ point of view 4, 9, 10, 22, 23,
67, 222, 237
Follows 212
Formal
- arithmetic in LK 110 seq.
- system 68, 233
Formalization
~ of elementary number theory 138, 139,
252
- of logical deductions 68
- of proofs 137, 138, 228, 258
- of propositions 69, 70, 139, 140
- of techniques of proof 139, 143
— of the forms of inference in elementary
number theory 149 seq.
- of transfinite induction 291
Formalized arithmetic 55
Forms of inference 30, 68, 75, 138, 139, 144,
228
— and axiom systems 238
~ and decision procedures 161 seq-
— and restricted transfinite induction 17,
308
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- for sequents 150, 151, 255, 256

classification of the — 144, 148 seq.

delimitation of the — in proof theory 138,
228

disputable ~ 158, 170, 197, 261

finitist'— 135

formalization of the ~ 149 seq.

indisputable — 158, 171, 193, 197, 200,
228, 229

informal completeness of the - 34

informal correctness of the — 33

intuitionist delimitation of the — 135, 163

Formula 54, 70, 140, 141, 214, 253, 289, 314

adequacy of the definition of a — 142

antecedent — 151, 254

assumption — 74-76

basic — 74, 75, 81, 116, 216

cut ~ 256

decidable — 269

degree of a — 15, 71, 254

D--173

dependent — 76

derivable - 55, 112

D-S--173

elementary — 54, 71

end~ 73

false - 79, 114

initial - 73-75

lower — 72

minimal — 142, 159

mix - 88, 207

prime - 253, 289, 304

principal - 87, 256, 304

purely logical - 66, 70

reducible — 262

S--172

side — 87

succedent ~ 151, 254

terminal symbol (connective) of a — 71,
254

transfinite — 142

true ~ 55, 56, 74, 114

upper — 72

uppermost — of a cluster 262

Formulae

- and propositions 140, 141

— and sequents 72

axiom - of arithmetic 56, 57, 111, 112,
114, 115

axiom - of intuitionist logic 56

clustered — 266, 302

cluster of ~ 267, 269, 302

equivalence of — 73, 115
formally identical S- - 72, 73
Four-colour problem 223
Fractions 142
Free
- choice sequence 245, 246
— variable 55, 141, 144, 215, 288
replacement of a — variable 57, 113
Funetion 69, 110, 156, 158, 160, 174, 194,
198, 199, 211, 245, 246, 260, 287, 288
- symbol 140, 141, 288
-s in elementary number theory 143, 156
—s in New 253
Fundamental
-~ conjecture 15
- principle of constructivism 225, 227,
235, 247
— principle of constructivism and classical
analysis 247, 250
- principle of intuitionism and the actual-
ist interpretation 235
- principle of proof theory 162
— theorem of algebra 236
Gentzen’s - principle 162

G 293
General set theory (cf. also Gentzen’s dif-
ferent use of this concept on p. 240) 3,
224 seq.
Geometry
— and infinity 224
axioms of — 68
natural — 18, 248
pure (Euclidean) — 18, 248, 250
GLC 13, 14
Godel numbers (correlation of natural
numbers) 197
Godel’s equivalence theorem 169
Godel’s theorem 4,8, 11, 16, 17, 25, 67, 138,
193, 197, 238 seq., 242, 287
- and consistency proofs 197, 229, 232,
233, 236, 238-240, 284, 287
— and constructivist techniques of proof
239
—and incompleteness 233, 238, 240, 308
— and restricted transfinite induction 16,
232, 284
— and Skolem’s theorem 242
—~ and the consistency of arithmetic 67
- and the reduction rule 213
— on completeness 240
— on decidability 239
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Goldbach’s conjecture 140, 161
— and decidability 161, 168

