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I1 TRADITIONAL AND MODERN LOGIC

syllogistic of Aristotle (cf. I 2 and 3), and secondly the propositional logic
of the Stoic school (Chrysippos and others), which has already been
mentioned in connexion with example (d).

On the other hand, neither ancient nor scholastic logic appears to
contain a systematic formulation of the logic of relations, although Greek
geometry3 could not have been as highly developed as it was without a
rational treatment of relations such as (the point P) lies on (the straight
line s) or the distance between (the two points AB) is the same as (that
between the two points CD). But the logic that is applied in Greek geom-
etry is not generally applied in a way that consciously points to the
underlying forms of inference.

Among the deductions of the scholastics, too, there are a number of
inferences that nowadays are recognized as examples of the logic of
relations.4

Modern logic — developed from the 19th century onwards in the work
of Boole, Schroder, Peirce, Frege, Peano, Whitehead, Russell and others —
has produced a totality of proofs and modes of inference within which the
work of Aristotle and the Stoics falls naturally into place, but which
contains in addition a comprehensive theory of relations. Thus modern
logic, which is often referred to as logistic, differs from traditional logic
only in that it is much more inclusive. This development, however, was
made possible only through the systematic use of symbolic techniques,
i.e. symbolic notation, by means of which even complex meanings can
be formulated in simple and significant terms. For this reason modern
logic is often called symbolic logic.

The following example will show the increased perspicuity resulting
from the introduction of a symbolic notation. The so-called binomial
theorem can be formulated in words as follows:

The square of the sum of two numbers equals the sum of the
following summands: the square of the first number, twice the
product of the two numbers, and the square of the second
number.3

Compare this with the symbolic formulation of the theorem:
(@ + b)® = a® + 2ab + b>.8

Similarly, we can obtain significant formulations for logical laws
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CONVENTIONS REGARDING BORDER-LINE CASES 12

Traditional logic puts forward 19 propositions or modes of inference
that satisfy the above conditions and are not weak forms of other correct
inferences (of these latter there are five so-called subaltern modes of
inference.) We shall arrange them, as is customary, according to their

4

B
‘figures’, and shall write ‘F’ as abbreviations for (a) resp. (b), (c). Oc-

AB
casionally we shall employ the equivalent forms ‘——é—’ or ‘—C—’ asbeing

more appropriate.

Figure 1 comprises four modes of inference

MaP MeP MaP MeP
SaM (1.1) SaM (1.2) SiM (1.3) SiM (1.4)
SapP SeP SiP SoP

Figure 2 also comprises four modes of inference

PeM PaM PeM PaM
SaM (2.1) SeM (2.2) SiM (2.3) SoM (2.4)
SeP SeP SoP SoP

Figure 3 consists of six modes of inference, the last two of which
(marked *) provide examples on the topic ‘conventions about border-
line cases’.

MaP MeP MiP MoP
Mis (3.1) MiS (3.2) MaS (3.3) MaS (34)
SiP SoP SiP SoP
MaP MeP

MaS (3.5)* MaS (3.6)*

SiP SoP

Figure 4 includes five modes of inference, the last two of which again
furnish examples on the subject ‘conventions about border-line cases’.

15


















THE SYMBOLIC METHOD 13

stage of a proof to be clearly indicated. However, it has the disadvantage
that if the same assumption is used several times, the derivation must be
written out in full on each occasion. A way of avoiding this will be shown
inIV 2, p. 72.

(5) The derived modes of inference. We give below the ‘trees’ for the
derived inferences, arranged according to the basic modes of inference
used. In this way the derived modes are in a sense analysed out into the
basic ones.

(a) Inferences reducible to (1.1) and simple conversions:

SaM ManP
SanP

Here nP has been substituted for P, this is indicated by ‘P/nP’.

ie. (1.2)

PanM
SaM ManP ie. (2.1)
SanP

PaM ManS
PanS ie. (4.1)
SanP

SanM
PaM ManS ie. 2.2)
PanS
SanP
Through the use of simple conversions we obtain inferences that belong
to other figures. The derived modes of inference are arranged according
to the number of simple conversions required.

(b) An inference that, by way of a corollary, presupposes the non-
emptiness of a term.

PaM  MaS
PaS
PiS

SiP

*) e (4.4)

21



I3 TRADITIONAL AND MODERN LOGIC

The weakening of the premise involved in the inference marked (*) is
required in order to obtain the form S ... P prescribed for the conclusion
in days gone by.

(c) Inferences based on (1.3) and simple conversions.

MP ie (1.4) PanM
S SiM ManP ie. (2.3)
SinP
MiS MiS
SiM  MaP ie. (31) SIM ManP ie. (3.2)
SiP SinP
PIM  MaS MiP
" PiS ie. 43) PIM MaS ie. (3.3)
SiP PiS
‘ SiP
MiS PanM
SiM  ManP ie. (4.2)
SinP
PaM
Pann M
SinM nManP ie. (2.4)
SinP

Here derivation from (1.3) requires the substitution of complementary
subject terms.

MinP

nPiM MaS ie. (3.4)
nPis
SinP

The use of complementary subject terms could be formally avoided by

22



THE SYMBOLIC METHOD I3

e.g. obtaining (3.4) from the previously derived (3.3) by the substitution
P[nP. But if this substitution is made in the derivation of (3.3), com-
plementary subject terms result once again.

(d) Inferences where apart from (1.3) and simple conversion, the non-
emptiness of a term is presupposed.

MaS *)

MiS

"SiM  MaP
SiP

ie. (3.5

MaS .

MiS ®

SiM ManP i.e. (3.6) (derived from the preceding by P/nP.)
SinP

MaS *)

MiS PanM

SiM  ManP
SinP

ie. (4.5)

(e) With regard to those modes of inference whose mere formulation
requires complementary subject terms: they, too, can all be reduced to
(1.1) and (1.3) by substitutions and simple conversions. We give only
one example, as a complete enumeration would lead us too far from
our main topic.

nSaM MaP
nSaP

(6) More far-reaching reductions are obtained on the basis of the
following considerations:
(a) Every proposition of the form
not all S-things are not P-things
is equivalent to
some S-things are P-things.

23



I3 TRADITIONAL AND MODERN LOGIC

(b) Every proposition of the form
If A and B, then C
is equivalent to
If A and not C, then not B
resp. If B and not C, then not 4.
Before giving a formal derivation we give below a proof formulated in a
‘mixed style’, using ‘-’ for ‘not’ (where this denies a proposition!?).
Substituting P/nP in (1.1), we obtain (1.2)

SaM ManP
SanP

This is equivalent, on the basis of (b), to

SaM — SanP
X, ManP
On the basis of (a), this in turn is equivalent to
SaM  SiP SiP SaM
————— andto ———
MiP MiP

Since no significance attaches to the choice of the letters S, M, P they
can be interchanged by the simultaneous substitutions S/M, M/S, P/S.16
This clearly yields the mode of inference below (apart from the inter-
change of S and P)

MiS MaP

s (3.3)

and by means of two simple conversions

SiM
MiS MaP
PiS
SiP

Within the framework of the basic modes of inference stated under (3),
(1.3) can thus be replaced by more basic inferences, if the transformations
on the basis of (a) and (b) are put into symbolic form. This, however,

24



THE SYMBOLIC METHOD 13

is not a question of finding an equivalent replacement, but of integration
within a richer system, as e.g. the symbol — has not been used previously.

It would be easy to integrate (a) within the system stated by (3) and
(4), viz by introducing the following modes of inference:

— SanP SiP
SiP °  —SanP’
and where appropriate also
SanP — SiP
— SiP”’ SanP

On the other hand, the formal representation of (b) is less easy, since

A—-C
7~ and vice versa would have to be

A
here the transition from —— to
(o —

reduced essentially to a linking of modes of inference. However, the
effort involved is compensated by the fact that the result — after some
obvious additions — is the whole of propositional logic. Cf. in this con-
nexion IV 2, p. 73 f. We cannot deal with this topic more fully here, and
shall merely state that apart from linking the modes of inference we
should also require a principle for the elimination of premises, since the
transitions obviously involve the elimination of the premises B, resp.
—C, as such.

The modes of inference with which we have so far concerned ourselves
may be further reduced by being integrated within so-called predicate
logic. For this purpose the translations given in 12, p. 16 f. of SaP,
SeP etc. [cf. ibid. (d), (f)], are expressed symbolically.

Anticipating the symbolism used in III2 A, p. 51 and C, p. 52 f,
we have the following definitions:

SaP = p A x(Sx — Px),
SeP = . A x(Sx - — Px),
SiP = p; V x(Sx A Px),
SoP = p; V x(Sx A — Px).

Although lack of space does not permit a fuller exposition, we should
like at least to mention that in this way the above discussed modes of
inference are reduced to the rules of inference that result from the meanings
of the symbols on the right-hand side of the equivalences (cf. IV 2, p. 77).
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CHAPTER II

LOGIC AS ONTOLOGY

If we wish to assert that something is quite certain, we often say that it
is ‘logical’. Although in fact examples of such use rarely fall within the
sphere of logic, they nevertheless indicate a strong faith in logic. There is
even a brand of cigarettes that has been advertised as the ‘Logical Move’.
And indeed it is much easier to doubt assertions such as ‘Brutus murdered
Caesar’ or ‘I was in Leicester on September 9th 1965, than for example
the proposition:

(a) ‘Every apple is sweet or there is at least one apple that is not
sweet’

or any proposition having one of the forms discussed in I 2; 3.

To return to example (a): clearly, our faith in the truth of such proposi-
tions stems from the fact that they are not contingent on our particular
experiences of apples etc. We might, after all, make similar statements
about pears, or plums or potatoes, or replace the predicate ‘is sweet’ by
‘is sour’ or ‘is yellow” etc. — if the reader still doubts the truth of proposition
(a) he should check that he has not understood it in the sense of

(b) ‘One knows that every apple is sweet or one knows at least one
apple that is not sweet.’

This or similar interpretations of (a) are put forward by a well-known
school of logic, the so-called Intuitionist School. In this book, however,
we wish to represent logic as a kind of theory of the general form of the
‘world’ — not as a theory of our knowledge of the ‘world’, which neces-
sarily varies with time.

1. THE WORLD AS DOMAIN OF OBJECTS WITH PROPERTIES
AND RELATIONS

It is a typical feature of propositions of the type of (a) above, that when
we have grasped the truth of one proposition we often realize that this

27



111 LOGIC AS ONTOLOGY

truth does not depend on the special meanings of certain words that
occur in it (here ‘apple’, ‘is sweet’l), but that every proposition of the
form indicated by (a), viz:

(A) Every A-thing is a B-thing or there is some A-thing that is not a
B-thing, is true.

A propositional schema that subsumes only true propositions is said
to be generally valid.2 Thus (A) is generally valid.

However, there are also schemata whose general validity is less readily
grasped and requires special efforts. Logic is not concerned with personal
convictions regarding the general validity of certain schemata but with
this general validity itself and, where applicable, with the objective
methods whereby the universal validity of one schema is derived from
that of more basic schema. (This, of course, affords opportunities for
establishing personal convictions.)

The following questions now arise:

(a) How is it that there are universally valid schemata ?

(b) How can we grasp the universal validity of a schema, i.e. make
judgments that ‘exceed the bounds of all possible experience’?

(c) What insight regarding the ‘real world’ is afforded by such judg-
ments ?

The way in which we answer these questions depends, of course, on
our philosophical standpoint. For example, (a) might be answered in the
following different ways:

(1) From a realist point of view: The world of concrete (or abstract)
things consists of things, which have some properties and not others, and
between which some relations hold and not others. (‘How do we know
this ?°) It is this structure of the world and not the ‘essence’ of the things,
properties and relations occurring in the world, that is relevant for the
establishment of universal validity.

Let us call this ‘picture’ of the world ‘discrete ontology’,3 its domain,
the ‘universe of discourse’.

(2) From an idealist point of view: The world appears to us the way
we with our discrete ontology describe it, but the question whether it is
really the way we describe it, is unanswerable or beside the point.

(3) From a ‘fictionalist’ point of view: We find it convenient to describe
the world with a discrete ontology although its reality does not, or could
not, fit our description.
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CONCEPTS AND LOGICAL OPERATIONS 112

objects are symbolized8 as required by ‘4™, ‘B™, ‘C™, or
AP, AR, AP, ..

3.1 the fact that a property 4' applies to an object a (i.e. that a
has the property 4%), by ‘4'a’;

(3.2)  the fact that the relation 4% holds between the things a and
b, by ‘A%ab’ (one occasionally finds the form ‘a42b’, which is
modelled on the syntax of ordinary language, although the
analogous form ‘aA" has not established itself);

3.3) the fact that the relation 4* holds between the things a, b,

' ¢, by ‘A%abc’;

(3.n) [By analogy ‘4"a, ... a,’ is introduced for any whatsoever. ]

Examples for (3.1), (3.2), (3.3), 3.n).

The fact that the property of being red belongs to a specific flower,
may be expressed in ordinary language by the sentence: ‘This flower is
red.” If we were to apply convention (3.1) to ordinary language, we should
have to say: ‘is red this flower.” This ‘standardized proposition’ is ob-
tained from ‘4'@’ by instantiating the general symbols ‘4!’ and ‘@’, viz
by substituting the predicative linguistic component ‘is red’ for ‘4%’
and the object-denoting component ‘this flower’ for ‘a’. In general, how-
ever, it is advisable to adopt a natural-language syntax when substituting
natural-language components for symbols in formulae.® Similarly we
shall regard as a valid substitution in the formula ‘4%ab’ not only the
syntactically standardized proposition: ‘the relation of being-taller-than 19
holds between James and Peter’, but also the ordinary formulation of this
state of affairs, viz: ‘James is taller than Peter.’ In an exactly parallel sense
the assertion: ‘Caesar’s birth occurred between the founding of Rome
and the migration of the Germanic tribes’ will be regarded as a proposition
of the form ‘43abc’ (and not e.g. ‘a4bc’).

2. RELATIONS BETWEEN CONCEPTS AND LOGICAL OPERATIONS

A world having the structure described by a discrete ontology would be
exhaustively determined by a catalogue C; — possibly infinite — of all
cases where a property is realized (i.e. applies to an object), or a relation
holds (i.e. between a pair of objects, a triplet of objects etc.). But even
apart from the problematical assumption that there will be proper names
available for all objects and for all the properties and relations involved,
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CONCEPTS AND LOGICAL OPERATIONS 112

n stands for the argument, ¢,(r) for the value of the first monadic
function, ¢,(x) for that of the second, etc.

T || $im) | $2(m) | d3(m) | du(m)

T T l T F F

F T F T F

¢, and ¢, are obviously trivial, since they are in no sense dependent
on the value of n. ¢, is likewise trivial, as ¢,(r) coincides with = in all
cases. On the other hand, ¢; is important. This function evidently
describes the behaviour of the propositional compound!? ‘not A’ in
respect of the correlated truth-values. If we employ the symbol ‘-, first
used for ‘not A’, also for ¢, we may write the matrix in question as
follows

® [—=(®) l 4
T F or briefly T F
F T F T

The use of the sign ‘—’, which was introduced as abbreviation for ‘not’,
as a sign for the corresponding truth-function is justified by the fact that
‘—(n)’ and ‘—>A’ are not likely to be confused and also by the con-
sideration that the abbreviated form of the matrix may be regarded as
a direct description of the ‘truth-behaviour’ of the propositional com-
pound ‘—A4’.

Of the 16 dyadic truth-functions those again are trivial whose value
does not depend on both arguments (i.e. depends only on one or on
neither). If these are excluded, we are left with the 10 following functions,
which are here numbered purely for convenient reference in this chapter.

T P V() | Yao(mp) | Ys(mp) | Valmp) | Vs(mp)
T T T T T T T
T F F T F T F
F T F T T F F
F F F F T T T

‘I’G(ﬂ:’p) ‘l’7(7t,p) ‘I’S(TC’p) \llg(ﬂ:,P) ‘l’lo(“",P)

= =] g A
b o] oD
==
w o
o g
CC I
o] g
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112 LOGIC AS ONTOLOGY

Like the function ¢, the above functions characterize situations that
occur under the most varied conditions of our environment and are
therefore important also from the point of view of the idealized world
referred to in II 1, p. 28. If we wish to describe them, we generally have
to use the propositional connective that corresponds truth-functionally
to the matrix in question. Most languages have their own words!8 for
the most important of these connectives, and these words also serve to
characterize the situations to which they are applicable. We shall here
mention only a few examples relevant to English.

(V) Plants thrive if light and water are available in the correct quan-
tities.19 An electric lamp whose supply of current is regulated by two
switches placed ‘in series’, will light if and only if switch 1 and switch 2
have the correct position. (This situation occurs e.g. if switch 1 is the
‘master switch’.) Clearly, the common element of the two situations is
described by \,, and {, also describes the truth-functional behaviour of
the propositional connective in ‘4 and B’. We shall therefore use the same
sign, viz ‘A’, both for this propositional connective and for its corre-
sponding function Vr,, and thus write “4 A B> and ‘A (m.p).

(V,) A two-link chain will break if the first or the second link breaks.
An electric bell controlled by two ‘parallel’ bell-pushes will ring if the
first or the second is pressed. We shall employ the sign ¢ v for the propo-
sitional connective in ‘4 or B’ (where ‘or’ is used as in these examples)
and for the corresponding function V,.

(Vo) Either we shall go to the theatre this evening or we shall watch
the sun rise to-morrow (but we shall not do both). Either the child will
have a building set for Christmas or an electric train (but not both).
These situations are obviously described by Y, and not by Vs,.

The above ten functions can to some extent be systematized, as the
following considerations will show. It is easily verified that on the basis
of our numbering V; of the functions, the following holds for i=1, ..., §
and any values T, F for «, p:

Vit s(@, p) = — (Yi(m, p)),
i.e. the last five functions can be obtained from the first five by inter-

changing T and F in all the spaces. Further, it is easily verified that the
following holds in all cases:

Va(m, p) = Y3(p,®) and Yo(m, p) = Ys(p, m)

36



CONCEPTS AND LOGICAL OPERATIONS 112

The signs allocated below to the ten functions take account of these
relationships.20 With each sign we once more give the value distribution
of the corresponding function, though this time in a different form, and
also the characteristic English words that would occur in a corresponding
compound proposition.21

A|TF vV|TF -|TF ~|TF <|TF
T{TF T|ITT T|TF T|TT T|TF
F{FF F‘TF FlTT FIFT F|FT
...and... ...OL... if... then... | I ...if and

(or both) or onlyif ...

...only
if...

A|TF V|TF S| TF <|TF S| TF
TIFT T FF T FT T|FF T FT
FITT F(FT FlFF F’TF F\TF
it is not neither... ..., but not ..., either...
the case nor... not... but... Oor...
that both (some- (but not
...and... times both)
(by ana- termed
logy the nor-
termed function)
the nand-
function)

An analogous treatment of truth-functions with more than two argu-
ments is obviously out of the question. We shall here mention only the
fact that every truth-function can be built up using merely monadic and
dyadic functions. The problem of finding the simplest — and hence the
most economical — way of doing this, has in recent years become of
great practical significance, since the processes carried out by modern
computers can to a large extent be described in terms of truth-functions.

Some n-adic truth-functions are, however, important from the point of
view of representing relations between concepts; thus for every n:
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I13 LOGIC AS ONTOLOGY

in a locally traditional kind of drinking-vessel’. Continuously divisible
quantities can be given a basis of strict proof in terms of a discrete
ontology, but this involves considerable logical complications (in parti-
cular the introduction of so-called measure numbers28). A genuinely
continuous ontology, which would form a counterpart to a discrete
ontology, has, so far as we are aware, not yet been developed as a basis
for logic. The beginnings of such an ontology can perhaps be seen in
some of the attempted interpretations of wave mechanics in modern
physics, which explain the occurrence of discrete phenomena in a world
presupposed as continuous. However, these explanations do not amount
to a truly continuous ontology, since the setting up of a ‘wave equation’
involves special physical assumptions, and also requires a mathematical
conceptual apparatus which is based — ultimately — on a discrete ontology.

Finally we shall deal with objections connected with the fact that the
compilation of a catalogue C, presupposes a fixed domain of objects.
An idealization of this kind is appropriate for cases where a finite domain
of objects can be stipulated by convention. But difficulties arise, for
example, when properties that are meaningful in respect of a specific
domain of things are transferred to a larger one.

