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PREFACE 

The field of modern logic is too extensive to be worked through by open- 

cast mining. To open it up, we need to sink shafts and construct adits. 

This is the method of most text books: a systematic exposition of a 

number of main topics, supplemented by exercises to teach skill in the 

appurtenant techniques, lays a secure foundation for subsequent dis- 

cussion of selected questions. 

Compared with this, the present treatment is more like a network of 

exploratory drillings to show that it would be worthwhile to start mining 

operations, or to work the existing shafts and adits, as the case may be. 

Within this metaphor we may also describe the inherent weakness of this 

conception: once a cavity is pierced, the duct’s capacity will in general 

not be sufficient to carry away the discovered riches. But whether we are 

concerned with a new or an already worked mine - at any rate, the 

experience should stimulate us into either reviving an existing system 

of shafts or even, in particularly fortunate cases, designing a new ap- 

proach. 

Discarding our metaphor: brief accounts, of some of the various 

aspects of logic, will have served their purpose if they give the incentive 

to a more thorough study of some of the questions thrown up by these 

aspects. Sooner or later this will necessitate falling back on systematic 

expositions. However, in my view, there are worse ways of preparing 

for such reading than to gain a first-hand experience beforehand, through 

one’s own intellectual efforts, of the questions that such reading will raise. 

The hints contained in Sections III 3 and IV 2, in particular, are in- 

tended to contribute towards this. 

Because of its arrangement according to aspects, this introduction is 

no example of a deductive and logically self-contained exposition of a 

branch of knowledge. Even less is it a text book of some elementary part 

of logic, whose acquisition could be regarded as a prerequisite condition 

of all scientific endeavour. In my opinion, this kind of logic is acquired 

not before but with the knowledge in question, and we start on this 
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PREFACE 

process already when we learn to speak. The way in which we reach 

awareness of logical laws, will concern us later (p. 9 ff.). 

In keeping with the aim of this book - that of motivating concepts of 

modern logic and problems linked with them — I have chosen the following 

arrangement: the first half deals with so-called first-order predicate logic 

(as the kernel of modern logic), this being (I) analysed as a further 

development of traditional logic, (II) explained as theory of (really: as 

a surveyable discrete section from) the existent, whose language reflects so 

much of the latter’s structure that it (IIT) can substitute for the existent 

as object of investigation (or has our ‘discrete ontology’ suggested itself 

to us only because of the necessarily discrete structure of language?). 

Finally in (IV) we examine the correspondence between linguistic-de- 

ductive and ontic-relational structure. 

The second half presents (V) practical and fundamental extensions of 

the language ef logic (and hence of the world picture afforded by it) 

and draws attention to the openness of all (VI) expressive and (VII) 

inferential means in this extended domain. This trivium of the non-trivial 

is supplemented by a look at (VIII) the logic of probability, which cannot 

be included under the extensions discussed earlier (V). 

The translator, Mrs. E. C. M. Mays, also deserves to be thanked for her 

help in adapting several linguistic examples as well as in proof-reading. 

I have used the occasion of this translation to improve some passages, 

mostly to avoid ambiguities of the German edition. As for the bibliography: 

whenever an item was quoted in the German edition for further reading 

rather than for particular reference, I tried to replace it by a comparable, 

possibly newer, source written in English. 

Bonn, August 1971 G. HASENJAEGER 
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CHAPTER I 

TRADITIONAL AND MODERN LOGIC 

It is quite possible to have learned to make ‘logically correct’ inferences 

without having explicit knowledge of any of the rules of logic. The special 

discipline of logic has come into being only as the result of a conscious 

search for rules of inference and their explicit formulation. These rules 

may be expressed in very different ways, e.g.: 

(1) by collecting typical examples of any one mode of inference; 

(2) by the description, in words, of the structure or form of a mode of 

inference, possibly with the use of ‘variables’; 

(3) by the representation of the underlying rule mainly or exclusively 

in terms of a suitable symbolic notation or conceptual language. 

The first method has the advantage of being intuitive and easily re- 

membered. However, it is not always clear just what degree of generality 

of the underlying rule the examples are intended to convey, or is attached 

to them by the speaker or listener. If all the examples relate to one topic — 

which would in itself be of no relevance in this connexion — the reader 

will often have difficulty in applying the rules correctly to other subject 

matters. This method is comparable to that of the sage who answers 

questions regarding the nature of the good by telling stories. In many 

cases this method leads to a much clearer representation of the idea of 

the good than would a definition — if, indeed, there is such a definition. 

However, in the case of logic we need to do more than tell stories. 

The second method is represented by a number of systems of logical 

laws dating from the time of classical Greek philosophy (cf. I 1, p. 12). On 

the other hand, it is only fairly recently that the potentialities of symbolic 

notation have been explored — probably through the inspiration of Leibniz, 

and systematically only since the 19th century. (For the historical aspects, 

the reader is referred to Scholz [1], Bochenski [1] and Kneale-Kneale 

[1]). 
1. FROM TRADITIONAL LOGIC TO ‘LOGISTIC’ 

We shall illustrate the three above-mentioned stages of abstraction in 
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terms of a simple mode of inference taken from what is nowadays 

termed propositional logic. First, the method of typical examples: 

(a) If Ringo has won at Bingo, Ringo becomes irresponsible. Ringo 

does not become irresponsible. Therefore, Ringo has not won at Bingo. 

(b) It is has rained, it is wet. It is not wet. Therefore, it has not rained. 

(c) If 99 is divisible by 32, then 99 is divisible by 2. 99 is not divisible 

by 2. Therefore, 99 is not divisible by 32. 

Clearly, these inferences are all based on the following simple rule of 

inference: 

(d) If the first (holds!), then the second (holds). The second (does) not 

(hold). Therefore, the first (does) not (hold). 

‘If the first, then the second’ and ‘not the second’ are called the premises 

(assumptions) and ‘not the first’ the conclusion of the rule of inference. 

A whole system of propositions, or inferences, of this kind was for- 

mulated in rotghly this form in the so-called Stoic logic (cf. Mates [1]). 

Before going on to formulate our example in terms of a symbolic notation, 

we shall compare (d) with the examples given under (a)-(c). Whoever 

asks himself whether (d) is a correct mode of inference, will answer 

this question in the affirmative, and will therewith accept also (a), (b) 

and (c). 

However, examples (a) and (b), at any rate, may well evoke a response 

of ‘Yes, but ...’ from some people. This may be connected with the fact 

that in ordinary linguistic usage the precise meaning of a statement is 

usually determined only by the situational context. Only in this way do 

the contents of different parts of a proposition correspond so precisely 

with one another that they can be referred to as ‘the first’ and ‘the second’ 

etc. Thus, in example (a), the sentence ‘Ringo does not become irre- 

sponsible’ may be referred to as ‘not the second’ only if it is understood 

as a report about Ringo’s behaviour and not in the sense of ‘It is not 

Ringo’s nature to become irresponsible.’ On the other hand, if the first 

premise is interpreted in this latter sense (viz as ‘If Ringo wins at Bingo, 

then it is Ringo’s nature to become irresponsible’), then it cannot be 

regarded as a particular instance of the general rule that ‘whoever wins 

at Bingo, becomes irresponsible’. 

Whereas objections might be raised in the case of example (a) because 

of a certain qualitative ambiguity of the statements occurring in it, 

example (b), raises difficulties of a rather different kind. Here we will 
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FROM TRADITIONAL LOGIC TO ‘LOGISTIC’ Il 

be inclined to doubt the applicability of the general rule of inference 

(d) because of a quantitative indeterminateness of the concepts used: 

How many drops constitute a shower? What length of time counts as a 

time after a shower? 

With example (c) the situation is quite different. The concepts occurring 

in it all belong to that branch of knowledge that has most effectively 

freed itself from the indeterminateness of ordinary linguistic usage.2 Not 

only those who know what ‘divisible’ means in mathematics, but every- 

body who knows that it is a well-defined concept will admit (c) to be an 

instance of (d). 

However, a rule of inference such as (d) need not be restricted in its 

application to those branches of knowledge that have clear-cut concepts. 

A sufficiently close correspondence in meaning between the parts of 

statements in given premises, may also be based on particular experience 

and knowledge. The situation is similar to that of the application of 

geometry (the theory of space) as a pure theory to the ‘world we live in’. 

Here there are no perfect points, straight lines, planes, spheres etc.; 

nevertheless, those who have the requisite specialized knowledge know in 

precisely what sense and with what degree of accuracy the laws of geom- 

etry may be applied to triangulation points, straight roads, walls, balloons 

and so forth. But they are also aware that it would be wrong to try to base 

geometry on such partial approximations as, for example, walls — instead 

of on perfect, ideal planes. A general law is more readily grasped if 

questions concerning e.g. the difference between a real wall and an ideal 

plane, important as they are in practice, are temporarily left out of 

account, since they merely confuse the issue. 

In logic, similarly, we must take account on the one hand of the pure 

forms of inference and on the other, of the linguistic representations of 

the formal structures occurring in these forms. Indeed, in most cases we 

arrive at the formal structures only via a linguistic representation; for 

we must be able to talk about them. However, instead of ‘talking’ about 

them we can use a symbolic notation, and this more direct way is today 

much used to describe such structures. 

The development of logic as a science no doubt started with the collec- 

tion of examples of particular modes of inference. But even in classical 

Greek philosophy we find two subdivisions of logic being investigated 

and systematized in form (2). These are in the first place the so-called 
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syllogistic of Aristotle (cf. I 2 and 3), and secondly the propositional logic 

of the Stoic school (Chrysippos and others), which has already been 

mentioned in connexion with example (d). 

On the other hand, neither ancient nor scholastic logic appears to 

contain a systematic formulation of the logic of relations, although Greek 

geometry? could not have been as highly developed as it was without a 

rational treatment of relations such as (the point P) lies on (the straight 

line s) or the distance between (the two points AB) is the same as (that 

between the two points CD). But the logic that is applied in Greek geom- 

etry is not generally applied in a way that consciously points to the 

underlying forms of inference. 

Among the deductions of the scholastics, too, there are a number of 

inferences that nowadays are recognized as examples of the logic of 

relations.? 

Modern logic — developed from the 19th century onwards in the work 

of Boole, Schröder, Peirce, Frege, Peano, Whitehead, Russell and others — 

has produced a totality of proofs and modes of inference within which the 

work of Aristotle and the Stoics falls naturally into place, but which 

contains in addition a comprehensive theory of relations. Thus modern 

logic, which is often referred to as logistic, differs from traditional logic 

only in that it is much more inclusive. This development, however, was 

made possible only through the systematic use of symbolic techniques, 

i.e. symbolic notation, by means of which even complex meanings can 

be formulated in simple and significant terms. For this reason modern 

logic is often called symbolic logic. 

The following example will show the increased perspicuity resulting 

from the introduction of a symbolic notation. The so-called binomial 

theorem can be formulated in words as follows: 

The square of the sum of two numbers equals the sum of the 

following summands: the square of the first number, twice the 

product of the two numbers, and the square of the second 

number. 

Compare this with the symbolic formulation of the theorem: 

(a + b)? = a? + 2ab + b?.6 

Similarly, we can obtain significant formulations for logical laws 
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CONVENTIONS REGARDING BORDER-LINE CASES 12 

through the introduction of suitable symbols. Using the notation that 

will be described in this book (cf. III 2, p. 50 f.; 3, p. 56 f.), the law 

expressed in (d) is formulated as follows: 

(e) A — B, —BF-A, 

a suggested way of reading this being: ‘if A, then B’ and ‘not B’, then 

‘not A’. On the basis of this translation the reader might care to examine 

the following sentences and to ascertain the correctness of the inferences 

presented: 

(g) —zA>B, —BEA 

(h) NY ey ee 

A systematic method for the construction of such ‘rules’ is set forth 

in IV 2, p. 70 f. 

One branch of modern logic that scarcely occurs in traditional logic is 

that concerned with the investigation of the possibilities and limits of 

the symbolic or formal method in logic. These enquiries into logic are 

also known as metalogic. They make up an ever-increasing proportion 

of the work done in symbolic logic. Some typical, metalogical problems 

are put forward in Sections VI and VI. 

2. CONVENTIONS REGARDING BORDER-LINE CASES 

Modern logic has been developed to a large extent by mathematicians. 

They have transferred to logic the well-tried method of mathematics of 

simplifying complex conceptual structures by appropriate conventions 

about border-line cases. (Thus the decimal notation, familiar to all of us, 

was made possible only by the introduction of zero as anumber or cipher.) 

Because of this, the presentation of some parts of traditional logic within 

the framework of modern logic differs from that of traditional logic, 

but without essential divergence of meaning. We shall illustrate this from 

Aristotelian syllogistic (including, where relevant, traditional logic, which 

is based on Aristotelian logic and in part diverges from it). 

In Aristotelian syllogistic logical propositions or modes of inference 

of the following form are put forward: 

13 



[2 TRADITIONAL AND MODERN LOGIC 

(a) If A and B, then C; 

or alternatively’ 

(b) From A and B follows C; 

or alternatively? 

(c) A, B; therefore C; 

where A, B, C are propositions having one of the four following 

forms: 

(1) All things having the property S have the property P, or briefly: 

all S-things are P-things, or: all S are P; traditionally symbolized by the 

formula SaP. 

(2) Some S-things are P-things, or: at least one S-thing is a P-thing, 

traditionally symbolized by SiP. 

(3) All S-things are not P-things, or: no S-thing is a P-thing, tradition- 

ally symbolized by SeP. 

(4) Some S-things are not P-things, traditionally symbolized by 

SoP.8 

Importance attaches only to the relation to be expressed between the 

so-called subject-term® S and the predicate-term® P, and this relation 

may be expressed in yet other ways than indicated above. Thus in general 

the form SaP will include propositions such as ‘Relatives are human 

beings’ and ‘The best things in life are free’, whereas in a sentence like 

‘The last mile is the most difficult’ the definite article in ‘the last mile’ 

may be taken either in the sense of ‘every’ or ‘this’, depending on the 

context. This aspect will be further discussed in III 1, p. 48. 

A relation between A and B, the premises, and C, the conclusion of 

(a), (b) or (c) is set up in accordance with the following rule: 

The subject-term of C is to appear in B, and the predicate-term of C in 

A, either as subject or as predicate; and A and B are to have a term, the 

so-called middle-term in common.!° From among the propositions of 

form (a) or (b) fulfilling these conditions — of which there are no fewer 

than 256 — those are to be selected that express logical propositions, 

correct inferences or ‘admissible’ rules. 

The positions of the subject-term S and the predicate-term P in the 

premises A, B and therewith the position of the middle-term M in A and 

B having been decided — this determines the so-called figure of the 

inference — attention must also be paid to the connectives a, i, e, o holding 

between the terms M, P; S, M; S, P. 
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Traditional logic puts forward 19 propositions or modes of inference 

that satisfy the above conditions and are not weak forms of other correct 

inferences (of these latter there are five so-called subaltern modes of 

inference.) We shall arrange them, as is customary, according to their 

A 

B 
‘figures’, and shall write br. as abbreviations for (a) resp. (b), (c). Oc- 

; : AB BA 
casionally we shall employ the equivalent forms ben or ‘——’ as being 

more appropriate. 

Figure 1 comprises four modes of inference 

MaP MeP MaP MeP 

SaM (1.1) SaM (1.2) SiM (1.3) SiM (1.4) 

SaP SeP SiP SoP 

Figure 2 also comprises four modes of inference 

PeM PaM PeM PaM 

SaM (2.1) SeM (2.2) SiM (2.3) SoM (2.4) 

SeP SeP SoP SoP 

Figure 3 consists of six modes of inference, the last two of which 

(marked *) provide examples on the topic ‘conventions about border- 

line cases’. 

MaP MeP MiP MoP 

MiS (3.1) MiS (3.2)  MaS (33) MaS (3.4) 
SiP SoP SiP SoP 

MaP MeP 
MaS (3.5)*  MaS (3.6)* 

SiP SoP 

Figure 4 includes five modes of inference, the last two of which again 

furnish examples on the subject ‘conventions about border-line cases’. 

15 



12 TRADITIONAL AND MODERN LOGIC 

PaM PeM PiM 

Mes (4.1) MiS (4.2) MaS (4.3) 

SeP SoP SiP 

PaM PeM 

MaS (4.4)* MasS (4.5)* 

SiP SoP 

As there is no clear-cut systematic connexion between these 19 modes 

of inference, Latin mnemonics were later introduced for them. For 

example, in Figure 1, (1.1) = barbara, (1.2) = celarent, (1.3) = darii, 

(1.4) = ferio, the consonants chosen expressing relations to modes of 

inference belonging to other figures. In former times these mnemonics 

were committed to memory much as one might learn a poem. 

The reader is recommended to write out some of these inferences in 

words, and fo convince himself of their validity. Our discussion here 

will be limited to the four inferences marked *, as their validity depends 

on a special convention, which concerns propositions of the form SaP 

and SeP. In ordinary language a proposition of the form ‘All S-things 

are P-things’ is immediately meaningful only if there are S-things (if the 

meaning of the term S is non-empty), and is in this case equivalent to 

(d) For all things x: if x is an S-thing, then x is a P-thing. 

Whereas Aristotle and his successors interpreted the proposition SaP 

as also asserting the proposition that there are S-things, it has since 

proved more convenient to agree to regard SaP as equivalent in meaning 

to (d) in all cases. This convention does not affect the ‘natural-language’ 

use of SaP. On the other hand, it removes the need to make special case- 

distinctions for inferences that exceed the limits set by (a) or (b) but 

are nevertheless of practical importance. And in any case, which logic 

could we apply if we first had to show that a newly defined term was 

non-empty ? 

The logical schema (of which we shall not here give an explicit formu- 

lation) underlying the inference 

(e) From the fact that all sailors are men, it follows that all 

good sailors are good men.11 

should hold irrespective of whether there are good sailors or not. At the 
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THE SYMBOLIC METHOD 13 

same time the modern convention makes it easier to integrate the tradi- 
tional schemata — excepting, of course, those marked * — within a more 
inclusive system. 

Similarly SeP is to be understood as equivalent to 

(f) For all things x: if x is an S-thing, then x is not a P-thing. 

The schemata marked * depend on the traditional convention for the 
following reasons. In the schemata 

MaP MeP PeM 

MaS (3.5) MaS (3.6) MaS (4.5) 

SiP SoP SoP 

the conclusion SiP, resp. SoP, viz ‘Some S-things are (not) P-things’, in 

all cases presupposes ‘namely the M-things’. (The reader should try to 

find examples for S, M, P so that — under the modern convention — the 

premises are true and the conclusions false.) On the other hand, the 

schema 

PaM 

MaS (4.4) 

SiP 

is based — less obviously perhaps — on the fact that in the traditional 

interpretation the premise PaM implies the existence of P-things. A 

counter-example on the basis of the modern convention would be: Every 

lunar man is (at any rate) a man; every man is a living being; and falsely: 

some living beings are lunar men. 

3. THE SYMBOLIC METHOD - ILLUSTRATED 

IN TERMS OF SYLLOGISTIC 

Even in traditional logic we find a symbolic notation used to represent the 

syllogisms. However, the full advantages of symbolism become apparent 

only when this is used not merely for writing out the modes of inference, 

but also for establishing their foundation. Although on the whole the 

preference nowadays is to integrate Aristotelian syllogistic within a more 

inclusive system of modes of inference (cf. IV 2, p. 78), in the sense of 

the ‘translations’ in I 2, (d) and (f), it is also possible — and highly in- 
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13 TRADITIONAL AND MODERN LOGIC 

structive — to apply symbolic method to the task of systematizing the 

Aristotelian schemata themselves, so as to bring out clearly the inter- 

connexions existing between them, although these were, of course, also 

known to traditional logic. 

With the introduction of three auxiliary modes of inference all 19 

modes of inference can be reduced to the schemata barbara and darii, 

i.e. (1.1) and (1.3). More far-reaching reductions can be obtained by an 

increased use of symbolic notation, as will be indicated below. 

The reduction to barbara and darii may be represented in the following 

stages: 

(1) Reduction of the connectives e, o to a, i by the introduction of 

complementary terms. A proposition of the form ‘All S-things are not 

P-things’ may be interpreted on the one hand as ‘All S-things are-not 

P-things’ and on the other hand as ‘All S-things are non-P-things’, i.e. 

in the one case the property P is denied in respect of S-things, and in the 

other the property non-P is affirmed in respect of S-things. We call non-P 

the complementary term to P.12 It is symbolized by ‘nP’. Such formulation 

in terms of ‘nP’ is, of course, equivalent to the original one, but proves 

to be useful in that it allows a mode of inference formulated for any 

term whatsoever to be applied also to complements of terms. 

We can now define ‘Se?’ by ‘SanP’ and ‘SoP’ by ‘SinP’, or briefly: 

€ = pan (to be read as ‘e equals an by definition’) 

o= Df in. 

However, this procedure needs to be justified. On substituting nP for P, 

n and P, of course, belong together. This can be expressed by brackets: 

‘Sa(nP)’. We then introduce a new concept (an) by means of S(an)P = 

pr Sa(nP). Since on the basis of the definition both bracketings are 

equivalent, it is agreed to omit them, so that ‘SanP’ and ‘SeP’ are inter- 

changeable. We argue similarly concerning ‘o’ and ‘in’. 

It should be noted that these reductions depend on the choice of a 

suitable symbolism. For example, if instead of ‘SaP’ we had written 

‘aSP’, corresponding simplifications would have been possible only for 

the complements of subject-terms, which are less important in this 

connexion.13 

(2) Implications of the admission of complementary terms. Since we 

are concerned, in all the modes of inference investigated here, only 
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THE SYMBOLIC METHOD 13 

with the extensions of terms (the extension of a term being the totality 

of things subsumed by it) and since the complement of the complement 

of a term P is co-extensional with P — is, indeed, identical with P if terms 

are regarded as identical with their extensions — any term P in any mode 

of inference may be replaced by nnP as required; examples will be given 

under (4). 

Complementary terms having once been admitted, there is no reason 

why they should not also occur as subjects in propositions, i.e. why 

propositions of the form nSaP, nSanP, nSiP, nSinP should not be accepted. 

In this way some of the proposed derivations are simplified. On the other 

hand, the task set in I 2, p. 14 f. is enlarged, if propositions having the 

new forms are accepted for A, B, C. This extended form of syllogistic 

was, in fact, investigated by traditional logic, but did not become estab- 

lished (cf. in this connexion Reichenbach [1 ], and II 3, p. 44). 

(3) The basic modes of inference. The decision to which of the Aristo- 

telian modes of inference the remainder are to be reduced, is to some 

extent an arbitrary one. However, if we select a, i, n as ‘basic connectives’, 

then the following choice recommends itself as being a ‘natural’ one. 

We select as ‘basic’: 

(a) The modes of inference barbara and darii, which we quote again 

in a form suitable in this connexion: 

SaM MaP SIM MaP 
(1.1) 1.3 

SaP SiP 2 

(b) Two auxiliary modes of inference, which express symmetry prop- 

erties of i and an (known in traditional logic as conversio simplex or 

‘simple conversion’): 

SiP SanP 

PiS’  Pans 

(c) Two auxiliary modes of inference of a more general nature, which 

express the substitutability formulated in (2). (Let ... P... be a proposition 

in which P occurs.) 

(d) An auxiliary mode of inference that depends for its validity on 
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13 TRADITIONAL AND MODERN LOGIC 

the subject-term being non-empty, and which thus expresses this pre- 

supposition. (Thus the modes of inference ‘derived’ with its aid depend 

on the traditional convention discussed in I 2, p. 16 f.) 

SaP 
re 

SiP 

(The asterisk is intended as a reminder of the special role of this inference.) 

If we had formulated the logical laws contained in (a), (b), (c), (d) as 

propositional forms, instead of as modes of inference, then these proposi- 

tions would be designated as axioms. But in this case special modes of 

inference (belonging to propositional logic) would be required to express 

deductions from the axioms. On the other hand, the inter-connexions 

between modes of inference can be very clearly symbolized, as will be 

shown below. 

(4) Inter-connecting two modes of inference is possible only by using 

the conclusion of the one as (some) premise of the other. This will be 

symbolized by the immediate juxtaposition of the inferences or!* modes 

of inference, as the following examples show: 

SaP fs SaP nPanS 

SiP 9) SannP SannP 

PiS nPanS SaP 

In this way derived modes of inference are obtained, the uppermost 

formulas being the premises and the bottom one the conclusion. (The 

last two examples are also known as contrapositions. Note the com- 

plementary terms in subject place.) 