Hauptsatz (cf. also: sharpened Hauptsatz)
5-1, 15, 68, 69, 83, 85, 87, 88, 317
— and intuitionist propositional logic 103
— and the cut 5
— and the decision rule 69
applications of the — 103 seq.
proof of the — 88 seq., 101 seq.
proof of the — for LJ 101 seq.
proof of the — for LK 88 seq.
Herbrand theorem 6, 313
Herbrand-Gentzen theorem (cf. also: sharp-
ened Hauptsatz) 7, 313
Hilbert’s programme 3, 4, 8, 18, 135, 214,
222, 227, 236, 238
— and philosophy 237

177
1A 83
Ideal
— element 18, 247, 250
— point 247, 248, 250
— proposition 247
intuitionist concepts as — elements 250
real numbers as — elements 250
sense of — propositions 247, 248
Idealization of reality 23, 248
Idealism (cf. also: constructivism ) 19
3f 95
Immediate inference (cf. also: thinning) 31
Implication (cf. also: o) 10, 70, 77
Impredicative definition 14
Incompleteness (cf. also: completeness)
— and calculation procedures 245
— and consistency proofs 17, 198 seq.
—~ and Gédel’s theorem 233, 238, 240, 308
— and restricted transfinite induction 16,17
~ and the axiomatic method 17
—~ and the reduction procedure 17
— of elementary number theory 307, 308
—~ of formal systems 7, 143, 198, 233, 307
Indefinite
-~ number (cf. term)
—~ proposition 142
Independent
-~ axiom system 2, 39
- sentence system 39
Indeterminate 314
Indirect
- existence proofs 226, 235

~ existence proofs and the antinomies of
set theory 235
— proof (cf. also: reductio (ad absurdum))
169, 250
sense of —ly proved existential proposi-
tions 201, 226
Indisputable forms of inference 158, 229
- and consistency proofs 200
~ and the constructivist point of view
228, 250
~ and the proof of finiteness 197
- and the reduction procedure 197
Induction (cf. also: complete induction;
transfinite induction)
—~ axiom 309
- proposition 145
—~ step 145
degree of an - proposition 311
Inference 69
- figure 72, 76, 82, 83, 255, 289
~ figure schema 77, 83, 84, 117, 125, 129,
255, 256, 290, 291
D- ~ figure 73
elementary — 145
immediate — (cf. also: thinning) 31
line of — 255
operational — figure 82
operational — figure schema 84, 256
predicate ~ figure 107
propositional — figure 107
rule of — 5, 151155, 159, 216
structural — figure 82, 85, 86
structural — figure schema 83, 84, 256
TJ- - figure 291
Inferences in Euclid’s proof 145 seq.
Infinite
~ domain of objects 222
-~ sentence system 29, 40
analysis and — sets of objects 142, 224
reduction rule for sequents over — do-
mains 176
Infinity 3, 223 seq., 234, 237
~ and geometry 224
~ and the antinomies of set theory 234
actualist interpretation of — 18, 224 seq.,
235, 247
axiom of — 12, 13, 214, 222, 240, 241
axiom of — and consistency proofs 222,
240
completed — 225, 230, 245
completed — and mathematical existence
248
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constructivist interpretation of - 224 seq.,
237, 286
intuitionist and finitist uses of — 11
intuitionist interpretation of — 235
levels of — 3, 223
potential — 160, 162, 195, 196
Informal
— arithmetic 55
— completeness of the forms of inference
34
— correctness of the forms of inference 33
— sense of a formula 141
Initial
— formula 73, 74, 76
- sentence 35
- sequent 83
Integer 142
Interchange 84, 129, 151, 256
— in the antecedent 84, 151
— in the succedent 84, 129
Interdependence of the logical connectives
171
Introduction of logical connectives 5, 80,
82,148,150, 168, 258, 262, 263, 269,293
Intuitionism
fundamental principle of — 225, 235
Intuitionist 3, 10, 135, 169, 227, 235, 250
— analysis 18, 244 seq.
— arithmetic 4, 52, 54
— concepts as ideal elements 250
— consistency of classical arithmetic 4
— delimitation of the forms of inference
135, 163
— interpretation of infinity 235
- logic 4-6, 53, 58, 66, 68, 167, 168
— methods in proof theory 10
— objections to consistency proofs 198,
200
— propositional logic and the decision
problem 6, 69, 103
— propositional logic and the Hauptsatz
103
— use of infinity 11
— view of the connectives > and — 167
—~view of the elimination of double
negation 168, 169
~ view of the law of the excluded middle
3, 169
consistency of — arithmetic and Gédel’s
theorem 67
consistency of — predicate logic 103
equivalence of the — calculi 116 seq.