Let us suppose 100 apples, e.g. in a basket. They will have 2190 prop-
erties,2? i.e. 2100 catalogues C,: in the sense of II 2, p. 32. Every partial
quantity that can be taken out of the basket involves the property of
belonging to it: from the point of view of logic it suffices that a quantity
could be taken out of the basket, since if a logical proposition is to be
asserted for any property whatsoever, it must not be falsifiable even by
the oddest examples. Two properties that determine the same quantity
do not need to be distinguished logically — not, at any rate, solong as prop-
erties are not themselves regarded as things (cf. V 3, p. 100). However,
out of these 2190 properties only a very few have sufficient practical value
to be designated by a special name, e.g. those properties that indicate
membership of specific kinds or other qualities such as sweet, sour,
aromatic, ripe, worm-eaten etc. And such properties are further distin-
guished from the totality of ‘anonymous’ properties in a way that is not
covered by the introduction of the attribute concept. Let us introduce
an additional apple, no. 101. Each of the 2190 properties yields two new
properties in the enlarged domain, viz one that holds for no. 101 and one
that does not. On the other hand apple no. 101 will in general have to
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NOTES

7 In general the use of quotation marks in the following is intended to indicate that
reference is made to the sign enclosed by them, cf. VI 2, p. 115.

8 Here contrary to the convention laid down in note 7, reference is not made to the
sign A1 in conjunction with the sign n, but to the signs obtained from ‘41"’ (etc.)
by substituting an appropriate numeral for ‘»’. For a correct treatment of such quasi-
quotations cf. Quine [2], p. 35.

9 Cf. in this connexion also III 2, p. S5.

10 More precisely, though hardly more intelligibly: the relation that holds between any
persons or things x and y whatsoever in precisely those cases where x is taller than y.
11 A superhuman power capable of compiling catalogue C1 might also be credited with
the compilation of the improved catalogne Cs; but in fact this latter task involves an
essentially new element, cf. VII 2. However, it suffices to regard these catalogues as
thought experiments, on which certain idealizations are to be based.

12 The question whether the catalogue is to be regarded as consisting of expressions
in the sense of linguistic structures or of their content, may be left open at this stage.
On this distinction cf. also III 1, p. 63, note 3.

13 A function fis given if every thing x out of a set S is ascribed exactly one thing
‘by f7; this is designated as ‘f(x)’. S stands for the set of arguments or the domain of f.
14 We have already had to speak about language on several occasions, e.g. when we
have introduced a new linguistic expression by a definition and not through use.
Certain problems of ‘talking about language’ will be discussed in III 3, p. 56 f. and
in VI 2, p. 115.

15 As the dyadic truth-functions are the most important practically, the n-adic ones
are rarely dealt with individually.

16 This rapid numerical increase of the n-adic functions is no doubt the main reason
why interest in individual functions is slight.

17 Although this is not a case of several propositions being combined, it is nevertheless
convenient to subsume it under the general heading of compound propositions.

18 Cf. in this connexion the paper by Dohmann [1].

19 The reader might care to re-formulate this sentence so that ‘and’ is really used to
connect two propositions.

20 Such ‘relationships’ are best discussed in a linguistic formulation and will therefore
be left for III 3, p. S8 f.

21 The extent to which the truth conditions of these propositional connectives are
expressed by their corresponding functions, and whether they can be rendered at all
by a truth-function, will be discussed inIV 3, p. 78 f. We here regard the value distribu-
tion as primary, and the existence of an adequate linguistic formulation as a convenient
extra.

22 More precisely: its value for arbitrary n-tuples (w1, ..., 7s) of truth-values.

23 To be read: 4! does not hold for a;.

24 Instead of to the series of truth-values obtained by applying an attribute to each
member of the series of things in turn.

25 The special significance of the initial x is frequently expressed symbolically, e.g.
by writing £ ... (Principia Mathematica), Ax ... (Church [2]), [x] ... (Cogan [1],
p. 202). On the difference between [x I ...Jand [x] ... cf. V 2, p. 94. On the need to
distinguish between a function and a general functional value, cf. ibid.

26 False inferences of this kind are, however, often made. This is perhaps explained
by the fact that a refined form of this schema is admitted in the logic of probability
(cf. VIII 3, R 3, p. 158). The above example, however, would not warrant a probability
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inference, since one might consciously have restricted one’s circle of acquaintances
to people in favour of party X.

27 The reader is asked to translate this himself into a locally traditional formula.

28 Non-negative real numbers, i.e. those numbers that can be represented by (possibly
infinite) decimal numbers (e.g. 1.35; 3.333 ...; 3.1415 ...) can be shown to be measure-
numbers in terms of an expanded logic as in V 3.

29 j.e. more than 1039,

30 j.e. catalogues C42 in the sense of II 2, p. 33.

31 We refer here to something non-linguistic. However, if one tries to give examples,
the linguistic formulation of such conditions becomes unavoidable.

32 j e, a positive integer divisible only by itself and by 1. For a proof, cf. for example
Pélya [3], p. 192 f.
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1112 LOGIC AS LINGUISTIC THEORY

form can usually be constructed if the language is expanded. Open
attributes, however, cannot be treated in every sense as objects, as will be
shown in VI 1, p. 114.

The following is a more elementary definition of the concept of form.
(It stands in much the same relation to the set-theory concept of form as
does a jelly mould to the concept of form defined as a spatial property
belonging to all jellies moulded or yet to be moulded by it, or as the
totality of these jellies.) We thus define as follows: the form of a prop-
osition P is a formula constructed exclusively out of variables and
logical expressions (or symbols standing for them), from which prop-
osition P may be obtained by appropriate substitutions of names for
object variables, of names of concepts (i.e. in general, predicates) for
concept or attribute variables and of sentences for propositional vari-
ables.3

Taking this definition as it stands, every proposition has the form p, if
p is a propositional variable. This interpretation could be avoided by
amending the definition, but this is not necessary so long as ‘the form of a
proposition’ is used only in expressions such as

All propositions of a specific form P are true.

This ‘ontological’ statement may be reformulated as a logical state-
ment:

The propositional form P is generally valid.

Thus, for example, ((p—q)—r)—((r—p)—p) is a generally valid propo-
sitional form, as will be shown in III 3, p. 57, with the aid of an exact
definition of general validity. Further methods for obtaining generally
valid propositional forms are given in IV 2, p. 73 f.

2. STANDARDIZATION AND SYMBOLIZATION

We are able to formulate in words complicated logical relationships by
making use of the variety of linguistic expression, but this variety is a
hindrance from the point of view of recognizing logical laws and can
only be overcome by some sort of standardization. And since a language
that has been merely standardized is unintelligible for practical purposes,
we shall combine standardization with the introduction of a symbolic
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notation. For this purpose we shall use among others the symbols
already used naively in chapters I and II.

We begin with some simple examples.

A. The language L; of propositional logic is constructed out of certain
basic signs.* We require:

the series of propositional variables p,, p,, ps, ...;

the propositional-logic functors —, A, v, -, ©,8

the parentheses (, ) as auxiliary signs.
Among the finite sequences (strings of signs, indicated by Z, Z,, Z,, ...)
that can be formed from the basic signs, propositional-logic formulas
(in order to avoid the connotation of validity: a well formed formula,
or a wff') are characterized as follows:

1) Every variable is a wff,

) if Z is a wff, then —Z is also a wff,

?3) if Z,, Z, are wffs, then (Z,AZ,), (Z,vZ,), (Z,~Z,),

(Z,++Z,) are also wffs;
“) only what can be shown to be a wff under (1) to (3), is to
count as a propositional-logic wff, or: a P-wff.
Thus e.g. the following are wffs: under (1), py, p3, p4; under (2), —p,;
under (3), (p3Vv —ps), (p1 Ap3); and by use of these also under (3),
((py AP3)—(P3V —p4))8

This still leaves undefined the relationship between wffs and the truth-
functions introduced in II 2; this will be done in IIT 3.

B. A language L; of syllogistic may be similarly described. Referring
to the syllogistic outlined in I 3, p. 18 £.7, the following basic signs are
required:

the concept variables P, P,, P;, ...,8

the (concept-forming) functor n,

the (proposition-forming) functors a, i,

the propositional logic functors A, —,

the parentheses (, ).
From among the sign strings that can be formed from these basic signs,
concept terms are distinguished as follows:

1 every variable is a term,

Q) if Z is a term, then nZ is also a term,

3) only what has been formed in accordance with (1) and (2)
is a term.?
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113 LOGIC AS LINGUISTIC THEORY

rather than with predicate variables. For example, if ‘Pa’ stands for ‘a
is a point’, ‘Sa’ for ‘a is a straight line’, ‘Lab’ for ‘a lies on »” (P and S
thus being monadic predicates and L a dyadic predicate), then the axiom
of geometry that ‘For any two points there is at least one straight line
on which both points lie’, can be represented symbolically by

AaNb(Pa APb — Ve(Sc A (Lac ALbc))).

But since in modern axiomatics the space to which the axioms refer is in
general not fixed, such ‘constants’ are rather a kind of restricted or
specified variable.

3. RELATIONS BETWEEN LANGUAGE AND REALITY (SEMANTICS)

By translating formulas into a natural language (at first literally, then
idiomatically), we rather hide the fact that the language of predicate
logic is designgd for an idealized world. This does not matter, provided
that the meanings of the words occurring in the translation are precisely
defined by special conventions. And this, after all, is a necessary condition
for all meaningful and correct inference.

However, it is also possible to give a direct description, in the sense
of an interpretation, of the relation between a symbolic notation, the
‘object language’, and an appropriate world. To do this we must, of
course, be able to use the language in which this description is to be
given, i.e. the ‘metalanguage’, to talk not only about the object language
but also about the ‘world’ in question, so that there would seem to be
little point in the whole procedure. In fact, however, such a description
throws the relation of the ‘object language’ to the ‘world’ into greater
focus - in much the same way as a silver spoon can be polished with a
rag. See Heisenberg [1], p. 190.

A. The language Lp of propositional logic could be interpreted in
terms of a ‘world of (thinkable) states of affairs’. For every state of
affairs s in such a world there would be a state of affairs s’, which would
consist in the fact that s does not obtain. And for every pair of states of
affairs s, s’ there would further be a state of affairs s/, consisting in the
fact that both s as well as s’ obtain, etc. As we have purposely restricted
ourselves to compound propositions whose truth depends solely on the
truth of their component parts22, our interpretation may be made
in terms of the truth values T, F — a procedure which will involve

56



RELATIONS BETWEEN LANGUAGE AND REALITY 1113

a greater degree of abstraction, but which will also be much simpler.

We thus interpret the functors (i.e. the signs) —, A, v, -, & in
terms of the truth functions introduced in II 2, p. 35, 37 (and designated
there by these signs.) Our procedure may be described as follows. Every
assignment of truth values T, F to the propositional variables (in short:
every assignment to the variables) also assigns a truth value to every
formula A. This assignment B* determined by B may be described step
by step via the construction of A, viz as follows: 23

B*{py) = B(p;) for all propositional variables p;

B*(—A) = —(B*(A)) for the negation of a formula A,
B*(AAB) = A(B*(A), B*(B))

\% \Y for combinations

- - of A and B.

> >

Clearly, in order to determine B*(A), we need to take into account
only the values assigned to the variables occurring in A. However, the
way in which the value of a compound formula is determined by the
values of the component parts, can be more simply described if we
assume that B makes assignments for all variables. If B*(A) = T for
all assignments, then A is generally-valid or a theorem of propositional
logic, and we write symbolically: FpA.24

In order to determine whether a given P-wff A is a theorem, we proceed
as follows. We note the value-assignments to the variables occurring in A,
e.g. for
nA=((p->9 ->r)-> (- p)-p

— o e e e e e D
N e g S
W o e by kg e ] e Y
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1113 LOGIC AS LINGUISTIC THEORY

The right-hand columns marked 1, 2 or 3 are filled in from the left-hand
ones. The remaining columns are filled in according to the table for —:
first 4 (from 1 and 2) and 5 (from 3 and 1), then 6 (from 4 and 3) and 7
(from 5 and 1), and finally 8 (from 6 and 7). If 8 is T in all cases, then A
is a theorem. In the above example, T occurs at 8 for all assignments in A.

A calculus in the sense of IV 2, p. 71 f. may be obtained by appropri-
ately rationalizing the evaluation of the formulas.

If wffs A, B have the same course-of-value, then A<B is generally
valid. Formulas of this type may be used in particular to express the
definability of functors (II 2, p. 37). For every course-of-value (i.e. for
every formula A) there is a ‘standardized’ formula B with the same
course-of-value (that is, FA«<B), e.g. in the form 25

V(ST AL AS)V L,

where s; (j=1, ..., i) stands in each case for p; or for —p;. (Every assign-
ment to the relevant variables satisfies exactly one conjunction of this
kind.) B is known as the (in this case: disjunctive) normal form (here: of A).

In the following concepts based on interpretations will, where relevant,
be included under ‘L;’.

B. The language Ly of syllogistic may be interpreted in terms of any
‘world’ D of objects and their properties. In an interpretation of this kind
we are concerned only with the extensions of properties, since our in-
tended interpretation of the proposition-forming functors depends only
on these. In accordance with their intended meaning we interpret as
follows:

n, as forming the complementary concept v(P;) from P; in D;

PaP,, as the logical function «, having the value T if and only if the
extension of P; is a part of the extension of P;;

PiiP;, as the logical function 1, having the value T if and only if the
extensions of P; and P; have a common part;

An assignment B of properties (or their extensions) to the variables
P,, also determines values LB*(T) for the terms 7. We thus obtain the
truth values

B*(T1aT,) = a(B*(Ty), B*(T,)),
or

BH(TT,) = (BH(Ty), B*(T,))

for the atomic wjffs. We then proceed as in the case of propositional logic,
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with the exception that instead of general-validity it is natural first to
define validity in a fixed domain D, or more concisely: D-validity. It
can be shown that it is only the number of objects in D that is relevant
in this connexion.

If general-validity is defined as validity in every domain, it can be
shown that a Z-wff A is generally valid if and only if it is valid in a finite
domain of 2" objects, where n is the number of variables occurring in
A.28 Thus the wffs by means of which the laws of syllogistic may be
represented, are generally valid if they hold for a domain of 8 =22 objects.

The definition of general-validity may also be adapted to the traditional
convention, which excludes empty properties. We need only restrict
assignment to variables to non-empty properties. We then proceed as
above.

C. The language L of predicate logic is interpreted similarly as under
B. Validity is first defined in a domain D of objects. However, because of
the greater expressive range of Ly the notion of assignment B must here
be extended. Each variable must be assigned suitable objects, thus:

object variables a;, objects from D;

predicate variables A}, n-place attributes over D;

propositional variables 43, truth values (as ‘null-place attributes’);

functional variables /7, functions ‘of » variables in D with values in D’.
An assignment of this kind is thus an assignment over D.

Every assignment 8 then determines:

the values B*(t) of all terms t,

the values B*(P) of all predicates P,

the values B*(A) of all formulas A.

These values are defined step by step via the construction of t, P and A,
i.e. for terms as objects by means of

B*(a;) = B(ay),
B*(fit1 - ta) = BUDEB*(t1), -, B*(L,)):*

for predicates as attributes by:

B*(4}) = B(4y) forn> 0;

B*(Pt), where P is an (n+ 1)-place predicate (n>0), is that n-place
attribute that holds for precisely those n-tuples (%, ..., ¥,), for which
B*(P) holds for (B*(¢t), x4, ..., %,); 28
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B*(xA) is that one-place attribute2? which, for an arbitrary x from D,
holds for ¥ if and only if (F)B)*(A)=T, where (3) is that assign-
ment B, for which By (x) =x and Bo(v)=B(v) for all other variables v;

for wffs as truth values by:

B*(Pt), where P is a one-place predicate,
is B*(P) applied to B*(t), i.e. a truth value;30

B(A5) = B(A);

B*(—A), B*(AAB), B*(AvB), B*(A—B), B*(A~B) are reduced
to B*(A) and B*(B), exactly as in propositional logic;

B*(AP) is T, if the one-place attribute B*(P) holds for all objects
in D, and otherwise F;

B*(VP) is T, if the one-place attribute B*(P) holds for at least one
object in D, and otherwise3! F.

In this way a value is determined for every wff A in respect of an assign-
B. We can sdy that B satisfies wff A in the case where B*(A)=T. This
may be understood as follows: A expresses requirements, to be satisfied
by B, in respect of possible states of the ‘world’. Wffs expressing require-
ments in respect of B(x) are indicated by A(x) etc.

(Again) A is valid in respect of D if B*(A)=T for all assignments over
D, i.e. where all assignments over D satisfy A. And finally A is generally-
valid or a theorem of predicate logic, if A is valid in respect of D for every
non-empty32 domain D — or equally, if A is satisfied33 by all assignments
(over any non-empty domains whatsoever); symbolically: FzA. (Again)
‘L’ should be understood as also including concepts based on inter-
pretations.

In the case of predicate logic, unlike that of propositional logic and of
syllogistic, the definition of general validity yields no general method for
determining that a formula A is a theorem, nor does it yield a method for
deciding whether A is a theorem. Only in the case where the decision can
be reduced to a finite number of steps, can it be made: e.g. it can always
be determined in respect of a finite D whether a formula is valid for D.
The reason for this is that there is only a finite number of value assign-
ments over a finite domain D for the finite number of variables occurring
in a formula A.

We shall discuss some methods for determining that A is a theorem in
IV. The limits of such methods and - in a sense — of all thinkable methods
will be discussed in VII.
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10 On reducing the number of parentheses, cf, p. 60.

11 ‘Functional® here refers to those logical functions we introduced under the name of
attributes. ‘Predicate’ is often used for attributes as well as for their symbolic rep-
resentations. Thus ‘functional’ usually does not indicate the occurrence of explicit
symbols of object-to-object functions in the language.

12 By analogy with ‘object variables’ we should really talk about ‘attribute variables’,
but this would be to deviate too far from what has become established practice.

18 Tt is often useful to have propositional variables available in predicate logic. This
may be done as suggested here, by treating them as null-place predicate variables.
In this way convenient formulations may be obtained, such as e.g. clause (5) on p. 53.
14 These are extremely useful. They correspond to natural-language expressions such
as ‘Harry’s father’, ‘the sum of 2 and 3’, ‘Harry’s journey from London to Edinburgh’
(in the case where this is regarded as one object [of thought]). Often, however, (object)
terms are introduced only at a later stage, by way of an expansion of predicate logic,
asinV1,B,p.91f.

15 The dots to indicate the intervening expressions could have been avoided here as
in (4) to (6).

16 These are linguistic structures that express properties or relations, or in general:
attributes, Here we are really concerned with predicate forms, but we shall use the
shorter designatton. It would also be possible to introduce as predicates the structures
aiZ or [a)Z or [a;]Z,] exemplified in II 2, p. 39, but the methods that would be in-
volved are not generally regarded as belonging to predicate logic, cf. in this connexion
V2

17 Thus in each case two separate operations are merged. According to II 2, p. 39, we
would have had to form one-place predicates a;:Z from Z, and then to ascribe to these
the property expressed by A, or respectively V. We shall return to this possibility in
V2 p.94f.

18 In the same sense as that in which, in algebra, 4 is weaker than -, so that a - b-c
is read as a -+ (bc).

18 As in note 14.

20 As this example shows, it is a matter of expedience whether the variable standing
for the middle object in the arrangement is allocated the middle position.

21 In the similar but shorter phrase ‘from ... follows ...’, the compound sentence is
made up, not of sentences, but of names of sentences. The same applies to the phrase
‘... implies ...". In connexion with these phrases cf. also III 3, p. 61.

22 Cf. 12, p. 34.

23 In the following equivalences the propositional logic functors occur on the left as
components of formulas, whereas on the right they are used meaningfully as designa-
tors of the truth functions introduced in II 2, p. 35, 37. In this way the co-ordination
to be established by this definition is in a sense presupposed, but on the other hand,
the definition is more easily remembered in this form.

24 The symbol * Fp’ thus does not belong to the language Lz of propositional logic,
but to the language in which we speak about Lp.

25 Theorems suchas(p A @) Ar<>pA(gAr)and (p V g) Vr<> pV (g Vv r) suggest
the introduction of rules for the omission of parentheses more advanced than those in
III 2, p. 54.

26 For a proof cf. Scholz-Hasenjaeger [1], p. 212.

27 Thus, for example, if D is a domain of numbers, B(f12) addition, B(ar) = 3, and
B(az) = 5, then B*(fi2awaz) =3 + 5 = 8.
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28 If e.g. B(A41?)is the relation of being smaller than, and if B(a1) = 3, then B*(A412 a1)
is the property of being greater than 3. For one-place predicates, cf. below. .

29 This definition is in rhis context merely preparatory for the definitions of B*(AxA)
and B*(VxA) by means of P = xA. But cf. the generalization in V 2, p. 95.

30 This could also be regarded as the formation of a null-place attribute out of a
one-place attribute and an object; but this would be somewhat artificial and probably
no simplification.

31 That is, if B8*(P) holds for no object in D.

32 This customary restriction to non-empty domains probably reflects the traditional
exclusion of empty concepts. In fact, however, such restriction is superfluous; since
there can be no assignments in the above sense over empty domains, every formula is
valid for empty domains according to our definition, but is uninteresting. The situation
is somewhat different if we introduce assignments restricted to the ‘free variables’
of a wff. See Hailperin [1], Schneider [1].