If at least one mode of inference with two premises is used, we obtain 

a tree-like figure. In this case the chain of inferences to be worked through 

is not pre-determined, since we can choose which of the two branches 

of the tree meeting in an inference we wish to work out first. However, 

we can also proceed differently and begin by constructing the whole 

tree in its final form, either mentally or on paper, and then test the 

separate inferences in any order of sequence, to see whether they follow 

from a basic mode of inference. 

This way of representing derivations or proofs in the form of a tree is 

much used in modern logic, as it allows the assumptions made at every 
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stage of a proof to be clearly indicated. However, it has the disadvantage 

that if the same assumption is used several times, the derivation must be 

written out in full on each occasion. A way of avoiding this will be shown 

in IV 2, p. 72. 

(5) The derived modes of inference. We give below the ‘trees’ for the 

derived inferences, arranged according to the basic modes of inference 

used. In this way the derived modes are in a sense analysed out into the 

basic ones. 

(a) Inferences reducible to (1.1) and simple conversions: 

SaM ManP 

SanP 

Here nP has been substituted for P; this is indicated by ‘P/mP’. 

i.e. (1.2) 

PanM 

SaM ManP ice. (2.1) 

SanP 

PaM ManS 

PanS i.e. (4.1) 

SanP 

SanM 

PaM ManS i.e. (2.2) 

PanS 

SanP 

Through the use of simple conversions we obtain inferences that belong 

to other figures. The derived modes of inference are arranged according 

to the number of simple conversions required. 

(b) An inference that, by way of a corollary, presupposes the non- 

emptiness of a term. 

PaM MaS 

PaS 

PiS 

SiP 

(*) ie. (4.4) 
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The weakening of the premise involved in the inference marked (*) is 

required in order to obtain the form $ ... P prescribed for the conclusion 

in days gone by. 

(c) Inferences based on (1.3) and simple conversions. 

SiM ManP 
, ie. (1.4) PanM 

Band SIM ManP ic. (2.3) 
SinP 

MiS MiS 
SiM MaP ic. (3.1) SiM ManP ic. (3.2) 

SiP SinP 

PiM MaS MiP 

“ Pis ie.(43) PiM MaS ie. (3.3) 
SiP PiS 

‚SIP 

MiS PanM 

SiM ManP ie. (4.2) 
SinP 

PaM 

PannM 

SinM nManP i.e. (2.4) 

SinP 

Here derivation from (1.3) requires the substitution of complementary 

subject terms. 

MinP 
nPiM MaS_ ic. (3.4) 

nPiS 
SinP 

The use of complementary subject terms could be formally avoided by 
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e.g. obtaining (3.4) from the previously derived (3.3) by the substitution 
P/nP. But if this substitution is made in the derivation of (3.3), com- 
plementary subject terms result once again. 

(d) Inferences where apart from (1.3) and simple conversion, the non- 
emptiness of a term is presupposed. 

Mas (*) 

MiS 
~SiM MaP 

SiP 

Her (ao) 

MaS ‘ 

MiS “) 

SiM ManP i.e. (3.6) (derived from the preceding by P/nP.) 

SinP 

MasS (*) 

MiS PanM 

SiM ManP 
SinP 

i.e. (4.5) 

(e) With regard to those modes of inference whose mere formulation 

requires complementary subject terms: they, too, can all be reduced to 

(1.1) and (1.3) by substitutions and simple conversions. We give only 

one example, as a complete enumeration would lead us too far from 

our main topic. 

nSaM MaP 

nSaP 

(6) More far-reaching reductions are obtained on the basis of the 

following considerations: 

(a) Every proposition of the form 

not all S-things are not P-things 

is equivalent to 

some S-things are P-things. 
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(b) Every proposition of the form 

If A and B, then C 

is equivalent to 

If A and not C, then not B 

resp. If B and not C, then not A. 

Before giving a formal derivation we give below a proof formulated in a 

‘mixed style’, using ‘—’ for ‘not’ (where this denies a proposition!?). 

Substituting P/nP in (1.1), we obtain (1.2) 

SaM ManP 

SanP 

This is equivalent, on the basis of (b), to 

SaM — SanP 

>, ManP 

On the basis of (a), this in turn is equivalent to 

SaM SiP SiP SaM 
— and to — 

MiP MiP 

Since no significance attaches to the choice of the letters S, M, P they 

can be interchanged by the simultaneous substitutions S/M, M/S, P/S.16 

This clearly yields the mode of inference below (apart from the inter- 

change of S and P) 

MiS MaP 
FR (3.3) 

and by means of two simple conversions 

SiM 
MiS MaP 

PiS 
‘SiP 

Within the framework of the basic modes of inference stated under (3), 

(1.3) can thus be replaced by more basic inferences, if the transformations 

on the basis of (a) and (b) are put into symbolic form. This, however, 
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is not a question of finding an equivalent replacement, but of integration 

within a richer system, as e.g. the symbol — has not been used previously. 

It would be easy to integrate (a) within the system stated by (3) and 

(4), viz by introducing the following modes of inference: 

SiP ” — SanP’ 

and where appropriate also 

SanP — SiP 

=> SIP ; SanP ; 

On the other hand, the formal representation of (b) is less easy, since 

er Amb Ar 1G: : 
here the transition from G to and vice versa would have to be 

=, 

reduced essentially to a linking of modes of inference. However, the 

effort involved is compensated by the fact that the result — after some 

obvious additions — is the whole of propositional logic. Cf. in this con- 

nexion IV 2, p. 73 f. We cannot deal with this topic more fully here, and 

shall merely state that apart from linking the modes of inference we 

should also require a principle for the elimination of premises, since the 

transitions obviously involve the elimination of the premises B, resp. 

—7C, as such. 

The modes of inference with which we have so far concerned ourselves 

may be further reduced by being integrated within so-called predicate 

logic. For this purpose the translations given in I 2, p. 16 f. of SaP, 

SeP etc. [cf. ibid. (d), (f)], are expressed symbolically. 

Anticipating the symbolism used in III2 A, p. 51 and C, p. 52 f, 

we have the following definitions: 

SaP = pp A x(Sx > Px), 

SeP = pp A x(Sx > — Px), 

SEP = pe V x(Sx A Px), 

SoP =» V x(Sx Az Px). 

Although lack of space does not permit a fuller exposition, we should 

like at least to mention that in this way the above discussed modes of 

inference are reduced to the rules of inference that result from the meanings 

of the symbols on the right-hand side of the equivalences (cf. IV 2, p. 77). 
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NOTES 

1 The expression ‘the first’ really stands for a proposition; ‘holds’ and ‘does hold’ 

are mere concessions to grammatical usage. 
2 As we shall be concerned in this book to criticize such indeterminateness, we should 

like to draw attention here to its value and use: it is precisely this quality, in con- 

junction with our ability to understand incomplete statements, that allows natural 

languages to adapt themselves to entirely new situations. 

3 In the form of Euclid’s Elements. 

4 J. Bendiek [1] has examined some of these inferences with the aid of modern logical 

techniques. 
5 The ‘square of a number’ is a term taken from geometry and is used to designate the 

product of a number with itself, in symbols: a? = ara. 

6 This formulation does not take account of the fact that the equivalence is asserted 

for any numbers a, b whatsoever. This omission is made good in II 2, p. 40 and III 2, 

D531 
? Cf. Ill 3, p. 61 and IV 1, p. 67 f. for a discussion of the difference between these 
formulations. 

8 This systematic formulation is not Aristotle’s but derives from the time of traditional 

logic. x 

9 Here ‘term’ refers sometimes to the symbol (as it stands ‘terminally’) but more 

often to the concept indicated. This ambiguity is no drawback here. 

10 A violation — usually a hidden one — of this condition is called a quaternio (termi- 
norum). 
11 The reader should consider this proposition first as an example of a correct form 

of inference and then as an example of a trick effect often encountered in logic: a 
‘so-and-so S-thing’ is in ordinary language often different from an S-thing that happens 
to have the property so-and-so. 

12 On problems connected with complementary terms, cf. II 3, p. 44. 

13 This may be merely a historical coincidence, due to the structure of language: on 

the other hand, it is possible that language developed in this way ‘in order to’ avoid, 

or at least evade, the possibility contained in ‘nPaP’ of making statements about all 
things in the world. 

14 Inference should be understood as the resultant of a complete instantiation (specifi- 
cation) of the variable terms used in the modes; but mixed cases are also possible. 

15 Cf, V 2 for a discussion of the difference between the negation of a proposition and 
the formation of the complement of a term; the two are, of course, connected. 

16 If these substitutions were carried out consecutively, the desired result would 

obviously not be achieved. It could, however, be obtained by the consecutive sub- 
stitutions S/Q, P/S, M/P, O/M. 
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CHAPTER II 

LOGIC AS ONTOLOGY 

If we wish to assert that something is quite certain, we often say that it 

is ‘logical’. Although in fact examples of such use rarely fall within the 

sphere of logic, they nevertheless indicate a strong faith in logic. There is 

even a brand of cigarettes that has been advertised as the ‘Logical Move’. 

And indeed it is much easier to doubt assertions such as ‘Brutus murdered 

Caesar’ or ‘I was in Leicester on September 9th 1965’, than for example 

the proposition: 

(a) “Every apple is sweet or there is at least one apple that is not 

sweet’ 

or any proposition having one of the forms discussed in I 2; 3. 

To return to example (a): clearly, our faith in the truth of such proposi- 

tions stems from the fact that they are not contingent on our particular 

experiences of apples etc. We might, after all, make similar statements 

about pears, or plums or potatoes, or replace the predicate ‘is sweet’ by 

‘is sour’ or ‘is yellow’ etc. — if the reader still doubts the truth of proposition 

(a) he should check that he has not understood it in the sense of 

(b) ‘One knows that every apple is sweet or one knows at least one 

apple that is not sweet.’ 

This or similar interpretations of (a) are put forward by a well-known 

school of logic, the so-called Intuitionist School. In this book, however, 

we wish to represent logic as a kind of theory of the general form of the 

‘world’ — not as a theory of our knowledge of the ‘world’, which neces- 

sarily varies with time. 

1. THE WORLD AS DOMAIN OF OBJECTS WITH PROPERTIES 

AND RELATIONS 

It is a typical feature of propositions of the type of (a) above, that when 

we have grasped the truth of one proposition we often realize that this 
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truth does not depend on the special meanings of certain words that 

occur in it (here ‘apple’, ‘is sweet’), but that every proposition of the 

form indicated by (a), viz: 

(A) Every A-thing is a B-thing or there is some A-thing that is not a 

B-thing, is true. 

A propositional schema that subsumes only true propositions is said 

to be generally valid.2 Thus (A) is generally valid. 

However, there are also schemata whose general validity is less readily 

grasped and requires special efforts. Logic is not concerned with personal 

convictions regarding the general validity of certain schemata but with 

this general validity itself and, where applicable, with the objective 

methods whereby the universal validity of one schema is derived from 

that of more basic schema. (This, of course, affords opportunities for 

establishing personal convictions.) _ 

The following questions now arise: 

(a) How is it that there are universally valid schemata? 

(b) How can we grasp the universal validity of a schema, i.e. make 

judgments that ‘exceed the bounds of all possible experience’ ? 

(c) What insight regarding the ‘real world’ is afforded by such judg- 

ments? 

The way in which we answer these questions depends, of course, on 

our philosophical standpoint. For example, (a) might be answered in the 

following different ways: 

(1) From a realist point of view: The world of concrete (or abstract) 

things consists of things, which have some properties and not others, and 

between which some relations hold and not others. (How do we know 

this”) It is this structure of the world and not the ‘essence’ of the things, 

properties and relations occurring in the world, that is relevant for the 

establishment of universal validity. 

Let us call this ‘picture’ of the world ‘discrete ontology’,3 its domain, 

the ‘universe of discourse’. 

(2) From an idealist point of view: The world appears to us the way 

we with our discrete ontology describe it, but the question whether it is 

really the way we describe it, is unanswerable or beside the point. 

(3) From a “fictionalist’ point of view: We find it convenient to describe 

the world with a discrete ontology although its reality does not, or could 

not, fit our description. 
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(4) A philosophical standpoint of extreme scepticism will not provide 
any foundation for logic, and we shall therefore leave it out of account. 

(5) Different degrees of selective scepticism are known which accept, 

for instance, 

(a) only finite domains; 

(b) infinite domains if these are regarded as being generated; 

(c) actually infinite domains, but properties and relations only as 

being generated. 

The methods here presented can be adapted to some of these philos- 

ophies. 

Question (b) is a special case of the question: How is it possible to 

establish an ontology ? Irrespective of whether one considers an ontology 

in the sense of a general theory of being as such, to be possible, this 

special question can, in our opinion, be answered along the following 

lines. The general validity of such schemata is based solely on the discrete 

ontology to which we made reference in answering question (a). The 

formal structure described by it may be investigated independently of 

how question (a) is answered. The interpretation and importance of this 

general validity, however, depends on the answer given to question (a). 

The following considerations will provide an answer to question (c). 

For every generally valid schema of the forms 

If A,, then B; if A, and A,, then B; etc. 

there is (in a sense to be explained in IV 1, p. 67 f.) a mode of inference 

A, A, A, 
: ——; etc., 

B B 

where in every case the general validity depends on a relation between 

the form of A, and B; A,, A, and B; etc., as e.g. in the case of the syllo- 

gisms (I 2, p. 14). 

If the truth of a particular proposition of form A, (or of propositions 

of forms A,, A,) is not established by the form(s) of A, (and A, etc.) 

but by some experience, then by virtue of the mode of inference the truth 

of B is established on the basis of the same experience. 

Let us take a simple example. A, expresses this experience; B is a 

different formulation of the same state of affairs. This, however, need 

not be immediately discernible but is inferred as indicated above. 

Now take a more complicated case: Let A, express a totality of expe- 

? 
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riences such as is summarized or idealized* in a law of nature, and A, 

specific data of a blue-print of a machine, e.g. regarding speeds, gas 

pressures or electrical potentials, and let B describe the behaviour of the 

machine as inferred from A, and A,. All that we need to do then is to 

spend time and money on the construction of the machines, whose 

previously inferred behaviour corresponds as far as possible to the in- 

tentions of their designer. 

The modes of inference required by this example are usually counted as 

belonging to mathematics. In fact, however, mathematics in its modern 

form is a part of logic, namely that part which deals with numbers and 

spatial structures. This part of logic has for this reason been exhaustively 

developed by mathematicians. Greater emphasis used formerly to be 

placed on its application to numbers and spatial structures, whereas 

nowadays it is usually presented in a form where reference is made to 

things of any kind whatsoever having presupposed properties and rela- 

tions. Mathematics in this form is distinguished from general logic only in 

that it deals preferably with such properties and relations as have proved 

themselves in the investigation of numbers and spatial structures.® 

Apart from inessential variants, the discrete ontology referred to in 

our answer to question (a), determines the form of the language or 

conceptual notation® that we shall introduce here as the means of 

‘communicating’ about this formal structure of the world. We symbolize 

as follows: 

(1) arbitrary objects, or ‘individuals’, i.e. things of any kind whatso- 

ever by ‘a’, ‘b’, ‘c’ and also by ‘x’, ‘y’, ‘z’, adding distinguishing subscripts 

as required, e.g. ‘ag’, ‘a,’, ‘a’, ... The numerals have no counting function; 

their purpose is to make available as many symbols for things as are 

required. The use of different symbols (e.g. ‘a’ and ‘c’ or ‘a,’ and ‘a,-’) 

is intended merely to express that the things symbolized thereby can be 

different; 

(2.1) arbitrary properties by ‘A’’, ‘BY’, ‘C’’, ..., with distinguishing 
subscripts as required, e.g. ‘Aj’, ‘A}’, ‘Al’, ...; 

(2.2) arbitrary relations between two objects by ‘A’, ‘B?’, ‘C?’, 
also by ‘A?’, ‘A}’, ‘A2’, ..., as required; 

(2.3) arbitrary relations between three objects by ‘A*’, ‘B?, ‘C*’, 
and also by ‘A?’, ‘43’, ‘A3’, ..., as required; 

(2.n) [By analogy relations between more than three (generally: 7) 
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objects are symbolized’ as required by “4”, ‘B”, ‘C”, or 
RATE ne 

(3.1) the fact that a property A’ applies to an object a (i.e. that a 
has the property A‘), by ‘Ata’; 

(3.2) the fact that the relation A? holds between the things a and 
b, by ‘A?ab’ (one occasionally finds the form ‘aAb’, which is 
modelled on the syntax of ordinary language, although the 

analogous form ‘aA!’ has not established itself); 

(3.3) the fact that the relation A? holds between the things a, b, 

c, by ‘A abe’; 

(3.n) [By analogy ‘A"a, ... a,’ is introduced for any n whatsoever. ] 

Examples for (3.1), (3.2), (3.3), (3.7). 

The fact that the property of being red belongs to a specific flower, 

may be expressed in ordinary language by the sentence: ‘This flower is 

red.’ If we were to apply convention (3.1) to ordinary language, we should 

have to say: ‘is red this flower.’ This “standardized proposition’ is ob- 

tained from ‘A‘a’ by instantiating the general symbols ‘A!’ and ‘a’, viz 

by substituting the predicative linguistic component ‘is red’ for ‘A?’ 

and the object-denoting component ‘this flower’ for ‘a’. In general, how- 

ever, it is advisable to adopt a natural-language syntax when substituting 

natural-language components for symbols in formulae.? Similarly we 

shall regard as a valid substitution in the formula ‘A*ab’ not only the 

syntactically standardized proposition: ‘the relation of being-taller-than 1° 

holds between James and Peter’, but also the ordinary formulation of this 

state of affairs, viz: ‘James is taller than Peter.’ In an exactly parallel sense 

the assertion: ‘Caesar’s birth occurred between the founding of Rome 

and the migration of the Germanic tribes’ will be regarded as a proposition 

of the form ‘A?abc’ (and not e.g. ‘aA%bc’). 

2. RELATIONS BETWEEN CONCEPTS AND LOGICAL OPERATIONS 

A world having the structure described by a discrete ontology would be 

exhaustively determined by a catalogue C, — possibly infinite — of all 

cases where a property is realized (i.e. applies to an object), or a relation 

holds (i.e. between a pair of objects, a triplet of objects etc.). But even 

apart from the problematical assumption that there will be proper names 

available for all objects and for all the properties and relations involved, 
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such a catalogue would be little help in finding one’s way about in such a 

world. For in order to determine whether a certain object a does not 

possess a certain property A!, one would have to look through the whole 

catalogue — and find an answer only after ‘infinitely many steps’, i.e. 

not at all. Let us consider an improved catalogue C, having the following 

content.11 

(1) Every case listed in C, is listed also in C,. 

(2.1) It holds for every property A! that is involved and every 

object a in the ‘world’, that if C, does not state the applic- 

ability of A! to a, then C, records the non-applicability of 

A} to a. 
(2.2) It holds for every relation A? that is concerned and every 

pair of objects a, b that if C, does not state that A? holds 

between a and b, then C, records the fact that A? does not 

hold between a and b. 

In general 

(2.n) It holds for every relevant relation A” and every n-tuple a,, ..., 

a, of objects that if C, does not state that A” holds between 

Q1, ...5 G,—, and a, then C, records the fact A” does not 

hold between a,, ..., a,-, and a,. 

In the following we shall use this general formulation also for the 

border-line case where n=1, i.e. where properties are concerned instead 

of relations; and we shall refer to these properties and relations as 

concepts. 

The general form of catalogue C,, as described by (1), (2.1), (2.2), ... 

can be simplified if the non-applicability of a predicate is represented 

symbolically. We therefore stipulate as follows: let ‘—A’ be the predicate 

that expresses the non-applicability of ‘A’. Hence C, can be described as 

follows: 

For every relevant concept A” (i.e.: n=1, 2, 3, ...) and every n-tuple 

of objects a,, ..., a, C, contains exactly one of the two expressions 

A"d, ... A, OF —~A"a, ... a,.12 This follows from the above specifications 

for determining C, from C,. 

Let us suppose a part-catalogue Cyn, extracted from C,, consisting of 

exactly those expressions in which a specific concept A” occurs. Thus 

Cyn says everything about A” that can be known about A", i.e. to which 

n-tuples A” applies. Let us now express this somewhat differently: C4n 

32 



CONCEPTS AND LOGICAL OPERATIONS II2 

describes a so-called logical function, viz that function13 which ascribes 
the value ‘true’, symbolically: “T’, to every n-tuple a,, ..., a, characterized 
by the occurrence of Aa, ... a, in catalogue C,, and the value ‘false’, 
symbolically: ‘F’, to every n-tuple a,, ..., a, characterized by the occur- 
rence of —A"a, ... a, in C2. The logical function correlated in this way 
with the concept A”, is also called the course-of-value of A”. Indeed, 
it is often said that a concept is nothing other than a function in this 

sense. Logical functions are also called attributes, so as to indicate that 

they are specifications (or idealizations) of properties and relations. We 

shall adopt this linguistic usage. 

So far then, an attribute is merely a counterpart to the catalogue C yn 

of a concept A”, and is even more abstract than it. However, instead of 

thinking in terms of the applicability or non-applicability of the concept 

A", to the n-tuple a, ... a,, we can now refer to operations with the two 

‘truth values’ T and F. In this connexion we shall write ‘A”(a,, ..., a,)’ 

for the correlated truth value. That is, A”(a,, ..., a,) is T if A"a, ... a 

and F if —A"a, ... a,. 

In order to find our bearings in a world described by a catalogue C,, 

let us try to find relations between the concepts or attributes A” whose 

catalogues C4, are contained in C,. In the simplest cases such relations 

are represented by propositions in which ‘atomic propositions’ occur, e.g. 

(1) Ata and —B'a, 

n? 

(2) It is credible that A'a and —B'a, 
(3) There are objects a having the property which is expressed 

by Ata and —B!a (or briefly: For some objects a, A'a and 

—B 19). 

We shall disregard (3), as the symbol ‘a’ is evidently used in a different 

sense here than in examples (1) and (2); (3) is not a proposition about 

the object a. The difference between (1) and (2) is the following: whether 

it is true that Ata and —,B'a depends only on whether A!a is true or 
false and on whether Bla is true or false; on the other hand, whether it 

is credible that Ata and —,B1a depends rather on what we know about 

similar cases. For example, a may be a specific almond in a bag, A’ the 

property of being an almond, B! the property of being bitter. Then the 

proposition ‘this is an almond and it is not bitter’ would represent (1) 

(in a form syntactically adapted to natural language), and this proposition 

might be true for almond a (a fact that one would have to ascertain). 
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On the other hand, the truth of (2), which expresses the credibility of (1), 

depends much less on the truth of (1) as on e.g. how the almonds so far 

taken from the bag have tasted. 

It will be more convenient to deal first only with relations where 

complexities as in (2) are excluded. These relations are thus wholly, 

and the corresponding propositional compounds are essentially deter- 

mined by the fact that for every value T or F of the atomic propositions 

occurring in them, the value of the compound proposition is fixed; i.e. 

the relation holds in precisely those cases where the value of the compound 

proposition is T. 

The simplest compound propositions of this kind are to be found in 

natural languages, for these have developed among other things out of 

the need for communication about an environment whose structure we 

have attempted to describe, at least approximately, by introducing the 

notion of catalogues of form C,. (This aspect will be discussed more fully 

in III 2, p. 55. Here we are concerned with the relations themselves, and 

not with their linguistic representations.14 We shall refer to these only 

occasionally, when this makes for a simpler formulation.) 

Clearly, these relations are logical functions. For if the places of the 

occurrence of atomic propositions in compound propositions are num- 

bered (places where the same atomic proposition occurs being allocated 

the same number), and if numbers are used, then the relation is described 

by a function that correlates one truth-value to every n-tuple of truth- 

values. Since only truth-values or n-tuples of truth-values occur as 

arguments, it is customary to speak of truth-functions in this connexion: 

thus of monadic, dyadic and n-adic truth-functions,15 where the arguments 

are truth-values, pairs of truth-values and n-tuples of truth-values, 

respectively. 