Irrational number 243, 244
1S 83

J 293

L1293
Law
- of contradiction 79, 86, 154
— of double negation (cf. also: elimina-
tion of double negation) 53, 55, 57
— of the excluded middle 3, 6, 14, 16, 53,
68, 69, 75, 81, 82, 85, 86, 105, 154, 169,
170, 226, 259
Left
— rank of a derivation 89
— side of a cluster 267
Level
—and degree 276
- of a sequent 15, 270, 303
-s of infinity 3, 223
—s of mathematics 3, 223, 233
LHJ 69, 116
LHK 69, 116, 117
Line of inference 255
Linear
— order of proofs 231
— sentence 30
— sentence system 2, 39
LJ 69, 81, 82, 86, 105, 106, 115, 116, 123
— - derivation 83
proof of the Hauptsatz for — 101 seq.
LK4,8,13,16,69,81, 86,106, 110, 112, 115,
116, 128, 252, 314
duality of - 86, 259
proof of the Hauptsatz for — 88 seq., 106
Logic 3, 68, 314
classical — 4-6, 53, 66, 68, 103
intuitionist — 4-6, 53, 58, 66, 68, 167, 168
modal — 5-7
predicate — 53, 66, 68, 216, 309, 314
propositional — 30, 33, 216, 314
Logical
— axioms 315
— connective 140, 141, 143, 148
— consequence and derivability 2, 3, 24,33
— inferences and the antinomies 133
— symbol 54, 70, 313
basic — sequent 151,154,177,179,257,290
eliminationof — connectives 5, 80, 82, 148,
150, 168, 258, 259, 262, 263, 269, 293
equivalence of — calculi 69, 115, 116, 128,
131



INDEX OF SUBJECTS 333

formalization of — deduction 68
interdependence of the — connectives 171
introduction of — connectives 5, 80, 82,
148, 150, 168, 258, 262, 263, 269, 293

scope of a — symbol 54

Logicism 135, 237

Logistic calculus 5, 75, 82

Lower
— formula 72
- sentence 31, 32
— sequent 72, 255

L-system 4-7, 25

Mm 90
M 293
Major premiss 184
Mantissa of an ordinal number 187
Mathematical
— axiom (cf. also: axiom of elementary
number theory) 151, 287, 290
basic ~ sequent 151, 177, 257, 260, 290
Mathematics
~ over large finite domains 160
applied — 249
levels of ~ 3, 223, 233
Maximal
— complexity 262
- net 41, 312
Measure
- of complexity 11, 12, 270, 311
ordinal numbers as —s of complexity 186
Meta
- logic 238 seq.
~mathematics (cf. also: proof theory) 5,
11, 15, 18, 21, 27, 137, 238 seq.
~theorem (cf. theorem in proof theory)
Method (cf. also: axiomatic method)
- of infinite descent 155
—s of proof 238
Midsequent 6, 106, 108
properties of the derivation of the — 114
Minimal
- formula 142, 159
—term 142
Mix 88
- formula 88, 207
- sequent 207
Modal logic 5-7
Model 7, 136, 224, 241, 243