33 Here the domain D is really required only for the definition of the concept of value
assignment: all attributes and functions given by 8B must ‘operate’ over the same
domain, to which must also belong the objects given by 8. Apart from this, however,
D merges into the interpretation of A and V.

34 Since to every value assignment B there corresponds a specific domain D, our
above definition of B* will hold here in a similar sense. Cf. note 33.

35 The sequence of symbols ‘B, A’ is chosen here so as to agree with that in the theorem
below.

36 For the proofs, cf. for example, Scholz-Hasenjaeger [1] §§ 33, 105, 113.

37 Cf. in this connexion IV 3, p. 81, 84.

38 After the Greek cmp.ocivs Lv (semainein) = to mean, designate.

39 QOr else it must be made clear that despite sounding and being written in the same
way, different words are ‘really’ involved. This is in general not contested when words
sound alike but are written differently, but becomes doubtful when the spelling is the
same, and in particular if subtle shades of meaning are involved that can be distinguished
only from the context.

40 After Aebi [1], p. xvi f., also p. 320, where it is given as an example for a more
seriously false inference.

41 The shift in meaning has been intentionally contrived here, after many similarly
challengeable formulations. Cf. L. Euler, Algebra, part II, sect. 1, chap. 10, § 149.
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if the basic theorems can be shown to be theorems, and the (new) basic
rules valid deductions in the sense of the semantic definitions in III 3,
p. 61f. This holds also if we are concerned with deductions in an extended
sense, e.g. of the following kind:

If every formula in S is (generally-) valid, then also A.

Deductions of this kind are required e.g. for the foundation of rules
such as

) From A(a) may be inferred AaA(a);
or

2) from VaA(a) and A(a)—B, where a does not occur in B,
we may infer B2.

For the reduction of the original rules to theorems there are various
possibilities, but these differ more from the point of view of interpretation
than in symbolic representation. Thus in a ‘purely formal’ way rules of
the form

A A B

(3) —B- or c

may be replaced by corresponding theorems
@) A-B or A-(B-C)
and, applying the rule of inference modus ponens
) A A-B
B

the original rules may be re-derived from the theorems.
If the rules with two premises had been similarly replaced by a theorem
A A B—C, then correspondingly a rule

A B

©) AAB

would have been required in addition.
The fact that a formula A is derivable from a set S according to rules
stipulated in any way whatsoever, is often expressed by ‘SFA’, the sign
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‘F’ here belonging to the language in which statements are made about
a symbolic language. Since on the basis of rules (5) and (6), it holds
that A, A-»BFB and A, BFAAB, we may refer to these rules by ‘A,
A—-BFB’ and ‘A, BFAAB’, respectively. We proceed analogously in
other cases.

To place a logic constructed in this way on a semantic foundation, we
must therefore on the one hand validate rules (5) (and, where appropriate
(6)), by the valid deductions A, A—BEB, (and A, BEA A B), the sign of
consequence ‘ F’ being referred in each case to the language in question.
On the other hand, the formally introduced theorems (4) must be shown
to be theorems in the semantic sense of III 3, p. 60. In the case of propo-
sitional logic and to a large extent3 also in that of predicate logic, this
can be done by the method outlined in III 3, p. 57. In other cases arising
in predicate logic we need to make use of a number of immediate in-
ferences, such as that every formula AaA(a)—A(e) is generally-valid.

It has been shown, however, that in the case of predicate logic some
rules cannot be transformed into theorems in the semantic sense exempli-
fied in the transition from (3) to (4), and these are precisely those rules
that, like (1) and (2), require an extension of the concept of consequence
for their foundation. Such rules (or, at any rate, one of this type) will
thus have to be retained together with (5) as basic rules. A possible
form for such a system of basic theorems and basic rules will be shown
inIV2, p. 74 f.

The transition from the rules (3) to the theorems (4) may also be
interpreted differently, so that the sign — expresses by definition the
‘validity’ of the corresponding rule and the sign combination A—B is
simultaneously introduced as a formula. Rule (5) then simply expresses
the fact that the transition from (3) to (4) may be reversed. Now validity
attaches to precisely those rules that express the ways in which inferences
may be combined. Suppose, for example, that A->B and B—C express

A B
the validity of the rules Y and < These latter yield the compound rule
A

B A
< and hence < the validity of which is expressed by A—C. Then this

may be stated through the validity of the rule
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A-B B-oC
™ ———
A-C

that is, by the ‘theorem’
(®) (A-B)->(B->C)-(A->0)).

The step from (7) to (8) is thus an example of the transition from (3) to
(4). By similar methods P. Lorenzen [1] has been able to found a large
part of logic on a ‘constructive’ basis.

The method used for the foundation of (7) and (8) is characterized by
the fact that here the validity of a rule or formula is not demonstrated on
the basis of a specific definition of validity, but on very weak assumptions
about any validity whatsoever — assumptions that are satisfied among
others by the general validity defined above in III 3. We did not there
define — by the transition from (3) to (4), but this transition is contained
in the relation discussed in III 3, p. 61, between — and ‘ k°. By employing
special techniques, which lack of space prevents us from discussing here,
it is even possible to include rules of the type of examples (1) and (2).
See Quine [3], Gumin-Hermes [1].

Once the use of the sign — has been regulated in such a way, whatever
the basis of proof, that we have at our disposal on the one hand the
higher-order rule contained in the transition from (3) to (4) (the rule of
introduction of implication, the deduction theorem?) viz:

Any premise of a rule may be eliminated as rule premise by

being placed as implication premise before the conclusion,
and on the other hand rule (5), then there exists a wide measure of freedom
so far as the characterization of the remaining logical symbols is con-
cerned.

The basic theorem may be the basic rule
AAB—> A exchanged AABFA
A-> (B> AAB) for A,BFAAB
A—->AvB AFAvB

and, to give a more complicated example,
A-C) > (B-C)>(AvE->Q))
may be replaced by
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consequence, which usually involves a restriction to finite sets of premises.
As symbolic representations of consequences — technically ‘sequences’ —
sign strings are formed, consisting of

(a) a series (possibly empty) of formulas®, these being the premises of
the sequence (this series represents the set of premises of the deduction);

(b) a ‘follows’ sign, e.g. », which now counts as a component of the
expression, but must be distinguished from the sign for implication
(here —);

(c) a formula as conclusion.?

Sequences accordingly have the form A; ... A, » B, A p B, or » B.
A syntactic ‘theorem definition’ for sequences must thus stipulate:

6) that specific sequences, i.e. the basic sequences, are theorems;

) that specific operations, applied to theorems, always yield
theorems (again every operation involves a basic rule);

®) that theorems are obtained only by the application of (6)
and (7).

The representation of consequences by means of sequences instead of
rules thus enables us to systematize valid deductions without the use of
higher-order rules.

We can speak of a calculus if there is

(A) a structurally described language, such as Ly, Ly, L or a totality
of sequences formed from the formulas of another language;

(B) a structural theorem definition, such as (3)-(5) or (6)—(8); or
else the closely related definition of derivability from a set of premises,
e.g. in the form:

From any set of premises S whatsoever, may be derived:

) all basic theorems,

(10) all expressions in S,

(11) with the premises of a basic rule also its conclusion,

(12) only what can be derived in accordance with (9)-(11).

Thus, for example, all theorems are derivable from any S whatsoever.

We symbolize ‘S Fo A’ for ‘In the calculus C the expression A is
derivable from S’.

This genetically described derivability involves, of course, the existence
of a derivation.

By a derivation of A from S may be understood e.g.

(C) a tree-like figure (as in I 3, p. 20 f.), ending in A, with all starting
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The four rules for A and V have been chosen so as to bring out most
clearly their common and disparate features. The properties of A and V
expressed in the simpler basic rules Gi and Ps may also be formulated in
theorems. The very simple proofs of these theorems are as follows (where
‘PL’ stands for ‘valid in propositional logic’):

A-A (PL) d B—-B (PL).
———— n —————
AAS A 2 B VaB
Inversely, however, these theorems may also be used as basic theorems

to replace the corresponding basic rules, which then become derivable
rules. The derivation for Gi is:

(possible
(rule axiom) (PL)
prémise) AxA - A (/\xA - A) - (A —-B > AxXA—> B)
A-B A—B - > AxA->B

AxA - B

The derivation for Ps is entirely analogous.

With the aid of TS the theorems AxA— A and A—VxA may be gener-
alized into AxA—A(x/t) and A(x/t)—>VxA. Often, too, the basic rules
Gi and Ps are expressed in their corresponding general form; in this
case TS is demonstrable.

The rule Gs is a generalization of the rule B Fp AxB, cf. IV 1, p. 67,
which at first sight appears a more obvious choice. However, if this had
been selected as basic rule, then a theorem of A-transference, i.e. formulas
of the form Ax(A—B)—(A—AxB), which are always generally-valid
if x does not occur in A, would not be demonstrable for the general
case.l®> We demonstrate first the above-mentioned simpler rule of gener-
alization:

Let A be a formula in which x does not occur.

(rule premise) (PL)
B B:» (A-A)->B
(PL) (A->A)—>B
A A (A—-> A) > AxB (Gs)
AxB
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Having worked through these examples, the reader should try to derive
the rules in which the syllogisms (I 2, p. 15f.) may be expressed on the
basis of I3, p. 25.

3. SOUNDNESS AND COMPLETENESS OF CALCULI

Every calculus may be manipulated as a kind of combinatorial game —
merely to discover what happens — and in the process one can learn a
great deal about the connexions between the ‘theorems’ of the calculus.
In general, however, we tend to be most interested in those calculi
whose basic theorems and basic rules we recognize in some sense or
other. This may express the following intention: whatever the signs or
expressions in the calculus may be capable of meaning, we shall consider
only those interpretations where the selected basic theorems and basic
rules hold. Once we have agreed on these, we must also recognise all
demonstrable theorems, since the correct application of the rules can
be controlled. Theories in which modalities (such as necessary, possible)
occur as definable or as basic concepts have usually been presented in
this form. Cf. Lewis-Langford [1]. More recently S. Kripke has put
forward a semantic approach to modality which raises similar questions
of soundness and completeness of related calculi. See Schiitte [1].

Here the totality of admissible interpretations is in a sense defined
precisely by the choice of calculus; but it is not stated explicitly, since
the language to be interpreted is used only within the range determined
by the calculus selected. In the case of the calculi discussed in IV 2,
for example, certain basic theorems or basic rules, whose foundation
presupposes the notion of a closed domain of objects, must be omitted
or replaced by weaker ones, should one consider this notion to be unten-
able when referred to infinite domains.

A closer analysis shows that such weakening needs to be undertaken
already in propositional logic and that in particular finite-valued matrices
are no longer adequate to represent propositional connexions, although
the basic rules of predicate logic may be retained. By far the most im-
portant among the variants proposed is the so-called intuitionist propo-
sitional and hence also predicate logic.1¢ This may be regarded as the
totality of theorems and rules that hold independently of the assumption
of closed infinite domains of objects, but is often defined by means of
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calculi, whose basic theorems and basic rules are at any rate compatible
with this critical standpoint. We may obtain a calculus for intuitionist
propositional logic e.g. from PSC (p. 73 f.) by replacing the basic sequence
(A—B) (—A—B) » B by the sequence (A—B)(A——B) » — A, which is
demonstrable in PSC. In this calculus we cannot derive the sequences
» (Av—A) and ——A » A, which express the assumption that every
proposition is either tfrue or falsel?, an assumption also underlying the
discrete ontology introduced in II 1, p. 28.

If, on the other hand, we start with the concepts of validity and of
consequence for propositional and predicate logic, whose definitions pre-
suppose this ontology, and if we regard the calculi as aids for determining
that e.g. Fp A or respectively that S kg A, then the calculi, to be ‘usable’,
must satisfy certain conditions.

For the formulation of such presuppositions let ‘ F; ’* stand for validity 18
or equally for the consequence relation in reference to a given language L,
and ‘F.’ for demonstrability or equally for derivability from a set of
premises in the calculus C.

If C satisfies the following condition with reference to L:

(1) If Fc A, then k. A,

then C is usable for the discovery of valid formulas in L. In this sense,
for example, the FC discussed in IV 2, p. 74 f, is usable for predicate
logic.

Sometimes the following requirement is made in addition to (1):

) IfA,, ..., A, Fc B, then A,, ..., A, kp B;

that is, C is intended to be usable also for the discovery of consequences.
The requirement is not met by the FC discussed in IV 2, for three of its
basic rules (viz: Gs, Pi and TS) infringe it. For example, under TS
A'a, bg A'a, holds but not A'a; Fy A'a,; for in this case, by reason of
III 3 (1), p. 61, the formula A'a,—A'a, would be generally-valid, which
is easily disproved. In fact, only special cases or else alterations of (2)
can be demonstrated for the FC in IV 2, such as, for example:1?

@2.1) IfFcA A...A A, - B thenA,,...,A, F B.

However, it is also possible to design calculi which will allow conse-
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quences to be directly discovered. Among these are sequence calculi,
where ‘usability’ may be formulated as follows:

(3)  IfFcA,..A,»B, then A,, ..., A, k. B.

This formulation expresses the close connexion on the one hand be-
tween P and ‘F’, and on the other, in virtue of its similarity to (2.1),
between p and —. In fact, it is easy to design a calculus Cfor propositional
logic such that (2) holds. Our intention in presenting the PSC in IV 2,
p. 73 f, was to give a simple example of a calculus having the property (3).
This calculus can furthermore be easily converted into a calculus FSC
for predicate logic characterized by the property (3).

The property of ‘usability’ of a calculus, which is expressed by (1),
(2) or (3) merely means that a calculus thus characterized will produce
no false derivations. Let us designate this quality somewhat more cau-
tiously as somndness (with reference to a given concept of validity or
consequence). Proofs for the soundness of calculi expressed in the form of
(1) or (3) all have the same pattern: it is shown that the basic theorems
are sound and that the application of the basic rules cannot produce
unsound conclusions from sound premises. In demonstrating soundness
as formulated in (2), one must bear in mind that the basic theorems are
to be manipulated like basic rules without premises, and make use of
the fact that consequences may be put together like derivations.

If a calculus C is to be truly usable with respect to L, then apart from
being sound it must produce validity or consequence for L in a sufficient
number of cases, if possible in all. In this case C is said to be complete
in respect of L. This completeness, which in general makes sense only
for sound calculi, is expressed by the conversions of (1), (2) or respectively
(3), viz:

@ If £, A, then Fc A,
5) IfA,, ..., A, E. B then A,, ..., A, F¢B,
©) IfA,, ..., A, E B, then Fc A, ... A, b B.

The PSCin IV 2, p. 73 f. is complete in the sense of (6) for propositional
logic, and the FC in IV 2, p. 74, is complete in the sense of (4) for predi-
cate logic. Calculi are also known which are complete for predicate logic
in the sense of (5) or alternatively (6).

It is in general more difficult to prove the completeness of a calculus
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than to prove its soundness (this latter is sometimes proved incidentally
in the course of proving the former). Proofs for the completeness of
most (complete) calculi for propositional logic are relatively easy. The
reason for this is that in this case the definition of general validity yields
a method of proof and hence a calculus, though not in the sense of our
standardization. In order to adapt this method to our standard form
e.g. in the case of PSC, we proceed as follows: If A is a formula con-
taining (for example) precisely the variables py, ..., p,, then the evaluation
of A with the aid of truth tables is reflected in 2" demonstrable sequences
of the form

@ {_,ﬁ}{—,?} '{—':}

where to the left of b are entered all 2" possible value assignments for
D1s -5 Py (‘pi for ‘p; is true’ and “—p;” for ‘p, is false’), and to the right
of » we write A or —A according to the value of A for the corresponding
value assignment on the left. The fact that for any A all these sequences
are provable is demonstrated in the first part of the proof. This is done
step by step via the construction of A. If A is generally valid, then A alone
occurs at all positions on the right. In this case it is possible to demon-
strate — essentially by applying the so called ‘deduction theorem’
... A»B Fp ... » A>B —the 2"~ ! pairs of sequences:

D1 DPn-1 -
(8a) {_’pl}...{_’pn_i} >, A,

(&) { pl}__.{ p..-l},_,pn_,A_

—7P1 7 Pn-1

By the application of a basic sequence of the form (B—A) (—B—A) » A,
viz: (p,—>A) (—p,—A) » A, we then obtain the 2"~ ! sequences

©) { "1}...{ ""“}»A.
D1 =7 Pp-1
By repeated application of this process all premises are eliminated and —
for a generally-valid A — we obtain the demonstrable sequence » A.

Although this is only a special case of (6), it indicates a generally applic-
able method.
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(13) §i; = {AxC —» C(x/a;) AxC - C(x/a,),
D(x/a,) = VxD, D(x/a,) - VxD,
C(x/a;) » AxC, VxD - D(x/a))},

where i and j stand independently of each other for the values 1 and 2.
A choice appropriate to the following must now be made among these
four sets. Let us suppose that i=1, j=2 is an ‘appropriate’ choice (see
below). Then the following formula obtained from S, , by transformation
of the premises of deduction into premises of implication (by application
of the deduction theorem according to IV 1, p. 69), is valid already on
the basis of propositional logic (and is thus an axiom of FC):

(14)  (AxC > C(x/a) = (... »
((C(x/a,) = AxC) — ((VxD - D(x/a,)) = A))...).

The first four premises are demonstrable in FC by means of Gi, Ps and
TS, and may therefore be ‘cut’ by use of modus ponens.2? We have thus
proved within FC the formula

(15)  (C(x/a;) » AxC) — ((VxD = D(x/a;)) = A).

By means of propositional logic transformations2¢ we now derive the
two formulas

(16)  AxC— ((VxD — D(x/a;)) = A),
(17)  — C(x/ay) - (VD - D(x/a;)) — A).

From formula (17), and using the rule derivable from Gs and TS, viz:

(18) —C(x/a) > B Fg—AxC > B
(in the case where a does not occurin C — B)

we obtain a proof for
(19)  —AxC— ((VxD - D(x/a)) = A)

and from (16) and (19), again on the basis of propositional logic:23
(20) (VxD — D(x/ay)) — A.

This gives us, as above by rules of propositional logic, two formulas:
(¥3)) — VxD = A,

and
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22) D(x/a,) — A, whence via Pi:
23) VxD - A,

and finally, again by rules of propositional logic, from (21) and (23):
24) A

This arrangement has been chosen so as to point out as closely as possible
the analogy to the case of sentential logic. A technically simpler way is
given by the possibility of using the non-occurrence of the respective
variables for proving

(25) Va,(C(x/a;) = AxC) - (20), from (15)
and (later)
(26) Va,(VxD - D(x/a,)) = A, from (20)

where the exhibited premises are provable in FC.

Under each of these arrangements, generally, the earlier applications
of modus ponens are needed to ‘free’ some variable, i.e. to satisfy the
non-occurrence conditions as required for (18), (23) or (25), (26)
respectively. The real difficulty of the general case is that these conditions
cannot be fulfilled by a previously delimited number of variables. In
actual fact infinitely many variables must be introduced for the general
case and a ‘suitable’ selection and order of sequence must be laid down
for them. If there are terms (other than variables) in the language, the
‘appropriate choice’ includes that those places as taken by a; and a,
in (15) are reserved for variables. The number of premises thus becomes
infinite, and we require a special auxiliary theorem to enable us to return
to a finite set of premises after a ‘suitable’ selection. The characteristic
of the concept of deduction mentioned in III 3, p. 62, viz:

If A follows from S, then A follows from suitable finite sub-set of S,
which we have here formulated for predicate logic formulas ‘by rules of
propositional logic’, allows the transition to a finite set of premises which,
as shown in (13) to (24), may then be manipulated and eliminated by
the use of a suitable sequence of the variables.

NOTES

1 Cf, for example I 3, p. 19 ff., where the syllogisms are reduced to barbara and darii
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NOTES

and certain auxiliary modes of inference by means of higher-order rules which in
essence express the structure of inferences.

2 This inference is a frequent one in mathematical practice, when from the existence
of an a such that A(a), is inferred the existence of a b such that B(b). We take as premise
VaA(a). Then let a1 be ‘such an a’. From a is constructed a b1 such that B(by). We
then infer V bB(b), where no further reference is made to a.

3 The reason being that in predicate logic everything holds that is ‘already valid on
the basis of propositional logic’.

4 The term ‘deduction theorem’ reflects a situation, where this rule is not basic but a
non-trivial theorem about a calculus in the sense of IV 2.

5 For requirements regarding the set of the basic theorems and the relations under-
lying the operations, cf. VII 1, p. 123,

8 If all outside parentheses of these formulas are written down, the formulas can be
simply juxtaposed into a sign string. For the sake of legibility, however, they are usually
separated by commas.

7 If, after Gentzen [2], pp. 81 ff, the succedent is also admitted to be a series of wifs,
such sequences admit a much more elegant treatment.

8 These two rules describe the series of premises as representing a set of premises:
significance attaches to neither the arrangement nor the frequency of the members of
the series.