Truth-functions can be represented by means of catalogues called 

‘truth-tables’ or ‘matrices’, in much the same way as attributes, but more 

simply. These matrices are always finite, since in the case of an n-term 

truth-function they contain exactly 2” entries (T and F yield 2” n-tuples, 

Le. 2 for n=1, 4 for n=2, 8 for n=3 etc.). Since for each entry there 

are the two possibilities T and F, we thus have 4 truth-functions for 

n=1 (viz 27), 16 truth-functions for n=2 (viz 2+), 256 truth-functions 
for n=3 (viz 2°), and more than 8000 truth-functions for n=4.16 

We give below the matrices for the four monadic truth-functions, where 
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n stands for the argument, $,(m) for the value of the first monadic 
function, &,(r) for that of the second, etc. 

n || di) | dem) | ds) | 4a) 
T T T F F 
F T F T F 

6, and , are obviously trivial, since they are in no sense dependent 

on the value of rn. 6, is likewise trivial, as d,(r) coincides with r in all 

cases. On the other hand, , is important. This function evidently 

describes the behaviour of the propositional compound!? ‘not A’ in 

respect of the correlated truth-values. If we employ the symbol ‘—’, first 

used for ‘not A’, also for $3, we may write the matrix in question as 

follows 

m_|(@) ae 
T F or briefly T F 

F 4 F T 

The use of the sign ‘—’, which was introduced as abbreviation for ‘not’, 

as a sign for the corresponding truth-function is justified by the fact that 

‘*—(n)’ and ‘—,A’ are not likely to be confused and also by the con- 

sideration that the abbreviated form of the matrix may be regarded as 

a direct description of the ‘truth-behaviour’ of the propositional com- 

pound ‘—A’. 

Of the 16 dyadic truth-functions those again are trivial whose value 

does not depend on both arguments (i.e. depends only on one or on 

neither). If these are excluded, we are left with the 10 following functions, 

which are here numbered purely for convenient reference in this chapter. 

nr | p | via) | Wem,p) | Ys@mp) | Valt,p) | Ws(n,p) 
T T T T T T T 

T F F T F T F 

F T F T T F F 

F F F F T T T 

n | p | VeR,P) | VlR,p) Veln,p) | Voln,p) | Yıo(,Pp) 

T T F F F F F 

T F T F T F T 

F T T F F T T 

F F T T F F F 
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Like the function $3, the above functions characterize situations that 

occur under the most varied conditions of our environment and are 

therefore important also from the point of view of the idealized world 

referred to in II 1, p. 28. If we wish to describe them, we generally have 

to use the propositional connective that corresponds truth-functionally 

to the matrix in question. Most languages have their own words!8 for 

the most important of these connectives, and these words also serve to 

characterize the situations to which they are applicable. We shall here 

mention only a few examples relevant to English. 

(W,) Plants thrive if light and water are available in the correct quan- 

tities.19 An electric lamp whose supply of current is regulated by two 

switches placed ‘in series’, will light if and only if switch 1 and switch 2 

have the correct position. (This situation occurs e.g. if switch 1 is the 

‘master switch’.) Clearly, the common element of the two situations is 

described by %,, and , also describes the truth-functional behaviour of 

the propositional connective in ‘A and B’. We shall therefore use the same 

sign, viz ‘A’, both for this propositional connective and for its corre- 

sponding function ,, and thus write “Ar B’ and ‘A (1p). 

(V,) A two-link chain will break if the first or the second link breaks. 

An electric bell controlled by two ‘parallel’ bell-pushes will ring if the 

first or the second is pressed. We shall employ the sign ‘ v’ for the propo- 

sitional connective in ‘A or B’ (where ‘or’ is used as in these examples) 

and for the corresponding function Wp. 

(W109) Either we shall go to the theatre this evening or we shall watch 

the sun rise to-morrow (but we shall not do both). Either the child will 

have a building set for Christmas or an electric train (but not both). 

These situations are obviously described by W,,, and not by Wy. 

The above ten functions can to some extent be systematized, as the 

following considerations will show. It is easily verified that on the basis 

of our numbering W%, of the functions, the following holds for i=1, ..., 5 

and any values T, F for rn, p: 

Vs P) = > (WG, p)), 

i.e. the last five functions can be obtained from the first five by inter- 

changing T and F in all the spaces. Further, it is easily verified that the 

following holds in all cases: 

Var p) = W3(p,m) and Wo(r, p) = Wa(p, 2) 

36 



CONCEPTS AND LOGICAL OPERATIONS II2 

The signs allocated below to the ten functions take account of these 
relationships.2° With each sign we once more give the value distribution 
of the corresponding function, though this time in a different form, and 
also the characteristic English words that would occur in a corresponding 
compound proposition.?1 

A|TF v| TF >| TF -|TF o| TF 
T| TF ji Ee is PT T| TT T| TF 
ee Je JB F|FT A 

ander or if... then... at; tikes ...1f and 

(or both) or only if... 

...only 

Us 

A|TF v|TF >| TF -|TF >| TF 
T| FT T| FF T| FT T|FF T|FT 
zi ret mee ei Her 

it is not neither... but note, either... 

the case nor... not.«. putes Ot 

that both (some- (but not 

...and... times both) 

(by ana- termed 

logy the nor- 

termed function) 

the nand- 

function) 

An analogous treatment of truth-functions with more than two argu- 

ments is obviously out of the question. We shall here mention only the 

fact that every truth-function can be built up using merely monadic and 

dyadic functions. The problem of finding the simplest — and hence the 

most economical — way of doing this, has in recent years become of 

great practical significance, since the processes carried out by modern 

computers can to a large extent be described in terms of truth-functions. 

Some n-adic truth-functions are, however, important from the point of 

view of representing relations between concepts; thus for every n: 
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(1) The function that assigns the value T to that n-tuple consisting 

solely of T’s and the value F to all other n-tuples. 

This function evidently describes the truth conditions of a propositional 

compound that asserts the simultaneous truth of all the members of a 

series of propositions A,. Since for n=2 we obtain A, A A, a propositional 
n 

compound of this kind is often designated by * A A,’. The function ?? is 
n i=1 

therefore designated by ‘ A n,. 
i=1 

(2) The function that assigns the value T to n-tuples containing 

at least one T, and the value F to that n-tuple consisting exclusively 

of F’s. 

This function evidently specifies the truth-conditions of a propositional 

compound which asserts the truth of at least one member of a series of 

propositions 4;. Since for n=2 we obtain A, v A,, a propositional com- 
n 

pound of this type is frequently designated by ‘ V A;’. As above we des- 
n i=1 

ignate the corresponding function by ‘ V rn. 
i=1 

Taking the case where the universe of discourse introduced in I 1, p. 29, 

is finite, the objects a;, of this universe can be arranged in a finite series 

(a,, ..., ay). By making use of the functions introduced above, we can 

now express relations between attributes, that do not refer to specific 

objects e.g. 

(Ala; — B!a,). 

1 1>2 i 

From a formal point of view this proposition asserts that the value T 

occurs in every place of the N-tuple>(4'(a,), B'(a,)). This is so auto- 

matically for those i for which —Ata,,23 since > (F, B!(a,))=T according 
to the table for >. However, for those i for which Ata; the condition 

—(T, B!(a,))=T must be fulfilled. According to the table for > this 

is possible only if B* (a,) is T, i.e. only if Bta;. It therefore holds forall 

a;: if A‘a; then (also) B'a,, or briefly: all A'-things are B'-things. This 
is the content of the proposition we have been considering. It thus 

represents a new version of propositions of the type/A*aB" (as in I 2, 

p. 14) and at the same time interprets them, for ‘finite worlds’, in terms of 

a discrete ontology. 
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N 

It is somewhat easier to see that V (A‘a;A B1a;) asserts that at least 
i=1 

one A!-thing is a B'-thing. This gives us an interpretation in terms of a 

discrete ontology of propositions of the type A‘iB? (as in I 2, p. 14). 

However, the scope of these interpretations is necessarily limited by 

the fact that they hold only for universes consisting of a fixed number 
N N 

cf objects. The abbreviations ‘A...’ and ‘ V ...’ stand for formulae 
i=1 i=1 

that increase in length as N becomes larger, and in the case of a universe 

consisting of an infinite number of objects, they would have to be taken 

as representing ‘infinitely long’ formulae. Such a theory, as presented by 

C. Karp [1] is anything but elementary. For this reason two logical 

functions of a different kind are introduced, which assign truth-values 

to the monadic attributes themselves?* on the basis of the following 

stipulations: 

A(A!)=T, if A! holds for all objects in the domain in 
question, 

A(A') =F, inall other cases. 
V (A!) =T, if A! holds for at least one object in the domain 

in question, 

V(A') =F otherwise. 

In order to be able to apply these functions, also to attributes defined 

by compound conditions, we write e.g.: 

“AXA XS BE or VATER B'x). 

This may be interpreted as follows: A holds for the attribute x(4'x— B*x),?5 
whose value ‘for x’ is given by >(A!(x), B!(x)); and V holds for the 

attribute x(A!x A B'x), whose value ‘for x’ is given by A (A'(x), B'(x)). 
It is easy to see that within a finite world consisting of N things a, ..., dy 

N 
Ax(A!x + B'x) coincides with A (A‘a;— Bla,), 

i=1 

and 
N : 

Vx(A'x A Bix) with V(Ala,aBla,). 
i=1 

We thus read: 

Shoei} nasct ‘fomalby 2; 

‘Vx...’ as foratleast onex...’. 
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Although the term ‘quantifier’ is in use both for these operators and 

the corresponding functions (see above) we shall adopt Hilbert’s corre- 

sponding term ‘quantor’ solely for the functional version, i.e. A, V. 

3. SOME CRITICISMS OF IDEALIZATION. CLOSED AND 

OPEN CONCEPTS 

Various objections have been raised against the ontological foundation 

of logic outlined in the preceding chapter. These involve among other 

things, the question why expressions like ‘not’, ‘and’, ‘or’, ‘all’, ‘at least 

one’ should count as characteristic of the form of propositions, whereas 

expressions like ‘apples’, ‘pears’, ‘potatoes’, ‘is sweet’, ‘is yellow’ are 

regarded as variable. We shall refer to expressions of the first group as 

‘form expressions’, distinguishing them from those belonging to the 

second group,which we shall call ‘content expressions’. 

It seems to us that the structures described by form expressions are so 

clearly delimited by virtue of their generality that they warrant the special 

investigation of their underlying regularities, and this is precisely what a 

logical investigation does. Further, the general validity of schemata such 

as the one discussed in II 1, (A) p. 28 depends on specific form expressions, 

as will be seen from the following examples, where one form expression 

has been altered in each case (the altered expression being shown in 

italics): 

(B) No A-thing is a B-thing or there is at least one A-thing that 

is not a B-thing. 

This schema is invalid, as e.g. the following is false: ‘No murderer is a 

criminal or there is a murderer who is no criminal.’ 

(C) Every A-thing is a B-thing and there is an A-thing that is 

not a B-thing. 

Every proposition subsumed by schema (C) is false. 

(D) Every A-thing is a B-thing or one knows an A-thing that is 

not a B-thing. 

One would surely be mistaken to infer that all electors will vote for party 

X from the fact that one does not know an elector who has not voted for 

party X.26 

(E) Every A-thing is a B-thing or there is an A-thing that is also 

a B-thing. 
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SOME CRITICISMS OF IDEALIZATION II 3 

The following, for example, is false at the present time: ‘Every English- 

man is an inhabitant of Mars or there is an Englishman who is also an 

inhabitant of Mars.’ 

A further objection — once it is admitted that idealization is a necessary 

prerequisite for the theoretical knowledge of a subject-matter — concerns 

the question whether the idealization described in II 1, p. 28 is adequate, 

i.e. whether it suppresses features of reality that are essential from the 

point of view of logic. After all, material existence itself is an abstraction: 

an apple, for example, usually loses its material existence very quickly and 

a china plate, say, is liable to lose it. This time factor is absent from our 

idealized world as it stands. It can, however, be introduced e.g. by 

regarding all things as things existing at a specific time. Between two 

things in the new sense, which ‘are’ one and the same thing in the old 

sense there then exists a peculiar relationship, designated as genidentity 

(after Kurt Lewin). In more abstract cases such genidentity is often 

‘created’ by the introduction of a name, as when e.g. we refer to the 

‘eight-o’clock train’ irrespective of whether it is made up of the same 

carriages each day and regardless even of a change in timetable according 

to which it leaves at 7.58 instead of at 8.07 as previously. 

As against the relative endurance of phenomenal complexes, from which 

the notion of the existence of things has been abstracted, we have the 

relatively unlimited divisibility without corresponding loss of characteristic 

features of certain things in our environment. For example, we usually 

talk about liquids as though any partial quantity were equivalent in 

kind to the whole. In many cases the corresponding nouns have no plural 

form or have one only in a transferred sense as in: 

‘all oils’ = ‘all types of oil’, 

‘many coals’ = ‘many pieces of coal’, 

‘some whiskies’ = ‘some kinds of whisky’ 

but also 

= ‘some measures of whisky’. 

The convention whereby, in a variety of circumstances, we refer only to 

quantities that are whole multiples of a basic quantity, is in practice a 

very useful method of dealing with ‘continuously divisible’ things within 

the framework of a discrete ontology. ‘I’ll have a sherry’?” is, for example, 

more intelligible than ‘I’ll have the locally traditional quantity of sherry 
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in a locally traditional kind of drinking-vessel’. Continuously divisible 

quantities can be given a basis of strict proof in terms of a discrete 

ontology, but this involves considerable logical complications (in parti- 

cular the introduction of so-called measure numbers?8). A genuinely 

continuous ontology, which would form a counterpart to a discrete 

ontology, has, so far as we are aware, not yet been developed as a basis 

for logic. The beginnings of such an ontology can perhaps be seen in 

some of the attempted interpretations of wave mechanics in modern 

physics, which explain the occurrence of discrete phenomena in a world 

presupposed as continuous. However, these explanations do not amount 

to a truly continuous ontology, since the setting up of a ‘wave equation’ 

involves special physical assumptions, and also requires a mathematical 

conceptual apparatus which is based — ultimately — on a discrete ontology. 

Finally we shall deal with objections connected with the fact that the 

compilation of a catalogue C, presupposes a fixed domain of objects. 

An idealization of this kind is appropriate for cases where a finite domain 

of objects can be stipulated by convention. But difficulties arise, for 

example, when properties that are meaningful in respect of a specific 

domain of things are transferred to a larger one. 

Let us suppose 100 apples, e.g. in a basket. They will have 2100 prop- 

erties,29 i.e. 2100 catalogues C4: in the sense of II 2, p. 32. Every partial 

quantity that can be taken out of the basket involves the property of 

belonging to it: from the point of view of logic it suffices that a quantity 

could be taken out of the basket, since if a logical proposition is to be 

asserted for any property whatsoever, it must not be falsifiable even by 

the oddest examples. Two properties that determine the same quantity 

do not need to be distinguished logically — not, at any rate, so long as prop- 

erties are not themselves regarded as things (cf. V 3, p. 100). However, 

out of these 2100 properties only a very few have sufficient practical value 

to be designated by a special name, e.g. those properties that indicate 

membership of specific kinds or other qualities such as sweet, sour, 

aromatic, ripe, worm-eaten etc. And such properties are further distin- 

guished from the totality of ‘anonymous’ properties in a way that is not 

covered by the introduction of the attribute concept. Let us introduce 

an additional apple, no. 101. Each of the 2100 properties yields two new 

properties in the enlarged domain, viz one that holds for no. 101 and one 

that does not. On the other hand apple no. 101 will in general have to 
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be judged in respect of the named properties in a perfectly definite 

manner. Any possible uncertainty that might arise in this connexion is 

at any rate quite different from the complete arbitrariness of the ‘anony- 

mous’ properties. If a property is, say, verbally defined with reference to 

the totality of the domain to be extended, then extending that domain 

may also change that property as applied to former values. Such ar- 

bitrariness or anonymity is no doubt also the source of the difficulty of 

expressing the similarity of repeatable events in terms of logic. 

The situation is similar in the case of relations. Let us suppose 24 

plates in addition to the apples. Any correlation whatsoever between 

apples and plates (e.g. which apple is to be placed on which plate) in- 

volves a relation and hence an attribute. Taking into account the pos- 

sibility that some apples may not be placed on any plate and some on 

several plates, and including all border-line cases, our example yields 

100-24 independent decisions and thus 27*°° (a number consisting of 
723 figures) possible relations®®, most of which are ‘anonymous’. Again 

there are attributes which, e.g. in the case of the number of apples being 

increased, extend themselves ‘naturally’: thus, for example, if only sweet 

apples are to be placed on specific plates. 

We shall designate such properties or relations as open, and shall 

refer to them as open attributes, thus generalizing the attribute concept. 

These are in general given by a linguistically formulated condition,®! 

which determines an attribute in the previous narrower sense in every 

suitable domain of objects. 

It is, of course, possible that among attributes in the new, extended 

sense there are such that do not make use of the new freedom. Thus the 

property of having been a sweet apple in a specific basket on Ist Sep- 

tember 1967 is not altered in any way by the fact that other apples in the 

basket have since ripened or that further apples have been added. Such 

an attribute in the extended sense will be designated as closed. A closed 

attribute is yielded by every attribute A‘ in the restricted sense via the 

property of belonging to the domain for which A 1 was originally meaning- 

ful, and of having in addition the property described by A’, We proceed 

similarly for relations between 7 things belonging to a domain for which 

an attribute A” is given. 

The distinction between open and closed attributes is of particular 

importance for mathematics. The various standpoints which are now- 
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adays held regarding the foundations of mathematics may to a large 

extent be grouped according to whether attributes applicable to infinitely 

many objects (e.g. numbers) are regarded as closed, and if so, which 

ones. Many propositions about the members of the number series 0, 1, 

2, ... can be understood and proved without the series being regarded as 

closed, e.g.: 

For every given prime number®? there is a greater prime number: the 

next one can be reached in a previously limited number of steps. 

On the other hand, there are problems that can be meaningfully for- 

mulated only if the entire number series is regarded as ‘available’. For 

an example, cf. VII3 C, p. 134. 

The relative determinateness of the terms S, P (and M) in traditional 

syllogistic suggests that these be restricted to closed attributes over the 

open domain of all things — open, at any rate, if ‘thing’ is here understood 

in its widest sense as ‘object of consideration’. The customary restriction 

to non-complementary subject-terms thus expresses the cautious attitude 

only to argue within closed concepts. This means, however, that nP 

can no longer be regarded as equivalent in status to P, and the reduction 

outlined in 13, p. 25 f. no longer holds. However, it could be replaced 

by e.g. 

(S — P) = »lx | Sxa 7 Px] (cf. V 2, p. 96) 

SeP = pn Sa(S — P) 

and the corresponding auxiliary inferences. 

NOTES 

1 Why ‘is sweet’ is here treated as one word will be made clear in III 2, p. 55. Cf. 
also p. 31. 

2 How to obtain an exact definition of this concept will be shown in III 3, pp. 57, 59, 61. 

3 Note that this is a version of what is known as ‘logical atomism’. 

4 Strictly speaking a law of nature is more than a totality of experiences. These can 

only show a law to be very probable - in a peculiar sense of probability (cf. in this 
connexion VIII 4, p. 164 f.). 

5 This characterization of mathematics is admittedly one-sided. Some other aspects 
of mathematics will be discussed in VII 2, p. 127 f. 

8 The word ‘Begriffsschrift’ (which ‘conceptual notation’ is intended to translate) was 

first used by G. Frege in his conceptual system published in 1879. This expression 

appears to us to render our meaning better than the term ‘formalized language’ 

which nowadays has greater currency, but tends to evoke the connotation of ill-usage: 

there is no question, of course, of the language being spoken. 
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NOTES 

? In general the use of quotation marks in the following is intended to indicate that 
reference is made to the sign enclosed by them, cf. VI 2, p. 115. 

8 Here contrary to the convention laid down in note 7, reference is not made to the 

sign Ai in conjunction with the sign n, but to the signs obtained from ‘A1”’ (etc.) 

by substituting an appropriate numeral for ‘n’. For a correct treatment of such quasi- 
quotations cf. Quine [2], p. 35. 

® Cf. in this connexion also III 2, p. 55. 

10 More precisely, though hardly more intelligibly: the relation that holds between any 
persons or things x and y whatsoever in precisely those cases where x is taller than y. 
11 A superhuman power capable of compiling catalogue C1 might also be credited with 

the compilation of the improved catalogne Ca; but in fact this latter task involves an 

essentially new element, cf. VII 2. However, it suffices to regard these catalogues as 

thought experiments, on which certain idealizations are to be based. 

12 The question whether the catalogue is to be regarded as consisting of expressions 

in the sense of linguistic structures or of their content, may be left open at this stage. 
On this distinction cf. also HII 1, p. 63, note 3. 

13 A function f is given if every thing x out of a set S is ascribed exactly one thing 

“by f’; this is designated as ‘f(x)’. S stands for the set of arguments or the domain of f. 

14 We have already had to speak about language on several occasions, e.g. when we 

have introduced a new linguistic expression by a definition and not through use. 

Certain problems of ‘talking about language’ will be discussed in III 3, p. 56 f. and 

in VI 2, p. 115. 
15 As the dyadic truth-functions are the most important practically, the n-adic ones 

are rarely dealt with individually. 

16 This rapid numerical increase of the n-adic functions is no doubt the main reason 

why interest in individual functions is slight. 

17 Although this is not a case of several propositions being combined, it is nevertheless 

convenient to subsume it under the general heading of compound propositions. 
18 Cf. in this connexion the paper by Döhmann [1]. 

19 The reader might care to re-formulate this sentence so that ‘and’ is really used to 

connect two propositions. 

20 Such ‘relationships’ are best discussed in a linguistic formulation and will therefore 

be left for III 3, p. 58 £. 
21 The extent to which the truth conditions of these propositional connectives are 
expressed by their corresponding functions, and whether they can be rendered at all 
by a truth-function, will be discussed in IV 3, p. 78 f. We here regard the value distribu- 

tion as primary, and the existence of an adequate linguistic formulation as a convenient 

extra. 
22 More precisely: its value for arbitrary n-tuples (771, ..., 7m) of truth-values. 

23 To be read: A! does not hold for a. 
24 Instead of to the series of truth-values obtained by applying an attribute to each 

member of the series of things in turn. 
25 The special significance of the initial x is frequently expressed symbolically, e.g. 

by writing & ... (Principia Mathematica), dx ... (Church [2]), [x] ... (Cogan [1], 

p. 202). On the difference between [x | ...] and [x] ... cf. V 2, p. 94. On the need to 

distinguish between a function and a general functional value, cf. ibid. 

26 False inferences of this kind are, however, often made. This is perhaps explained 

by the fact that a refined form of this schema is admitted in the logic of probability 

(cf. VIII 3, R 3, p. 158). The above example, however, would not warrant a probability 
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inference, since one might consciously have restricted one’s circle of acquaintances 

to people in favour of party X. 

27 The reader is asked to translate this himself into a locally traditional formula. 

28 Non-negative real numbers, i.e. those numbers that can be represented by (possibly 

infinite) decimal numbers (e.g. 1.35; 3.333 ...; 3.1415 ...) can be shown to be measure- 

numbers in terms of an expanded logic as in V 3. 
29 i.e. more than 103°, 
30 i.e. catalogues C 42 in the sense of II 2, p. 33. 
31 We refer here to something non-linguistic. However, if one tries to give examples, 

the linguistic formulation of such conditions becomes unavoidable. 

32 j.e, a positive integer divisible only by itself and by 1. For a proof, cf. for example 
Pölya [3], p. 192 £. 
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CHAPTER III 

LOGIC AS LINGUISTIC THEORY 

When we, consciously or unconsciously, apply a law of logic, this is 

simply a kind of activity. But if we wish to formulate or to prove a law 

of logic, then we cannot avoid talking about language, for the forms of 

propositions are vitally important for the formulation of logical laws. 

Even if we are primarily concerned with the formal properties of the 

contents of sentences, these are in general best discussed in linguistic 

terms (cf. the examples given in II 2, p. 36 to illustrate the structures 

described by ‘and’, ‘or’, ‘either — or’). This gives rise to a linguistic theory 

which differs from a philological investigation of language mainly in 

that it abstracts to a large extent from the contingencies of linguistic 

development. The result is a standardization of language, and this 

standardization is then incorporated in a symbolic system, i.e. a symbolic 

notation. 

1. THE FORMS OF PROPOSITIONS. 

GRAMMATICAL AND LOGICAL SYNTAX 

In formulating logical laws we are essentially dependent on the form of 

propositions, as shown by the examples in I 1, p. 10. But when we wish 

to apply a logical law in order to make inferences from premises formu- 

lated in natural language, we very soon realize that we cannot always 

rely upon the grammatical form of propositions. This may be illustrated 

“ by the following example: 

No cat has two tails. 

One cat has one tail more than no cat. 

One cat has three tails. 

We shall not concern ourselves with the fairly crude misuse of language 

involved here. The ambiguity expressed in this example, however, is not 

unique, as the following examples will show. 

(1) The train was 20 minutes late. 

(2) The whale is a mammal. 
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(3) The meek shall inherit the earth. 

(4) The truest friends are friends in adversity. 

(5) The best plans go astray. 

(6) The end does not justify the means. 

Of the above examples (1) is a singular proposition, but (2), (3), (4) 

(‘all who are friends in adversity are true friends’) and (6) (‘no cases 

are cases where the end justifies the means’) are universal. The meaning 

of (5) seems to be ‘Some good plans go astray’. 