Natural
~ calculus and consistency proofs 252

- deduction 2, 4, 7, 25, 74, 75
— geometry and constructive analysis 18
— geometry and physics 248
- intuitionist derivations 75
-~ numbers 53, 136, 142, 223, 230
— numbers and Skolem’s theorem 243
—numbers and the antinomies ofset theory
133, 136
- numbers as ordinal numbers 232, 284
- proof 263
~ succession of inferences 293
~ sum of ordinal numbers 278
abandonment of the — concept of a se-
quent 255
calculus of — deduction 2, 7, 68, 81
insufficiency of the — numbers as ordinal
numbers in proof theory 232
Negation (cf. also: —) 66, 67, 70, 155
Net
— element 41
- sentence 41
maximal - 41, 312
Nest of intervals 245
New 287 seq.
functions in —~ 253, 288
NJ 68, 69, 75, 82, 115, 116,
— -derivation 75
NK 4, 68, 69, 81, 82, 116, 128, 314
— ~derivation 81
Nonconstructive mathematics 18
Nondenumerability 229
- and consistency proofs 241
Nonderivability of the law of the excluded
middle in LJ 105
Nonequality and negation 67
Nonexistence of a largest prime number 144
Nonstandard model (cf. discussion of Sko-
lem’s theorem on p. 243)
Normal form 312
- of a proof 5, 35, 69, 312
~ of complete induction 145
— theorem (cf. Hauptsatz, sharpened
Hauptsatz)
N-system 4, 5
Number
—~ theory (cf. arithmetic; elementary
— theory)
constructivist concept of a — 244
finitist interpretation of — -theoretical
axioms 164
terminal — 297, 299
Numeral 54, 141, 200, 253
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Numerical
— term 253, 262, 288, 291
— value 181
~ variable 288

Object 69
— variable 70, 111, 140, 314
Objects
- of analysis 223, 224
— of finite mathematics 158
— of proof theory 138, 194, 211, 228
infinite sets of — 142, 224

Omission (cf. also: contraction in the ante-

cedent)
— of an antecedent formula 151
Operational
— inference figure 82, 255
- inference figure schemata 84, 256
~ reduction 262 seq., 303
— rules of inference 5, 55, 57
Option (cf. choice)
Order
— of a derivation 107, 108
— of a sequent (cf. ordinal number) 15
— type 285
Ordinal number 3, 27, 107, 187, 230, 261,
287, 288, 298, 315
— of a derivation 11, 187-189, 279
— of the endsequent 279
— as measure of complexity 186
—s and TJ-derivations 298
accessible — 192, 195
characteristic of an — 187

correlation of -s with derivations 11,

16, 187, 188, 261, 279
mantissa of an — 187
natural numbers as —s 232, 284
natural sum of —s 278

transfinite — 11, 26, 187, 229, 230, 261,

277 seq., 288

Partialaussage 164
Path 73, 258
Peano axioms 53, 136, 314
Philosophy

— and Hilbert’s programme 21, 237

— and the mathematician 234
Physics 21, 227, 249, 250

- and classical analysis 18, 247

— and natural geometry 248
Potential infinity 160, 162, 195, 196
Predecessor 27, 110, 111

Predicate 69, 156, 158, 194, 198, 211, 287,
288
— in elementary number theory 143, 156
~ inference figure 107
- logic 53, 66, 68, 216, 309, 314
—s in finite mathematics 158
—symbol 111, 140, 141, 253, 288
— variable 289, 292
classical — logic 4-6, 66
consistency of — logic 14, 103, 214
decidability of the — calculus and Fer-
mat’s last theorem 239
decidable — 160, 174, 194, 199, 211, 288
decision procedure for — logic 239
decision rule for —s 160, 198
intuitionist — logic 4-6, 66
introduction of — symbols in logical cal-
culi 111
Premiss 30, 181
major — 184
Prime 140
— formula (cf. also: minimal formula)
253, 289, 304
— number 144
Principal formula 87, 256, 304
Principle of duality 137
Principia Mathematica (cf. Russell-White-
head)
Procedure (cf. calculation —; decision -)
Projective geometry 137, 247
— and ideal points 247, 250
Proof (cf. also: derivation) 31, 35, 69, 136,
138, 144, 216, 228, 309, 312
~ figure 66, 72
- of a sentence 30
- of consistency (cf. consistency —)
— of finiteness and the indisputable forms
of inference 193, 195, 197
— of the Hauptsatz 88 seq., 101 seq., 317
— of transfinite induction (cf. also: 7J-
derivation) 195, 232, 285-287
complexity of a — and complete induction
311
complexity of a — and the ordinal num-
bers 11, 261
direct — 165
formalization of —s 137, 138, 228, 258
indirect existence — 226, 235
indirect — (cf. also: reductio (ad absur-
dum)) 169, 250
methods of — 238
natural — 263
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normal form of a - 5, 35, 69, 312
purely logical - 69
simplification of a — 11, 186, 191, 262,
274, 275
well-ordering of ~s 12, 231
Proof theory 137, 138, 144, 200, 211, 222,
227, 228
constructivist techniques in — 228, 237,
239
fundamental principie of — 162
intuitionist methods in — 10
objects of — 194, 211, 228
Proposition 69
—s and formulae 140, 141
decidable ~ 159
definite ~ 142
existential — 201, 226
formalization of —s 69, 70, 139, 140
ideal — 247
indefinite — 140, 142
sentence as a — 30
transfinite - 21, 161, 162, 195
true — 54, 217
Propositional
— inference figure 107
- logic 30, 33, 216, 314
— variable 54, 70
consistency of — logic 214
Provability 32, 33, 53, 65, 312
— and Fermat’s last theorem 166
- and Gddel’s incompleteness theorem
240
— and logical consequence 2, 3, 24, 33
necessary and sufficient conditions for— 8