9 This rule could also be replaced by a basic sequence, viz: A (A = B)p B; however,
the rule we have selected gives greater prominence to the feature of reversibility.

10 If one wished to carry through this idea, which has an important bearing on richer
languages, one would once again have to generalize the concept of a sequence. Cf.
in this connexion e.g. Scholz-Hasenjaeger [1], p. 261 f.

11 A detailed treatment of this form of FC will be found in Scholz-Hasenjaeger [1].

12 This rule of course yields nothing new so long as it is applied only to basic theorems.
The situation changes, however, when at least one of the other basic rules is applied.
13 They are, however, demonstrable if e.g. AxB is demonstrable.

14 A variable that occurs neither in A nor in B is chosen for z. Since, as previously
stipulated, x does not occur in A, the substitution of z for x (1) does not alter A, (2)
changes B into B* in the sense of Rb. .

15 This reverse re-naming restores the earlier formula. The insertion of the two Rb’s
allows a freer use of Gs (and analogously for Pi). Gs and Pi are often used in this
extended sense from the start, but in this case the formulation of the conditions of
applicability becomes more complex.

18 ¢f, in this connexion Heyting [1], VII and Kleene [2]}, § 13.

17 At any rate, this is part of what is assumed: for it is possible to construct generalized
truth-tables T with more than two ‘truth-values’ where nonetheless F1 A v —A and
——A Er A hold. (We define * 1’ analogously to Fp for T.)

18 That is, in most cases, general validity in the sense of the definition in III 3, p. 60.
Sometimes, however, validity is defined for a narrower range of interpretations in an
analogous sense, as e.g. in ITI 3, p. 61.

19 We cite only the simplest variant of (2). In important cases special assumptions
relating to the variables occurring in As, ..., A, have to be made, but their discussion
would take us too far from our main topic.

20 After a proof by Beth [1], p. 263.

21 It would be enough to stipulate: for such sub-formulas of A and the formulas
obtainable therefrom through TS.
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22 Tn fact bound re-namings are generally required here so as to allow all substitutions
x/ai. Because of this certain refinements in the basic conception become necessary.
23 In a sequential-logic version of this proof, this step would be an application of
the cur-rules.

24 je. essentially the propositional logic theorem (p = g) > r) > (—~p—>r)A(g—>7r).
25 We using essentially the propositional logic theorem (p = ¢) = (— p — q) = q);
cf. the application of the sequence (B - A)(— B — A) ) A on p. 81.
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1 Ax(x = x), Axy(x=y->y=1x),
Axyz(x =yAy =z x =2),

and for arbitrary n-place predicates A",

2) AX{ o X, Y1 o V(X = VLA AX, = Yy,
= (A" .. %, > Ay o VW),

as well as for arbitrary n-place functional variables f™,

3) AX{ e X Y1 e V(X = VIA A X, =Y,
=[xy e Xy = ["V1 oo Vi)

The properties of = expressed in (2) and (3) above are also called
properties of congruence.

If the extensions of FC indicated above are standardized in the sense
of IV 2, we obtain a calculus IC for predicate logic with identity, having
the relation of derivability .

The following are typical theorems of IC, i.e. derivable from these
axioms:

0} Ax o Ay(y = x> Ay),

®) Ax o Vy(y = xAAy),

6) AxX A ANAX, NP =2,V ... VY = X, > AY),
@) Ax,v..vAx, oVy(y =x1V...Vvy = Xx,) A Ay).

Of these, (6) states that x,, and ... and x, have the property 4 if and only
if every y that is identical with x; or ... or x, has the property 4. We leave
it to the reader to formulate the remaining sentences in natural language.

Probably the most important of the additional possibilities of expression
afforded by the introduction of identity, is that of rendering the ‘naive’
use of number words (i.e. in phrases such as ‘three cats’ ‘nine bowls’, ...,
as distinct from the abstract use!l as in ‘four is a square number’, ‘three
plus four is seven’ ...).

Thus with the aid of identity we can express the so-called numerical
propositions, Viz:

®) ‘There are (at least, at most, exactly) two (three, four, ...)
A-things’,
) ‘(At least, at most, exactly) two (three, four, ...) A-things

are B-things’,
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as well as the limiting cases:

(10) ‘There is (at least, at most, exactly) one A-thing’,
(a1 (At least, at most, exactly) one A-thing is a B-thing’.

In this connexion it is to be noted that the specifying expressions ‘at
least’, ‘at most’, ‘exactly’, which are often absent from natural-language
examples (in cases where they can be inferred from the context) must,
where necessary, be supplied before translation into the symbolic
language. Thus: ‘Competitors are allowed to make two attempts’ means,
of course, ... at most two ...’

We give below the symbolical forms of the numerical propositions.

For (10):

VxAx There is at least one A-thing.2
VxAy(dy = x = y) There is at most one A-thing.
VxAy(Ay <> x =y) There is exactly one A-thing.

For (11):
Vx(Ax A Bx) At least one A-thing is a B-thing.3

VxAy(AyABy - x = y) At most one A-thing is a B-thing.
VxAy(Ay A By <> x = y) Exactly one A-thing is a B-thing.

In the general case the length of the formula increases so rapidly with
the quantity to be described that there is little point in writing out any
but the simplest cases; we shall therefore restrict our examples to the
cases ‘two’ and ‘three’.

Thus for (8):

Vxy(x = y A Ax A Ay),
Vxyz(x £ yAXx = ZAy £ ZAAxAAy A Az):

there are at least two (resp. three) A-things.

VxyAz(Az > z = xvz =),
VxyzAu(Au - u = xvu=yvu=z):

there are at most two (resp. three) A-things.

Vxy(x £ yAAz(Az oz =xVvZ=1Y),
Vxyz(x # yAx + zAYy F zAN(Auou=xvu=yvu=z)):

there are exactly two (resp. three) A-things.
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The reader may not find it easy to see that the above formulas really
do have the stated meanings.¢ However, once he has made the effort,
he will be able to work out for himself the formulas for four, five, etc.

Lastly, for (9):

Vxy(x = y A Ax A Bx A Ay A By),
Vxyz(x £ yAX +=2zZAY * ZAAxXABxA Ay A By A Az A Bz):

at least two (resp. three) A-things are B-things.

VxyAz(AzABz >z =xvz=yY),
VxyzAu(AuABu —» u = xvu=yvu = 2z):

at most two (resp. three) A-things are B-things.

Vay(x £ yAAzZ(AzABz &>z = xvz = y)),
Vxyz(x £ yAx+ zAy £ 2
ANu(AuABue—u=xvu=yvu=2)):

exactly two (resp. three) A-things are B-things.

Again, the reader will have to make a mental effort to understand the
formulas.5

The various numerical propositions — and similarly, of course, their
symbolical representations — are inter-related. We give below the most
important of these inter-relationships, at first in natural language.

(12) There are exactly n A-things if and only if there are at least
n A-things and at most n A-things.

(13) There are at most n A4-things if and only if there are not at
least n+1 A-things.

(14) If there are at most n A-things, then there are at most n+1
A-things.

Using the symbols previously introduced, we can now re-formulate
(12), (13), (14) for a fixed n (e.g. n=1, n=2, n=3, ...). For n=2 we
obtain the formulas

(12.1) Vxy(x £ yAAz(Adz ez =xVvz=Y))
> Vxy(x £ yAAx A Ay) AVxyAz(Az >z =xvz =),
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(13.1) VxyAz(Adz—>z=xvz=1y)
= Vxyz(x £ yAX £ zZAYy + 2A Ax A Ay A A2),
or in a formulation equivalent under the rules of FC applied to L,
(13.2) VxyAz(Adz—=z=xvz=1Y)
> Axyz(AXANAYyANAz > x =yvx =zVvy =2).
This gives us another way of expressing that there are at most two (or
analogously three, ...) 4-things.6
(141) VxyAz(dz—->z=xvz=1Y)
- VxyzAu(Au »u=xvu=yvu=z).

To derive these formulas from the axioms of identity would lead us
too far from our present topic.

B. The definite article (individual description)

Let us now try to symbolize propositions such as ‘Elizabeth is the present
Queen of England’, ‘Dickens is the author of David Copperfield’, 2 is
the even prime number’, i.e. propositions of the form °y is the (only)
A-thing’. We require a formula of the form y = .... With the symbols so
far available to us, however, all we can manage is something along the
lines of

1 Ax(y = x & Ax),

which clearly does not express the intended meaning. And further, it is
often useful to be able to symbolize propositions of the form ‘the (only)
A-thing is a B-thing’. This can be done on the basis of (1), but in two
different ways which although equally justified, are not logically equiv-
alent, viz:

) Vy(Ax(y = x <> Ax) A By),

i.e. there is a thing which is (the only) A-thing and simultaneously a
B-thing,

3) Ay(Ax(y = x & Ax) > By),
i.e. every thing which is (the only) A-thing is a B-thing.

On the assumption that there is exactly one A-thing both formulas
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(4) and (5) are equivalent, i.e. (6) F (4)«>(5). The analogue for the general
case can be demonstrated only step by step via the construction of B, cf.
Whitehead-Russell [1], pp. 184-186.

For this reason the i-operator is sometimes introduced as a special
basic concept, whose use may be regulated by a suitable schema of the
t-axioms, thus e.g. the following:

™ Ax(y = x & A(x)) AB(y) = B(xA(x)).”

It is fairly easy to see that this represents on the one hand a weakening
of the equivalence

® Vy(Ax(y = x & A(x)) A By) & BixA(x),

which follows from Russell’s definition for BixA(x); and on the other
hand a strengthening, since the generalizations from By to B(y), admissible
in this direction, are already included.

The most important derivations from (7) are (9) and (10):

® VyAx(y = x & A(x)) » A(xA(x)).

Let us illustrate this:

In the domain of integers we define (z—x) by ty(x+y=z); then
by virtue of (9) it holds that x+ (z—x)=z. It is precisely in demonstra-
tions like this one that we require the ‘trivial’ statement that the only
thing with a certain property has that property.

(10)  VyAx(y = x & A(x)) A AyB(y) = BOLA(x)).

This theorem enables us to apply a universal proposition to an object
described by an individual description, since we have introduced no
general rule for the substitution of singular descriptive terms for free
variables.? The following rules, in particular, are derivable from (10):

(11)  VyAx(y = x & A(x)) F AyB(y) » B(xA(x)),
(12) VyAx(y =xoAx) - B()
FVyAx(y = x < A(x)) = BaxA(x)).

This last rule shows that if a requirement of ‘legitimacy’ is made,
singular descriptive terms may be substituted for free variables like other
terms.
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2. DESCRIPTIONS OF ATTRIBUTES AND FUNCTIONS

A. Attributes

We have found it useful on a number of occasions to be able to refer to
‘the property of x that is described by a condition A(x)’ or ‘the relation
between x and y that is described by a condition C(x, y)’, ... in general:
‘the attribute whose applicability to a system x,, ... x, of objects is
described by a condition C(x,, ..., x,)’.% This suggests an extension of
predicate logic. The formula C(x, y)-to take the second-simplest example -
is not suitable for this purpose, since for given values x, y, it already
represents the relation holding between those particular values. Further-
more, there would be no possibility of distinguishing between ‘the
relation C(x, y)’ as such, and that property of x which, at a given value
of y, is also represented by C(x, y) under the same convention, i.e. the
property A With the ‘property’1® Ax(4Ax<B(x, y)). Admittedly, this
property A could be designated by ‘1AAx(4x<—B(x, ¥))’ on the basis of
an obvious extension of V 1, p. 91. However, the derivation of the rules
governing the use of such predicates would present some difficulties, as
we would first have to develop a calculus of identity with formulas like
A}l=A}. Tt is simpler to extend the language of predicate logic by means
of special predicates for the description of compound attributes, such
as we have already used on earlier occasions. Instead of the notation xA
or [x]A introduced in II 2, p. 39, in connexion with the quantifiers Ax
and Vx, we shall use the predicates

[x|A], [xy| Al ... etc.,

thus adopting the symbolism most widely employed in mathematics for
this purpose.1l

(1) The required extension of Lg may be described by the following
addition to III 2, C(1)-(11), p. 53 f.:

(*) if Ais a wff, then [x; ... x, | A] is an n-place predicate, i.e. a com-
prehensor predicate.

As this involves extending (6) similarly, we obtain a ‘simultaneous
definition’ of predicates and wffs.12 This results in particular in an in-
creased range of applicability of III 2, C(7)-(10), as atomic formulas
(in the extended sense) such as [ab | A]t,t, can now be formed. The
operator [x; ... x, | ...] is also known as abstraction operator or com-
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Sometimes the predicate variables (and, where provided, the function
variables) are also specified in the sense that the sort of object-variable
and, where applicable, the sort of terms that may occur at each position,
are fixed. For example, if 4} stands for a three-place predicate variable
whose argument places are reserved for the variables a,;, a;, a,, (in this
sequence), then we may construct out of them the atomic formulas
A;“ariasjatk'

Taking (1) and (2) into account the semantic concepts of general
validity and derivability may be transferred in an analogous sense from
111 3, p. 59 f. to the language of a many-sorted theory, and similarly we
obtain a many-sorted calculus by analogous transference of the axioms
and rules of the predicate calculus.

To give the reader an example of the resultant increased legibility of
formulas, we write out below — in a suitable many-sorted language —
the geometric axiom formulated in III 2, p. 56 in the language of general
predicate logic:

3) ApiAp,Vg(Lp g ALp,g). .

Whilst our immediate aim in introducing the idea of many-sorted
theories has been to give more convenient expression to propositions
already formulable in L, it can also be used to extend considerably the
language of predicate logic. Such extension is required if we wish to
give a systematic symbolic expression to the conception of attributes (or
sets) and functions as objects — a conception that has already proved
unavoidable on a number of occasions above when we wished merely
to be able to talk about them.24

The introduction of comprehensor terms (cf. V 2, p. 94 and 97) does
not in itself bring about this extension. The first decisive step in this
direction is rather the introduction of ‘For all ...” and ‘There is (are) ...’
in respect of attributes or sets (and, where applicable, functions), e.g.
of the formulas A4;/A and VA/A. These formulas can be interpreted like
the formulas of a many-sorted theory, or logic, where apart from the
sort D, of objects in the narrower sense, we have the following:

the sort D, of truth values, with the variables 49,

the sort D, of one-place attributes over D,, with the variables 4],
and in general:

the sort D; of i-place attributes over D,, with the variables 4.
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Instead of predicate variables for attributes over the domains D, D,,
D,, D,, ..., D;, ... we here have only some specific predicates determined
by the ‘nature’ of the above sorts. The fact that an object from D, is
applicable to an object from D,, gives rise to a natural swo-term relation
between the D;-objects and the D-objects; the fact that an object from
D, is applicable to a pair of objects from D,, gives rise to a natural
three-term relation between D,-objects, D, -objects and D -objects; etc.
We could introduce corresponding predicates for these special attributes,
e.g. §2, %, ..., with the atomic formulas $>4la;, $p342a ;,j,, OT in general
¢**'4la;, ... a;,. If as is usual, we omit the (predicates) ¢* but still refer
to their interpretations (as if they were invisible predicates) we have the
same atomic formulas as in L. This is a way of describing the intention
that what is indicated by a variable 4/ is an object as well as a function
(in the former version A, gave the objective, and ¢'*! the functional
part of it). The set-theory notation a; € A}, (a;,a;,) € A2, ... is also used

J17°J2
occasionally, and so is the form A} > a;, A2 5 (a;,4;,), ..., which rep-

resents a compromise between the symbolism of préiiigate logic and that
of set theory.25

By means of these or similar conventions, the essential feature of which
is always the introduction of A4, and VA} (in some cases also of Af{
and Vf}), a second-order language L2 of predicate logic is formed.

The minimum requirement for the interpretation of the formulas of
L2 is that for given domains D,, Dy, Dy, D,, ... the predicates ¢2, ¢°, ...
(or their analogues) have fixed meanings. The requirement is normally
met if all domains D; consist of attributes (specifically, of i-place attributes)
over D,. This in itself distinguishes the second-order predicate logic from
a general many-sorted logic and makes it a part of a logic (or theory)
of types, where ‘type’ refers to a hierarchy of abstract ‘objects’ which are
the outcome of our iterated objectification of functions. Further, general
validity and other semantic conepts are usually defined in such a way
as to coincide, for formulas already belonging to L, with the concepts
defined for L. This is always the case if the requirement is made that
D, consist of all i-place attributes over D*. These interpretations have
been designated as ‘absolute’, ‘standard’, ‘normal’ or ‘maximal’.

It is unlikely that we would consider other interpretations of L2, had
it not been shown that for infinite D, each axiomatic description of the
appurtenant (maximal) D;as maximal is insufficient. It can be demonstrated
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that even a catalogue of all propositions formulable in L2 that are ‘true
for D, Dy, Dy, D,, ...> would be inadequate for this purpose. For ac-
cording to a theorem of Loéwenheim and Skolem such a catalogue —
which might be regarded as a kind of super axiomatic system — would
always have a model with the same D, (and D,)) but non-maximal domains
D, D,,.... Apart from this, it is not possible to describe such a catalogue
by means of a calculus in the sense of IV 2, p. 70 f. (as will be shown in
VII 3, p. 135), so that an ‘axiomatic’ description of the domains D,,
D,, ... presents difficulties on two scores.

Some researchers have gone so far as to advocate that these con-
ceptions be excluded as senseless from the field of logic and mathematics.
Nevertheless, the general practice is to interpret L2 formulas as ‘normal’,
since their meaning might otherwise be subject to imponderable changes.

For example, from the possible definition of identity in L2, viz:

@) x =y =p AL (A% > Aly)

we can demonstrate, in a calculus appropriate to L2, the axioms of
identity formulated for L; in V1, A, p. 88. However, this does not
exclude the possibility that in a non-normal interpretation compatible
with the axioms, the relation designated by ‘=’ holds between two
different objects %, 1) out of D, e.g. if all the properties in respect of which
¥ and y differ are absent from D,. And this is a comparatively innocuous
example. Further, the definition contained in (4) shows that L2 may be
based equally on Lg or on L.

It is an obvious next step to extend L2 for all of its variables, i.e. for
all provided types by adding the expressions described in V 1 for Ly.
This also gives us the possibilities of expression contained in V 2, p. 94,
as is shown by the following definitions:

(5.1)  [x]AX)] =pr 1A' Ax(41x & A(x)),
(52)  [xy|B(x,»)] =ps14’Axy(4%xy & B(x, »)), etc.

We give below a typical example of what can be said with L2, using the
extensions introduced in V 1 and 2, for the sake of simplicity.
The generalization of

©)  [xy|Axyl, [xp] Axyv Vz(dxz A Azy)),
[xy | Axy v Vz(Axz A Azy) v VZVu(Axz A Azu A Auy)],
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which is only incompletely expressed by means of “...” in

Q) [xy | Axy v Vz(Adxz A Azy) v VzVu(dxz A Azu A Auy) v ...] 2

may be written in ‘closed’ form in L as follows:

®) [xy | AB(Auv(Auv — Buv) A Auvw(Buv A Avyw — Buw) - Bxy)].

Whereas only finite ‘4-chains’ of a determinate length can be described
in terms of (6), (8) yields the definition of ‘A-chains of arbitrary finite
length’ and therewith the definition of finiteness which is generally used
for the definition of natural numbers in terms of logic. The concept of
finiteness provides a vicious example of how concepts can be twisted if
LZ is used in the sense of a non-normal interpretation: under each
intuitively correct definition of finiteness, some infinite set might pass as
finite.

In our description of L2 we have so far not touched on the possibility
of talking about arbitrary properties of (and arbitrary relations between)
attributes, i.e. about attributes over the domains D,, D,, .... These
‘second-order attributes’ (from the point of view of ordinary predicate
logic) are the first-order attributes of the special many-sorted theory,
as the language of which L was at first understood. All that is required,
then, is to extend L2 by means of the predicate variables omitted above.
From a formal point of view this gives us a many-sorted language as
introduced initially, supplemented by the special predicates $2, ¢3, ...
(cf. p. 101).

This language may be extended as required in the same way as de-
scribed above for Ly, and this process may be repeated as often as re-
quired. The need for such extensions can be demonstrated by means of
examples, but we shall defer doing so until we have the appropriate
symbolism at our disposal.

Clearly, the usefulness of the above extensions LZ, ... of Lg depends
to a great extent on our being able to order distinctly the terrifying
multiplicity of new types created. The logic that results from such
repeated extensions is known as higher-order logic or theory of types.

The various types are designated by type indices (often referred to
simply as types), and the rules of formation for the type indices yield
the required principle of order. Thus if 7 is a type, then D, is the domain
of objects ‘of type ’, and a3, 4, ... are variables?? ‘of type 1’. That is,
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definitions are correspondingly longer. Nevertheless, it is sometimes use-
ful to have a language which has so narrow a range of vocabulary and is
yet so expressive (i.e. one in which only one-place predicate variables
occur).