On the other hand one and the same logical form may be given such 

different linguistic expressions that in some cases it can be determined 

only from the context, as the following examples will show. 

(7) The last mile is the most difficult. 

(8) A miss is as good as a mile. 

(9) Every dog has his day. 

(10) Elephants never forget. 

(11) Any suggestions will be welcome. 

(12) He who laughs last laughs best. 

(13) Anything will make a story. 

(14) All the lights went out. 

Each of the sentences (7) to (13) can be used in the sense of ‘all ...’, 

but e.g. (9) also in that of ‘this ...’ and (10) also in that of ‘in general ...’. 

Instructive as it is to look for the linguistic variants of logical forms, 

and useful as such variants are from the point of view of finding an 

acceptable formulation, it is nevertheless an essential requirement of 

logic that among the various equivalent (or near-equivalent) formulations 

of any one proposition, one should be selected as the standard form; 

thus e.g. in respect of examples (7) to (12), 

“All A-things are B-things.’ 

In the same way standard forms may be assigned to other logically 

relevant linguistic formulations. Thus 

‘If A, then B’ 

may be regarded as standard form for ‘A only if B’, ‘A implies B’! etc. 

However, even if the formulations chosen as standard forms are kept as 
concise as possible, the standardized forms of a complicated sentence 
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will in most cases look clumsy and be practically unintelligible. For this 

reason special symbols? have been introduced for the standard forms of 

those natural-language expressions that are logically relevant. Once the 

relationship between the latter and the former has been discussed and 

agreed upon, logical laws can be formulated and investigated in terms of 

propositional forms, which can be expressed in a symbolic notation 

constructed in the main out of the symbols introduced for this purpose. 

However, it is the standardization of language that is of basic importance, 

although the introduction of a symbolic notation is at least equally 

significant from a practical point of view. The following example should 

make this clear: 

Premise: Whenever B follows from A, then C (holds). 

Assertion: Whenever A follows from C, then A (holds). 

In this example the propositional connective to which we have above 

assigned the standard form ‘if — then —’, is expressed in three different 

ways, viz: (1) ‘Whenever —, then —’, (2) ‘from — follows —’, (3) 

premise: —, assertion: —’. 

The standardized form would thus read: 

If: : if: if A, then B; then C, 

then: : if: if C, then A; then A. 

This form would indeed tax the reader’s patience. On the other hand, 

using the symbolic notation described in detail in III 2, p. 51 f. (where 

‘A>B’ stands for ‘If A, then B’), we obtain a well-formed and readily 

intelligible formula: 

((A > B) > C)> (C> A) > A). 

Such formulas are also known as propositional forms. It seems reasonable 

enough to say that the form of a proposition is that which two propositions 

of the same form have in common. This is not a circular definition, since 

despite the linguistic formulation the concept of ‘having the same form’ 

is more basic than that of ‘having the form ...’. Set theory provides a 

possible definition: starting from the concept of ‘having the same form’, 

we define as the form of a proposition P the totality of propositions that 

have the same form as P. 

In general, a totality thus defined is (or rather: determines) an open 

attribute in the sense of II 3, p. 42, since new propositions of the same 
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form can usually be constructed if the language is expanded. Open 

attributes, however, cannot be treated in every sense as objects, as will be 

shown in VI 1, p. 114. 

The following is a more elementary definition of the concept of form. 

(It stands in much the same relation to the set-theory concept of form as 

does a jelly mould to the concept of form defined as a spatial property 

belonging to all jellies moulded or yet to be moulded by it, or as the 

totality of these jellies.) We thus define as follows: the form of a prop- 

osition P is a formula constructed exclusively out of variables and 

logical expressions (or symbols standing for them), from which prop- 

osition P may be obtained by appropriate substitutions of names for 

object variables, of names of concepts (i.e. in general, predicates) for 

concept or attribute variables and of sentences for propositional vari- 

ables.3 

Taking this definition as it stands, every proposition has the form p, if 

p is a propositional variable. This interpretation could be avoided by 

amending the definition, but this is not necessary so long as ‘the form of a 

proposition’ is used only in expressions such as 

All propositions of a specific form P are true. 

This ‘ontological’ statement may be reformulated as a logical state- 

ment: 

The propositional form P is generally valid. 

Thus, for example, ((p>q)—r)—((r>p)-—p) is a generally valid propo- 

sitional form, as will be shown in III 3, p. 57, with the aid of an exact 

definition of general validity. Further methods for obtaining generally 

valid propositional forms are given in IV 2, p. 73 f. 

2. STANDARDIZATION AND SYMBOLIZATION 

We are able to formulate in words complicated logical relationships by 

making use of the variety of linguistic expression, but this variety is a 

hindrance from the point of view of recognizing logical laws and can 

only be overcome by some sort of standardization. And since a language 

that has been merely standardized is unintelligible for practical purposes, 

we shall combine standardization with the introduction of a symbolic 
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notation. For this purpose we shall use among others the symbols 
already used naively in chapters I and II. 

We begin with some simple examples. 

A. The language L, of propositional logic is constructed out of certain 
basic signs.4 We require: 

the series of propositional variables p,, p>, P3 ...3 

the propositional-logic functors —, A, v, >, 0,5 

the parentheses (, ) as auxiliary signs. 

Among the finite sequences (strings of signs, indicated by Z, Z,, Z>, ...) 

that can be formed from the basic signs, propositional-logic formulas 

(in order to avoid the connotation of validity: a well formed formula, 

or a wff) are characterized as follows: 

(1) Every variable is a wff, 

(2) if Z is a wff, then —Z is also a wff, 

(3) if Z,, Z, are wffs, then (Z,AZ,), (Z,VZ,), (Z;7Z2), 

(Z,<+Z,) are also wffs; 

(4) only what can be shown to be a wf under (1) to (3), is to 

count as a propositional-logic wff, or: a P-wff. 

Thus e.g. the following are wffs: under (1), pı, p3, p4; under (2), —p;; 

under (3), (p3 V—7p4), (P1 Ap3); and by use of these also under (3), 

(Pi AP3)>(P3 V Pa))-® 
This still leaves undefined the relationship between wffs and the truth- 

functions introduced in II 2; this will be done in III 3. 

B. A language Ly of syllogistic may be similarly described. Referring 

to the syllogistic outlined in I 3, p. 18 f.’, the following basic signs are 

required: 

the concept variables P,, P,, P3, ...,8 

the (concept-forming) functor n, 

the (proposition-forming) functors a, i, 

the propositional logic functors A, >, 

the parentheses (, ). 

From among the sign strings that can be formed from these basic signs, 

concept terms are distinguished as follows: 

(1) every variable is a term, 

(2) if Z is a term, then nZ is also a term, 

(3) only what has been formed in accordance with (1) and (2) 

is a term.? 
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Wffs of syllogistic may now be introduced, e.g. as follows: 

(4) if Z,, Z, are terms, then Z,aZ,, Z,iZ, are wffs, 

(5) if Z,, Z, are wffs, then (Z, A Z,) and (Z,>Z,) are also wffs. 

Wffs that do not contain wffs as parts are called atomic wffs. The reader 

should note that following the rules nP,aP, is not built up from P,aP,, 

which is part of the former, as a string. This inconsistency could be 

avoided by modified conventions requiring, say (P,aP,) and (nP,aP,) 

oraP,P, and anP,P,. 

(6) Only what has been formed in accordance with (4) and (5) 

is a wff of syllogistic, or: a Z-wff. 

This allows the construction of wffs having the forms! (Z,>Z,) and 

((Z, A Z,)>Z;3), which are required for the symbolic representation of 

the auxiliary propositions and propositions of syllogistic. It would, of 

course, be possible to restrict the formation of formulas to what is 

strictly necessary, thus: 

(4’) If Z,, Z, are terms, then Z,aZ,, Z,iZ, are atomic formulas. 

(5’) If Z,, Z,, Z, are atomic formulas, then the combinations 

Zı>Z, and Z, AZ,>Z, are wffs. 

(6’) Only what has been formed according to (5’) is a wff. 

C. Probably the most important symbolic notation used in modern 

logic is the language Ly of functional or predicate logic.11 This may be 

interpreted as the language of discrete ontology in the sense of II 1, 

(p. 28) and 2, and such an interpretation suggests the following specific 

structuring of the language. On the basis of the designations introduced 

in this connexion (cf. pp. 30, 35, 37, 39) the following basic signs are 

introduced: 

object variables a,, a, a3, ..., 

predicate variables!2 A}, A}, A}, ..., A?, 42, A2, ..., 

in general: A?, where n indicates the number of places and k is a 

distinguishing sign; 

propositional variables A?, A}, 43, ...,13 

fünctionalvariables( IP far Bam 
in general: f7, n again indicating the number of places and k 

being a distinguishing sign; 

propositional logic functors 4, A, v,>,#; 

predicate logic functors A, V; 

parentheses (, ). 
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Using these basic signs we begin by forming (object) terms14 - strings 
of signs to be used as names for objects: 

(1) Every object variable is a term; 

(2) if Z,, ..., Z, are terms, then f"7Z, ... Z, is a term15; 
(3) only what has been formed according to (1) and (2) is a term. 

n-place predicates are formed next!®: 

(4) every n-place predicate variable A? is an n-place predicate; 
(5) if Z, is an (n+1)-place predicate and if Z, is a term, then 

Z,Z, is an n-place predicate. (Thus if n terms are added 
consecutively to an n-place predicate, a null-place predicate 
is formed.) 

(6) Only what has been formed in accordance with (4) and (5) 
is a predicate. 

Finally, predicate logic wffs are formed: 

(7) every null-place predicate is a wff (i.e. an ‘atomic formula’), 

thus e.g. A$, Ala,, Aza, f2aza3; 
(8) if Z is a wff, then —Z is also a wff; 

(9) if Z,, Z, are wffs, then (Z, AZ), (Z, Vv Z,), (Zı>Z,) and 

(Z,>Z,) are also wffs; 

(10) if Z is a wff, then so are A a,;Z and V a;Z1"; 

(11) only what has been formed in accordance with (7) to (10) 

is a wff, or: a F-wf. 

The general designation for terms, predicates and wffs is expressions. 

When talking about Ly terms will be indicated by s, t; predicates by 

P, Q; formulas by A, B, ... 

One might say that clauses (1) to (11) determine the grammar of the 

language of predicate logic, since they state what is to count as a meaning- 

ful, i.e. interpretable expression. On the basis of the expressions formable 

under (1) to (10) grammatical categories can be introduced that corre- 

spond, in part at any rate, to natural language grammatical categories. 

Thus, monadic predicates correspond to intransitive verbs, dyadic 

predicates to verbs with one object, triadic predicates to verbs with two 

objects, etc. But there are also grammatical categories that are specific 

to the language of predicate logic. Thus it has become customary to 

classify and designate F-wffs as follows: 

(AAB) as conjunctions, 

(AvB) as disjunctions (or alternations or adjunctions), 
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(A>B) as conditionals (or implications or subjunctions), 

(AB) as biconditionals (or equivalences), 

AxA as universal formulas, 

VxA as existential formulas. 

Wffs containing only monadic predicate variables constitute the 

language of monadic predicate logic. In general, this is understood as not 

including the use of monadic function variables, even though this 

extension would preserve most features of simplicity. 

Conventions regarding the saving of parentheses in L, may be usefully 

laid down as follows: 

Outside parentheses may be left out. 

Each subsequent sign in the sequence A, v, >, + is weaker!® than 

each preceding sign. A sign with dots (e.g.: .A., :—:) is weaker than 

any sign with fewer dots. — But note that there are many different 

conventions about such ‘preference rules’ in the literature. 

The language may be interpreted by translation into an already inter- 

preted language, e.g. into natural language, variables being generally 

replaced by specific names or predicates (but cf. III 3, p. 56 f.). However, 

the variables in (10) represent a special case: because of the initial 

operator Aa; (or Va;) all variables a; in the subsequent scope A are bound 

by the operator (thus becoming ‘bound variables’) and cannot be inter- 

preted. Another way of expressing this is to indicate the reference of the 

operator by writing: 

Pr a 
AV(A2 + + AL + ) 

t | | 

instead of: Aa,Va, (A?a,a,—A}a,), thus leaving out the bound variables. 

In other words, the bound variables merely mark the places to which the 

preceding operator refers. 

We can now deal with a formula where Aa, (or Va,) occurs again 

in the scope of Aa, (or Va,), as e.g. in 

Na, (Va,4?a,a,>Ata,). 

We transform in two steps: 
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Peake 
Aa,(V A? E : > Ala,), 

RT | 
ROA any niyy 

It is evident that bound variables may be replaced by others without 

altering the sense of a formula, so long as the reference of the operator 

remains the same. Thus, for example, this reference would be altered in 

NAa,A?a,a, if we substituted a, throughout for ay. 

If object variables are replaced by names and functional variables by de- 

scriptive phrases,19 then the terms - after any linguistic ‘polishing’ that may 

be necessary - link up into compound names, i.e. descriptions of objects. 

The properties or relations indicated by predicate variables are generally 

expressed by verbs. For example, M?ab might stand for a meets b, G°abe 

for a gives c to b, L?abc for b lies between a and c2°, E*abcd for a ex- 
changes with 5 article c for article d. And, to give a further example, 

G’flaflab gives the structure of: Harry’s father gives Harry’s wife a 

flower. The formation of compound predicates corresponds to the 

possibility of circumscribing properties and relations, for which there is 

often no verb in natural language. 

Clause (5) is primarily a device for simplifying the formation of 

formulas, although it can also in some cases simplify that of predicates. 

For example, if G°abec is interpreted as ‘b gives a to c’ and if a stands for 

‘indemnity’, then ‘to indemnify’ may be rendered by G?a. 

The usual translation for the propositional logic functor — is ‘not’, 

but this often necessitates a change in word order. A change in word 

order can be avoided if we translate ‘it is not the case that ...’. 

The propositional logic functors are in general rendered by conjunc- 

tions or corresponding turns of phrase, in particular: 

idle veby: Wa. and Mbothes ands2/3 

..V... by: ‘or’ (in a non-exclusive sense, as in the Latin ‘vel’, or 

in ‘and/or’); 

„>... by: ‘if..., then ...’, also by: ‘from the fact that ..., it follows 

that ...’21, or by circumlocutions such as ‘premise: ... 

assertion: ...’; 

we... by: ‘... if and only if ...’, sometimes shortened to ‘iff’. 

L; is often used with predicate constants having a fixed meaning, 
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rather than with predicate variables. For example, if ‘Pa’ stands for ‘a 

is a point’, ‘Sa’ for ‘a is a straight line’, ‘Lab’ for ‘a lies on b’ (P and S 

thus being monadic predicates and L a dyadic predicate), then the axiom 

of geometry that ‘For any two points there is at least one straight line 

on which both points lie’, can be represented symbolically by 

AaA\b(Pa a Pb > Ve(Se a (Lac a Lbc))). 

But since in modern axiomatics the space to which the axioms refer is in 

general not fixed, such ‘constants’ are rather a kind of restricted or 

specified variable. 

3. RELATIONS BETWEEN LANGUAGE AND REALITY (SEMANTICS) 

By translating formulas into a natural language (at first literally, then 

idiomatically), we rather hide the fact that the language of predicate 

logic is designed for an idealized world. This does not matter, provided 

that the meanings of the words occurring in the translation are precisely 

defined by special conventions. And this, after all, is a necessary condition 

for all meaningful and correct inference. 

However, it is also possible to give a direct description, in the sense 

of an interpretation, of the relation between a symbolic notation, the 

‘object language’, and an appropriate world. To do this we must, of 

course, be able to use the language in which this description is to be 

given, i.e. the ‘metalanguage’, to talk not only about the object language 

but also about the ‘world’ in question, so that there would seem to be 

little point in the whole procedure. In fact, however, such a description 

throws the relation of the ‘object language’ to the ‘world’ into greater 

focus — in much the same way as a silver spoon can be polished with a 

rag. See Heisenberg [1], p. 190. 

A. The language Lp of propositional logic could be interpreted in 

terms of a ‘world of (thinkable) states of affairs’. For every state of 

affairs s in such a world there would be a state of affairs s’, which would 

consist in the fact that s does not obtain. And for every pair of states of 

affairs s, s’ there would further be a state of affairs s’’, consisting in the 

fact that both s as well as s’ obtain, etc. As we have purposely restricted 

ourselves to compound propositions whose truth depends solely on the 

truth of their component parts??, our interpretation may be made 

in terms of the truth values T, F - a procedure which will involve 
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a greater degree of abstraction, but which will also be much simpler. 

We thus interpret the functors (i.e. the signs) —, A, v, >, © in 

terms of the truth functions introduced in II 2, p. 35, 37 (and designated 

there by these signs.) Our procedure may be described as follows. Every 

assignment of truth values T, F to the propositional variables (in short: 

every assignment to the variables) also assigns a truth value to every 

formula A. This assignment ®* determined by B may be described step 

by step via the construction of A, viz as follows: 28 

B*(p;) = ®(p,) for all propositional variables p; 
B*( A) = —(B*(A)) for the negation of a formula A, 

B*HArB) = a(B*(A), B*(B)) 

Vv Vv for combinations 

er > of A and B. 

= —- 

Clearly, in order to determine %*(A), we need to take into account 

only the values assigned to the variables occurring in A. However, the 

way in which the value of a compound formula is determined by the 

values of the component parts, can be more simply described if we 

assume that ® makes assignments for all variables. If B*(A) = T for 

all assignments, then A is generally-valid or a theorem of propositional 

logic, and we write symbolically: FpA.?* 

In order to determine whether a given P-wff A is a theorem, we proceed 

as follows. We note the value-assignments to the variables occurring in A, 

e.g. for 

in Aga d), > r) > (Ft 2.2) 2.2) 

— ss yee ed Ns eee tae HS Wo ee te et gy 
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The right-hand columns marked 1, 2 or 3 are filled in from the left-hand 

ones. The remaining columns are filled in according to the table for >: 

first 4 (from 1 and 2) and 5 (from 3 and 1), then 6 (from 4 and 3) and 7 

(from 5 and 1), and finally 8 (from 6 and 7). If 8 is T in all cases, then A 

is a theorem. In the above example, T occurs at 8 for all assignments in A. 

A calculus in the sense of IV 2, p. 71 f. may be obtained by appropri- 

ately rationalizing the evaluation of the formulas. 

If wffs A, B have the same course-of-value, then A<«>B is generally 

valid. Formulas of this type may be used in particular to express the 

definability of functors (II 2, p. 37). For every course-of-value (i.e. for 

every formula A) there is a ‘standardized’ formula B with the same 

course-of-value (that is, FA+>B), e.g. in the form25 

pes (STN ae POSE) V un 

where s, (j=1, ..., i) stands in each case for p, or for —p,. (Every assign- 

ment to the relevant variables satisfies exactly one conjunction of this 

kind.) B is known as the (in this case: disjunctive) normal form (here: of A). 

In the following concepts based on interpretations will, where relevant, 

be included under ‘L,’. 

B. The language Ly of syllogistic may be interpreted in terms of any 

‘world’ D of objects and their properties. In an interpretation of this kind 

we are concerned only with the extensions of properties, since our in- 

tended interpretation of the proposition-forming functors depends only 

on these. In accordance with their intended meaning we interpret as 

follows: 

n, as forming the complementary concept v(P;) from P; in D; 

P;aP,, as the logical function «, having the value T if and only if the 

extension of P; is a part of the extension of P;; 

P;iP,, as the logical function 1, having the value T if and only if the 

extensions of P; and P; have a common part; 

An assignment ® of properties (or their extensions) to the variables 

P;, also determines values @*(T) for the terms T. We thus obtain the 

truth values 

B*(TyaT) = a(B*(T,), B*(T2)), 
or 

B*(TiT,) = (B*(T,), B*(T,)) 

for the atomic wffs. We then proceed as in the case of propositional logic, 
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with the exception that instead of general-validity it is natural first to 

define validity in a fixed domain D, or more concisely: D-validity. It 

can be shown that it is only the number of objects in D that is relevant 

in this connexion. 

If general-validity is defined as validity in every domain, it can be 

shown that a Z-wff A is generally valid if and only if it is valid in a finite 

domain of 2” objects, where n is the number of variables occurring in 

A.26 Thus the wffs by means of which the laws of syllogistic may be 

represented, are generally valid if they hold for a domain of 8 = 23 objects. 

The definition of general-validity may also be adapted to the traditional 

convention, which excludes empty properties. We need only restrict 

assignment to variables to non-empty properties. We then proceed as 

above. 

C. The language L, of predicate logic is interpreted similarly as under 

B. Validity is first defined in a domain D of objects. However, because of 

the greater expressive range of L; the notion of assignment ® must here 

be extended. Each variable must be assigned suitable objects, thus: 

object variables a;, objects from D; 

predicate variables Aj, n-place attributes over D; 

propositional variables A?, truth values (as ‘null-place attributes’); 

functional variables ff, functions ‘of n variables in D with values in D’. 

An assignment of this kind is thus an assignment over D. 

Every assignment ® then determines: 

the values ®*(t) of all terms t, 

the values ¥*(P) of all predicates P, 

the values ®*(A) of all formulas A. 

These values are defined step by step via the construction of t, P and A, 

i.e. for terms as objects by means of 

B*(a;) = Ba), 

B* (fits -..t,) = VB), > B*G,))s?” 

for predicates as attributes by: 

B*(Ar) = DB(A) for n> 0; 

%*(Pt), where P is an (n+1)-place predicate (n>0), is that n-place 

attribute that holds for precisely those n-tuples (x,, ..., %,), for which 

B*(P) holds for (B*(t), ¥1, ..., ¥,)378 
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B*(xA) is that one-place attribute?? which, for an arbitrary x from D, 

holds for x if and only if (({)%)*(A)=T, where (£)® is that assign- 

ment %, for which Bo(x) =x and Bo(v) = B(v) for all other variables v; 

for wffs as truth values by: 

DB*(Pt), where P is a one-place predicate, 

is B*(P) applied to B*(t), i.e. a truth value;3° 

B*(Ap) = VA); 
B*(— A), B*(ArB), B*(AvB), B*(A-B), B*(A>B) are reduced 

to B*(A) and B*(B), exactly as in propositional logic; 

B*(AP) is T, if the one-place attribute B*(P) holds for all objects 

in D, and otherwise F; 

DB*(VP) is T, if the one-place attribute ®*(P) holds for at least one 

object in D, and otherwise®! F. 

In this way a value is determined for every wff A in respect of an assign- 

DB. We can say that ® satisfies wff A in the case where B*(A)=T. This 

may be understood as follows: A expresses requirements, to be satisfied 

by ®, in respect of possible states of the ‘world’. Wffs expressing require- 

ments in respect of B(x) are indicated by A(x) etc. 

(Again) A is valid in respect of D if B*(A)=T for all assignments over 

D, i.e. where all assignments over D satisfy A. And finally A is generally- 

valid or a theorem of predicate logic, if A is valid in respect of D for every 

non-empty? domain D - or equally, if A is satisfied?3 by all assignments 

(over any non-empty domains whatsoever); symbolically: FrA. (Again) 

‘Ly should be understood as also including concepts based on inter- 

pretations. 

In the case of predicate logic, unlike that of propositional logic and of 

syllogistic, the definition of general validity yields no general method for 

determining that a formula A is a theorem, nor does it yield a method for 

deciding whether A is a theorem. Only in the case where the decision can 

be reduced to a finite number of steps, can it be made: e.g. it can always 

be determined in respect of a finite D whether a formula is valid for D. 

The reason for this is that there is only a finite number of value assign- 

ments over a finite domain D for the finite number of variables occurring 

in a formula A. 

We shall discuss some methods for determining that A is a theorem in 

IV. The limits of such methods and - in a sense - of all thinkable methods 

will be discussed in VII. 
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We must now draw the reader’s attention to an important generaliza- 

tion of the concept of general validity. In many cases one requires a kind 

of validity in respect of a specific set Y of value assignments: let A be 

valid in respect of / in the case where B*(A) = T for all GB from #.34 

We consider first the case where & itself is stipulated as the set of value 

assignments ®, that satisfy a formula B (i.e.: ®*(B)=T). Then A is 

valid in respect of ¥ if every value assignment that satisfies B also satisfies 

A. We thus say that A follows from B, or in symbols: ‘BF ,A’.35 

From the table for — it is evident that 

(1) BFE,Aif and only if F,B > A. 

For both sides of this equivalence are falsified if and only if there is an 

assignment ® where B*(B)=T, B*(A)=F. By introducing this special 

relation of consequence we do not arrive at any essentially new means of 

expression but merely gain a shift in emphasis: the formulation in terms 

of ‘follows’ lays greater stress on the value assignments that satisfy B. 