Quantifier (cf. also: E-symbol; J-symbol;
(¥)-symbol; Y-symbol) 4, 54, 70, 77
existential - 4, 54, 70, 77
universal — 4, 24, 54, 70, 313

Ramified
— analysis (cf. also: analysis) 12, 14, 15
— theory of types (cf. also: simple theory
of types) 13, 135, 214 seq.
consistency of the — theory of types 13
Rank of a derivation 90

left - 89
right — 90
Real

— function 243, 245, 246
— number 14, 136, 224, 241, 243-246
Realism (cf. also: actualist interpretation) 19

Recursive definition 27, 53
Reduced
— form of a sequent 11, 26, 174 (13.4)
207 seq.
- sequent 104
Reducibility
— of an endsequent 317
— of a derived sequent 285
- of a formula 262
axiom of - 13
Reductio (ad absurdum) (cf. also: indirect
proof) 79, 153, 168, 169, 181, 204, 206
Reduction
~ of derived sequents 179 seq.
— of true sequents 175
— procedure 17
— procedure and incompleteness 17
— procedure and the indisputable forms
of inference 197
—rule 11, 17, 173, 175 seq., 199, 202-213
- step 173 seq., 179, 181 seq., 189, 261,
263, 264, 272, 274, 297, 299
- step and complete induction 180, 183
critical ~ step 300, 303, 304
extension of the - procedure 17, 198
finiteness of the — procedure 186, 191, 193
operational — 262-264, 266, 268 seq., 303
statability of a — rule 173, 175 seq., 196,
204, 206
upper bound for the number of — steps
197
Reinterpretation of theorems and proofs
223
Relative extremum 263
Relativity
- of the concept of a set 241
Skolem’s theorem of — 241
Replacement
~ in a schema 76
- of bound variables 57, 152
— of free variables 57, 113
- of propositional variables 57
Restricted
— transfinite induction (cf. also: trans-
finite induction) 8, 10, 12, 15-18, 26,
27, 287 seq.
~ transfiniteinduction and incompleteness
16, 17
— transfinite
rules 17
Restriction
— on LJ-inference figures 6, 83

induction and reduction
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—s on variables 58, 77, 84, 117, 153, 216,
255
Right
— rank of a derivation 90
— side of a cluster 267
Rules

—for ¥ and J in the simple theory of

types 216

- of inference 5, 151-155, 159, 216
— of inference and the ‘chain rule’ 180 seq.
— of replacement 57, 290
completeness of the — of inference 154
correctness of the — of inference 159
operational - 5, 55, 57