Using the method indicated in V 2, (11), p. 96, it is possible to describe
functions of all kinds in terms of Lo, or L(y,). It is, however, advisable
to treat the different kinds of functions other than attributes as separate
types.

This means that convention (9) would have to be modified, for we
would have to symbolize the type of the function value which we had
been able to suppress in (9), since it was always ‘0’

We thus stipulate:

(14) If o, 4, ..., @, are types, then (o, | o ... a,) is the type of the

functions with the definition domains D,,, ... D, and values in D,,.
In this way all earlier types (o ... @,) are preserved in the form (o | o, ...
o,); but other types are added, in particular types of functions whose
arguments and values are again functions — which is becoming increasingly
important in modern mathematics.

As Schonfinkel has shown, these new types can also be used to reduce
all types to the types of one-place functions, and this in a manner much
simpler than that of Kuratowski above. For example, the type
(((e | B) 1 v) | 8) clearly expresses the same as the type (a | 3yB), as is
shown by the corresponding application of (13). On the one hand we
form

@15) a,@1%®qlq1a8,
and on the other, step by step30
(16) al(((u I8l 8)’ ag, a; and ag,

whereupon the result is normalized. The general formulation follows
fairly obviously.

We now stipulate in place of (14):

(17) If a, B are types, then (af) is the type of the functions with
arguments in Dy and values in D,.31

We may then describe the language Ly of the theory of types in terms
of the following rules:

(18) Every constant of type a is an expression of type o (this schema
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requires specification of the constants that are to be effectively introduced);

(19) Every variable of type a is an expression of type a;

(20) For arbitrary expressions A(*), BP of types (af) or B, (ACPIBP)
is an expression of type o.

Expressions of type o will be counted as formulas in the earlier sense.
All other expressions will be regarded as ferms in the extended sense.

Within the framework of (17)-(20) we can further introduce all
possible logical functions as constants of corresponding types. An ex-
tremely elegant calculus for a language of this kind has been developed
by Alonzo Church [2], its usefulness deriving largely from the fact that
as well as (18)-(20), the comprehensor terms of all possible types are
admitted in virtue of the following addition to (19) and (20):

(21) If A* is an expression of type o, then [a® | A*] is an expression
of type (ap).5

The language of the theory of types enables us, in particular, to establish
the connexion between the use of numbers for counting objects and the
abstract use of natural numbers in calculating.

In the simplest case numbers may be regarded as properties of objects
of type (0%),33 i.e. of properties of objects34 and not of objects themselves
(imagine a ‘three-Magi’ or a ‘seven-dwarf”). They are thus objects of type
(o(o#)). Now these objects out of D,,4)y) may be described in purely
logical terms, for we can express without using numbers that two objects
out of Dy, hold for the same number of D*-objects. It is further possible
to define addition and multiplication for numbers as specific objects in
D (((o(#))(o(0%)))(o(ox)y) >> and to prove the known laws of arithmetic on
the assumption that there are sufficiently many things in D,,.

Turning now to botany, we conclude with an example that is closer
to life. Let D, be the domain of all botanical individuals. Among prop-
erties over D,, i.e. objects out of D,,,), would then be included all the
concepts under which botanists are accustomed to order their wealth
of classificatory possibilities, i.e. (from top to bottom): divisions, classes,
orders, families, genera and species. The concepts division, class, order,
Jamily, genus and species would then be regarded as properties of objects
out of D, or as objects in D,,4))-

This, however, is not how botanists actually use these concepts. Even
if a genus contains only one species, or if a family has only one genus,
these are distinguished. We ought therefore to regard species as occurring
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in Dy, genera in D oy,  divisions in D o(o(o(ootox)))yy)- Fortunately
this is a topic on which we need exercise our minds only rarely, since for
every construct in Dy,(,4)) there is a natural counterpart in 1)

NOTES

1 In this connexion cf. V 3, p. 106 f.

2 Cf. 112, p. 40.

3 Cf.13,p.25.

4 It is generally agreed that a ‘literal’ translation into natural language is not very

helpful.

5 Using the more abstract concepts of V 2, p. 96, we obtain e.g. Vxyz(x % y Ax =% z

AyZF zAA N B= {x, v, z}), as equivalent to — and more intelligible than — the last-

mentioned formula above.

8 The corresponding way of expressing that there are at least three A-things is less

intuitive, and we merely state it: AxyVz(z= x A z%= y A A2).

7 The substitution of wxA(x) for y requires precautionary measures similar to those

formulated in IV 2, p. 75 for the substitution of terms.

& Such a rule, though occasionally chosen as a basic rule, is incompatible with the

maxim to which we have here adhered, viz that at the most derivations from (8) are

to be demonstrable.

9 For further examples, cf. p. 96.

10 On properties of properties, etc., cf. V 3, p. 103.

11 Admittedly the mathematical use is in connexion with sets, but the two uses are

very close, sets and attributes being occasionally even ‘identified’, as they can replace

each other in appropriate formulations. The proposed use of [ ], instead of { }, is

to point out that the denoted attributes are, in general, not in the universe of discourse.

12 If additionally we formalize the use of the definite article, as under V1, p. 91, a

simultaneous definition of terms, predicates and wffs is required.

13 From the Latin comprehendere. A particularly elegant comprehensor theory and

technique will be found in Curry’s ‘Combinatory Logic’ (cf. Curry—Feys [1] and

Cogan [1]).

14 (x1 vee Xn
¥1...%Xn

15 It is only if one proceeds to analyse AxA and VxA into Alx|A] and V[x|A]

respectively, on the basis of II 2, p. 39 (an obvious step after the introduction of

comprehensors) that small additions become necessary.

16 Whether we write ‘[xy ] ¥y = fxI’ or ‘[yx | y = fx) is of no consequence, so long as

we are consistent.

17 The meaning here of ‘fgx’ is: f applied to gx; cf. III 2, C (2), p. 53.

18 Tn the sense of a generalization of III 2, C (2).

19 Cf. (4) p. 95.

20 Analogously, where appropriate, also f + g = [xy | fxy + gxy] etc.

21 The exponent ~1 must not, of course, be confused with a place index.

22 Tn a semantic sense only. Calculi for a predicate logic extended by comprehensor

functors [x1 ... Xn | t] have up to now been little investigated. One might consider

Viy =t) = [x1... xn | tlx1 ... x» = t (¥ not in t) as a possible axiom schema that

would yield (4) as well as the schema indicated by (8). The premise would then be

)Q? is an obvious generalization of ; LB in 11 3, p. 60.
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VI ANTINOMIES

1. THE SET OF ALL THINGS WITH A GIVEN PROPERTY

It has been shown in V 3, p. 100 f. how attributes, i.e. value distributions of
concepts, or their corresponding sets, i.e. the extensions of concepts, can
be treated as things, viz as ‘objects of our intuition or of our thought’
(in the present context: as ‘objects of our thought’). Instead of dividing
things (in the extended sense) into types, as outlined there, it is probably
simpler to talk about them as ‘members’ of one domain, which we then
use as the domain of objects, the universe of discourse, for the inter-
pretation of a suitable language of predicate logic.
Apart from the trivial null- and all-attributes, only identity is charac-
terized as a ‘natural’ attribute in general predicate logic. We shall now,
however, add a number of other attributes, and by introducing new
constants as names for them we shall adapt the language of predicate
logic to the new interpretation. Thus:
1) The one-place attribute that holds for exactly those things
that are not sets, the basic objects, will be designated by ‘B’;

)] The two-place attribute that holds for a pair (x, y) if and
only if x is an element (‘member’) of y, will be designated
by ‘E’. (Thus ‘Exy’ stands for ‘x is an element of y°).1

The domain of objects D in which this language can be interpreted will
have to consist on the one hand of basic objects2 and on the other, of
all sets ‘that can be constructed’. Several definitions of sets are possible,
depending on what we mean by the verb ‘construct’. Cantor’s definition
was that sets are constituted by (literally: ‘By a set we understand every’)
collection into a whole of definite, distinct objects of our intuition or of
our thought3 Starting from this definition, Cantor worked out a large
part of what is today known as naive set theory. The antinomies which
it was later found to contain, made it clear that the concept of a set had
to be used with greater caution. The following is intended as a contri-
bution towards such clarification.

According to Cantor’s definition there is a natural connexion between the
properties that are meaningful for the things of a domain and the sets
of the things that have these properties. A problem only arises with the
assumption or requirement that all these sets themselves should belong
to the domain of objects in the wider sense. Let us suppose that we have
succeeded in finding such a domain D. Then D will include:4
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Or, to take another example, at 8 p.m. on July 6th 1968 someone
makes the following remark in the course of a speech:

(2) ‘What I say at 8 p.m. on July 6th 1968, is false.’

Or take the following non-fictitious example (cf. Tarski [2], p. 271;
[3], p. 158):

3) What is written in lines 6 and 7 on page 115 of this book,

is false.

In all three cases we are concerned with a linguistic structure having
the form of a proposition and making a statement about itself12 (viz
that it is false). This is important — unlike the objection that examples
(1) and (2) cannot be regarded as instances of straightforward linguistic
utterances being, in fact, reports about a linguistic utterance.

No difficulties seem to be raised by the notion of our talking in a
language about this language, so long as we can distinguish clearly
whether a statement is being made or whether something is being said
about a statement. This means, however, that we must be able to name
or describe propositions. For purposes of general discussion, we shall
follow a convention established by Frege, whereby we use as name for a
linguistic structure, this structure placed in inverted commas. Apart
from this, we shall also use other names or descriptions, as e.g. in (1)-(3).
Only this allows us to formulate a proposition that asserts something
about itself, for under Frege’s convention a proposition about the propo-
sition A must always contain at least the inverted commas in addition
to A,13 i.e. must be longer than A.

If we define ‘to lie’ as ‘to speak a falsehood’, then the concept false
occurs formally in each of the examples (1)-(3). If it is possible to rep-
resent this concept adequately in a language by means of a predicate
‘is false’, then all propositions must hold that are formed from the schema

) a is false if and only if it is not the case that A, by writing a

proposition in place of ‘A’ and a name for this proposition in
place of ‘@, as in the following examples:

(4.1)  3+2=15is false if and only if it is not the case that 3+2=35,

4.2) ©2:2=75 is false if and only if it is not the case that 2-2=35,

and equally in cases where the name of the proposition is
formed otherwise than under the Frege-convention.

Thus on the right-hand side of the above equivalences an assertion is
made about numbers; on the left, about propositions about numbers.
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contradiction shows that definition (4) of ‘is false’ as well as definition
(5) of ‘is true’ cannot be validated in this general form. The application
of (4) to (3) results in a previously not explained case occurring on the
right-hand side.

To obtain a genuine step-by-step definition, which can be validated, we
proceed as follows: we first define the property expressed by ‘is true’,
resp. by ‘is false’, for a part of the language 15 where these phrases are not
used, then for the part for which the use of ‘is true’ and ‘is false’ is
meaningfully explained by this definition, and so on. This procedure may
be repeated any number of times, so that eventually definitions of truth,
resp. of falsehood, are obtained for every proposition previously admitted
into the language and containing one of these phrases.

However, by applying this procedure we do not, in fact, define two
concepts (true, false ) but two series of concepts, which may be designated
more precisely by
‘true,’, ‘false’, ‘true,’, ‘false,’, ‘truey’, ‘falsey’, ....

Now (3) cannot be formulated at all in this way.

There are comprehensive definitions of the form

9 A is true, if A is true,, where n is the smallest n for which
‘A is true,’ is defined;16
(10) A is false, if A is false,, where n is the smallest n for which

‘A is false,’ is defined;16

but even such definitions do not enable us to extend the above procedure
to cover the use of the phrases ‘is true’, ‘is false’ where no reference is
made to stages, since the phrases ‘A is true,’, ‘A is false,’ are meaningful
for propositions in which ‘is true,’ or ‘is false,” occurs but not for propo-
sitions containing ‘is true,’ or ‘is false,’. That is to say, even the concepts
introduced by (9) and (10) only represent a segment. (The index ®, which
we have employed in (9) and (10), is the customary set-theory symbol
for the stage following the series 1, 2, 3, ...). The truth, resp. falsehood,
of propositions containing ‘true,’, or ‘false,’ may then be defined in the
subsequent stage, being symbolised by ‘true, .’ and ‘false,,,’.

Of course, we normally use the words ‘true’ and ‘false’ correctly with-
out the addition of indexes: we have explained the use of such indexes
here in order to draw the reader’s attention to the segments involved in
an exact definition of the open concepts ‘zrue’, ‘false’; and it must be
borne in mind that these segments are involved in any sound definition
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quite apart from the difficulties raised by the occurrence of the contra-
diction in (7).

On the other hand, if (4) and (5) are regarded not as definitions but as
axioms for characterizing the concepts ‘true’ and ‘false’, then the contra-
dition in (7) shows that there cannot be any concepts with these general
properties. In the case of an axiomatic characterization of these concepts
it is therefore just as necessary to make their openness explicit by the
introduction of segments.

3. THE SET OF THINGS THAT CAN BE NAMED IN A LANGUAGE

The schema

1) ‘The set of things that can be named (in L)’
gives rise to antinomies, if we assume that the language L has certain
possibilities of expression. For the sake of simplicity, let us allow the
case where L is a somewhat artificially delimited part of a natural
language (which, however, contains these possibilities of expression).

Let L be the totality of names, resp. of descriptions, of numbers in the
English language, consisting of not more than one hundred letters.1?
Then the set S of natural numbers that can be named in L is in any case
finite. For if, for the sake of simplicity and definiteness, we count the
punctuation marks: full stop, comma, semicolon, as well as blanks,
as letters, then we have in all 30 ‘letters’. Now if we imagine short
names as made up with blanks to the length 100, then we can form
30100=30 -...- 30 sign sequences of length 100, of which only a part will

N e

100

be meaningful and only a sub-part descriptive of natural numbers (0,
1,2, ..).

Since there are infinitely many natural numbers, there are numbers
that cannot be named in L and among these, precisely one smallest one.

However, THESMALLEST NATURAL NUMBER THAT CANNOT
BE NAMED WITH ONE HUNDRED LETTERS, can be named with
far fewer than one hundred letters, viz with 73, as simply counting will
confirm. Now the limit ONE HUNDRED, which we chose for simplicity,
could be refined if desirable.

For our present purposes, however, it suffices to state that:

The smallest natural number that cannot be named with one hundred
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letters, can be named with fewer than one hundred letters or, if we fill up
with blank spaces, with one hundred letters.

How can this be explained ? Let us call this curious number X. Now
the very possibility of this short-hand description is odd, for now we
have named the number with one single letter. However, in order to
understand this designation we need to have a good deal of prior in-
formation, and this suggests that we investigate critically the concept of
naming (more precisely, the relation: the word complex W names the
thing z).

If we try to obtain an exact definition, we find that initially this is
possible only for such W where the concept of naming does not occur,
and we shall assume (analogously to VI 2) that we have thus defined
‘W names, z’. On the basis of this definition we can define ‘W names, 2,
where such W are admitted in which ‘names,” occurs. And so on. It
seems a fair assumption to make that a sequence of the above naming
conventions (e.g.) ‘names,’, ..., ‘namesg’ will yield a new naming con-
vention ‘namesy’ where the same things have in general considerably
shorter names than previously. Our antinomy thus arose through over-
sight of the fact that the concept of naming is an open one.

We obtain an interesting variant of this antinomy if we apply its under-
lying schema to a language L, of the theory of so-called ordinal numbers.
These are abstracted from the counting of segments of such iterations
where we can meaningfully speak of the segment following upon an
infinite sequence of segments.18 This would be the case in our above
example if ‘W names z’ were to be defined for such W where ‘names,’
is allowed to occur for all finite numerals n or even: where ‘names,” with
a variable n for finite numbers is used. Adopting the usual designation
we should here write ‘W names,, z’ instead of ‘W names z’. Cf. also VI 1,
VI2.

As is customary, we have designated the first segment ‘following’
1, 2, 3, ... with ‘@’. We then form o+1, ©+2, ®+3, ... whereupon
follows ®+ . Next we have o+ 0+1, o+ ®+2, o+ ®+3, ..., and then

o+ o+ o. If ‘o-n’ is introduced as abbreviation for ®+... + ®, the subse-
e e/
n

quent series can be written more simply, viz: -3+ 1,0-3+2,0-3+3, ...,
whichleadsto @ - 4. Theseries - 1, ®- 2, ®- 3, ... is followed by © - ®, also
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8 By means of circumscriptions such as B*(bs) = B, B*(4) = A we could, if we
wished, avoid using a language whose correct interpretability has, after all, not yet
been established.

7 Because under the conventions of predicate logic the quantifiers Vz and Ax must
refer to the same domain of objects, i.e. in this case, D.

8 It is sometimes claimed that this is no contradiction (which would have to be of the
form p A — p) but represents instead a kind of oscillation between the truth values
T and F, since (c) contains the two implications Ezz - — Ezz and — Ezz — Ezz.
However, these will yield an immediate contradiction in the narrower sense via the
propositional logic theorems (p — — p) - — p and (— p — p) — p. Instead of the
latter, (~ p — p) ——»— p would be sufficient; this theorem is also valid in Intuitionist
propositional logic, cf. IV 3, p. 79.

9 Then b; is the empty set as element of D.

10 Tn fact, ‘very many’, i.e. a number ‘greater’ than that of the elements of D.

11 On the other hand, one may be interested in the sequence of these possible segments.
The ordering of such levels is itself a subject-matter of set theory. We shall discuss this
below in VI 3, p. 119f., in terms of a somewhat simpler model.

Additionally we may observe: A concept as given by a formula in general changes
its course-of-value, hence its meaning if that formula is interpreted (as) referring to
different levels. In simpler cases the course-of-values in the extended model can be
a continuation of the course-of-value of the ‘shorter’ model. This observation suggests
certain ‘identifications’: concept = formula = course-of-value (the latter as the avail-
able part of something quite inexhaustible). But the hard fact that the continuability
situation is restricted to fairly simple formulas should be a warning against the general
constructivist identification of concepts and formulas.

12 Tt might be objected that truth is not a property of linguistic structures but of their
meanings. By transferring the problem to the linguistic level it can be more satis-
factorily analysed; otherwise we are reduced to saying that (3) is meaningless.

13 Thus if we had written: ‘must always contain at least ““A”’, this would have meant
‘must always contain at least the letter A’.

14 Strictly speaking, the use of ‘(3)’ as a name for the proposition under discussion
is questionable, since such ‘formula counters’ are frequently regarded as abbreviations.
15 Because of the indeterminateness of natural languages the procedure here outlined
must be applied to a symbolic notation.

18 And since an adequate definition of #ruen+1 (resp. of falsen+1) comprises that of
truen, (resp. of falsen), we could write: where » is any n for which .... Theindex o will
be explained below.

17 The choice of a limit in terms of numbers of words rather than letters might seem
more obvious. However, as number words can easily be coalesced, the length of words
would have to be restricted and this would complicate considerably our considerations
below.

18 QOrdinal numbers are usually introduced within the framework of set-theory, where
they first occurred (cf. for example Halmos [1]). A treatment of them as objects of a
generalized arithmetic will be found e.g. in Bachmann [1]. Ordinal numbers are in a
sense the prototype of an ‘open totality’. For every given (‘finished’) set S of ordinal
numbers there is a smallest ordinal number which is greater than all elements of S.
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case specific auxiliary concepts such as are required for the description
of calculi.

Thus let C be a calculus with axioms and rules described by a formula
Ac out of Lg, where A, comprises:

()] a description of operations with the sign strings of C,

3} a description of the axioms and rules of C.

Such a calculus C itself will describe a generally infinite catalogue C,
in the sense of II 2, p. 31 for a property within the set of sign strings, for
instance, formulas; and thus the formula A is also a ‘description’ of this
catalogue C,. (The question arises whether a catalogue specified in any
way whatsoever can be adequately described by a calculus.)

A description of the composition of C yields the formula A; roughly
thus:

Let the basic signs (atoms) of C be given in a specific sequence (e.g.
A, B, C, ...’or Ay, 4, A,, ...). As series of names for these in the PC
we then select the terms a, fla, f'f'a, ... etc., formed with a specific
object variable a and a specific function variable f*.4 We further select
a two-place function variable 2, which is to express the concatenation
of sign strings. In this way we are able to describe all compound sign
strings of C, and we choose a systematically distinguished® term t,
designating the sign string Z. If B is the predicate with which the ‘prov-
ability’ of Z in C — via Bt — is to be expressed, then the rules of C are
formulated with it and with additional auxiliary predicates. Thus A,
is now determined in principle.

The producibility of Z in the calculus C can be expressed via the
demonstrability of A — Bt in the FC, i.e.

3) Fr(Ac — Bty) if and only if F -Z.

Let us say that the set of Z with the property that F.Z, is regularly
defined by C, resp. by Ac. Since the Lg-formulas are here used to say —
via an interpretation — something about the calculus C, we should really
write the semantic concept ‘ kg’ in place of ‘. It is only by reason of
the completeness of the FC that we can write ¢ -¢°, and it is only by making
this transition that we ensure that (3) does not ‘cover too much’. (Think
of Fp, instead of Eg!)