The fact that the relation of consequence is a kind of generalization of 

general validity may be explained as follows. For generally-valid A’s, B 

follows from A if and only if B is generally-valid, or in symbols: 

(2) If tA, then: A&B if and only if FrB. 

These and similar theorems relating the concepts of general-validity 

and of consequence also argue in favour of using the same symbol. 

Theorem (1) indicates a close connexion between ‘if —, then —’ and 

‘from — follows —’. But it also shows a difference: the former connects 

propositions or wffs, the latter talks about wffs (and, clearly, the schema 

can also be used to talk about propositions). 

Let us now consider the more important case, where / has been 

specified as the set of assignments that satisfies simultaneously all for- 

mulas of a given set of formulas S. Where S is finite this case involves 

nothing essentially new, since S may be reduced to a single equivalent 

formula. (For example, if S={B,, B,, B;}, then B=((B, AB,)AB;) 

yields the same £/). Independently of this restriction we now define 

‘from S follows A’, in symbels ‘SF A’ 

by: 
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(3) Every assignment that satisfies all formulas in S, also satisfies 

A. 

We give below, without proofs?®, the most important inferences from 

this definition: 

(4) If A belongs to S, then A follows from S. 

(5) If A follows from S, then A similarly follows from any set 

that includes S. 

(6) If A follows from S, and if B follows from S and A together, 

then B follows from S alone. 

Theorem (6) is a generalization of the non-trivial components of theorem 

(2), as will be readily apparent if it is formulated in symbols: 

(6’) —‘IfSk,A and S, AF,B, then SF,B. 

A much deeper significance attaches to the following theorem, which 

expresses what is probably the most important feature of the predicate 

logic concept of consequence (cf. Gédel [1], whose theorem X contains 

the kernel of this theorem.) 

(7) If A follows from S, then A follows from a suitable finite 

sub-set of S. 

For similarly as here for predicate logic, the concept of consequence 

may be defined also for the extensions of predicate logic that will be 

discussed in V 3, p. 100 f., as well as for the simpler symbolic languages 

outlined above. And it is precisely as far as there exist valid analogues 

to (7) that it has been possible to give adequate descriptions of the 

respective concepts of consequence by formal methods of proof.3? 

Concepts that have to do with the relations between linguistic struc- 

tures and their meanings — such as ‘Y satisfies A’, *B*(A)=T’ — or that 

are defined in terms of linguistic structures and with reference to meanings 

- such as ‘A is generally-valid’, ‘from S follows A’ — are usually designated 

as semantic’, even if the meanings are idealized as much as in the 

definitions of this paragraph. 

Such idealization is, however, unavoidable if we are to ask meaning- 

fully whether a proposition — or a wff at a specific value assignment — 
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is true or false. For example, in the sentence ‘Paul’s brother has measles’, 

we understand the term ‘Paul’s brother’ only when we gather from the 

context which Paul is meant, and only if this particular Paul has exactly 

one brother (the one to whom reference may here be made); and the 

predicate ‘has measles’ becomes meaningful only when it is completed 

by a time specification. Similarly a scientific proposition as customarily 

formulated becomes a proposition in the strict sense only when the missing 

details are supplied by tacit or explicit conventions or by the context. 

This includes the distinction of different meanings of the same word, such 

as the literal and figurative meaning, or changes in the meaning of a word 

due to the passage of time. In any case, in any one context each word 

must have only one meaning®®, so as not to allow ‘inferences’ such as 0: 

All cunning people are foxes. 

All foxes have four legs. 

All cunning people have four legs. 

or ‘definitions’ such as: 

‘There is no number whose square is a negative number. Such numbers 

are called imaginary numbers, and we use them in calculations according 

to the following rules: ...’4! 

Here the meaning of the word ‘number’ has clearly changed a little too 

rapidly, for the intention is, in fact, to introduce a new numerical concept. 

NOTES 

1 Cf. in this connexion our remarks in III 3, p. 61. 

2 Such as those already used in II 2, p. 37, 39. 
3 Thus variables are used to refer to objects, concepts and states of affairs, but are 
replaced by the linguistic or symbolic description of those designata (by names predi- 

cates and sentences). 
4 Some arbitrariness is unavoidable in this connexion, but the reader will quickly 

develop a sense for what is essential. 
5 This selection from the possibilities indicated in II 2, p. 35 f., is arbitrary, but can 
be justified. It consists of the only non-trivial monadic functor and of the ‘positive’ 
functors among the non-trivial dyadic ones (i.e. ¥ (IT, T) = T.) Of these < is super- 

fluous, as it can be trivially expressed by means of >. 

6 On reducing the number of brackets by the use of ‘preference rules’, cf. p. 54. 

? The reader should interpret analogously all the variants occurring in I. 

8 We thus avoid the restriction to S, M and P. 

9 According to these requirements all (concept) terms have the form n ... nPi. We 

nevertheless give the general formulation, as this continues to hold even when further 

methods of term formation are introduced, such as e.g. the formation of (Z1Z2) from 

the terms Zı, Zz, which is to be read in much the same way as example (7) on p. 96. 
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10 On reducing the number of parentheses, cf. p. 60. 

11 ‘Functional’ here refers to those logical functions we introduced under the name of 

attributes. ‘Predicate’ is often used for attributes as well as for their symbolic rep- 

resentations. Thus ‘functional’ usually does not indicate the occurrence of explicit 
symbols of object-to-object functions in the language. 

12 By analogy with ‘object variables’ we should really talk about ‘attribute variables’, 
but this would be to deviate too far from what has become established practice. 

13 Tt is often useful to have propositional variables available in predicate logic. This 

may be done as suggested here, by treating them as null-place predicate variables. 

In this way convenient formulations may be obtained, such as e.g. clause (5) on p. 53. 

14 These are extremely useful. They correspond to natural-language expressions such 
as ‘Harry’s father’, ‘the sum of 2 and 3’, ‘Harry’s journey from London to Edinburgh’ 

(in the case where this is regarded as one object [of thought]). Often, however, (object) 
terms are introduced only at a later stage, by way of an expansion of predicate logic, 
as in V 1, B, p. 91 f. 

15 The dots to indicate the intervening expressions could have been avoided here as 
in (4) to (6). 
16 These are linguistic structures that express properties or relations, or in general: 

attributes. Here we are really concerned with predicate forms, but we shall use the 

shorter designatton. It would also be possible to introduce as predicates the structures 

aZ or [a:]Z or [ai|Z,] exemplified in II 2, p. 39, but the methods that would be in- 

volved are not generally regarded as belonging to predicate logic, cf. in this connexion 
V 2. 

1? Thus in each case two separate operations are merged. According to II 2, p. 39, we 
would have had to form one-place predicates a;Z from Z, and then to ascribe to these 

the property expressed by N, or respectively V. We shall return to this possibility in 
V 2, p. 94 f. 

18 In the same sense as that in which, in algebra, + is weaker than -, so that a + b-c 
is read as a + (bc). 

19 As in note 14. 

20 As this example shows, it is a matter of expedience whether the variable standing 

for the middle object in the arrangement is allocated the middle position. 

21 In the similar but shorter phrase ‘from ... follows ...’, the compound sentence is 

made up, not of sentences, but of names of sentences. The same applies to the phrase 
*... implies ...’. In connexion with these phrases cf. also III 3, p. 61. 
22 Cf. I 2, p. 34. 

23 Tn the following equivalences the propositional logic functors occur on the left as 

components of formulas, whereas on the right they are used meaningfully as designa- 

tors of the truth functions introduced in II 2, p. 35, 37. In this way the co-ordination 

to be established by this definition is in a sense presupposed, but on the other hand, 
the definition is more easily remembered in this form. 

24 The symbol ‘ Fp’ thus does not belong to the language Lp of propositional logic, 
but to the language in which we speak about Lp. 
25 Theorems such as (p A q) Ar<+p A (q Ar) and (p V q) Vr<>p V (q Vr) suggest 
the introduction of rules for the omission of parentheses more advanced than those in 
IIL2, p. 54. 
26 For a proof cf. Scholz-Hasenjaeger [1], p. 212. 
2” Thus, for example, if D is a domain of numbers, B(f12) addition, B(aı) = 3, and 
B(a2) = 5, then B*(fi? aaa) = 3 + 5 = 8. 
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28 If e.g. B(A1”) is the relation of being smaller than, and if B(a1) = 3, then B*(A1? a1) 
is the property of being greater than 3. For one-place predicates, cf. below. 

29 This definition is in this context merely preparatory for the definitions of B*(AxA) 

and ®*(VxA) by means of P = xA. But cf. the generalization in V 2, p. 95. 

30 This could also be regarded as the formation of a null-place attribute out of a 
one-place attribute and an object; but this would be somewhat artificial and probably 
no simplification. 

31 That is, if B*(P) holds for no object in D. 

32 This customary restriction to non-empty domains probably reflects the traditional 

exclusion of empty concepts. In fact, however, such restriction is superfluous; since 
there can be no assignments in the above sense over empty domains, every formula is 

valid for empty domains according to our definition, but is uninteresting. The situation 
is somewhat different if we introduce assignments restricted to the ‘free variables’ 

of a wf. See Hailperin [1], Schneider [1]. 

33 Here the domain D is really required only for the definition of the concept of value 

assignment: all attributes and functions given by ® must ‘operate’ over the same 

domain, to which must also belong the objects given by ®. Apart from this, however, 
D merges into the interpretation of A and V. 
34 Since to every value assignment ® there corresponds a specific domain D, our 
above definition of ®* will hold here in a similar sense. Cf. note 33. 

35 The sequence of symbols ‘B, A’ is chosen here so as to agree with that in the theorem 

below. 
36 For the proofs, cf. for example, Scholz-Hasenjaeger [1] §§ 33, 105, 113. 

37 Cf. in this connexion IV 3, p. 81, 84. 
38 After the Greek onuatvety (semainein) = to mean, designate. 
39 Or else it must be made clear that despite sounding and being written in the same 

way, different words are ‘really’ involved. This is in general not contested when words 

sound alike but are written differently, but becomes doubtful when the spelling is the 

same, and in particular if subtle shades of meaning are involved that can be distinguished 

only from the context. 
40 After Aebi [1], p. xvi f., also p. 320, where it is given as an example for a more 

seriously false inference. 
41 The shift in meaning has been intentionally contrived here, after many similarly 
challengeable formulations. Cf. L. Euler, Algebra, part II, sect. 1, chap. 10, § 149. 
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CHAPTER IV 

LOGIC AS METHODOLOGY 

In discussing the figures of the syllogism in I, we introduced the reader 

to a system of methods for obtaining theorems from other (already 

established or assumed) theorems, which itself could be interpreted as 

a system of logical theorems. In III 3 we then put forward as ‘theorems 

of predicate logic’ a system of theorems about the idealized ‘world’ 

described in II, but without obtaining any methods for the production of 

theorems. We shall now concern ourselves with such methods. These 

will in general take the form of rules of inference. If we leave out of 

account for the moment the motivation of such rules, we may regard them 

as sets of instructions for the production of linguistic structures from 

given linguistic structures, so that they can be described in much the 

same way as the ‘formalized’ languages Lp, Ly and Ly in III 2. In Chapter 

VII we shall ask what can be said about such ‘thought processes’ in the 

light of the fact that they may be regarded as sets of instructions whose 

applicability must in every case be verifiable in a finite number of steps. 

1. THEOREM LOGIC AND RULE LOGIC 

As auxiliary science for other, in particular the deductive sciences, logic 

should above all be a system of rules of inference. But it should be a 

system: not a mere accumulation of sets of instructions. And these rules 

must be given a foundation of proof. These requirements may be met by 

the introduction of ‘higher-order’ rules, by means of which all rules are 

reduced to specific, if possible ‘especially intuitive’ basic rules. The 

‘higher-order’ rules, too, should be intuitive.! The introduction of higher- 

order rules can be avoided by reducing all original rules to theorems, 

perhaps with the aid of one suitable rule (cf. p. 67), and then systematizing 

these theorems by means of new basic rules, corresponding to the earlier 

higher-order rules. In the process, of course, the original basic rules 

become ‘basic theorems’ and we obtain a semantic foundation of logic 

(to the extent that it is ‘codified’ in the formalized language in question), 
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if the basic theorems can be shown to be theorems, and the (new) basic 

rules valid deductions in the sense of the semantic definitions in III 3, 

p. 61 f. This holds also if we are concerned with deductions in an extended 

sense, e.g. of the following kind: 

If every formula in S is (generally-) valid, then also A. 

Deductions of this kind are required e.g. for the foundation of rules 

such as 

(1) From A(a) may be inferred AaA(a); 

or 

(2) from VaA(a) and A(a)>B, where a does not occur in B, 

we may infer B?. 

For the reduction of the original rules to theorems there are various 

possibilities, but these differ more from the point of view of interpretation 

than in symbolic representation. Thus in a ‘purely formal’ way rules of 

the form 

A A B 
(3) 5 or c 

may be replaced by corresponding theorems 

(4) A->B or A>(B->C) 

and, applying the rule of inference modus ponens 

5 A A-B 

Sie sheer 
the original rules may be re-derived from the theorems. 

If the rules with two premises had been similarly replaced by a theorem 

AaB-C, then correspondingly a rule 

6 A B 

(6) AaB 

would have been required in addition. 

The fact that a formula A is derivable from a set S according to rules 

stipulated in any way whatsoever, is often expressed by ‘STA’, the sign 
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“+” here belonging to the language in which statements are made about 

a symbolic language. Since on the basis of rules (5) and (6), it holds 

that A, A>BtB and A, BEAAB, we may refer to these rules by ‘A, 

A>BtB’ and ‘A, BEAAB’, respectively. We proceed analogously in 

other cases. 

To place a logic constructed in this way on a semantic foundation, we 

must therefore on the one hand validate rules (5) (and, where appropriate 

(6)), by the valid deductions A, A>BFB, (and A, BEA” B), the sign of 

consequence ‘F’ being referred in each case to the language in question. 

On the other hand, the formally introduced theorems (4) must be shown 

to be theorems in the semantic sense of III 3, p. 60. In the case of propo- 

sitional logic and to a large extent? also in that of predicate logic, this 

can be done by the method outlined in III 3, p. 57. In other cases arising 

in predicate logic we need to make use of a number of immediate in- 

ferences, such as that every formula AaA(a)>A(a) is generally-valid. 

It has been shown, however, that in the case of predicate logic some 

rules cannot be transformed into theorems in the semantic sense exempli- 

fied in the transition from (3) to (4), and these are precisely those rules 

that, like (1) and (2), require an extension of the concept of consequence 

for their foundation. Such rules (or, at any rate, one of this type) will 

thus have to be retained together with (5) as basic rules. A possible 

form for such a system of basic theorems and basic rules will be shown 

in 1V2,p, 74T. 

The transition from the rules (3) to the theorems (4) may also be 

interpreted differently, so that the sign — expresses by definition the 

‘validity’ of the corresponding rule and the sign combination A>B is 

simultaneously introduced as a formula. Rule (5) then simply expresses 

the fact that the transition from (3) to (4) may be reversed. Now validity 

attaches to precisely those rules that express the ways in which inferences 

may be combined. Suppose, for example, that A>B and B>C express 

A B 
the validity of the rules TE and a These latter yield the compound rule 

A 

B A bes =o 
= and hence Ts the validity of which is expressed by A>C. Then this 

may be stated through the validity of the rule 
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A>B BoC 

(7) Nee 

that is, by the ‘theorem’ 

(8) (A> B) > ((B> C) > (A= C)). 

The step from (7) to (8) is thus an example of the transition from (3) to 

(4). By similar methods P. Lorenzen [1] has been able to found a large 

part of logic on a ‘constructive’ basis. 

The method used for the foundation of (7) and (8) is characterized by 

the fact that here the validity of a rule or formula is not demonstrated on 

the basis of a specific definition of validity, but on very weak assumptions 

about any validity whatsoever — assumptions that are satisfied among 

others by the general validity defined above in III 3. We did not there 

define — by the transition from (3) to (4), but this transition is contained 

in the relation discussed in III 3, p. 61, between > and ‘ F’. By employing 

special techniques, which lack of space prevents us from discussing here, 

it is even possible to include rules of the type of examples (1) and (2). 

See Quine [3], Gumin-Hermes [1]. 

Once the use of the sign — has been regulated in such a way, whatever 

the basis of proof, that we have at our disposal on the one hand the 

higher-order rule contained in the transition from (3) to (4) (the rule of 

introduction of implication, the deduction theorem‘) viz: 

Any premise of a rule may be eliminated as rule premise by 

being placed as implication premise before the conclusion, 

and on the other hand rule (5), then there exists a wide measure of freedom 

so far as the characterization of the remaining logical symbols is con- 

cerned. 

The basic theorem may be the basic rule 

AaBoA exchanged AABEA 

A> (B—> AaB) for A,B FAAB 

A>AvB AFAvB 

and, to give a more complicated example, 

(A> C)> ((B> C) > (AvB-C)) 

may be replaced by 
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A>C,B>C,AvBrC. 

Thus the terms ‘theorem logic’ and ‘rule logic’ merely indicate two 

different aspects of logic. Theorems are in a sense ‘frozen’ rules and rules 

are ‘unfrozen’ theorems. 

2. CALCULI 

In IV 1 we considered rules of inference from two points of view: as 

the form in which the laws of logic may be applied, and as a means of 

systematizing logical laws formulated in theorems. This gives us a method 

for recognizing theorems as such even where the original definition of the 

concept of the theorem does not directly afford a procedure for doing so. 

We then need to refer to this definition merely in order to establish: 

(1) that specific wffs are theorems on the basis of their structure, 

and 

(2) that specific formal operations, when applied to theorems, 

yield other theorems. 

Thus, at any rate, all wffs that can be obtained in accordance with (1) 

and (2) are theorems. 

Frequently, however, the method contained in (1) and (2) is freed from 

its attachment to a previously given concept of the theorem. A syntactic 

definition of the theorem is set up by stipulating: 

(3) that certain wffs characterized by their ‘grammatical’ struc- 

ture are theorems (basic theorems, axioms), 

(4) that certain operations®, applied to theorems, yield other 

theorems; to each of these operations there corresponds a 

basic rule which expresses that the operation produces 

theorems from theorems, 

(5) that only what can be constructed in accordance with (3) and 

(4) shall be accepted as a theorem. 

This schema gives rise to definitions exactly similar to those used for 

the definition of the formal systems or languages Lp, Ls, L; in III 2. 

But in general the operations here no longer have the simple ‘composing’ 

structure of the latter, as is shown by the ‘formation’ of B from A and 

A-B when applying the rule of modus ponens. ; 

There is a similar syntactic counterpart to the semantic definition of 
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consequence, which usually involves a restriction to finite sets of premises. 

As symbolic representations of consequences — technically ‘sequences’ — 

sign strings are formed, consisting of 

(a) a series (possibly empty) of formulas®, these being the premises of 

the sequence (this series represents the set of premises of the deduction); 

(b) a ‘follows’ sign, e.g. $, which now counts as a component of the 

expression, but must be distinguished from the sign for implication 

(here >); 

(c) a formula as conclusion.’ 

Sequences accordingly have the form A, ... A,» B, A > B, or > B. 

A syntactic ‘theorem definition’ for sequences must thus stipulate: 

(6) that specific sequences, i.e. the basic sequences, are theorems; 

(7) that specific operations, applied to theorems, always yield 

theorems (again every operation involves a basic rule); 

(8) that theorems are obtained only by the application of (6) 

and (7). 

The representation of consequences by means of sequences instead of 

rules thus enables us to systematize valid deductions without the use of 

higher-order rules. 

We can speak of a calculus if there is 

(A) a structurally described language, such as Lp, Ly, Ly or a totality 

of sequences formed from the formulas of another language; 

(B) a structural theorem definition, such as (3)-(5) or (6)-(8); or 

else the closely related definition of derivability from a set of premises, 

e.g. in the form: 

From any set of premises S whatsoever, may be derived: 

(9) all basic theorems, 

(10) all expressions in S, 

(11) with the premises of a basic rule also its conclusion, 

(12) only what can be derived in accordance with (9)-(11). 

Thus, for example, all theorems are derivable from any S whatsoever. 

We symbolize ‘S +. A’ for ‘In the calculus C the expression A is 

derivable from S’. 

This genetically described derivability involves, of course, the existence 

of a derivation. 

By a derivation of A from S may be understood e.g. 

(C) a tree-like figure (as in I 3, p. 20 f.), ending in A, with all starting 
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points being either basic theorems or belonging to S, and all horizontal 

conclusion lines indicating the application of basic rules; 

or it may be introduced as 

(D) aseries of expressions ending in A, every member of which must be 

justified — either as basic theorem or as member of S or by the application 

of a basic rule of one or more of the members preceding it in the series. 

A member of the derivation may be ‘applied’ any number of times. 

Although this latter interpretation is sometimes less instructive, it 

probably corresponds more closely to the actual temporal development 

of a thought process. 

We shall now introduce briefly a number of calculi that merit attention 

because of their simplicity or importance. 

The Calculus of Pure Sequences (SC) 

This calculus (Gentzen [1 ]) is designed to describe those formal proper- 

ties of consequences, which are quite independent of the structure of the 

formulas (cf. III 3, p. 62). 

The basic signs are: $ and the propositional variables p,, po, ... 

The expressions are: the sequence p;,, ..., Pi, > Py, With the limiting 

cases p; > p, and > p,. 

The basic sequences are: the sequences of the form p; > p; 

The basic rules are 

the rule of premise transposition 

«++ DiPj “~~ Dy Fs... PiPi--- I Pi 

the rule of premise fusion: 

26° PPi--- W Dy Pg --Pı- PD 
the rule of premise expansion: 

DDE Fs Di +s: PP 

the rule of the cut: 

.d Pu Di=-- DDy Fs... --- DDr 

Clearly all the theorems of this calculus have the simple form ... p;--- 

» p;. Of greater interest are the derivable rules. The calculus is primarily 

designed for the task of discovering for a given set of sequences one set 

that whilst being equivalent with regard to the mutual derivability of the 

sequences, is as simple as possible. Of interest, too, is the fact that it is 

possible, by refinements of the simple structure of SC, to arrive at calculi 
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for propositional logic and predicate logic, which represent the peculiar 

relationship between ‘if ... then’, ‘follows’ and ‘derivable from’ better 

than the other calculi normally used. 

The Propositional Calculus of Sequences (PSC) 

Although we have introduced the sign > as a symbolic counterpart to 

the predicate ‘follows’, which was defined semantically for formulas and 

sets of formulas, the sequences could equally well be introduced as 

generalized implications. But this would give us only a part of propo- 

sitional logic. However, SC yields a calculus for the whole of two-valued 

propositional logic, if instead of propositional variables we admit all 

formulas of L, and include additional basic theorems (or basic rules) 

to describe the operation of the propositional logic functors. 

On the basis of IV 1, p. 69, we select the following basic rules for >: 

..A»B Fpr...»(A> B) and awe (A> B) Fp, Ap B® 

We then require only basic sequences for the remaining functors, thus 

e.g. 

for A: AB»(AnB), (AAB)bA, (AAB) DB, 

for v: A> (AvB), B»(AvB), 

(A > C)(B > C)(AvB) bC, 

foro: (A B)(B— A) b(A< 8B), 

(AB) »(A>B), (AB)>(B> A), 
for: A,—~A»>B, (A>B)\(-A-B)»B. 

Again, one could introduce basic rules (instead of basic sequences), 

and this would be of advantage e.g. if one wished to discuss specific 

standard forms for proofs, for example, proofs in which all occurring 

formulas are sub-formulas of the end formula of the proof.1° However, 

as we have introduced the sequences themselves as symbolic representa- 

tions as well of consequences as of deductions (and therewith in a sense, 

of rules), it is probably more appropriate to represent the basic laws 

of propositional logic by means of basic sequences rather than by 

sequence rules (which in a sense are representations of higher-order rules). 

Finally, as example of how to handle PSC, we give below a simple 

proof, in which the application of rules is represented by inference 

figures as in I. 
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Ay (Av-—7A) 
> (A>Av-—A) (A + Av A)(~ A> Av-A) b(Av-7A) 

HA (AW) 
ErAnäy A 

As will be readily seen, all top sequences in this figure are basic se- 

quences, and the horizontal conclusion lines indicate the application of 

basic rules; the ‘end sequence’ is thus a theorem of PSC. 

The reader should now try to prove for himself the sequence > A, 

which states that F, A- at any rate for simple formulas A, whose general- 

validity he has established by the method of value-assignments explained 

in III 3, p. 57. The question whether such a sequence can be proved in 

all cases will be discussed in IV 3, p. 81 f. 