Russell’s antinomy 3, 133, 162, 214

S 46
S 46, 48
S 293
Satisfaction 33
Schema
— for basic formulae of LHJ 116, 117
— for CJ-inference figures 256
— for TJ-inference figures 291, 298
inference figure — 77, 83, 84, 117, 125,
129, 255, 256, 290, 291
replacement in a — 76
Scope of a logical symbol 54
Second number class 10, 16, 26, 230, 233,
286, 307, 308
Semantic tableaux 7
Semi-net sentence 42
Sense
~ of actualist propositions 21, 195, 201,
226, 229, 247, 250
— of directly proved propositions 165
— of ideal propositions 247, 248
- of indirectly proved existential propo-
sitions 201, 226
~ of the results established in consistency
proofs 200
— of transfinite propositions 161, 162
informal - of a formula 141
Sentence 2, 29, 30, 33, 312
degree of a — 43

initial — 35
lower — 31
net — 41

semi-net — 42
tautologous ~ 30
trivial — 30
upper — 31, 32

Sentence system 1, 2, 29, 38, 39, 40
closed - 38, 39
finite — 39
infinite ~ 29, 40
linear — 2, 39
Sequent 2, 71, 82, 150, 151, 252, 254, 255,
289, 314
— calculus §
—s and formulae 72
basic equality — 290, 300
basic logical — 151, 154, 177, 179, 257,
290
basic mathematical — 151, 177, 257, 260,
290
basic — 13, 83, 123, 151, 257, 290
empty — 16, 72, 103, 255, 261
equivalence of —s 115
false — 254, 269
forms of inference for —s 150, 151, 255,
256
initial — 83
level of a — 15, 270, 303
lower — 72, 255
mix - 207
order of a — (cf. also: ordinal number) 15
reduced - 104
reduced form of a — 11, 26, 174 (13.4),
207 seq.
reducibility of an end—- 317
symmetrization of —s 259
true — 174, 175, 254, 269, 290
upper — 72, 255, 291
uppermost — 257
Set 133, 215, 216
— of all sets 224, 225
— theory (cf. also: general - theory; axio-
matic — theory) 137
—theory and Skolem’s theorem 241
actualist concept of a — 134
antinomies of — theory (cf. antinomies)
axiomatic — theory 18, 235
axiom of — formation 216
choice — 217, 222
consistency of — theory 136, 232, 240, 241
constructivist-concept of a — 134
constructivist principle of - formation
225
general — theory 3, 224 seq.
model for — theory 241
relativity of the concept of a — 241
S-formula 72
formally identical — 72
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Sharpened Hauptsatz (cf. also: Herbrand-
Gentzen theorem) 6-8, 15, 25, 106,
110, 112, 313

— and modal logic 6

Side formula 87

Simple theory of types 13, 14, 214

Simplification of a proof 11, 186, 191, 262,
263, 274, 275, 284

Skolem’s theorem 15, 241-243

— and constructivism 241

— and denumerability 241, 247

— and elementary number theory 243
— and Godel’s theorem 242

— and the actualist interpretation 241

Sq 108

Statability of a reduction rule 173, 175 seq.,
196, 204, 206

—and consistency 11, 177, 211, 213

— and the actualist interpretation 173

— and the finitist interpretation 173, 201,
206

—and the truth of a sequent 11, 173,
175-177, 199, 206, 207

Strengthened Hauptsatz (cf.
Hauptsatz)

Structural

— inference figure 82, 85, 86

~ inference figure schemata 83, 84

— rules of inference 5

— transformation 151, 180

— transformations and the ‘chain rule’
180

Subcomplex and the assignment of truth-
values 33

Subformula 71, 159

— property 6, 87

— property and the endsequent 6
Substitution of terms 299
Succedent 2, 30, 72

~ formula 151, 254

empty - 72, 82, 112

interchange in the — 84, 129

Successor function 253

Syllogism (cf. also: cut) 2, 32, 312

Symbol 53, 54, 69, 70, 140, 141, 313

—s as objects of proof theory 138, 194,
211, 228

—s for definite functions 70

—s for definite predicates 70

—s for definite propositions 70

auxiliary - 70, 71, 217

constant - 70, 111

sharpened

function — 140, 141, 288
logical — (cf. also: logical connective)
54, 70, 313
predicate — 111, 140, 141, 253, 288
terminal — 71
variable — 70
Symmetrization of sequents 259
Symmetry
— between the logical connectives
259
~ of a formalism and the operation re-
duction 269
— of the schemata 86
Syntactic variable 54, 70, 90, 142, 152, 214,
255