Thus (3) places ‘all thinkable’ complexities of the rules of C within a
formula A¢ which is fixed for C, and from which they can be recovered by

124



SETS PRODUCED COMBINATORIALLY VII1

means of the rules of the FC. (In fact, as could be shown subsequently,
only a very simple sub-section of the FC would be required.) It would
thus seem to be convincingly demonstrated that in order to obtain a
calculus that is to yield the most general combinatorially producible set,
we need no more complicated rules than those of the FC.

We now define: a set S of sign strings is said to be producible com-
binatorially by means of rules, or regulars, if there is a formula A so
that for any sign string Z whatsoever out of the given store of symbols
it holds that

@ Z belongs to S if and only if Fg(A — Bty).

These specifications are met, at any rate, by those sets S that are defined
by a calculus C, i.e. that can be described by an A.. But this is all, since
the remaining A (as can be demonstrated via (5)) do not yield anything
new.

Let us, for example, take the case where C is the FC itself, Admittedly,
it would be a very laborious task to specify a formula Apc with the
property,that for every sign sequence Z of the FC it holds that:

) Fe(Agc = Bt,) if and only if FgZ.

However, if we assume this to have been achieved?, then we have the
not very surprising result that the set of the theorems of the FC is regular.
We should, after all, only have verified that the axioms and rules for the
FC can also be formulated in the FC.

A. A set that cannot be produced combinatorially
Of much greater interest is the question whether there is also a formula U

with which the set of non-theorems® of the FC can be described as
regular, viz in terms of the condition

©) Fr(U — Bt,)if and only if not +xZ,

for this would mean that we could give a positive characterization of the

non-theorems in terms of the theorems.
Let us suppose, then, that there is such a U. We would then be able to

characterize non-theorems of the form (Z — Bt;) in the same way, vizby a
formula V together with
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Q) Fe(V = Bty) if and only if not Fe(Z — Bty).

Such a formula V could be constructed out of the assumed formula U
e.g. as follows:

) V = U(B/C) A D(4%) A AyAz(Cy A A%yz — Bz).2*

If we now substitute the formula V for Z in (7), it will be seen that (7)
and therewith also (6) are impossible. Thus the set of non-theorems of the
FC cannot be regularly defined (Church’s theorem [2]; the germ of a
proof can be found already in Godel [2]).

B. On the generality of the approach

By way of preparation for a discussion of the significance of this result,
we shall présent a number of arguments to show that our definition of
regularity as a clarification of the intuitive concept of a set specifiable
by rules of production, has the necessary generality. It is, at any rate,
conceivable that ‘more’ could be obtained by replacing the FC in our
definition by as powerful a calculus as possible for one of the extensions
of predicate logic discussed in V 3. In reply to this objection we offer first
this ‘internal’ argument: the FC is adequate for the description in the
sense of (3) of all known calculi.

Over and above this, however, the following is an important ‘external’
argument: Several very different definitions have been proposed in an
attempt to clarify the most general concept of producibility (or connected
concepts), among them those of A. Church [1], K. Godel [3], S. C.
Kleene [1], A. A. Markov [1], A. Mostowski [1], E. L. Post [1], [2],
R. M. Smullyan [1], A. M. Turing [1], (our definition (3) being an
apparent generalization of Post [2] or Smullyan [1]). Many of these
definitions are initially restricted to sets of natural numbers, and are
then transferred with the aid of a constructive denumeration, so-called
Gadelization, to domains of sign strings etc. Including this addition,
where applicable, all definitions have so far shown themselves to be
equivalent. This is a strong argument in support of the claim that each
is right in its own way.

For a detailed treatment of the questions touched on in this section,
the reader is referred to Davis [1] and Hermes [1].
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are thus both regular and coregular. Such sets shall therefore be called
biregular.

This analysis of a decision procedure into two enumeration procedures,
ie. the two calculi C* and C~, is in general not practically utilizable;
nevertheless it is of theoretical interest, since it enables us to describe
partial control of a problem complex.

Sets that are “propetly’ (i.e. exclusively) regular or properly co-regular
would appear to deserve equal interest in the sense of both being ‘half-
controllable’. If, however, we are concerned with the set S of the theorems
of a theory 0, then there is a considerable difference: after a theorem P
has been derived by means of C*, and hence proved, we not only know
something about the theorem as a formula, but we also know something
about the things with which the theory 0 deals. After deriving a non-
theorem N through C~ —hence: after uncovering it - we in general know
only that there is no sense in attempting a further derivation of N through
C™*. We thus learn only indirectly about the things with which 0 deals,
since the negation of a non-theorem in general does not produce a
theorem.

The conclusion reached in VIL 1, A, p. 125 f., can thus be interpreted
as follows: The set of theorems of the FC is properly regular, i.e. un-
decidable. Nevertheless, we are able to control the ‘better half”, since
we have at our disposal an enumeration procedure for the theorems.

On the other hand, there are important problem complexes where the
set of theorems is so defined that all non-theorems can be ‘uncovered’
by means of a systematic search for a counter-example — just as in the
case of the PC — but where, diverging from the case of the PC, infinitely
many trials would be required to determine theorems by means of the
definition. Since the systematic search for counter-examples can be re-
duced to the form of a calculus, such sets of theorems are coregular, and
there are very natural problem complexes where they are properly co-
regular. Thus no calculus acceptable for such sets of theorems can yield
all theorems.

Over and above this there are problem complexes whose set of theorems
is neither regular nor coregular — and among them are most of those
which are obtained by restricting modern mathematical enquiries to
appropriate formula domains L. This is even possible if L is the language
of predicate logic, since the enquiries often lead to a theorem concept
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The situation alters if we ask what is meant by saying that a specific
individual problem, represented by a sentence A, is undecidable. If A
belongs to a non-regular problem complex and if C is an admissible
calculus for it, i.e. one that is necessarily incomplete, then A may be
undecidable in C. This would be the case where A is a theorem of the
problem complex not covered by C, so that A cannot be disproved either,
because of the admissibility of C; in other words: A is not demonstrable.
Under the conditions stated, there are thus for every C sentences un-
decidable in C.

Various attempts have been made to deal with this problem of the
relativity of C. The suggested definition:

‘andecidable’ = ‘undecidable in every admissible calculus’

is surely inadequate, since for every proposition A there is calculus C that
is formally Adequate to decide A: taking either of the sentences ‘A’ or
‘—A’ as an additional axiom (under the usual rules), we always obtain
one admissible calculus C. There is just no universal method that allows
us to ‘discover’ such C. And such C could hardly count as a tool for
determining the truth of A or of —A. This is by far less than we need;
for ‘absolute undecidability’ ought to mean precisely that there can be
no way to one particular case. And that is why there is no question here
of referring to the most powerful known calculus. So far as I am aware,
no one has yet succeeded in formulating an acceptable definition of the
‘absolute undecidability’ of individual problems.

Let us now look more closely at some typical undecidable problem
complexes, i.e., using the terminology of VII 2, p. 128, non-biregular ones.

A. Properly regular sets of theorems

According to VIL 1, p. 125 f., the set of theorems of predicate logic, or
equivalently: of the FC, is properly regular, hence non-decidable. This,
however, may be due to the very large expressive range of Ly (cf. III 2,
C, p. 521.), and attention thus becomes focussed on reasonably delimited
sub-sets of Lg. On the one hand, the aim is to control as large sub-sets
as possible through decision procedures.® On the other hand, there are
difficulties, since already for quite small sub-sets S of Ly it is possible
to show that the set of theorems thus limited to S remains properly
regular. The proofs usually take the form of showing that the sub-set S
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already contains, though often very unobtrusively, the complete expressive
range of Lgc.

Thus, for example, already the set of theorems of the form Apc— Bt
(cf. VII 1 (5), p. 125) is properly regular. The reason is that the whole
complexity of the FC is here concentrated in the one formula A, whilst
Bt can express the demonstrability of any formula whatsoever.

Most of these proofs, however, have the form of one of the following
examples:10

Already the set of theorems of the form Va; ... Va,A, where A
is constructed in terms of propositional logic out of atomic
formulas without the use of =, but with function variables,
is properly regular.

Already the set of theorems of the form Va,Va,Va;AbA,
where A is constructed in terms of propositional logic out of
atomic formulas of Ly with at most two-place predicate
variables and without function variables, is properly regular,

A further group of proofs concerns special mathematical theories 0,
which can be formulated in Ly or L. Let Ag be the formula formed by
condensing the axioms of 8, and let B stand for any formula whatsoever
with at most the same non-bound variables (the ‘basic concepts of )
as Ag, then the set of theorems of the form Ag—B is properly regular
for many important theories. For example, let us make the following
substitutions among the L-variables: let # stand for ‘0’, e for ‘1’, f2 for
‘[xy | x+y]’, g* for ‘[xp | x - y]’, A* for ‘[xy | x<y].1L If we then for-
mulate certain simple properties of the natural numbers (0, 1, 2, ...) and
if these are condensed into a formula Ag, we obtain one of the simplest
properly regular problem complexes.12

However, this problem complex is not ‘the theory of numbers’, since
nothing need be said in Ag of the fact that the natural numbers consist
of ‘nothing more’ than the series 0, 1, 2, ...13

B. Properly coregular sets of theorems

Whereas in the above examples the natural numbers were used merely as
a background for an axiom system, properly coregular sets of theorems
will be obtained if we define the theorem concept for specific formula
domains L; in terms of validity ‘for the natural numbers’. The formula
domains L; may be thought of as sub-domains of L;; but for the sake
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able in L; are, of course, generalizations of L,-problems; and, as can
be demonstrated, they are inessential generalizations. For every L,-
problem we can fairly easily find a finite set of L,-problems, whose
solution would also solve the L;-problem in question.

Let L, again be a generalization of Lj: and let conjunctions and dis-
junctions of the form A(x/0) A A(x/1) A ... A A(x/t) resp. A(x/0) v A(x/1)
V... VA(x/t) be additionally admitted, the term t in most cases con-
taining variables; i.e. we are concerned with conjunctions and dis-
junctions with variable numbers of components. We could write instead
in ‘closed’ form (i.e. without the reiteration dots)

ONCAE) resp. N\ A®x),

x<t+1 x<t+1
thus generalizing propositional logic —junctions; or we could write
Ax(x<t+1->A(x)) resp. Vx(x<t+ 1AA(X))15

which formulas are rather particular examples of the expressive possibili-
ties of predicate logic. It will be seen from the above motivation that the
bound variable x must not occur in t;16 although, of course, variables y
occurring in t may be bound by ‘restricted quantifiers’ Ay(y<t,—...) or
Vy(y<t, A...) placed further forward, as in the examples:17

?3) Vi(x<a+ 1AaVy(y<x+1laa=xx+y-y))

@ NSNS\ NS @R e )
x<ag+1 y<x+1 z<y+1 u<z+1
As will be easily verified by trial and error, (3) is not a theorem of L,
(a counter-example is afforded by substituting ‘3’ for a). On the other
hand, (4) is a theorem of number theory!® — a fact, however, that cannot
be verified by trial and error. It cannot be verified directly, since this
would require an infinite number of trials; nor can it be done in the wider
sense in which we might say that by systematically listing all correct
proofs for one suitable calculus, every theorem of number theory could
be found, for
&) the set of theorems on the natural numbers, formulable in L,
is properly coregular.
The proof, of which we cannot give details here, rests on the possibility
of expressing the non-demonstrability of any calculus whatsoever in terms
of the validity of suitable L,-formulas.
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It is only after we have successfully formulated a proof that we know
that a calculus — insofar as it is a systematization of specific methods of
proof — is adequate for the solution of a problem posed by a formula,

e.g. (4).
C. Sets of theorems that are neither regular nor coregular

Sets of theorems of this kind are obtained by means of certain straight-
forward extensions of the languages with which we have so far concerned
ourselves. The point of view of predicate logic suggests extending Lj
not into L, but rather into a language Ls, by admitting non-restricted
quantifiers on natural numbers. Since every L,-formula A may be equiv-
alently 19 replaced by an Ls-sentence (viz by Ax; ... Ax,A, if x,, ..., x, are
precisely the variables still free in A), L lacks the property that charac-
terizes20 L,-L,, viz that the value of sentences is determinable in a finite
number of steps. Moreover it is evident that:

©6) The set of Ls-theorems is not regular.

For otherwise the set of Ls-theorems of the form Ax, ... Ax,A, where A
is a theorem of L,, and therewith the set of L,-theorems would be regular
and also biregular in contradiction to (5).

) The set of Ls-theorems is not coregular.

For otherwise the set of Ls-theorems of the form —Ax; ... Ax,A resp.
Vx; ... Vx,—A, where A is a non-theorem of L,, and therewith also the
set of L,-non-theorems would be coregular, and hence biregular in
contradiction to (5).

Properties whose applicability to one number essentially involves the
whole number series, can be formulated in L ;. For example, the property
of being the number of a formula which is undemonstrable in C, can be
expressed for every calculus C through a formula in L — and not merely
in metalogic, as would be the case if it were expressed via the validity of
a formula of L,.

D. Sets of theorems of logic

The extensions of predicate logic itself, as eXplained and outlined in V 3,
yield analogous results. The decisive step is the introduction of ‘all’ and
‘there is (are)’ for predicate variables, i.e. the addition of AA* and VA?
to the predicate logic symbolism; in other words the transition to L
in the sense of V 3, p. 101. The theorems formulated below for L2 will
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3 This statement could be challenged, since it is necessarily based on our experience
of tested rather than thinkable calculi. We assume, however, that any extension
beyond the possibilities of FC would have shown itself within the tested calculi related
to the languages outlined in V,

4 If C only has a finite number (e.g. n) of atoms, then we can simply use the object
variables ai ..., ar as their names.

5 Thus if e.g. 4, B, C are the atoms of C, and if a, b, ¢ are the selected names in FC,
then both f2af?bc and f2f2 abc are names for the sign string ‘ABC’. One is inclined
to distinguish the simpler second form here, and in this case f2f2f2abbc, for example,
would be the distinguished name for ‘4ABBC’, i.e. tasac.

8 The standard term for this — referring to a different but equivalent definition - is
‘recursively enumerable’ (r.e.). Still other definitions are referred to by ‘canonical’
resp. ‘formally representable’ (f.r.): see Smullyan [1].

7 Cf. the analogous definition in Scholz-Hasenjaeger [1], § 235.

8 So far as the basic idea of the demonstration is concerned, it is immaterial whether
we take these to be the non-theorems among the signstrings or among the formulas
of the FC. In the case of a detailed proof this question would, of course, have to be
settled.

8 That is, B is replaced throughout U by a ‘new’ C, and terms are then added that
allow the transitjon from C to B. D (42) stands for the (somewhat complex) definition
of an auxiliary concept A4 2, which may be said to describe y as of the form (z — Bt:).
¥ A report on the present state of these investigations will be found in Ackermann [2].
10 Information about the present state of these enquiries will be found in Surdnyi [1].
11 The comprehensors introduced formally in V 2, pp. 94 and 97, are here used to
suggest the intended interpretations.

12 Thjs and many other results obtained in connexion with the form described in this
section, are contained in Tarski-Mostowski-Robinson [1].

13 As Th. Skolem [1] has shown, this fact cannot be expressed at all by means of
axioms formulated in Lz.

14 This is by no means self-evident: although only a finite number of words is required
to define B*(AxA), its calculation would require the infinitely many values B*(A(0)),
B*(A(1), B*AQ)), -...

15 'We have written ‘x < t 4 1’ to adapt the closed forms to our above formulations.
The general form with ‘x < t*> would not result in properly increased expressiveness.
18 Ax(x < x + 1 - A(x)) surely does not say the same as A(x/0) A A(x/1) A ...
A A(x/x); and analogously in the case of more complex terms.

17 Where, for the sake of example, we shall use both the notations introduced above.
18 Tagrange’s theorem: Every natural number is the sum of four squares (exactly
four if zero is admitted, otherwise at most four). The formulas express in addition that
the squares are to be arranged in (weakly) decreasing order.

19 In the sense of : E A iff EAxA, but in general not: F A«> AxA.

20 At least: Li-L,4 are typical instances; moreover, each extension of L1 or ... or Ly
obtained by adjoining constants for computable functions and/or decidable attributes
can be translated info, hence be understood as a part of La.

21 (Added in proof.) This instructive escalation has recently (1969, publ. 1970) been
cut short by a result of Matiyasevich: With much harder efforts, L can even be trans-
lated into that sublanguage of Lg, where B is a contradiction like 0 % O or 0 = 1.

136






VIII1 TOWARDS THE LOGIC OF PROBABILITY

interesting calculus, it is not one that sufficiently corresponds to the
‘ordinary usage’ of ‘possible’. On the other hand, the outlook is more
promising if we start from the comparative use of ‘possible’. We can then
introduce a whole scale of possibilities which may be described quali-
tatively, if imperfectly, e.g. as follows: certain, almost certain, probable,
possible, improbable, almost impossible, impossible. The linearly ordered
‘truth’-values of many-valued logic (see above) or the more complex
‘truth’-table structures of modal logic? are intended as formal counter-
parts (i.e.: as clarifications) of these or such degrees. But I think the
correspondence of the related calculi to the intuitive use of those concepts
is not quite convincing (see Rosser-Turquette [1], pp. 3-8). On the
other hand, a full scale of degrees of certainty (the appropriate calculus
being some calculus of probability rather than syntactic many-valued
or modal logic) is available from the so-called urn schema, as it yields a
kind of ‘standard measure’ or ‘weighting norm’ for such degrees of
possibility or propensities.3

A measure of the certainty of drawing a white ball at one random draw
out of an urn containing black and white balls, which in all other respects
are indistinguishable for practical purposes, is given by the ratio of the
number w of white balls to the number b of black ones;? or better:5
of w to w+b.

The fact that a degree of the certainty of their occurrence may be
assigned as ‘validity value’ to specific propositions, viz propositions
about the occurrence of possible events, suggests that such degrees of
certainty be correlated to arbitrary formulas as validity values by means
of generalized evaluations. The origin of these validity values will in-
dicate which of the laws previously formulated (in III 3, p. 57) for
evaluations, still hold. It goes without saying that, as in the case of {T,F}
assignments, we should not expect pure logic to determine the probability
assignment ‘valid’ according to the state of affairs (described by a formula
or by natural-language formulations).

If these probability assignments — which, in conformity with accepted
usage in probability theory, we shall simply call distributions — are to be
suitable for appropriately describing operations with degrees of certainty
(possibly not restricted to propensities), then the laws formulated for
them must at any rate accord with what we have learned from the example
of the urns. For example, if A; and A, are propositions about urn-type
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then the two can be reconciled. In this case B is the set {W} out of
one distribution, whilst B comprises the set of all distributions 8 with
W(B)=1. (In other words: the states that are incompatible with B are
weighted as 0, but otherwise weightings are left open.)

The distinguished distributions Wgy =W, with

Wy(B) = 1if and only if B*(B) =T,
Wp(B) = 0 if and only if B*(B) =F,

correspond to the value assignments B (resp. to the evaluations B*)
discussed earlier in this section, and it therefore seems justifiable to
regard distributions as generalized truth-value assignments.

Conversely, one might wish to extend the object language by
introducing ‘distribution descriptions’ in a sense suggested by the
following:

Let A, B be descriptions of different states (in the sense of p. 141) and
let C, D be descriptions of distributions MW¢, Wy, with e.g.

W (A) = 0.64, TW(B) = 0.36;
mD(A) = 0.36, QBD(B) = 0.64.

Since W(Av B)=W,(Av B)=1, i.e., since Av B also holds in the situ-
ation described by C (resp. by D), it seems fairly natural to extend the
concept of consequence to the extent that for propositions like C, D
it holds that

CkFAvB, DEAVB,

and, additionally to use disjunctions like Cv D in such a way that we
should also have

CvDEAVB

(situations that are subsumed by Cv D — in the sense in which C is
subsumed by Av B - are also subsumed by Av B, if we already know
what C, D, Cv D are).

In a discussion of questions such as whether it is always the case that

FC, & C, for W, = W,

and whether (in the example) AvB F Cv D also holds, i.e., a fortiori:
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AECvD, BECVD,

it would turn out that not all laws of two-valued logic can be retained for
a logic extended to cover propositions like C, D, Cv D. For example, the
so-called distributive law, the essential meaning of which may be expressed
in
AA(BVC) E(AAB)V(AAQ),

would have to be abandoned.

The fact that C £ Av B, resp. D F Av B, could tentatively be expressed,
for example, by the following ‘composition’ of W resp. W, out of

SIBA, QBB:
c = 0.64 W, + 0.36 W,

%D = 0.36 QBA + 0.64 QBB'
But this, by way of simple algebra, would uniquely determine the corre-
sponding composition, (e.g.):

W, = 2.2857 W — 1.2858 Wy,
and since this can hardly be interpreted as a mixture of possibilities, it
is not in accordance with ‘A k Cv D’, which should remain acceptable
in this context.