The Predicate Calculus (FC) 

We can obtain a predicate logic calculus from any propositional logic 

calculus whatsoever, by admitting wffs from Ly instead of from Lp and 

adding a number of axioms or rules by means of which the use of the 

functors A and V or of the operators Ax and Vx (where ‘x’ stands for 

arbitrary variables a;), is regulated. In many cases, however, greater 

recognition is given to the fact that propositional logic is ‘simple’ in 

relation to predicate logic, by using as predicate logic basic theorems 

all wffs A that (in any sense whatsoever) become propositional logic 

theorems if all sub-wffs of A that are irreducible in propositional logic 

are replaced by propositional variables — different sub-wffs of A being 

replaced by different propositional variables. 

Further, if in the process we define the propositional logic theorems 

according to the semantics of III 3, we obtain those formulas of predicate 

logic that are valid in propositional logic. This gives us a possible form 

for FC if we stipulate as follows:11 

the basic theorems are all F-wffs valid in propositional logic; 

the basic rules (formulated with ‘... Hr...’ for ‘from ... is derivable ...’) 

are: 

modus ponens: A, (A>B) Hr B,12 

the A-rules: (to be called subsequent generalization Gs) 
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A>B ty A>AxB, in the case where x does not occur in A 
and (to be called initial generalization Gi) 

A>B tr AxA>B, (without restriction), 

the V-rules: (to be called subsequent particularization Ps) 

A>B Hr A>VxB (without restriction), 

and (to be called initial particularization Pi) 

A>B Hr VxA>B, in the case where x does not occur in B; 

the rules for the substitution of variables: 

(to be called bound re-naming Rb) 

> 

A |, A*, in the case where A* is obtained from A by the simul- 

taneous substitution of another variable not occurring in B for a 

‘A-variable’ or ‘V-variable’ x occurring in A in Ax or Vx and in 

the subsequent subformula B of A - the scope of Ax or Vx; 

and (to be called rule for term substitution TS) 

A fy A*, in the case where A* is obtained from A by the sub- 

stitution of one and the same term t for a specific variable x at all 

positions of A where x does not occur in Ax or Vx or in the scope 

of Ax or Vx. In the process, however, no variable y occurring in t 

may come within the scope of a Ay or Vy that is, no x that is to be 

replaced may occur within the scope of such an operator. If these 

conditions are satisfied, the application of TS may also be symbolized 

by ‘A +, A(x/t)’, and frequently ‘A(x/t)’ is meant to indicate that all 

impediments to the substitution have previously been removed in 

A by means of bound re-namings. 

These basic theorems and basic rules have been chosen so that the 

theorems yielded by them are generally-valid formulas precisely in the 

sense of III 3, p. 60. This aspect will be discussed, at any rate in principle, 

in IV 3. The reader should note that in III 2, C(10), p. 53, in contrast to 

our procedure in II 2, we use Ax ... and Vx ... in the customary sense 

as basic concepts. (Thus account is taken of x ... or resp. [x] ... only in 

the combinations A[x] ... and V[x] .... On the general use of [x] ... 

cf. V 2, p. 94 f.). 

Lack of space prevents us from citing even the most important theorems 

with their proofs. Rather than present the reader with more theorems 

without proofs, we shall clarify the use of the rules by means of some 

simple examples of their application. 
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The four rules for A and V have been chosen so as to bring out most 

clearly their common and disparate features. The properties of A and V 

expressed in the simpler basic rules Gi and Ps may also be formulated in 

theorems. The very simple proofs of these theorems are as follows (where 

‘PL’ stands for ‘valid in propositional logic’): 

A>A (PL) d B>-B (PL). 

AxA>A B > VxB 

Inversely, however, these theorems may also be used as basic theorems 

to replace the corresponding basic rules, which then become derivable 

rules. The derivation for Gi is: 

(possible 

(rule axiom ) (PL) 

premise) AxA>A (AxA> A) (AB >: AxA = B) 

AxA > B 

The derivation for Ps is entirely analogous. 

With the aid of TS the theorems AxA>A and A>VxA may be gener- 

alized into AxA>A(x/t) and A(x/t)>VxA. Often, too, the basic rules 

Gi and Ps are expressed in their corresponding general form; in this 

case TS is demonstrable. 

The rule Gs is a generalization of the rule B FH, AxB, cf. IV 1, p. 67, 

which at first sight appears a more obvious choice. However, if this had 

been selected as basic rule, then a theorem of A-transference, i.e. formulas 

of the form Ax(A>B)>(A>AxB), which are always generally-valid 

if x does not occur in A, would not be demonstrable for the general 

case.13 We demonstrate first the above-mentioned simpler rule of gener- 

alization: 

Let A be a formula in which x does not occur. 

(rule premise ) (PL) 

B B->: (A> A)>B 

A>A B (PL) (A> A)> (Gs) 
A-A (A> A) > AxB 

AxB 
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The above-mentioned theorem of A-transference may be proved as 

follows: 

(PL) (PL) 
(A > B) > (A= B) Ax(A > B) > (A> B) 
Ax(A>B)> (AB) =>: Ax(A>B)AA>B 
Ax(A > B)AA > B di anata (PL) 
Az(A > B LS et a Ax(A > B)AA > AxB 
Az(A>B*)AA>AxB Ex 
Ax(A>B)A A>AxB Ax(A— B) > (A> AxB) 

Ax(A > B) > (A = AxB) 

Inversely, Gs may be obtained again from the simple rule of gener- 

alization with the theorem of A-transference as additional axiom: 

(rule premise ) 

A-B (possible axiom ) 

Ax(A>B) Ax(A > B) = (A> AxB) 

A — AxB 

The basic rule Pi is a refinement of the derivable rule 

AxA, A > B +, B, in the case where x does not occur in B 

(cf. IV 1, p. 67), which is obtained from Pi by a simple application of 

modus ponens 

(rule premise) 

(rule premise) A-B 

VxA VxA > B 

B 

This derivable rule alone does not suffice to prove e.g. (generally-valid) 

formulas of the form VxB>Vx(A>B). But the following generalization 

of the rule, again derivable with Pi: 

C>VxA, A>BtrC-+B, 

in the case where x does not occur in B, is equivalent to Pi: we merely 

substitute VxA for C. 
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Having worked through these examples, the reader should try to derive 

the rules in which the syllogisms (I 2, p. 15f.) may be expressed on the 

basis of I 3, p. 25. 

3. SOUNDNESS AND COMPLETENESS OF CALCULI 

Every calculus may be manipulated as a kind of combinatorial game — 

merely to discover what happens - and in the process one can learn a 

great deal about the connexions between the ‘theorems’ of the calculus. 

In general, however, we tend to be most interested in those calculi 

whose basic theorems and basic rules we recognize in some sense or 

other. This may express the following intention: whatever the signs or 

expressions in the calculus may be capable of meaning, we shall consider 

only those interpretations where the selected basic theorems and basic 

rules hold. Once we have agreed on these, we must also recognise all 

demonstrable theorems, since the correct application of the rules can 

be controlled. Theories in which modalities (such as necessary, possible) 

occur as definable or as basic concepts have usually been presented in 

this form. Cf. Lewis-Langford [1]. More recently S. Kripke has put 

forward a semantic approach to modality which raises similar questions 

of soundness and completeness of related calculi. See Schiitte [1]. 

Here the totality of admissible interpretations is in a sense defined 

precisely by the choice of calculus; but it is not stated explicitly, since 

the language to be interpreted is used only within the range determined 

by the calculus selected. In the case of the calculi discussed in IV 2, 

for example, certain basic theorems or basic rules, whose foundation 

presupposes the notion of a closed domain of objects, must be omitted 

or replaced by weaker ones, should one consider this notion to be unten- 

able when referred to infinite domains. 

A closer analysis shows that such weakening needs to be undertaken 

already in propositional logic and that in particular finite-valued matrices 

are no longer adequate to represent propositional connexions, although 

the basic rules of predicate logic may be retained. By far the most im- 

portant among the variants proposed is the so-called intuitionist propo- 

sitional and hence also predicate logic.16 This may be regarded as the 

totality of theorems and rules that hold independently of the assumption 

of closed infinite domains of objects, but is often defined by means of 
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calculi, whose basic theorems and basic rules are at any rate compatible 

with this critical standpoint. We may obtain a calculus for intuitionist 

propositional logic e.g. from PSC (p. 73 f.) by replacing the basic sequence 

(AB) (AB) > B by the sequence (A>B)(A>—B) >» —A, which is 

demonstrable in PSC. In this calculus we cannot derive the sequences 

» (Av—A) and —-—A » A, which express the assumption that every 

proposition is either true or false1”, an assumption also underlying the 

discrete ontology introduced in II 1, p. 28. 

If, on the other hand, we start with the concepts of validity and of 

consequence for propositional and predicate logic, whose definitions pre- 

suppose this ontology, and if we regard the calculi as aids for determining 

that e.g. Fp A or respectively that S Fr A, then the calculi, to be ‘usable’, 

must satisfy certain conditions. 

For the formulation of such presuppositions let ‘F,’ stand for validity 18 

or equally for the consequence relation in reference to a given language L, 

and ‘+.’ for demonstrability or equally for derivability from a set of 

premises in the calculus C. 

If C satisfies the following condition with reference to L: 

(1) If H. A, then F, A, 

then C is usable for the discovery of valid formulas in L. In this sense, 

for example, the FC discussed in IV 2, p. 74 f, is usable for predicate 

logic. 

Sometimes the following requirement is made in addition to (1): 

(2) If A,, ..., A, Fe B, then Ay, ..., A, Fr B; 

that is, C is intended to be usable also for the discovery of consequences. 

The requirement is not met by the FC discussed in IV 2, for three of its 

basic rules (viz: Gs, Pi and TS) infringe it. For example, under TS 

A'a, Hr A!a, holds but not A‘a, Fr A'a;; for in this case, by reason of 
III 3 (1), p. 61, the formula A'a,>A'a, would be generally-valid, which 
is easily disproved. In fact, only special cases or else alterations of (2) 

can be demonstrated for the FC in IV 2, such as, for example: 1° 

(2.1) If Fo A, A...A A, > B, then Ay, ..., A, FLB. 

However, it is also possible to design calculi which will allow conse- 
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quences to be directly discovered. Among these are sequence calculi, 

where ‘usability’ may be formulated as follows: 

(3) rear ACP. ten An A, Bt 

This formulation expresses the close connexion on the one hand be- 

tween > and ‘F’, and on the other, in virtue of its similarity to (2.1), 

between > and —. In fact, it is easy to design a calculus C for propositional 

logic such that (2) holds. Our intention in presenting the PSC in IV 2, 

p. 73 f, was to give a simple example of a calculus having the property (3). 

This calculus can furthermore be easily converted into a calculus FSC 

for predicate logic characterized by the property (3). 

The property of ‘usability’ of a calculus, which is expressed by (1), 

(2) or (3) merely means that a calculus thus characterized will produce 

no false derivations. Let us designate this quality somewhat more cau- 

tiously as soundness (with reference to a given concept of validity or 

consequence). Proofs for the soundness of calculi expressed in the form of 

(1) or (3) all have the same pattern: it is shown that the basic theorems 

are sound and that the application of the basic rules cannot produce 

unsound conclusions from sound premises. In demonstrating soundness 

as formulated in (2), one must bear in mind that the basic theorems are 

to be manipulated like basic rules without premises, and make use of 

the fact that consequences may be put together like derivations. 

If a calculus C is to be truly usable with respect to L, then apart from 

being sound it must produce validity or consequence for L in a sufficient 

number of cases, if possible in all. In this case C is said to be complete 

in respect of L. This completeness, which in general makes sense only 

for sound calculi, is expressed by the conversions of (1), (2) or respectively 

(3), viz: 

(4) If F, A, then FA, 

(5) If Au... A,uF mB. then. A 3... A, be B, 

(6) IFA,,..., A, Fy B, then Fc A, ... A, > B. 

The PSC in IV 2, p. 73 f. is complete in the sense of (6) for propositional 

logic, and the FC in IV 2, p. 74, is complete in the sense of (4) for predi- 

cate logic. Calculi are also known which are complete for predicate logic 

in the sense of (5) or alternatively (6). 

It is in general more difficult to prove the completeness of a calculus 
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than to prove its soundness (this latter is sometimes proved incidentally 

in the course of proving the former). Proofs for the completeness of 

most (complete) calculi for propositional logic are relatively easy. The 

reason for this is that in this case the definition of general validity yields 

a method of proof and hence a calculus, though not in the sense of our 

standardization. In order to adapt this method to our standard form 

e.g. in the case of PSC, we proceed as follows: If A is a formula con- 

taining (for example) precisely the variables p,, ..., p,,, then the evaluation 

of A with the aid of truth tables is reflected in 2” demonstrable sequences 

of the form 

A] 
where to the left of » are entered all 2” possible value assignments for 

Pıs -++> Pn (p; for ‘p; is true’ and ‘—p; for ‘p; is false’), and to the right 

of $ we write A or —A according to the value of A for the corresponding 

value assignment on the left. The fact that for any A all these sequences 

are provable is demonstrated in the first part of the proof. This is done 

step by step via the construction of A. [fA is generally valid, then A alone 

occurs at all positions on the right. In this case it is possible to demon- 

strate — essentially by applying the so called ‘deduction theorem’ 

... A>B +, ... » A>B- the 2””! pairs of sequences: 

Pi Pn-1 
8a ape >D, 2A, 
ng bea fea | < 

(8b) | Bee a ope 
—7 Pi —7 Pn-1 

By the application of a basic sequence of the form (BA) (>„B>A)»A, 

viz: (p„>A) (=p, A) » A, we then obtain the 2”~* sequences 

Pı pee 0 (allies 
By repeated application of this process all premises are eliminated and - 

for a generally-valid A — we obtain the demonstrable sequence » A. 

Although this is only a special case of (6), it indicates a generally applic- 

able method. 
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In the case of predicate logic, the definition of general validity would 

seem to yield no procedure, and the considerations on which is based 

the soundness of FC as an already standardized method of proof, do not 

suffice to demonstrate completeness. On the contrary, it would seem that 

there will always be non-derivable rules that can be shown to be admissible 

by intuitive means. 

We should now like to outline the basic idea of one of the more recent 

proofs of completeness.20 If FF A, then A is valid in particular for the 

somewhat artificial domain D consisting of all terms (i.e. of specific 

sign strings) and in respect of that fixed value assignment for a; and f} 

where every term (as part of the formula) denotes itself (as member of the 

domain), i.e. ®*(t) = t. That there is such a value-assignment for fj 

must, of course, be demonstrated; but this is a simple matter. Next we 

must deal with the value-assignment for the A} variables. Now the D- 

validity defined by such value-assignments is such that B*(A) = T for 

all those value-assignments which satisfy, apart from the propositional 

logic conditions, also the conditions 

(10) B*(AxC) =T if and only if for all t in D 

B*(C(x/t))=T 

and 

(11) B*(VxD) = T_ if and only if for at least one t in D 

B*(D(x/t)) = T, 

for all formulas?! beginning with A or V. If there were only the two 

formulas AxC and VxD to be taken into account, and if the only terms 

were the variables a, and a,, then this could be expressed by the fact 

that A follows from 22 

(12) AxC > C(x/a,) A C(x/a2) 

and 

VxD + D(x/a,) v D(x/a,) 

already on the basis of propositional logic. 

According to the laws of propositional logic an equivalent trans- 

formation for this is provided by the fact that on the basis of propositional 

logic A follows from each of the four sets of the form 
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(13) Si; = {AxC > C(x/a,) AxC > C(x/ap), 
D(x/a,) > VxD, D(x/a,) > VxD, 

C(x/a;) + AxC, VxD — D(x/a,)}, 

where i and j stand independently of each other for the values 1 and 2. 

A choice appropriate to the following must now be made among these 

four sets. Let us suppose that i=1, j=2 is an ‘appropriate’ choice (see 

below). Then the following formula obtained from S, , by transformation 

of the premises of deduction into premises of implication (by application 

of the deduction theorem according to IV 1, p. 69), is valid already on 

the basis of propositional logic (and is thus an axiom of FC): 

14) (AxC > C(x/a,)) > (.. > 
((C(x/a,) > AxC) > ((VxD > D(x/a;)) > A))...). 

The first four premises are demonstrable in FC by means of Gi, Ps and 

TS, and may therefore be ‘cut’ by use of modus ponens.?® We have thus 

proved within FC the formula 

(15)  (C@la) > AxC) > ((VxD > D@r/a;)) > A). 

By means of propositional logic transformations?* we now derive the 

two formulas 

(16)  AxC > ((VxD > D@/a2)) > A), 
(17) la) > (VxD > D@r/a,)) > A). 

From formula (17), and using the rule derivable from Gs and TS, viz: 

(18) —C@/a)>Btr—NxC>B 
(in the case where a does not occurinC > B) 

we obtain a proof for 

(19) — AxC > ((VxD > D(x/az)) > A) 

and from (16) and (19), again on the basis of propositional logic:?° 

(20) (VxD > D(x/a,)) > A. 

This gives us, as above by rules of propositional logic, two formulas: 

(21) — VxD- A, 

and 
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(22) D(x/a,) > A, whence via Pi: 

(23) VxD > A, 

and finally, again by rules of propositional logic, from (21) and (23): 

(24) A. 

This arrangement has been chosen so as to point out as closely as possible 

the analogy to the case of sentential logic. A technically simpler way is 

given by the possibility of using the non-occurrence of the respective 

variables for proving 

(25) Va,(C(x/a,) > AxC) > (20), from (15) 

and (later) 

(26) Va,(VxD > D(x/a,)) > A, from (20) 

where the exhibited premises are provable in FC. 

Under each of these arrangements, generally, the earlier applications 

of modus ponens are needed to ‘free’ some variable, i.e. to satisfy the 

non-occurrence conditions as required for (18), (23) or (25), (26) 

respectively. The real difficulty of the general case is that these conditions 

cannot be fulfilled by a previously delimited number of variables. In 

actual fact infinitely many variables must be introduced for the general 

case and a ‘suitable’ selection and order of sequence must be laid down 

for them. If there are terms (other than variables) in the language, the 

‘appropriate choice’ includes that those places as taken by a, and a, 

in (15) are reserved for variables. The number of premises thus becomes 

infinite, and we require a special auxiliary theorem to enable us to return 

to a finite set of premises after a ‘suitable’ selection. The characteristic 

of the concept of deduction mentioned in III 3, p. 62, viz: 

If A follows from S, then A follows from suitable finite sub-set of S, 

which we have here formulated for predicate logic formulas “by rules of 

propositional logic’, allows the transition to a finite set of premises which, 

as shown in (13) to (24), may then be manipulated and eliminated by 

the use of a suitable sequence of the variables. 

NOTES 

1 Cf. for example I 3, p. 19 ff., where the syllogisms are reduced to barbara and darii 

84 



NOTES 

and certain auxiliary modes of inference by means of higher-order rules which in 
essence express the structure of inferences. 

2 This inference is a frequent one in mathematical practice, when from the existence 

of an a such that A(a), is inferred the existence of a b such that B(b). We take as premise 

VaA(a). Then let a1 be ‘such an a’. From aı is constructed a bı such that B(bı). We 
then infer V bB(b), where no further reference is made to ai. 

3 The reason being that in predicate logic everything holds that is ‘already valid on 
the basis of propositional logic’. 

4 The term ‘deduction theorem’ reflects a situation, where this rule is not basic but a 
non-trivial theorem about a calculus in the sense of IV 2. 

5 For requirements regarding the set of the basic theorems and the relations under- 
lying the operations, cf. VII 1, p. 123. 

6 If all outside parentheses of these formulas are written down, the formulas can be 
simply juxtaposed into a sign string. For the sake of legibility, however, they are usually 
separated by commas. 

? Tf, after Gentzen [2], pp. 81 ff, the succedent is also admitted to be a series of wffs, 
such sequences admit a much more elegant treatment. 

8 These two rules describe the series of premises as representing a set of premises: 

significance attaches to neither the arrangement nor the frequency of the members of 
the series. 

9 This rule could also be replaced by a basic sequence, viz: A (A > B)> B; however, 
the rule we have selected gives greater prominence to the feature of reversibility. 

10 Tf one wished to carry through this idea, which has an important bearing on richer 

languages, one would once again have to generalize the concept of a sequence. Cf. 
in this connexion e.g. Scholz-Hasenjaeger [1], p. 261 ff. 

11 A detailed treatment of this form of FC will be found in Scholz-Hasenjaeger [1]. 

12 This rule of course yields nothing new so long as it is applied only to basic theorems. 
The situation changes, however, when at least one of the other basic rules is applied. 
13 They are, however, demonstrable if e.g. AxB is demonstrable. 

14 A variable that occurs neither in A nor in B is chosen for z. Since, as previously 

stipulated, x does not occur in A, the substitution of z for x (1) does not alter A, (2) 

changes B into B* in the sense of Rb. 

15 This reverse re-naming restores the earlier formula. The insertion of the two Rb’s 

allows a freer use of Gs (and analogously for Pi). Gs and Pi are often used in this 

extended sense from the start, but in this case the formulation of the conditions of 

applicability becomes more complex. 

16 cf. in this connexion Heyting [1], VII and Kleene [2], § 13. 

17 At any rate, this is part of what is assumed: for it is possible to construct generalized 

truth-tables T with more than two ‘truth-values’ where nonetheless Fr A v—A and 

—— A Fr A hold. (We define ‘ Fr’ analogously to Fp for T.) 
18 That is, in most cases, general validity in the sense of the definition in III 3, p. 60. 

Sometimes, however, validity is defined for a narrower range of interpretations in an 

analogous sense, as e.g. in III 3, p. 61. 
19 We cite only the simplest variant of (2). In important cases special assumptions 

relating to the variables occurring in A1, ..., An have to be made, but their discussion 

would take us too far from our main topic. 

20 After a proof by Beth [1], p. 263. 
21 Tt would be enough to stipulate: for such sub-formulas of A and the formulas 

obtainable therefrom through TS. 
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22 In fact bound re-namings are generally required here so as to allow all substitutions 

x/a;. Because of this certain refinements in the basic conception become necessary. 

23 In a sequential-logic version of this proof, this step would be an application of 
the cut-rules. 

24 i.e. essentially the propositional logic theorem ((p — gq) > r) > (—p->r)A(g-r). 
25 We using essentially the propositional logic theorem (p > > (+ p > gq) > q); 

cf. the application of the sequence (B — A)(—7 B > A) Pp Aonp. 81. 
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CHAPTER V 

RICHER LOGICAL SYSTEMS 

Although the language Ly of predicate logic as sketched in III 2 C, p. 52 
f., is fairly generally applicable — i.e. to every ‘world’ that can be described 
in terms of a discrete ontology (II 1, p. 28), nevertheless it is often 

expedient to extend its expressive range for specific applications. We 

shall indicate below some of the most important of these extensions. 

1. IDENTITY AND THE DEFINITE ARTICLE 

A. Identity 

The relation that holds between an object and itself and no other object, 

is one 2-place attribute among many others. It is, however, distinguished 

among these in that it is meaningful for every domain of objects, and for 

this reason the theory of identity is usually regarded as a part of logic. 

Typographically, too, we distinguish a special identity symbol (usually =) 

from other predicates, and the equations t,=t, from other atomic 

formulas. (The form t, =t, is more usual than =t,t,, the full form being 

(t,=t,) together with rules which in most cases allow the parentheses 

to be omitted.) These new atomic formulas can be used as additional 

‘building bricks’ in the construction of formulas. In this way L, can be 

extended into the language L, of predicate logic with identity. As is 

customary, we abbreviate —t,=t, to t;+t,, and we stipulate that the 

symbol = stands in all cases for the attribute of identity. This establishes 

general validity and consequence for the logic of identity, as symbolized 

by Fy. 

The following additional basic theorems (the axioms of identity) give 

a syntactic description of the concept of identity as complete as syntax 

can be; in other words, the formulas that can be demonstrated with the 

additional use of these axioms are precisely the generally valid formulas 

of the logic of identity. The axioms of identity are: 

the so-called properties of a relation of equivalence, formulated for =, 
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(1) Ax(x =x), Axy(x=y>y =x), 
Axvz(x = phy = 2X =z), 

and for arbitrary n-place predicates A”, 

(2) NX 06+ XV «++ Val %1 = V1 A--- Am = Vn 

> (A"x, ...%, > A”Vy «ss Va))s 

as well as for arbitrary n-place functional variables f”, 

(3) Ale XRaD LA rege y5 

> fix pang =f "yale 

The properties of = expressed in (2) and (3) above are also called 

properties of congruence. 