T 46, 48, 50
Tautologous sentence 30
Techniques of proof 139, 143, 237, 242
~— and incompleteness 308
finitist — 171, 193, 194, 210, 212, 238, 239
Term (cf. also: indefinite number) 54, 141,
159, 253, 289, 314
evaluation of —s 159
minimal — 142
numerical — 253, 262, 288, 291
substitution of —s 299
variable — 253
value of a — 159
Terminal
~ connective 254
— number 297, 299
~ symbol of a formula 71
Tertium non datur (cf. law of the excluded
middle)
The . . . such that 157
Theorem 69
—in a formal system 69, 70
— in proof theory 137, 238 seq.
- of transfinite induction 192, 193, 195,
253, 285, 315
constructivist proof of the ~ of transfinite
induction 285, 286
Thinning (cf. also: immediate inference) 30,
83, 255
— and the syllogism 32
—in the antecedent 83
— in the succedent 83
TJ-derivation 287, 291-293
— and the ordinal numbers 298
reduction step on —s 299
TJ-inference figure 291
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TJ-upper sequent 291
Transfinite
— assumptions 165
— formula 142
— induction (cf. also: restricted — induc-
tion) 231, 232, 284 seq.
- induction and Brouwer’s proof of the
uniform continuity of functions 246
- induction and elementary number
theory 292, 397
- induction and G&édel’s theorem 16, 239
— induction and the consistency proof 8,
231, 232, 261, 286
— induction theorem (cf. theorem of —
induction)
— ordinal numbers 11, 26, 187, 229, 230,
261
— propositions 21, 161, 162, 195
— propositions and decision rules 161
— propositions and the elimination of the
double negation 169
actualist sense of — propositions 162
finitist sense of — propositions 162
formalization of — induction 291
proof of — induction 285
sense of — propositions 161, 162
Transformation
—of a proof (derivation) 60, 117 seq.,
217 seq., 293
structural — 151, 180
structural —s and the ‘chain rule’ 180
Tree form
derivations in — 73, 258
Trivial sentence 30
True
— formula 55, 56, 74, 114
— proposition 54, 217
—sequent 174, 175, 254, 269, 290
Truth
— of a formula 11, 56, 82, 114, 158, 159,
254
— of a minimal formula 159
— of a proposition in finite mathematics
158
- of a sequent 159, 176, 293

- of a sequent and the statability of a re-
duction rule 11, 173, 175-177, 199, 206,
207
conditional — 82
Truth-values 33, 159, 161, 218
Type 13, 215, 315

Universal quantifier (cf. also: (g)-symbol;
Y-symbol) 4, 24, 313
Upper
— formula 72
— sentence 31, 32
— sequent 72, 255, 291
Uppermost
— formula of a cluster 267
— sequent 257, 291
Urteilsabstrakt 165

Value
— of a derivation 298
- of a term 159
correlation of —s 305
numerical — 181
Variable
—s in elementary number theory 141
—s of different type 215
—term 253
bound - 55, 141, 144, 215, 288
bound predicate — 297
free — 55, 141, 144, 215, 288
numerical — 288
object — 70, 111, 140, 314
predicate — 289, 292
propositional — 54, 70
replacement of —s 57, 76, 113, 152
restrictions on —s 58, 77, 84, 117, 153, 216
255
syntactic — 54, 70, 90, 142, 152, 214, 255
Verschiirfter Hauptsatz (cf. sharpened
Hauptsatz)

Well-ordering of proofs 12, 231
Weyl’s concept of a number 244

Zermelo-Fraenkel axioms for set theory 240