For comparison with the following we mention the correspondingly
suggested definitions of C, D:

C=064A+036B, D=0.36A+ 0648,

which are subject to the same objections.

Anyway, any attempt to treat linear combinations of states should
harmonize with the data of modern physics — which suggest an ‘ontology
of states’. A somewhat simplified ontology of this kind is expressed in the
following definition. If S, ..., S, (k=2") are (resp. describe) the states
(S) in the sense of p. 141, then the ‘proposition’

Y =x,S; + ... + %S with® x2 + . +x2=1

shall describe the distribution Wy with1d Wy (S,)=x3, (i=1, ..., k), so
that (in terms of our example)

C,=08A+06B, D=06A+088B
but equally e.g.
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The indication seems to be that we should try to express partial or
complete ignorance not, after all, in terms of a set of distributions but
through one suitably determined distribution. In the ideal case more and
more instructive distributions would be obtained as a result of this
initial knowledge being corrected by ‘experience’.1?

B. A Measure of Possible Knowledge

We conclude this section by discussing an attempt to characterize one
initial or a priori distribution as an expression of minimal knowledge.
This attempt is based on the following assumptions:

(1) The specific distributions 2By contain maximal information about
a ‘world’ describable by B.

(2) On the whole we find out more, if we learn which possibility out of
a larger set of possibilities is the correct one.

This, however, needs to be qualified in several respects; among other
things, the following must be made clear:

(3) We learn more, if the less probable of two possibilities proves to be
the case.

(4) In the case of m - n ‘equipossibilities’ (which may be imagined as
arranged in a rectangle consisting of m rows and n columns) the in-
formation consists of the information about the correct row and the
information about the correct column.

A measure of information for 8, which — abstracting from the content
— measures only what we learn ‘more’ in the sense of (2) and (3), and
which allows us in the case of (4) to add the measure for the rows to that
of the columns, is given by the following definition of Sharnon’s:

™) I(W) = —(g; - logrg, + ... + g - 108294),20

where g, ..., g are the weightings correlated by I to the possible k
states resp. assignments. (*) comprises:

(a) If one g,=1 (i.e., if all others = 0), then I(IW)=0.
(b) —(-log, 3 + % -log,3) = —log; 4 =log,2 = 1.

That is, if W(A)=WW(—A)=1, then we obtain the unit of information
when we learn ‘the truth’ about A. This unit is known as a bit (an abbrevi-
ation of binary digit).
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instance one thinks of (1) as the most natural choice, one introduces a
kind of physics. This is inevitable if an infinity of competing possibilities
is to be considered.

2. LOGICAL, SUBJECTIVE AND STATISTICAL PROBABILITY

The use of the urn schema as a weighting norm (VIII 1, p. 138) needs to
be more precisely validated, and the starting point of such validation for
degrees of certainty will differ from those for propensities, although
eventually the resulting formulas will coincide. This is connected with
the fact that axioms V1-V4 ‘hold’ both for degrees of certainty as well
as for propensities 22, despite the fact that their validations might differ.
Here we must distinguish between on the one hand the structural content
of the axioms, which expresses the capacity of the values for being ordered,
the relation of this order to implication, and the existence of a function
with the properties appropriate to disjunction23; and on the other hand,
the conventional content which concerns simply the standardization of
® (as sum) and therewith the choice of scale (from 0 to 1).

(a) If it is certain that a draw is being made, then it is certain that one
of the (w+b) balls will be drawn. Then the sum of the degrees of certainty
for the propositions that each describe the finding of one specific ball, is 1.
An equidistribution, describing minimal knowledge 24, will then assign to
each ball (really: to the proposition that expresses its having been drawn)

1
the probability il Then the probability of an arbitrary white ball
w

1 w
b ——=—"" Probabili-
wab T Ty oreH

ties calculated on the basis of a validation of this kind, may be termed
logical probabilities, since they are grounded in a linguistic representation
of ontological presuppositions (i.e., presuppositions concerning possible
states). Cf. in this connexion Carnap [1], p. 162 ff.
(b) If for purposes of representing the knowledge contained in
MW(A draw will be made)=1,

we find ourselves confronted with the set of all such distributions 2B,
then there still remains the possibility of selecting one admitted distribution
in the expectation at best that this choice will be corrected by experience.28
Here we should, of course, avoid ‘sclerodox’ prior judgments or pre-

being found is given by V4 as
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VIII2 TOWARDS THE LOGIC OF PROBABILITY

judices, that cannot be corrected by any experience, i.e., we should not
assign the weight 0 to any state that is still possible.2é This interpretation
of distributions is often called subjective probability (for a criticism see
Carnap [1], p. 42 ff.). Perhaps it should be understood rather as a naive
description or the correction of transformation of an undetermined ‘choice’
by that experience, or at its best: of a transformation of an undetermined
initial distribution of distributions. (See p. 167 note 14.)

(c) If on the other hand we assume that the experimental conditions
assign to every ball in the urn a propensity to be drawn — we may make
this assumption on the basis of ‘metaphysical’ reasoning or within the
framework of a physical theory — then perhaps the best way of getting
beyond the general proposition IB(...)=1, is to infer the equality of the
weights from the physical hypothesis of the ‘symmetry of the experi-
mental conditions’. In this case an equal distribution expresses the fact
that the infotmation is the maximal one available on the basis of the
theory and the experimental conditions. We then have (in our example)
w : (w+Db) as the propensity for ‘white’, i.e., formally as under (a).2?
The link between these interpretations is the assumption of equipos-
sibility of competing events — though based in each case on different
considerations. Let us refer in both cases to an assumption of equipos-
sibility of type 1. Like every other physical hypothesis, that of symmetry,
which includes in particular the assumption of the irrelevance of
colour, is subject to the test of experience. Cf. in this connexion VIII 4,
p. 162 f.

(d) We may reject as ‘metaphysical’ the assumption of the existence of
propensities, e.g., for the behaviour of a real, that is, in general slightly
unsymmetrical die: for example, the die may be destroyed after a small
total number of throws (although this line of reasoning would also exclude
the definition of probability as limiting value of relative frequencies).
In this case we might attempt to express everything in terms of propositions
about degrees of certainty. (Cases where the existence of an objective
degree of certainty is doubtful, could be formally covered by stipulating
that all values remain possible.)

Whereas degrees of certainty close to 1 (‘almost certain’) or close to 0
are intuitively accessible, other degrees may at first appear to be ‘meaning-
less” since they say ‘nothing’ about individual cases. However, if we
agree that there are cases where the same degree of confirmation p under-
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that what is ‘logically equivalent’ is also of equal value as evidence (cf.
Carnap [1], p. 285).

Wi1. w(A,B)=0

Ww2. IfC F A thenw(A, C) =1

W3. If C £ A > B, then w(A,C) < w(B, C)

W3'.  If E B« C, then w(A, B) = w(A, C)

W4, IfCE—(AAB), then w(AvB,C)=mw(A,C)+ w(B,C).

W2, W3, W4 have here been strengthened as against V2, V3, V4 in that
in each case a presupposition of ‘logical truth’ is replaced by one of
‘factual truth’ (i.e., on the basis of the respective non-contradictory
evidence C).

‘We now add an axiom that relates distributions on the basis of different
evidence:

W5. IfAEC, BEC, AED, and BED,

w(A, C) _ w(A, D) .

th =
“ W(E,C)  wE,D)

W5 expresses that the ratio of degrees of certainty (from A to B) is
independent of any change of evidence (C resp. D) as far as only con-
sequences of A, and of B separately (i.e.: of AvB) are considered.
The particular choice D=Av B could be used to simplify the axiom,
but the chosen version has the advantage of being as free of particular
concepts as possible.

Derivations from V1-V4 (cf. p. 140 f.) may be transferred in an anal-
ogous sense. We merely note for subsequent use

W6. IfCEA«B, then w(A C)=w(B,C) (cf. V).

The most important derivation, which is based essentially on W5 and
which is usually formulated as an axiom,30 is

W17. W(AAB,C)=w(A, C)-w(B,AAC)
Proof. Propositional logic yields

) CEAAB—AABAC,
) CEAoAAC,
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3) AABACEC,

é) AABACEAAC,

(5) AACEC,

6) AACEAAC,

@))] AACEAABACoB.

Suitably substituting, we then derive from W6 with (1), (2)

w(AAB, C) wW(AABAC,C)
w(A,C)  w(AAC,C)

Further, from WS$ with (3), (4), (5), (6)

)

_w(AABAC,AAC)
" w(AAC,AACQ)

®

And from W6 with (7) and (6)

w(AAB,C)  w(A AAC)

(10) w(A, C) 1

=w(A,AAC)

Hence by cancelling out the denominator, W7. In the form (10), W7
is a precise counterpart to the definition of IWyz(A) discussed above
under (e). Important derivations3! from W7 are

w(B, AAC)
) ABAO) =w(A,C) — -
w8 w(A,BAC) =w(A, C) w@,C)
and
W9 w(A;,BAC) _m(Al,C)' w(B,A; AC)

w(A;,BAC)  w(A,,C) w(B,A,AC)

Proofs. Because of F BA A—A AB, for line (2), we have

1) w(B,C) - w(A, BAC) = w(BAA, C) (W7)
@) = w(AAB,C) (W6)
3) = w(A, C) - w(B, ArC) (W7)

Dividing by m(B, C), we then obtain W8. And, substituting A, resp. A,
for A in W8 and dividing, W9 follows as an immediate inference, since
w(B, C) which is independent of A is eliminated.
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VIII2 TOWARDS THE LOGIC OF PROBABILITY

(2) We may fairly assume that one and the same degree of certainty
underlies a sequence of events (see above under (d)), in the case where
random draws are made out of an urn, with each ball drawn being re-
placed before the next is drawn, or in the case where random throws are
made with an unbiassed die (if we are justified in assuming that the die is
not altered by being thrown). (Whether propensities come into play,
shall here be left open, since our aim is to understand the situation in
terms of degrees of certainty.) If C expresses our general prior knowledge,
A the outcome of the preceding draws resp. throws 32, B the observational
result about to be obtained, then according to the assumptions implicit
in the experiment, we have

w(B,AAC) = w(B,C) (briefly: = p),

i.e., the preceding observations give no additional information about the
outcome of the next attempt. If B=B, refers to the nth attempt, then
we may have

A,y =[-]BiA...A[-]B,,
i.e., in general either
A,=A,_iAB, or A,=A_,A—B,
If we now apply W7 in order to determine w(A,, C), we obtain either

II)(A,,, C) = m(An—l A Bm C) = m(Au—b C) : m(Bm An-l A C)
= w(An—la C) : m(Bm C) =p- m(An— 1> C)
or
w(A,, C) =w(A,_;A — B, C)
= w(A,-1, C) ' w(— B, A,_;AC)
= m(A,._p C) ’ m(_’ Bm C)
= (1 - p) - m(An—l’ C)'

For a sequence of # observations with results described by A, and with
B and —B occurring g and (n—g) times, respectively, we obtain the
following permutational analysis:33

m(Am C) = pq ' (1 - p)n—g'
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certainty, i.e., types of validity, be regarded as rhe objects of the theory
of probability — a conception that would still allow us to base assumptions
of equipossibility of kind 2 made in applications of the theory, on special
assumptions of similarity (e.g., about the presence of propensities). In
this way statistical probability may be subsumed as a special case under
the concept of degrees of certainty.

The above-mentioned connexion between p and g:# indicates that the
determination of g:»n from a sufficiently long series of observations be
regarded as a measurement of p, understood as the (same) degree under-
lying each case. An initial difficulty arises from the fact that the requisite
propositions about the precision and certainty of this precision would
presuppose knowledge of p. However, this may be circumvented by
exploiting a different connexion between g:n and p, viz one that is
based essentially on W8 resp. on W9, Cf. in this connexion VIII 4, p. 165.

3. RULES OF INDUCTIVE INFERENCE

From the point of view of traditional logic, inductive inference is one
from the particular to the general — in contrast to deductive inferences,
for which the inference ‘from the general to the particular’ (which is
represented in our symbolism by ‘AxA(x) F A(y)’) is regarded as a
particularly characteristic example. Since what one has in mind here are,
of course, ‘reasonable’ inductive inferences, the word ‘particular’ is used
to mean a body of experience admittedly incomplete yet nonetheless
sufficiently large to allow general laws to be ‘inferred’ — as (apparently)
happens successfully in the empirical sciences. Thus we might say that the
decisive factor is the drawing of inferences from incomplete information;
and that it is plausible that such inferences carry degrees of (un)certainty.

The importance of ‘inductive’ inferences arises from the fact that all
information yielded by observations on a sufficiently ‘rich’ world is
incomplete. We cannot, however, establish their validity by arguing that
they have proved themselves so far and will therefore continue to do so.
For this would be to argue in a circle, since our reasoning would be based
on an inference of the kind to be validated. However, one might regard
such reasoning as the abstract form of a behaviour pattern innate in man -
and presumably also in animals3® - and one could then infer from the
fact that such beings (still) exist, that behaviour on this pattern is
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probability alter as a result of a successful mathematical demonstration ?)
On the other hand, the objection that unique chance occurrences cannot
be thus described, could be met by pointing out that in such cases the
theory yields only relations between degrees of certainty, and not values
of them.

If by rules of inductive inference we understand rules where probability
statements occur in a premise or in the conclusion, then the simplest such
rules are those that form a link between deductive and inductive in-
ferences. The following holds:

K,A;,,A, EB
wA,K)21 -8 wA,KZ1-¢
wB, K)2 1 — (g +&,)

RI1.

where K expresses the knowledge available and where probabilities close
to 1 are indicated by 1—¢ (i.e., with small ‘uncertainty’ €).
Proof. From K, A,, A, k B, it follows that

1) KEA,AA, > B, hence, with W3
() w(A; AA,, K) < w(B, K).

On the other hand, from W1-W4 there follows the counterpart to V11
3) w(A; AA,, K) = (A, K) + w(A,, K) — 1.

On the basis of the presuppositions of R1, we have

“) wA,L,K)+w(A,K)y—121—¢, +1—¢,—1

=1- (g + &),
hence

®) WA AALK) 2 T = (g + &)
Finally, the assertion of R1 follows from (2) and (5). The following
generalization of R1 is proved similarly:
K,A,..,A EB
wA,L,K)21—¢,....,w(A,K)21—g¢g,
wB,K)y=1- (g + ... +¢&,)

R1*,
Because of K, A, (A — B) E B, aninitial application of R1 yields the rule
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wAK)21-¢ wA->BK21-¢,
B, K) = 1~ (5 + &)

In the same way there corresponds to every deductive step in a deductive
argument, a probability inference with accumulating degrees of non-
confirmation.

In the case of an application of R1* the certainty attainable by B
does not depend on the complexity of a derivation of B out of A, ..., A;
but in the case of a sequence of inferences of kind R2, all degrees of
uncertainty accumulate. Thus in general one will fare worse, i.e., obtain
a weaker conclusion, if instead of applying R1* once at the end of a
purely deductive proof, one applies the probability inference analogous
to R2 at every stage. Perhaps we may see in this a justification for a logic
that is more precise than the conditions to which it is to be applied.43

The following modes of inference may be regarded as counterparts to
certain plausibility inferences, although translation into the language of
degrees of certainty is not straightforward:

R3 K,A kB ' P

" (A KAB) = m(A K) (cf. P1)

The premise in P1: ‘B is true’ is thus taken into account in that the
probabilities ‘for K* and ‘for KA B’ are compared. It should be noted
that here — as in P1 - the inference ‘from B to A’ involves a kind of
reversal of the deductive premise.

A refinement of R3 is

K,AEB m(B,K)<1 w(A K)>0
w(A, KAaB) > w(A, K)

Proofs for R3 and R4. The premise K, A F B yields that
K, A E KA A < B. Therefore according to W2 and W6

(1) w(B,KAA) =1.

R2.

R4.

According to W8 we have

)] w(A, KAB) - w(B, K) = m(B, KA A) - w(A, K).
Hence, with ¢ for w(B, K) and with (1):

3) w(A, KAB) g =w(A,K)
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ie,forg + 0
“) w(A, KAB) = (1/9) - mw(A, K)

Because of K kB—K we have g<1 (cf. W2 and W3), i.e., 1/g=1. Then
the assertion of R3 follows from (3). For the strengthened assertion R4
we require ¢ < 1 (which corresponds to the second premise in P3) and
also m(A, K) > 0, since otherwise everything in (3) could be = 0. For
very small g (but with ¢ &= 0) 1/g is very large. This gives us a variant of
R4 that is still closer to P3.

The presupposition that B does not follow from K alone44 is expressed
in a different way by the following variant of R4:

K,AEB w(B,KA—-A)<1l 0<w(AK)<1
w(A, KAB) > w(A, K)

RS.

Proof. Because of K F Be«>(BAA)v (B A —A), we have
(1) w(B, K) = w((AAB)v(— AAB),K)

) = w((AAB,K) + w(— AAB,K) (W4)
3) =w(A K) wB,KAA) +
w(— A, K)-w(B,KAr — A) W7)

Because of K, A F B we have w(B, KAA) = 1, i.e.,
4) w(B, K) = w(A,K) + w(— A, K) - w(B,KAr — A)

(5) =w(A K) +

w(— A, K)-(1 - (1 —w(B,Ka— A))).
©) =1 -w(—AK) (1 —w(@B, KA — A))
0 =1~ (1 -w(AK): (1 —-w@®B Kar—A)).

According to the premises of R5 the product on the right-hand side is
not 0, i.e., w(B, K) < 1; thus R4 is applicable.

By formulating rules R3, R4, RS after the pattern of P1 and P3 we
have perhaps veiled the essential meaning of these inferences. It may be
clearer in the following formulation:

0<wB KAr —A)<w(B,KrA) 0<w(A K)<1
w(A, KAB) > w(A, K)

Proof. In view of W9 (with A for A;, — A for A;)

R6.
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edge of relative frequencies (as approximating values for degrees of
certainty).

Thus such inferences always depend on additional presuppositions
about distributions, and these presuppositions must therefore be validated
‘in some way or other’.

Further to (A): When we determine w(H, K) resp. 03, (H) with

W, = [H|w(H, K)] (cf. V2, p. 97)

we in effect distinguish one distribution as an expression of logical prob-
ability; or at any rate, we restrict the domain of admissible distributions
by means of objective criteria, since except for borderline cases all values
for W, (H) are compatible with the presupposition W, (K)=w (K, K)=1.
However, the indeterminateness of the 13; must not be understood as
the determinateness of a Iy through X according to the formula 45

Wy (H) = w(H, X) = %’9 (cf. VIII2, p. 149)
0

with an already distinguished B, since all available knowledge - i.e.,
including any expressed in X — is comprised in K. In fact, all MW, with
W, (X)+0, are still to be taken into account here.

In the light of V 2 (p. 97), we have W, =W, =[H | w(H, L)] with L’
standing for an arbitrary propositional logic theorem. It thus seems
more appropriate (rather than attempt ad hoc determinations of IB,)
to distinguish, if possible, one I, as an expression of logical probability,
thus also determining 1.

It has turned out that the assumption of equipossibility of kind 1
suggested by the propositional logic structure of the object language, is
not always appropriate;46 but that, e.g., the structure of monadic predicate
logic indicates other symmetries and hence equipossibilities of kind 1.

This has led R. Carnap (cf. Carnap [2]) to develop methods for the
determination of ,. These have so far allowed 2B, to be specified for
monadic predicate logic (which in any case is essentially more com-
prehensive than traditional syllogistic), the specification depending on
a decision regarding the extent to which ‘items of a priori knowledge’
resp. ‘empirical facts’ are to influence a judgment.