If the extensions of FC indicated above are standardized in the sense 

of IV 2, we obtain a calculus IC for predicate logic with identity, having 

the relation of derivability |. 
The following are typical theorems of IC, i.e. derivable from these 

axioms: 

(4) Ax <>Ay(y = x > Ay), 
(5) Ax AVYyy=xAAy), 
(6) AXıN.. AA OAY(Y =XV..Vvy=x> Ay), 

(7) Ax,V...V AX, 2 Vy((y =xXıV..Vvy=x) A Ay). 

Of these, (6) states that x,, and ... and x, have the property A if and only 

if every y that is identical with x, or ... or x, has the property A. We leave 

it to the reader to formulate the remaining sentences in natural language. 

Probably the most important of the additional possibilities of expression 

afforded by the introduction of identity, is that of rendering the ‘naive’ 

use of number words (i.e. in phrases such as ‘three cats’ ‘nine bowls’, ..., 

as distinct from the abstract use! as in ‘four is a square number’, ‘three 

plus four is seven’ ...). 

Thus with the aid of identity we can express the so-called numerical 

propositions, viz: 

(8) ‘There are (at least, at most, exactly) two (three, four, ...) 

A-things’, 

(9) ‘(At least, at most, exactly) two (three, four, ...) A-things 

are B-things’, 
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as well as the limiting cases: 

(10) ‘There is (at least, at most, exactly) one A-thing’, 

(11) ‘(At least, at most, exactly) one A-thing is a B-thing’. 

In this connexion it is to be noted that the specifying expressions ‘at 

least’, ‘at most’, ‘exactly’, which are often absent from natural-language 

examples (in cases where they can be inferred from the context) must, 

where necessary, be supplied before translation into the symbolic 

language. Thus: ‘Competitors are allowed to make two attempts’ means, 

of course, ‘... at most two ...’ 

We give below the symbolical forms of the numerical propositions. 

For (10): 

Vora x There is at least one A-thing.? 

VxAy(Ay > x = y) There is at most one A-thing. 

VxAy(Ay ox = y) There is exactly one A-thing. 

For (11): 

Vx(Ax a Bx) At least one A-thing is a B-thing.? 

VxAy(AyaBy>x=y) At most one A-thing is a B-thing. 

VxAy(AyaBy>x=y) Exactly one A-thing is a B-thing. 

In the general case the length of the formula increases so rapidly with 

the quantity to be described that there is little point in writing out any 

but the simplest cases; we shall therefore restrict our examples to the 

cases ‘two’ and ‘three’. 

Thus for (8): 

Vxy(x + yA AXA AY), 

Vxyz(x # VAX + ZAY + ZAAXAAYAAZ): 

there are at least two (resp. three) A-things. 

VxyAz(Az>z=xvz=)y), 

VxyzAu(Au > u= xvu=yvue=z): 

there are at most two (resp. three) A-things. 

Vxy(x + pAAz(Azez=xvz=Yy), 

Vxyz(x #yax+zay#+zaAulduou=xvu=yvusz)): 

there are exactly two (resp. three) A-things. 
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The reader may not find it easy to see that the above formulas really 

do have the stated meanings.4 However, once he has made the effort, 

he will be able to work out for himself the formulas for four, five, etc. 

Lastly, for (9): 

Vxy(x # yA Axa Bx a Aya By), 

Vxyz(x + VAX + ZAY + ZAAXA Bx A AYA By A AZ A Bz): 

at least two (resp. three) A-things are B-things. 

VxyAz(AzaBz>z=xvz=y), 

VxyzMu(lAunBu>Ju=xvu=yvu=2z): 

at most two (resp. three) A-things are B-things. 

Vxy(x + yAAz(AZA Bz oz =xvz=y)), 

Vxyz(x + YAX + ZA) +2 

A Au(Aua Busou = xvu=yvu=z)): 

exactly two (resp. three) A-things are B-things. 

Again, the reader will have to make a mental effort to understand the 

formulas.® 

The various numerical propositions — and similarly, of course, their 

symbolical representations — are inter-related. We give below the most 

important of these inter-relationships, at first in natural language. 

(12) There are exactly n A-things if and only if there are at least 

n A-things and at most n A-things. 

(13) There are at most n A-things if and only if there are not at 

least n+ 1 A-things. 

(14) If there are at most n A-things, then there are at most n+1 

A-things. 

Using the symbols previously introduced, we can now re-formulate 

(12), (13), (14) for a fixed n (e.g. n=1, n=2, n=3, ...). For n=2 we 

obtain the formulas 

(12.1) Vxy(x + paAz(Azez=xvz=y)) 

>Vxy(x + yAAxA Ay) AVxyAz(AZ>z=xvz=y), 
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(13.1) VxyAz(Az>z=xvz=y) 

<> — Vxyz(x + VAX + ZAY + ZAAXAAYAAZ), 

or in a formulation equivalent under the rules of FC applied to L, 

(13.2) VxyAz(AZ>z=xvz=y) 

<> Axyz(Ax a Ayn AZ > xX =yvx=ZVy=2Z). 

This gives us another way of expressing that there are at most two (or 

analogously three, ...) A-things.® 

(14.1) VxyAz(Az>z=xvz=y) 

> VxyzAu(Au > u=xvu=yvu=zZ). 

To derive these formulas from the axioms of identity would lead us 

too far from our present topic. 

B. The definite article (individual description) 

Let us now try to symbolize propositions such as ‘Elizabeth is the present 

Queen of England’, ‘Dickens is the author of David Copperfield’, ‘2 is 

the even prime number’, i.e. propositions of the form ‘y is the (only) 

A-thing’. We require a formula of the form y = .... With the symbols so 

far available to us, however, all we can manage is something along the 

lines of 

(1) Ax(y = x Ax), 

which clearly does not express the intended meaning. And further, it is 

often useful to be able to symbolize propositions of the form ‘the (only) 

A-thing is a B-thing’. This can be done on the basis of (1), but in two 

different ways which although equally justified, are not logically equiv- 

alent, viz: 

(2) Vy(Ax(y = x < Ax) A By), 

i.e. there is a thing which is (the only) A-thing and simultaneously a 

B-thing, 

(3) Ay(Ax(y = x Ax) > By), 

i.e. every thing which is (the only) A-thing is a B-thing. 

On the assumption that there is exactly one A-thing both formulas 
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express that this has the property B, but they do not have the form B ..., 

suggested by natural-language usage. For this reason special terms, viz. 

ıxA(x) [to be read: ‘the (only) x, for which A holds for x’] have been 

introduced. The variable x, which is free in A(x), is bound by the 1- 

operator [just as it is by Ax or Vx, cf. III 2, p. 54, and ı may therefore be 

introduced equally as a functor applicable to xA(x), (or to [x | A(x)], 

cf. V 2, p. 94)]. The expression ıxA(x) is a term (cf. III 2, p. 53) and may 

be used like any other term in the construction of terms and formulas. 

However, the term-substitution rule TS discussed in IV 2, p. 75 must not 

be generally extended to ‘1-terms’ (but cf. below (10), (11), (12)). Thus 

admitted constructions are: ıxCxy, ıyCxy, or to give an example from 

arithmetic, ıy(x+y=z) [usually abbreviated to ‘z—x’]. 

According to Russell [1] ch. 16, the general use of the ı-operator may 

be regulated by simply introducing BixA(x) as abbreviation for the 

formula Vy(Ax(y=x@A(x)) A By). However, in this case, we must not 

substitute B(...) for B ..., since if we did, it would not be clear whether 

—BıxAx stood for 

(4) — Vy(Ax(y = x > Ax)~a By) 

or for 

(5) Vy(Ax(y = x << Ax) A — By). 

That it would be wrong to assume the general validity of (4) > (5) 

is shown by the following deduction: Premise: (4)<+(5). On the basis of 

—AoB FAVvB, it follows that Vy(Ax(y=x@Ax) a By) v Vy(Ax(y=xe 

Ax) A—7By) and because of VyAv VyB FE Vy(AvB) we have 

Vy((Ax(y = x @ Ax) A By) v (Ax(y = x @ Ax) A — By). 

This gives us, by way of a propositional-logic transformation within 

the expression: 

VyAx(y = x Ax). 

Thus our premise leads to the conclusion that an arbitrary property A 

holds for exactly one object, e.g. the property A defined by Ax(Axox+x), 

which is absurd. 

Assuming the ‘legitimacy’ of ıxAx: 

(6) VyAx(y = x > Ax), 
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(4) and (5) are equivalent, i.e. (6) F (4)<4(5). The analogue for the general 
case can be demonstrated only step by step via the construction of B, cf. 
Whitehead-Russell [1], pp. 184-186. 

For this reason the ı-operator is sometimes introduced as a special 
basic concept, whose use may be regulated by a suitable schema of the 
1-axioms, thus e.g. the following: 

(7) Ax(y = x A(x)) A B(y) > BOxAQ)).7 

It is fairly easy to see that this represents on the one hand a weakening 

of the equivalence 

(8) Vy(Ax(y = x A(x)) A By) > BixA(x), 

which follows from Russell’s definition for BixA(x); and on the other 

hand a strengthening, since the generalizations from By to B(y), admissible 

in this direction, are already included. 

The most important derivations from (7) are (9) and (10): 

(9) VyAx(y = x» A(x)) > AlıxA(x)). 

Let us illustrate this: 

In the domain of integers we define (z—x) by ıy(x+y=z); then 

by virtue of (9) it holds that x+(z—x)=z. It is precisely in demonstra- 

tions like this one that we require the ‘trivial’ statement that the only 

thing with a certain property has that property. 

(10) VyAx(y = x + A(x)) A AyB(y) > BAAG)). 

This theorem enables us to apply a universal proposition to an object 

described by an individual description, since we have introduced no 

general rule for the substitution of singular descriptive terms for free 

variables.8 The following rules, in particular, are derivable from (10): 

11) VyAx(y = x A(x)) F AyB(y) > BÜxAR)), 
12) VyAx(y = x A(x)) > B@) 

+ VyAx(y = x @ A(x)) > BAxA(x)). 

This last rule shows that if a requirement of ‘legitimacy’ is made, 

singular descriptive terms may be substituted for free variables like other 

terms. 
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2. DESCRIPTIONS OF ATTRIBUTES AND FUNCTIONS 

A. Attributes 

We have found it useful on a number of occasions to be able to refer to 

‘the property of x that is described by a condition A(x)’ or ‘the relation 

between x and y that is described by a condition C(x, y)’, ... in general: 

‘the attribute whose applicability to a system x,, ... x, of objects is 

described by a condition C(x,, ..., x,)’.9 This suggests an extension of 

predicate logic. The formula C(x, y)-to take the second-simplest example - 

is not suitable for this purpose, since for given values x, y, it already 

represents the relation holding between those particular values. Further- 

more, there would be no possibility of distinguishing between ‘the 

relation C(x, y)’ as such, and that property of x which, at a given value 

of y, is also represented by C(x, y) under the same convention, i.e. the 

property A With the ‘property’10 Ax(AxB(x, y)). Admittedly, this 

property A could be designated by “ıAAx(Ax»>B(x, y))’ on the basis of 

an obvious extension of V 1, p. 91. However, the derivation of the rules 

governing the use of such predicates would present some difficulties, as 

we would first have to develop a calculus of identity with formulas like 

Aj=Ai. It is simpler to extend the language of predicate logic by means 

of special predicates for the description of compound attributes, such 

as we have already used on earlier occasions. Instead of the notation xA 

or [x]A introduced in II 2, p. 39, in connexion with the quantifiers Ax 

and Vx, we shall use the predicates 

[x | A], [xy] A], ... etc., 

thus adopting the symbolism most widely employed in mathematics for 

this purpose.1! 

(1) The required extension of L; may be described by the following 

addition to III 2, C(1)-(11), p. 53 f.: 

(*) if A is a wf, then [x, ... x, | A] is an n-place predicate, i.e. a com- 

prehensor predicate. 

As this involves extending (6) similarly, we obtain a ‘simultaneous 

definition’ of predicates and wffs.1% This results in particular in an in- 

creased range of applicability of III 2, C(7)-(10), as atomic formulas 

(in the extended sense) such as [ab | A]t,t, can now be formed. The 

operator [x, ... x, | ...] is also known as abstraction operator or com- 
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prehensor because of the important part it plays in the formation of new 

concepts.13 The variables x,, ... x, must be regarded as bound in the 

same sense as in III 2, p. 54, at all occurrences in [x, ... x, | A]. In the 

simplest cases of (*) the variables being free in A will be precisely x,, ..., 

x,- However, we must allow for the case where the course-of-value of 

the attribute to be described does not depend on all variables listed in the 

operator [x, ... x, | ...], as e.g. in [xy | A!x]. On the other hand, the 

attribute as a whole may depend on other variables as well, asin [x | 3?xy]. 

Hence the general formulation. 

That we must regard as bound the variables listed by [x, ... x, | ...], is 

shown also by the following interpretation of comprehensor predicates: 

Let B*([x, ... x, | A]) be the attribute that holds for arbitrary x, ... %,, 

if and only if! 

(2 2)8yha=" 
or strictly in symbols: 

NR, 

er 9 Blu. ADE nt) = ( (Ft 3) B) A). 

Whatever is assigned to x,,...,x, by ® itself, is thus of no consequence 

at all. 

According to the definition of general validity based on this inter- 

pretation, all formulas of the form 

(3) pogrom TARA 

immediately prove to be generally valid, and this proof easily extends to 

their generalizations: 

(4) [2.5 PA]ty ve. So AGry/ty, 25): 

Comprehensor predicates are largely characterized by (3): if they 

designate anything at all so that (3) is generally valid, then this must be 

the attribute described by (2). It is therefore an obvious next step, when 

enlarging the predicate calculus for the language of predicate logic 

extended according to (1), to introduce as additional axioms precisely 

formulas (3): the calculus thus defined is complete.1° For example, (4) 

95 



v2 RICHER LOGICAL SYSTEMS 

is derivable from (3) by applying the rule of term-substitution TS (IV 2, 

p. 75). 

We end this section by giving below a number of examples of concepts 

whose formation can be symbolically represented with the aid of com- 

prehensors; our use of the symbolic notation will be somewhat freer. 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

nA=p,|x | —Ax] is the property complementary to A in 

the sense of 13, p. 18. According to (3) it thus holds that 

nAx—,Ax; however, this must not be taken to mean n=—: 

we could have written more clearly (nA)x-— (Ax). 

IX, 22, Xet=peL¥ |Y=%1V -.- VV=X,| 18 the property that 

holds for precisely the objects x,, ..., x, or the set consisting 

of exactly the objects x;, ..., X, 

ANB=p,[x | Ax A Bx] is the property of having the properties 

A and B at the same time. For example, out of the properties 

of being red and being a ball, we form the property of being 

a red ball. 

AUB=p,[x | Ax v Bx] is the property of possessing at least 

one of the properties A or B. Thus out of the properties of 

being a son or a daughter (of a specific parental pair b) we 

form the property of being a child (of b). 

[xy | Ryx] is the relation that holds between x and y if 

and only if R holds between y and x. Thus out of the relation 

of being the superior of ... we form the relation of being the 

subordinate of ... 

[xy | Vz(Rxz A Szy)] is the relation that holds between x and 

y if and only if there is a z with Rxz and Szy. For example, 

if R is the relation [xy | x child of y], then [xy | Vz(Rxza 

Rzy)] is the relation [xy | x grandchild of y]. Other family 

relationships may be expressed similarly, if need be by longer 

“‘concatenations’. 

[xy | y = fx] is the formal description of the representation 

in graph-form (briefly: of the graph) of the function f in 

the ‘x, y plane’.16 The reader should call to mind graphs of 

simple functions such as [xy | y=2x+3], [xy | y=x?].) 

With the aid of the comprehensors so far introduced we may also 

describe the combination of two functions f and g. However, it must be 
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borne in mind that in employing this procedure we form the graph of 

the compound function from the given functions, e.g.: 

(12) [xy ly = fx + 8x], [xy ly = fx gx], [xy ly = fex].2” 

B. Functions 

Within the framework of set theory functions are often identified with 

their graphs - i.e. we say that a function is nothing other than a pair-set 

(etc.) with specific properties. In fact, however, the concept of a function 

has the same generality as that of a set; in other words, sets may be 

introduced as functions with specific properties, viz as attributes. This 

being the case, however, it becomes somewhat artificial to describe 

functions by means of graphs. It seems more appropriate to extend the 

use of comprehensors by introducing ‘comprehensor functors’ in addition 

to comprehensor predicates; i.e. comprehensor terms that designate 

functions directly (instead of their graphs). And just as in the case of 

comprehensor predicates we write a formula (for a truth value) after 

the comprehensor, we now write a term (for the value of the function) 

after the comprehensor. 

On the basis of II 2, p. 39, we should obtain comprehensor functors 

like [x]t, [x, ... x, ]t. We prefer, however, to use a symbolism analogous 

to (1), p. 94, and therefore make the following additions to III2, C 

(p353:f:): 

(1) If t is a term, then [x, ... x; | t] is an i-place functor; 

(2) If ® is an i-place functor, then ®t, ... t, is a term.18 

We can now construct terms, or object names, having the form [x, .. 

x; | t]t, ... t; and having the same meaning as t(x,/t,, ..., x;/t;) — ie. 

as t, where the variables x,, ..., x; are simultaneously replaced by the 

terms t,, ..., t;. This requires the following supplement to the definition 

of B* given in III 3, C, p. 59 f.: 

3) —- B* (Lx, . | t]) (5 BD = Wes i )2)*o. 
zus 

Accordingly all equations of the form 

(4) [x Soe x |e) ... XY — 8 
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are generally valid. The attaching of variables to the functor - to express 

the application of the function to its arguments - in a sense reverses the 

process of abstraction or comprehension. 

Analogously to the extension of the predicate calculus by means of 

the axioms (3), p. 95, we obtain a complete calculus for the language L, 

extended by B, (1) and (2), if we supplement the axioms of IC by B, (4). 

For example, by substitution in (4) we immediately obtain the schema 

that describes the ‘application’ of a comprehensor functor to arbitrary 

arguments: 19 

(5) [Xe an Kot (Cpe ats mitte it, are 

To illustrate the use of comprehensor functors we give below the 

definitions of the compound functions whose graphs are described in 

A (12). We define: 

(6) ftg=([xl|fx t+ 9x], f-9 = [x IA: ex], 
fog = [x|fgx]. 

The usual definitions of f+ g,f:g, fg are: 

(7) (f+ g)x=fx+ gx, (f:9)x =fx-gx, (fog)x = fox. 

On the other hand, in (1), (2) and (4), we have incorporated the general 

method contained in (7). 

Another important application of this method is forming the converse 

function of a function. Here we additionally require the singular descrip- 

tion terms introduced in V 1, B, p. 91. Converse functions can, of course, 

only be formed out of reversible functions f, i.e. f must satisfy the con- 

dition Ax, Ax2(fx, =fx,—-x, =X). For those y that satisfy the condition 

Vx(y=fx), there is exactly one x so that y = fx, and this is usually de- 

signated as f ty.21 

The ‘converse function of f’ thus introduced may be described as 

follows with the methods so far developed. In the first place f~1+y is that 

x for which y=fx, i.e. (according to V 1, B, p. 93) 1x(y=fx). Since 

according to V 1 this expression may be used as a term on the condition 

that VzAx(z=xey=fx), we now form the comprehensor functor 

[y | ux(y=fx)] and write f~* as abbreviation for it. 

Taking into account V 1, B (12), p. 93, we then obtain the following 
theorem 2? as a counterpart to (4): 
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(8) VzAx(z = xy = fx) > fly = 1x(y = fx). 

For those y for which it holds that they occur as values of f, e.g. for y= fu, 
the premise in (8) may be weakened, and we obtain: 

(9) VzAx(fu = fx > z = x) > f~*fu = 1x(fu = fx). 

Keeping the premise, we obtain also the following implications: 

(10) VzAx(fu = fx > z = x) > 1x(fu = fx) =u, 

whence the simpler formula 

(11) VzAx(fu = fx > z= x) > f-tfu = u,28 

whose premise is a consequence of the general reversibility of f, since 

it expresses precisely the reversibility ‘at fu’. 

The above-mentioned applications of abstraction or comprehension 

operators are, of course, merely examples of the way in which the intro- 

duction of these operators allows us explicitly to designate abstract 

objects which otherwise could only be described in terms of their properties. 

3. MANY-SORTED THEORIES. CONCEPTS AS OBJECTS 

In applications of logic we rarely find ourselves dealing with the ex- 

pressions ‘for all things (whatsoever) ...’ or ‘for at least one thing ...’, 

but rather with phrases like ‘for all animals ...’, ‘for all points ...’, etc. 

Such turns of phrase can be expressed within the language of predicate 

logic, as we have seen in II 2, p. 39, but for a number of purposes it is 

advisable to bring the symbolic notation closer to natural-language usage. 

This is done by introducing for each of the types of things in question 

— such as points, straight lines and planes or in general D,, D,, ..., D; - 

special kinds of variables — such as py, Do, ---» Fis 92> ---» C15 C25 -.., OF 

in general e.g. a;,, Gj2, -.-, x, for the objects in D;. Out of these the 

formulas of a ‘many-sorted’ language are formed exactly as described in 

III 2, C, p. 52 f. for the general logic of predicates. These wffs deviate from 

the general predicate logic interpretation only in that we read: 

(1) Na,,A as: for all objects in D, (it holds that) A; 

(2) Va;;A as: for at least one object in D, (it holds that) A. 
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Sometimes the predicate variables (and, where provided, the function 

variables) are also specified in the sense that the sort of object-variable 

and, where applicable, the sort of terms that may occur at each position, 

are fixed. For example, if A; stands for a three-place predicate variable 

whose argument places are reserved for the variables a,;, a,;, dy, (in this 

sequence), then we may construct out of them the atomic formulas 

Ai Ay is Arh: 

Taking (1) and (2) into account the semantic concepts of general 

validity and derivability may be transferred in an analogous sense from 

III 3, p. 59 f. to the language of a many-sorted theory, and similarly we 

obtain a many-sorted calculus by analogous transference of the axioms 

and rules of the predicate calculus. 

To give the reader an example of the resultant increased legibility of 

formulas, we write out below - in a suitable many-sorted language - 

the geometric axiom formulated in III 2, p. 56 in the language of general 

predicate logic: 

(3) Np, Ap2Vg(Lpig ALpog). . 

Whilst our immediate aim in introducing the idea of many-sorted 

theories has been to give more convenient expression to propositions 

already formulable in Ly, it can also be used to extend considerably the 

language of predicate logic. Such extension is required if we wish to 

give a systematic symbolic expression to the conception of attributes (or 

sets) and functions as objects — a conception that has already proved 

unavoidable on a number of occasions above when we wished merely 

to be able to talk about them.?* 

The introduction of comprehensor terms (cf. V 2, p. 94 and 97) does 

not in itself bring about this extension. The first decisive step in this 

direction is rather the introduction of ‘For all...” and “There is (are) ...’ 

in respect of attributes or sets (and, where applicable, functions), e.g. 

of the formulas AAjA and VA/A. These formulas can be interpreted like 

the formulas of a many-sorted theory, or logic, where apart from the 

sort D, of objects in the narrower sense, we have the following: 

the sort D, of truth values, with the variables A?, 
the sort D, of one-place attributes over D,, with the variables Aj, 

and in general: 

the sort D; of i-place attributes over D,, with the variables Aj. 
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Instead of predicate variables for attributes over the domains D,, Do, 
D,, Dy, ..., D;, ... we here have only some specific predicates determined 
by the ‘nature’ of the above sorts. The fact that an object from D, is 
applicable to an object from D,,, gives rise to a natural two-term relation 
between the D,-objects and the D,-objects; the fact that an object from 
D, is applicable to a pair of objects from D,, gives rise to a natural 
three-term relation between D,-objects, D,-objects and D,-objects; etc. 
We could introduce corresponding predicates for these special attributes, 
e.g. d°, 6°, ..., with the atomic formulas #?Ala,, $°A2a,.a,,, or in general 
o'**Aja,, ... a;,. If as is usual, we omit the (predicates) &' but still refer 
to their interpretations (as if they were invisible predicates) we have the 

same atomic formulas as in Ly. This is a way of describing the intention 

that what is indicated by a variable A; is an object as well as a function 

(in the former version Aj gave the objective, and &'*! the functional 
part of it). The set-theory notation a; € Aj, (a;,a;,) € A2, ... is also used 
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occasionally, and so is the form A} 3 a,, A? 3 (a;,a;,), ..., which rep- 

resents a compromise between the symbolism of predicate logic and that 

of set theory.25 

By means of these or similar conventions, the essential feature of which 

is always the introduction of AA; and VA; (in some cases also of Af; 
and Vfj), a second-order language L? of predicate logic is formed. 