Thus we may select a distribution 2B, but all values calculated from it
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let B; stand for a draw consisting of a white ball and — B, for a black one
at attempt i, Then for arbitrary knowledge K compatible with the ‘rules
of the game’ we have

*) w(B, KAA) =2/3, w(—B,KAA)=1/3
w(B, KAA) =1/3 w(—B,KAA,)=2/3
Let us analyse the judgment that normally leads us, after a fairly large
number of observations, to the conclusion:

This is ‘certainly” the first, resp. second, urn.
According to W9 we have, as in the proof of R6, with values out of (*)

(A, KAB) (A, K) w(B, KAA,)

W w(A, KAB)  w(A,K) w(B, KAA,)
, _w(A,K) 2
) T w(A,LK) 1
) w(A;, KA—B) mw(A,K) w(—B;,KaA))
@ w(A;, KA—B) (A, K) w(— B, KAA,)
) _wALK) 1
@) T w(ALK) 2

Since in (1’) and (2') K stands for arbitrary knowledge already supple-
mented by preceding observations, the following holds (with B* describing
a sequence of observations consisting of w white and 5 black draws
(in arbitrary order)):

st sty (1) (7

©) 5

_ (A Ko)
m(AZa KO)
But on account of K, F A;<—A,, we have

w(A;, Ko) + w(Az, Ko)
= w(A;, Ko AB¥) + w(Ay, Ko AB¥) = 1,

.ow—b 48

and (3) therefore shows how (e.g.) w(A;, K, AB*) is determined by
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find that the proposition Aj<>—A, (which now asserts that precisely
one of the theories in question is correct) is itself in the nature of a theory
and can therefore be included only with reservations among the items of
knowledge K,. Apart from this it would seem that our example differs
from practical cases only in that in general there is a greater number of
theories under discussion (e.g., Ay, ..., A, instead of A;, A,) and there
are more observable events to be considered (e.g., B4, ..., B, instead of
B, —B). If we know the schema of values w(B,, K A A,) corresponding to
(*) (p. 163), then we calculate the distribution correction (as above by
means of W9) out of the w(A,, ...) on the basis of the observation
described by B,, i.e.:

m(Ab KA Bk) . m(Ais K) . m(Bk, K/\A')
w(A;, KAB) w(A;, K) w(B, KAA))

where, of course, we now have w(A,, ...)+...+w(A,, ...)=1.50

Let us illustrate this by two examples:

(1) Let Ay—A,qo stand for assumptions to the effect that in an urn
containing 100 (white or black) balls, the number of white ones is precisely
that stated by the index. Then a sufficiently long series of attempts with
an unknown one of these urns will ‘eventually’ assign the highest degree
of certainty to the correct one. If we now drop the simplifying restriction
of a fixed number of balls’,5! we obtain correspondingly high degrees of
certainty for the propensity p ‘effective’ in the series of trials being within
a prescribed neighbourhood of the observed ratio w/(w+5). Then a
sufficiently long series of trials may be regarded as a measurement of p
with the result w/(w+b), in which case, incidentally, the certainty reached
will eventually be (largely) independent of the initial bias.

(b) Let A, and A, be physical theories that yield different numerical
values a resp. b (with a > b) for a measurable quantity; and let a—b be
smaller than possible errors of measurement, so that the theories cannot
be precisely distinguished on the basis of measurements of this quantity.
Further, let the precision of measurement be independent of whether A,
or A, ‘holds’, and let it be given by the standard error s (on the usual
assumption about the distribution of possible errors of measurement).
Then one measurement (described by M,) with the result x, yields the
correction of the degree of certainty implied by the following ratio
correction:
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27 'We cannot here discuss the question whether the choice of the same scale conceals
a real difference or avoids making an unreal one. For a possible approach, cf. VIII 2
(), p. 152 ff.

28 This ‘conditioned probability’ Y3g(A) must not be confused with (B — A).
Cf. also p. 144, and note 18.

29 This formulation presupposes that no denominator is 0; similarly in some other
cases. Though here the technically adequate handling of the borderline cases is a
matter of simple algebra, there is a problem: the extension to richer languages seems
to necessitate the introduction of infinitely small values different from O, hence a
‘non-archimedean’ scale of degrees.

30 Carnap [1], p. 285: “... accepted in practically all modern theories of probability’.
Jeffreys [1] has a similar reduction of W7 to W5, which is introduced there as an
extrapolation of provable cases.

31 Which express what is known as Bayes’s Theorem; for an application cf. below
pp. 158, 160, 163.

32 The reader should keep in mind that urns and dice here merely serve as examples
for a general case.

33 This is a typical problem of analysis in probability theory, the solution of which
goes back to Jacob Bernoulli [1].

34 Combinatorlcs tells us that there are

n-(n—1)---(n—g+1)

1 . 2 cen - g
different ways of doing this.
85 Qur table, calculated with the use of approximating formulas (error function with
h = 60, see for instance Jeffreys [1], p. 72), holds only for p = 1:6; it is, however,
typical.
36 These ratios, that correspond to the possibility discussed above (p. 138), presumably
form the basis for formulations such as ‘a high degree of certainty’ for degrees closeto 1.
37 Perhaps our choice of a scale for degrees of certainty (0 to 1) needs the justification
of the fact that it makes the link with relative frequencies particularly easy.
38 Cf. von Mises [1], p. 186.
39 There are many transitional stages between the formation of conditioned reflexes
and learning from experience.
40 Cf, VI2,p. 1151,
41 Thus, e.g., usually in the case of learning from experience.
42 That is, without reference to degrees of any kind, with which calculations could be
performed.
43 Cf. our remarks on idealization in I 1, p. 11 and IIT 3, p. 62 f. A more precise analysis
would have to show whether R1* can be applied even in cases where the lack of con-
firmation of the probability statements depends not (only) on the incompleteness of
the available information, but (also) on the indeterminacy of concepts.
44 Forif K, A F B,then: K F Bifand onlyifK,— A F B,
45 Cf. above, note 29.
46 The reader is reminded that such an analysis is possible only on the highly ideal
condition of the ‘world’ to be described being capable of only a finite number of states.
47 To prepare the way for more general formulations let A1 again stand for A, Az for
— A; and let it be assumed that A1 <> — Ag is included among the initial knowledge
Ko. Note that, in general, such an assumption could reduce the remaining possibilities
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to an infinitely small amount, such that only degrees in that wider sense mentioned in

note 29 could yield a well-defined quotient.

48 The mere relevance of the difference is, of course, a peculiarity of our example. It

is chosen for this simplicity; but it could be understood as another kind of norm:

for (still) two cases (urns) to be compared, but general values in the schema (*) viz p,

1—p, resp. g, 1 —q, the exponent (also to be applied in the subsequent table for w—b) is
w - loga(p:q) +b - logz(1 —p):(1 —q).

49 On the subject of ‘equal distribution’ cf. VIII 1, p. 146; 2, p. 147 f.

50 In the case where for some i, k W(Bx, K A A;) is zero, the appurtenant Ay is, of course,

excluded by an observation Bx. Such borderline cases are automatically covered by

the conventional mathematical formulation.

51 This simplifying restriction amounts, after all, to a sclerodox initial judgment about

the possible ratios.

52 We here have e = 2.71828 ..., which results from the quotient of two terms for the

normal error law. Since a—b > 0, we have eta—b)s2 - 1. In order to make this correc-

tion comparable with formula (3) p. 163, we could further write

0208537~ F)

where 0.693 ... is due to the change of bases (from e to 2.)
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Besides places of definitions indicated by bold face page-numbers, occasion-
ally other relevant pages are mentioned. Numbers in parentheses refer
to passages relevant without showing the entry, or a variant. Upper
indices at page-numbers identify notes. If need be, specification of field
is indicated, particularly by: C (comprehensor), D (decision), F (function),
I (identity), P (proposition), Q, Q? (quantification-, predicate), S (many-
sorted), T (type), I (probability), X (syllogistic), b (sequence).

A. SYMBOLS, ALSO RELATED TO PART B

4 not 35, 51
A and 37, 51
\'% or 37, 51
- if — then 37, 51, 69
- if 37
“ iff 37, 51
N nand 37
v nor 37
= but not 37
p not, but 37
> either — or 37
E (generally) valid, follows 57, 61
F (demonstrable, derivable 71
> sequence, consequence 7

A all, each 39, 52
\% some, exist 39, 52
= identical 87
< order 167°
x (individ.) description 92
[x|...] C, (abstract) description 94, 97
N intersection 96
V) union 96
€ element 101
3 applies to 101
= sub-set 111
fref-gfoef? 96
&P  assignment 60
w (ordinal number) 119

B, ALPHABETICAL PART

a(al) X 151f.; Q 25; a 58

Ac 124; Apc 125; Ag 131

absolute D; 101; D 130

Ackermann 113, 136

addition F 97 f.; T 106; 1B 139 f., 150

-adic (functions) P 34, 38; Q (30 f.) 53;
T 104 f

Aebi (63), 65

Ajdukiewicz (105)
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all £ 151., 18, 39 1., 48, 60; Q2 100, (114),
134

almost (certain) 138, 148, 162 f.; (im-
possible) 138

alternation (disjunction, adjunction) 53;
(normal form 58)

and 14, 36 £., 55, (57)

Antinomy (log./semant.) 109; (Russell’s)
112



INDEX

a priori distribution 145, 164

applica -tion, -bility Q (32); F 45, 98;
(of rules) 66, 123

argument F 45

Aristotle 12, 16, 26, 116

assertion 49, (55)

assignment P 57; X 58; Q 59; (modified)
60, 95, 97; T 104, 138, 141; also see
evaluation

assumption 10, 20; (physical) 42; (tested)
162

at least one 38 ff., 60; — least/most two,
three 88 ff.

atomic W X 52; Q 53; 1 87; C 9%4;
S 100; Q2 101; T (104, 106)

attribute 33; (open/closed) 43; C 94;
S 100; (set th.) 110

available (numbers) 44; (calculus) 129

axiom X 20; (calculi 70; I 87, 93, 102;
(geom.) 56, 100; (of truth) 118; (de-
fining theories) 122; B 139, 150

axiomatic (limits of method )102, 131 ff.;
(defined set domains) 114

B see basic element

Bachmann 120 f.

basic connectives; — signs 2 19, 51;
P51;Q52;,p72

basic element/object 110 f.

basic rules/theorems (generally 66-72;
(—sequences) 72; P73£.; Q75f., 78

Begriffsschrift 44, see conceptual/symbolic
notation

Bendiek 26

Bernoulli (152), 162, 168

Beth 85

bias 147, 162, 164

biconditional 54

biregular 128, 132

bit 145 f.,

Bocheriski 9

border-line cases 15 ff., (59)

bound (re-naming) 75; (variable) 54, 92,
95

Boole 12

C... see catalogue
calculus (general) 70 ff., 79 f., 122 ff.;
» 72; P 58-73; Q 74, 124; 1 88; S 100;

T 106

Cantor 110

Carnap 141, 147 £., 150, 161

catalogue C; 31 f,, 124; Cp 32 f, 42,
140; C4t 32 1, 42

category, gramm./log. 53 f.

certain 138; (almost) 138, 148, 162 f.;
(‘practically-’) 164

certainty (degree) 138 ff., 152; (require-
ment) 164; (listed instances) 153, 154,
164; see also confirmation

chains (for finiteness) 103

Chrysippos 12

Church 45, 106, 126

circle (of foundation) (56 £.), 155

closed (attribute) 43; (domain) 78

codified 66, 135

Cogan 45, 10713

combinatory logic 10713

complement(ary) X' 18 ff., 25; (relative -)
(44), 58; C 96, 127

complete (calculi) P 81; Q 82 ff.; C 95;
see also incomplete (state description)
140 f.

composition I 143

compound propositions 34 ff., (49 f.),
132 1.

comprehensor (39), (6418:17), (75), 94 £.,
97, 102 {., 106, 107

concatenation (of relations) 96, (102 f.);
(of sign strings) 123 f.

concept(ion) (subj., pred.) 14 f.; (attr.)
32 f, (= pred.) 6411

conceptual language/notation 30, 44

conclusion 10, 14, 19; see also deduction

conditional (or implication) 54

conditioned IB 144, 150 ff.

congruence (property) 88

conjunction 53; see and; (in grammar) 55

consequence (relation) 61 ff., (deduction
extended) 67; S 71 ff.; (vs. calculi)
79 £.; W 142 1.

constants P see functor; Q 55; T 105 f.;
(set th.) 110

constructive (logic) 69; (sets) 113;
(enumeration) 127; (definition) 129

content (proposition) 38, 47; (- expres-
sions) 40

continuous (vs. discrete) 41
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contradiction 73, (1352)

contraposition (10), (13), 20, (24)

converse (of function, relation) (92, 96),
98

conversio simplex 19

coregular 127 f., 131 f.

course-of-value (attr.) 33; P 58

credible 33, 156

Curry 107

cut 72

D (domains) X Q 59; Q 82; S 100;
Q2 101; T 104 f.; (of sets) 110 ff.;
D* 113 f.

Davis 126

decision (procedure) 128, 130; 2B 164, 166

deduction theorem 69

deductive (sciences) 122; (possibilities)
135; (- indu‘ctive) 155, 157

definability X 18; P (37, 45) 58 f.; (by
a calculus) 78, 122; (set through prop-
erty) 112

defined (regular) 124; (coreg.) 127

definition 2 18 f.; (simultaneous) 94;
1 102; C (finite) 102 f.; (step-by-step)
117; W 148, 154

demonstrability 79, (123); (non -) 133

denying (vs. complement) 24, 96

derivable 67, 71 ff., 79; also see calculus

derivations (instances) X 19 ff,, 71 f.;
P74, Q76 f.

description (individual) 92 ff.; CF 94;
(state) 141, 143 £, 146

designation (system of) 120

discrete ontology 28, 38 f., 52, 78 f., 87

distinguish (theories) 165 f.

distribution 138 ff.; (conditioned) 149,
150 f.; (description of -) 142 f.; (~ of
distribution) 167

distributive law P (58), 143

divisible (math.) 10; (matter) 41 f.

domain (of objects) 78; (of sets) 110 ff.;
(open/closed) 78, 114

Déhmann 45

e(no)14 ff,, 18; Q 25
E (element) 110 f.
either — or 36 f.
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element (101), 110 f,

empty (concepts) X 16, 20, 23; (domain)
60, 65

enumerable 136, 127 £.; see also regular

equal distribution 164

equation 87 f.

equipossibility 145 ff.; (assumptiontype 1)
148, 161; (type 2) 149, 154, 162

equivalence (54); — rel. 87

equivalent (58), 139, 150

event (repeatable) 43, 149; (as object)
100, 139; (individual -) 2B 154

Euler 65

Euclid 26

every 27 f.; (property) 112; see also all

exactly one, two ... 89 f.

exclude (log.) 140

existential formulas 54

expectation IB 168

experience 44; (corrected by) 145, 149 f.,
162, 164

expressions Q 53; S 72; T 106

extension (of term) 19; (of logic) 94,
100 fT.

F (false) 33 fT., 56 f.

false 33, 79, 116 ff., 120

favourable/possible 149

FC 74

Feys 107

fictionalist 28

figure X' 15; (derivation, proof) 20 ff.,
71 {.; (instances) 74, 76 f.

Fine M 167

finitary (consequence) Q 62, 84

finite (universe) 38, 59 f., 140 f.; (def.)
103 £., 135; (calculus) 123 f.

follows 14, 55, 61 ff., 71 ff.; (vs. if - then,
derivable) 49, 73

form (of world) 27; (of language) (19),
30, 47 £., 50

form expressions 40

formulas see wffs

Frege 12, 44, 115

frequency phenomena I3 148 ff., 167, 154

FSK 80

function (log.) 34 f.; Q 52; T 97; (vs.
value) 45, 94; also see functor

functor P 51; Q (53); (descr.) 92; F 97
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g 141, 145

generalization (A -rule) (67); Gi Gs 74 f.

generally valid 28, 50; P 57, 79; 2 59;
Q 60, 62, 79 (124); 1 87; T 101, 134

genidentity 41

Gentzen 72

geometry 11, 56, 100

Gi75

Gaodel 62, 123 ff., 126

grammatical (usage) 26;
(categories) 53

graph 96 f., 108

Gs 74, 83

(form) 48;

Hasenjaeger see Scholz-Hasenjaeger

Hailperin 65

Hermes 126

Heisenberg 56

Heyting 85

higher-order (rules) 66, 69, 73; (logic)
100 f., (104)

hold 31 f.; (attr.) 33, 110; Q2 101

I(...) see information

i (some) 14 ff.; Q 25; X' 59

¢ (operator) 92

idealist 28

idealized 30, 41, 4511, 62, 156, 168

identity 87 fi., 102

if 37, — then 13 £., 37, 48 £., (56 £.); (vs.
follows) 55, 61; (vs. derivable) 69

if and only if (= iff) 37, 53

incomplete (statements) 26; (calculi) 102,
(128 £.), 134 f.; (knowledge) 141, 155,
168

independent (propositions) 140 f., 146;
(events) 148, 154; (of bias) 164

individual description 91 f.

inductive inference 155 ff.

inference (rules of) 67 ff.; (deductive/
inductive) 155, 157; (plausible) 156

infinite 31 f., 84, 135, 136; W 137

information (measure, unit, gain) 145 f.;
(incomplete) 155; see also knowledge

inter-connecting of inference 20 ff.;
(structure of —) 85; see also derivation

interpretation (translation) 54; (seman-
tics) 54, 56, 122; (def. of B*) P 57;
2 58,Q59f;C95 97

intuitionistic 27; P 78 f., 121
invisible predicates 101

Jeffreys 137

judging D 127; M 137, 149, 163; see
also bias

-junctions P 37 f., 53 f.

justified (member of proof) 72; (legiti-
macy of descr.) 92 ff., 107 f.

juxtaposition (of inferences) 20

Kant (65), 135

Kleene 85, 120, 126

knowledge IB 149; (measure, unit, —
gain) 145 ff,

Kolmogorov 139

Kripke 78

Kuratowski 104 f.

Lr51,56f;Ly51,58f; Ly 52f,59¢,
123; Ly 87 f.; L¥? 102; L) L2y 104;
Ly 105 f.

Lagrange 1368

Langford 78

language (standard) 48 ff.;
about -) 56 f., 115

law (of nature) 30, (155 £.), 165; (of logic)
see rule, theorem

Leibniz 9

Lewin 41

Lewis 78

likely 156, 16722

logic (vs. math.) 30; (of relations) 12;
MW 45, 137 f.; S99 £.; T 104 fF.

logical (function) 33, 34; (theorem) see
general validity (antinomy) 109; IB
147, 161

logistic 12

Lorenzen 69

Léwenheim 102

Lukasiewicz 137

(talking

many-sorted logic 99 f.

many-valued logic 85, 137

Markov 126

Mates 10

mathematics (deduct. science) 30, 122;
(logic of math.) 44, 102, (104), 109

Matiyasevich 1362t
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Ps 75
PSC 72, 80

qualities 43

quantum physics (42), 167

quantifier, quantor 40, (52 f.), 60, 121;
(restricted) 133

quaternio terminorum 26, (63)

Quine 45, 113

quotation marks (30), 45, 115

Rb (= bound renaming) 75

realist 28

recursive see biregular; (-ly enumerable)
136

regular 124 f.; (properly) 128

Reichenbach 19

relations 12, 14, 30 f.,, 43; — between
attributes 33; (- instances) 96 f.; (de-
fining rules) 85, 123; (- of equivalence/
congruence) 87 f.

renaming (bound) (55), 75, 86

reversible (rule) 85

Robinson 136

Rosser 166

rule of inference 66 fi.; (syntactical -) see
calculus; (semantical —) see consequence

Russell 12, 93; (antinomy) 112

satisfy 60, 62

SC72

scepticism (selective) 29

schema 29, see also form

Schneider 65

scholastic 12

Scholz 9; (-Hasenjaeger) 64 f., 85, 136

Schonfinkel 105

Schrider 12

Schutte 78

sclerodox 147, 164 f., 169

scope 54, 75 (of «x...; 92)

second-order logic 100 f.

semantic 56 ff., 62; (foundation) 66;
(antinomies) 109; (problem complex)
123

sequence (N-tuple) 38; (derivation) 71 ff.

set theory 49, 97, 101, 121; (naive -) 110

sets (106), 110 ff.; (domain of -) 120;
(~ of distributions) 142, (16714)

Shannon 145

simultaneous definition 107

Skolem 102, 136

Smullyan 136

some 14; also see i, at least one, o

sound 78, 80 f.; (accepted rules) 122

square 12, 26; (negative) 63; (sum of -)
133, (137), (143)

standard (language) 38; (model) 101

standard form (of phrases) 48 f; P
(normal form) 58; (of proof) 73

state of affairs (33), 56; (event as object)
108, 139

Stoa 10, 12

subject-term X' 14

subjective Y 148

sub-set 111 f.

substitution 2’ 19, 21, 24; Q 31; (Rb, TS)
75, 85; (descriptions) 93

Suppes I3 167, 148

Suranyi 136

syllogistic 12 f., 17 f., 44, 51 1., 58 f., 161

symbolic (logic) 12; (method) 17 f.;
(notation 11, 56)

syntactic def. of theorem 70, 122; see
also calculus

T (true) 36; M 139 ff.; (gen. truth table) 85

tz 124

Tarski 116, 123, 136

tautological see generally valid P

term X 14, 52; Q 53; D 92, 97; T 106

term-substitution Q 75 f.; D 93 f.; see
also TS

theorem 66 ff., 70, 128

theory 27, (42); (- of numbers) 131 ff.;
(tested) 165

therefore 10, 14; see also rule

there is 28; see also at least ,

...~thing 14, 28, 40; (material existence)
41; (domain of objects) 42; (obj. of
thought) (100), 110

thinkable (calculi) 124, 136

tree-like (proof figure) 20 ff., 71 f.

true 33 f,, 79, 56, 116 fi., 120, 137 £;
(logical/factual truth) 150

truth-functions, -tables, 3437, 64; -values
33 ff., 57; generalized 857, 137 ff.

TS 75, 83, 96
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