The minimum requirement for the interpretation of the formulas of 

L? is that for given domains D,,, Do, D,, Dp, ... the predicates ¢7, ®°, ... 
(or their analogues) have fixed meanings. The requirement is normally 

met if all domains D; consist of attributes (specifically, of i-place attributes) 

over D,. This in itself distinguishes the second-order predicate logic from 

a general many-sorted logic and makes it a part of a logic (or theory) 

of types, where ‘type’ refers to a hierarchy of abstract ‘objects’ which are 

the outcome of our iterated objectification of functions. Further, general 

validity and other semantic conepts are usually defined in such a way 

as to coincide, for formulas already belonging to Ly, with the concepts 

defined for L,. This is always the case if the requirement is made that 

D; consist of all i-place attributes over D*. These interpretations have 

been designated as ‘absolute’, ‘standard’, ‘normal’ or ‘maximal’. 

It is unlikely that we would consider other interpretations of L?, had 

it not been shown that for infinite D, each axiomatic description of the 

appurtenant (maximal) D,as maximal is insufficient. It can be demonstrated 
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that even a catalogue of all propositions formulable in L? that are ‘true 

for D,, Do, D;, D2, ...” would be inadequate for this purpose. For ac- 

cording to a theorem of Löwenheim and Skolem such a catalogue — 

which might be regarded as a kind of super axiomatic system — would 

always have a model with the same D,, (and D,) but non-maximal domains 

D,, D,, .... Apart from this, it is not possible to describe such a catalogue 

by means of a calculus in the sense of IV 2, p. 70 f. (as will be shown in 

VII 3, p. 135), so that an ‘axiomatic’ description of the domains D,, 

D,, ... presents difficulties on two scores. 

Some researchers have gone so far as to advocate that these con- 

ceptions be excluded as senseless from the field of logic and mathematics. 

Nevertheless, the general practice is to interpret L? formulas as ‘normal’, 

since their meaning might otherwise be subject to imponderable changes. 

For example, from the possible definition of identity in L?, viz: 

(4) x= y =p,AA2(44x > Aly) 
we can demonstrate, in a calculus appropriate to L?, the axioms of 

identity formulated for L, in V1, A, p. 88. However, this does not 

exclude the possibility that in a non-normal interpretation compatible 

with the axioms, the relation designated by ‘=’ holds between two 

different objects x, 9 out of D,,, e.g. if all the properties in respect of which 

x and y differ are absent from D,. And this is a comparatively innocuous 

example. Further, the definition contained in (4) shows that L? may be 

based equally on Ly or on L,. 

It is an obvious next step to extend L2 for all of its variables, i.e. for 

all provided types by adding the expressions described in V 1 for Lr. 

This also gives us the possibilities of expression contained in V 2, p. 94, 

as is shown by the following definitions: 

(5.1) [x] A@)] =p, 141 Ax(Alx @ A(x)), 

(5.2) [xy] B(x, y)] =p_ 1A?Axy(A*xy > B(x, y)), etc. 

We give below a typical example of what can be said with L2, using the 

extensions introduced in V 1 and 2, for the sake of simplicity. 

The generalization of 

(6) [xp] Axy], [xy] Axyv Vz(Axza 4zy)], 
[xy | Axy v Vz(Axz a Azy) v VzVu(Axz a Azu a Auy)], 
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which is only incompletely expressed by means of ‘...’ in 

(7) [xy | Axy v Vz(Axz a Azy) v VzVu(Axz A Azu a Auy)v ...]28 

may be written in ‘closed’ form in L? as follows: 

(8) [xy | AB(Auv(Auv > Buv) A Auvw(Buv A Avw > Buw) > Bxy)]. 

Whereas only finite ‘A-chains’ of a determinate length can be described 

in terms of (6), (8) yields the definition of ‘A-chains of arbitrary finite 

length’ and therewith the definition of finiteness which is generally used 

for the definition of natural numbers in terms of logic. The concept of 

finiteness provides a vicious example of how concepts can be twisted if 

L? is used in the sense of a non-normal interpretation: under each 
intuitively correct definition of finiteness, some infinite set might pass as 

finite. 

In our description of L2 we have so far not touched on the possibility 

of talking about arbitrary properties of (and arbitrary relations between) 

attributes, i.e. about attributes over the domains D,, D,, .... These 

‘second-order attributes’ (from the point of view of ordinary predicate 

logic) are the first-order attributes of the special many-sorted theory, 

as the language of which L? was at first understood. All that is required, 

then, is to extend L2 by means of the predicate variables omitted above. 

From a formal point of view this gives us a many-sorted language as 

introduced initially, supplemented by the special predicates $7, o%, ... 

(cf. p. 101). 

This language may be extended as required in the same way as de- 

scribed above for L;, and this process may be repeated as often as re- 

quired. The need for such extensions can be demonstrated by means of 

examples, but we shall defer doing so until we have the appropriate 

symbolism at our disposal. 

Clearly, the usefulness of the above extensions L?, ... of Lp depends 

to a great extent on our being able to order distinctly the terrifying 

multiplicity of new types created. The logic that results from such 

repeated extensions is known as higher-order logic or theory of types. 

The various types are designated by type indices (often referred to 

simply as types), and the rules of formation for the type indices yield 

the required principle of order. Thus if t is a type, then D, is the domain 

of objects ‘of type 7’, and a‘, a}, ... are variables?’ ‘of type t’. That is, 
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for all value assignments ®, to be introduced as in III 3, p. 59, V(a}) 

belongs to D.. 

Let D, again be the domain of truth values and D, the domain of 

given objects. (These might be actual objects or the outcome of a previous 

abstraction.) The ‘higher’ types must be formed from the types o and +, 

and various ways of doing this have been suggested. The following 

procedure (of Principia Mathematica) is adequate for the above-mentioned 

extension of Ly, with the exclusion of all function-types other than 

attributes. We define a language Lo): 

(9) Ifa, ... a, are types, then let (a, ... &,) be the type of those attributes 

whose first position variable refers to objects in D,, and ... and whose 

nth-position variable refers to objects in D,,. 

We thus designate the types already occurring in L2 as follows: 

(10) —*, 6, (#), (x), Gr), ... 28 

And we can also form types such as, for example: 

(11) (o*), (#(#)), C#((#))) 

or, somewhat more systematically: 

12) (AKA): +. 

This wealth of possibilities is less confusing than might appear at first 

sight, since we can select from it whatever is required by any one particular 

problem. It would, however, be entirely arbitrary to stop the proliferation 

of types at any one point. Again, it is relatively simple to formulate 

general principles, since account need be taken only of the formation 

procedure (9), and not of the host of possibilities. Thus the decisive step 

in the formation of the language L,., of the theory of types determined by 

(9), is the formation of the atomic formulas described by 29 

(13) For arbitrary types a, ... «,, the sequence built out of variables 

a,"") a% ... afm constitutes a formula. In all other respects we proceed 
as for Ly; (with the exclusion of the function variables). 

As Kuratowski has suggested, everything that can be said in L,9) can 

also be said in a language L;,,) restricted to types (12). The language 

L(12) is much simpler to describe, but on the other hand the required 
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definitions are correspondingly longer. Nevertheless, it is sometimes use- 

ful to have a language which has so narrow a range of vocabulary and is 

yet so expressive (i.e. one in which only one-place predicate variables 

occur). 

Using the method indicated in V 2, (11), p. 96, it is possible to describe 

functions of all kinds in terms of L,9) or L, 12). It is, however, advisable 
to treat the different kinds of functions other than attributes as separate 

types. 

This means that convention (9) would have to be modified, for we 

would have to symbolize the type of the function value which we had 

been able to suppress in (9), since it was always ‘o’. 

We thus stipulate: 

(14) If a, a, ..., &, are types, then (a> | a, ... &,) is the type of the 

functions with the definition domains D,,, ... D, and values in D,,. 

In this way all earlier types (a, ... &,) are preserved in the form (0 | a, ... 

a,); but other types are added, in particular types of functions whose 

arguments and values are again functions — which is becoming increasingly 

important in modern mathematics. 

As Schönfinkel has shown, these new types can also be used to reduce 

all types to the types of one-place functions, and this in a manner much 

simpler than that of Kuratowski above. For example, the type 

(((a | B) | y) | 5) clearly expresses the same as the type (a | öyß), as is 

shown by the corresponding application of (13). On the one hand we 

form 

(15) a, ! YParatal, 

and on the other, step by step 2° 

(16) a, ce 1B) ly) u ‘ies ax and al, 

whereupon the result is normalized. The general formulation follows 

fairly obviously. 

We now stipulate in place of (14): 

(17) If «, B are types, then (aß) is the type of the functions with 

arguments in D, and values in D,.?! 

We may then describe the language L; of the theory of types in terms 

of the following rules: 

(18) Every constant of type « is an expression of type a (this schema 
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requires specification of the constants that are to be effectively introduced); 

(19) Every variable of type « is an expression of type a; 

(20) For arbitrary expressions A‘*®), BP of types (aß) or B, (APBP) 

is an expression of type a. 

Expressions of type o will be counted as formulas in the earlier sense. 

All other expressions will be regarded as terms in the extended sense. 

Within the framework of (17)-(20) we can further introduce all 

possible logical functions as constants of corresponding types. An ex- 

tremely elegant calculus for a language of this kind has been developed 

by Alonzo Church [2], its usefulness deriving largely from the fact that 

as well as (18)-(20), the comprehensor terms of all possible types are 

admitted in virtue of the following addition to (19) and (20): 

(21) If A® is an expression of type «, then [af | A*] is an expression 

of type (aß).32 

The language of the theory of types enables us, in particular, to establish 

the connexion between the use of numbers for counting objects and the 

abstract use of natural numbers in calculating. 

In the simplest case numbers may be regarded as properties of objects 

of type (0*),33 i.e. of properties of objects34 and not of objects themselves 

(imagine a ‘three-Magi’ or a ‘seven-dwarf’). They are thus objects of type 

(o(o*)). Now these objects out of D(,(.,4)) may be described in purely 

logical terms, for we can express without using numbers that two objects 

out of D,,,.) hold for the same number of D*-objects. It is further possible 

to define addition and multiplication for numbers as specific objects in 

D(((oc#))(o(0%)))(o(o#))) >” and to prove the known laws of arithmetic on 

the assumption that there are sufficiently many things in D,. 

Turning now to botany, we conclude with an example that is closer 

to life. Let D,, be the domain of all botanical individuals. Among prop- 

erties over D,, i.e. objects out of D,,,), would then be included all the 

concepts under which botanists are accustomed to order their wealth 

of classificatory possibilities, i.e. (from top to bottom): divisions, classes, 

orders, families, genera and species. The concepts division, class, order, 

family, genus and species would then be regarded as properties of objects 

out of D,,,) or as objects in Dioco)): 

This, however, is not how botanists actually use these concepts. Even 

if a genus contains only one species, or if a family has only one genus, 

these are distinguished. We ought therefore to regard species as occurring 
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in D(,4), genera in Di o(ox)),..., FiVisions in D(o(o¢o(o(o(o%)))))) Fortunately 
this is a topic on which we need exercise our minds only rarely, since for 
every construct in D,,(.4)) there is a natural counterpart in Doo): 

NOTES 

1 In this connexion cf. V 3, p. 106 f. 
2 Cf. II 2, p. 40. 
etal sc pe 25. 

4 It is generally agreed that a ‘literal’ translation into natural language is not very 
helpful. 

5 Using the more abstract concepts of V 2, p. 96, we obtain e.g. Vxyz(x + yAx+ z 
Ay+ zAAQ B= {x, y, z}), as equivalent to — and more intelligible than - the last- 
mentioned formula above. 

$ The corresponding way of expressing that there are at least three A-things is less 

intuitive, and we merely state it: AxyVz(z + x Az+ y A Az). 

? The substitution of ıxA(x) for y requires precautionary measures similar to those 
formulated in IV 2, p. 75 for the substitution of terms. 

8 Such a rule, though occasionally chosen as a basic rule, is incompatible with the 

maxim to which we have here adhered, viz that at the most derivations from (8) are 
to be demonstrable. 

® For further examples, cf. p. 96. 

10 On properties of properties, etc., cf. V 3, p. 103. 

11 Admittedly the mathematical use is in connexion with sets, but the two uses are 

very close, sets and attributes being occasionally even ‘identified’, as they can replace 
each other in appropriate formulations. The proposed use of [ ], instead of { }, is 

to point out that the denoted attributes are, in general, not in the universe of discourse. 

12 Tf additionally we formalize the use of the definite article, as under V 1, p. 91, a 

simultaneous definition of terms, predicates and wffs is required. 

13 From the Latin comprehendere. A particularly elegant comprehensor theory and 
technique will be found in Curry’s ‘Combinatory Logic’ (cf. Curry-Feys [1] and 

Cogan [1]). 

14 3, 

vs kn 

15 It is only if one proceeds to analyse AxA and VxA into A[x| A] and V[x | A] 
respectively, on the basis of IL 2, p. 39 (an obvious step after the introduction of 

comprehensors) that small additions become necessary. 

16 Whether we write ‘[xy | y = fx] or ‘Lyx | y = fx] is of no consequence, so long as 

we are consistent. 
17 The meaning here of ‘/gx’ is: f applied to gx; cf. III 2, C (2), p. 53. 

18 In the sense of a generalization of III 2, C (2). 

19 Cf. (4) p. 95. 
20 Analogously, where appropriate, also f + g = [xy | fxy + gxy] etc. 

21 The exponent —! must not, of course, be confused with a place index. 

22 In a semantic sense only. Calculi for a predicate logic extended by comprehensor 

functors [x1 ... Xn | t] have up to now been little investigated. One might consider 

Vyy = t) > [x1 ... xn | t]x1 ... Xn = t (y not in t) as a possible axiom schema that 

would yield (4) as well as the schema indicated by (8). The premise would then be 

)® is an obvious generalization of z % in II 3, p. 60. 
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demonstrable for ‘well-behaved’ terms, and would follow for t-terms from the ‘con- 
dition of legitimacy’. 

23 A counterpart that may come to the reader’s mind and that holds for those u with 

the property [u | Vx(u =), is... > ft u = u. 
24 It seems likely that by introducing truth values in II 2, p. 33 f. we have created 

the wrong conditions for the task of systematically treating propositions and events 

as objects — and yet this task seems in many respects to be equally justified and even, 

in the light of a number of examples, advisable. Cf. also III 3 A, p. 56. 

25 Safeguards against the risk of confusion must, of course, be built into the language 

whenever we use the convention by which ®2, 03, ... are replaced by the same (or an 

invisible) predicate. 
26 Let A be a two-place predicate variable. 
27 The type index is often written underneath; we prefer, however, to write it above, 

as this seems more consistent with our earlier usage. 

28 In the case where truth-values are regarded as null-place attributes, it would be 

appropriate to write ‘()’ instead of ‘o’. 

29 We here use the ‘invisible predicates’ mentioned on p. 101 as well as their generali- 

zations. 

30 The reader has already encountered this idea in the method by which the formation 

of Artı ... tn is broken up into a stepwise addition of one term at a time; cf. II 2, 

C (5) and (7), p. 53. 

31 We have written the simplified form ‘(a6)’ instead of ‘(a | ß)’ because: 

1. there is little risk of confusion with (9); 

2. under the convention of writing values in the first position, functions of type 
(x8) have graphs of type («ß) in the sense of (9). 

32 Church’s symbol has here been altered in the sense of V 2, p. 94. 
33 That they need not be thus regarded is shown precisely by Church [2] who treats 
them as objects of type ((**)(**)), or in general: of type ((««)(«a)). 

34 Cf. the various ways discussed in V 1, p. 89 f., of expressing that one A! holds for 
exactly n things. 

35 This looks complicated but proves easier to read if we write ‘n’ for (o(0*)) to obtain 

D((nn)n). We have given this example merely to show that fairly abstruse types occur 
even in the elementary stages of mathematics. Mathematicians will have little difficulty 

in finding further, quite different examples, but they too will no doubt be glad that 
there is no need to be constantly thinking about them. 

108 



CHAPTER VI 

ANTINOMIES 

Under the catch-phrase ‘antinomies’ we conveniently group together 

a whole range of problems whose common feature is that they give 

rise to contradictory conclusions from plausible conceptions and prem- 

ises. Depending on our temperamental make-up we tend to explain 

the contradictions as arising from the initial conceptions, from their 

formulation in the premises, or from the logic employed in the de- 

duction. 

We give below a number of typical examples to show how the contra- 

dictory conclusions may be avoided by a more precise analysis of the 

initial conceptions and premises. In my opinion these antinomies can be 

resolved by this method, and any other analogously formulated antino- 

mies will be similarly resolvable. 

It seems to me that the antinomies are important because they have 

forced us to analyse our thought processes more clearly and to work 

out a more appropriate formulation of the premises, rather than because 

certain constructs which are important for and characteristic of modern 

mathematics have had to be rejected. At any rate, as will be shown 

below, certain conceptions have had to be corrected and, understand- 

ably, opinions diverge as to the extent to which these corrections should 

be generalized to guard against further mistakes. 

A distinction is usually made between so-called logical antinomies, 

where a contradiction is formally deduced from plausible assumptions 

formulated in a language L; and semantic antinomies, where assumptions 

about the relation holding between the language L and what is expressed 

in it give rise to paradoxical conclusions which are then shown to be 

formal contradictions in the metalanguage. However, I do not consider 

the distinction to be very important: surely, when we judge the assump- 

tions to be plausible in the case of the ‘logical’ antinomies, we also 

interpret the language in which the antinomy is formulated - unless we 

treat the whole matter as a game. 
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1. THE SET OF ALL THINGS WITH A GIVEN PROPERTY 

It has been shown in V 3, p. 100f. how attributes, i.e. value distributions of 

concepts, or their corresponding sets, i.e. the extensions of concepts, can 

be treated as things, viz as ‘objects of our intuition or of our thought’ 

(in the present context: as ‘objects of our thought’). Instead of dividing 

things (in the extended sense) into types, as outlined there, it is probably 

simpler to talk about them as ‘members’ of one domain, which we then 

use as the domain of objects, the universe of discourse, for the inter- 

pretation of a suitable language of predicate logic. 

Apart from the trivial null- and all-attributes, only identity is charac- 

terized as a ‘natural’ attribute in general predicate logic. We shall now, 

however, add a number of other attributes, and by introducing new 

constants as names for them we shall adapt the language of predicate 

logic to the new interpretation. Thus: 

(1) The one-place attribute that holds for exactly those things 

that are not sets, the basic objects, will be designated by ‘B’; 

(2) The two-place attribute that holds for a pair (x, y) if and 

only if x is an element (‘member’) of y, will be designated 

by ‘E’. (Thus ‘Exy’ stands for ‘x is an element of y’).1 

The domain of objects D in which this language can be interpreted will 

have to consist on the one hand of basic objects? and on the other, of 

all sets ‘that can be constructed’. Several definitions of sets are possible, 

depending on what we mean by the verb ‘construct’. Cantor’s definition 

was that sets are constituted by (literally: ‘By a set we understand every’) 

collection into a whole of definite, distinct objects of our intuition or of 

our thought.? Starting from this definition, Cantor worked out a large 

part of what is today known as naive set theory. The antinomies which 

it was later found to contain, made it clear that the concept of a set had 

to be used with greater caution. The following is intended as a contri- 

bution towards such clarification. 

According to Cantor’s definition there is a natural connexion between the 

properties that are meaningful for the things of a domain and the sets 

of the things that have these properties. A problem only arises with the 

assumption or requirement that all these sets themselves should belong 

to the domain of objects in the wider sense. Let us suppose that we have 

succeeded in finding such a domain D. Then D will include:4 
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(0) objects in the narrower sense, also called basic elements in 

this context, i.e. things of type * in the sense of V 3, p. 104; 

(1.1) as an object in D the ser b, of the basic elements; 

(1.2) every sub-set of b,, i.e. all objects of type (0x) in the sense of 

V 3, p. 104.5 

D now contains all objects of type (o*) in the sense of V 3, p. 104. But this 

is not all, of course. We must also let D include as objects: 

(2.1) the set b,, consisting of all objects described so far; 

(2.2) all sub-sets of bo. 

This procedure may be repeated at will. In the general case n, therefore, 

D will include 

(n.1) as object the set b, consisting of all sets previously constructed; 

(n.2) as objects all sub-sets of b,. 

All sets thus occurring as objects in D, may also be described in terms 

of properties A formulated for any object in D whatsoever.® 

Thus: 

(1.17) Ax(Exb, >Bx) describes b,; 

(1.2) Ax(Ext,,< Exb, A Ax) ‘describes’ the sub-sets t, , of b, with 

the aid of arbitrary attributes A [properly B(A)] over D: 

(2.1) Ax(Exb, »Exb, vx<b,), 

[where ac b stands as abbreviation for \y(Eya— Eyb)] expresses 

that b, consists of the elements and sub-sets of b,; 

(2.2') Ax(Ext,, <> Exb, a Ax) 

describes the sub-sets t,, of b, with the aid of the attributes 

B(A) over D. 

The general case is formulated analogously (n > 1): 

(n.1‘) Ax(Exb, »Exb,_, vx<b,-ı) 

(n.2')  Ax(Ext,, <> Exb, A Ax). 

For the sake of greater intelligibility we have here assumed that the 

attributes occurring on the right-hand side in the lines (..., 2’) are named, 

thus providing us with names (viz t,,) for the sets occurring on the left- 

hand side. If we dropped this restriction we should have to replace the 

descriptions (n.2’) by mere existence formulas, viz 

(n.2”) AAVzAx(Exz < Exb, A Ax). 

111 



VIl ANTINOMIES 

The conception that is given (temporary) expression in the above 

‘construction’ and in the formulas describing it, is that any collections 

whatsoever of objects of our intuition or of our thought may be thought 

of as a whole, or: one object, that is: as a set. According to this con- 

ception, however, one should also be able to ‘objectify’, ie. regard as 

forming a set, the totality of the sets introducible by the procedures so far 

described. This might require in addition a number of analogous proce- 

dures and all procedures, once accepted, may of course be applied in 

any order of sequence whatsoever. Whatever is thus introducible should 

belong to D. 

One is tempted to express this by a formula 

(a) AAVzAx(Exz > Ax) 

which, interpreted for D, says that: 

(a,) Every ‘property A over D defines a set z, and 

(a,) this z again belongs to D.’ 

However, this is clearly untenable. For a given D and a given inter- 

pretation of E, ‘[x | — Exx]’ describes a property A applicable to the 

objects in D. Substituting this specification, i.e. the property of a set x, 

of not being included among its own elements, in formula (a), we obtain 

(b) VzAx(Exz << — Exx). 

Now assuming a z such that for all x Exz > -— Exx, it follows that, sub- 

stituting z for x, 

(c) Ezz <> — Ezz, 

and this is a formula that is unsatisfiable in propositional logic, i.e. a 

contradiction.’ It is known as Russell’s antimony, which demonstrates 

that the conception expressed in (a) is not tenable. There can thus be no 

maximal domain of sets in an ‘intuitive’ sense, but at most an open field 

of possibilities. 

Such an open field, however, cannot be adequately described in the 

language of predicate logic, which must always refer to a constant, 

though arbitrarily selected, domain. 

If we wish to retain the language of predicate logic, we shall have to 

impose restrictions. This can be done 
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(&) in a purely pragmatic way, by imposing certain formal restrictions 

on the definition of the property A in (a) and therewith on the formula 

(d) VzAx(Exz > A(x)) 

in the hope that this will exclude all contradictions and still leave suffi- 

ciently many of the intuitively meaningful procedures of set construction, 

cf. Quine [1], Essay V, and [2]; Ackermann [1]; 

(B) by limitation to certain procedures of set construction, which’ are 

explicitly formulated as special cases of (d), this latter not being accepted 

as generally valid. 

From a formal point of view (ß) is similar to («), but since the former 

contains specifications of the accepted cases of (d), it has a certain 

constructive feature. 

It is usually stipulated that D contains at least the sets described by 

(n.1) and (7.2) (or introducible in accordance with (n.1) and (n.2)), 

B being often assumed to be empty.? Let us suppose temporarily that 

D likewise consists of only the sets described by (n.1) and (n.2). Then 

every property that is meaningful for the D-things also determines a set in 

the intuitive sense. Certain of these sets already occur in D as objects, 

but new sets are certainly added as well.10 Let D* be the domain that is 

formed out of D by the addition of these new sets. Let the interpretation 

of B remain as before and let the interpretation of E be correspondingly 

extended for the new elements of D*. 

Some formulas that are not satisfied by D now hold for D*, e.g.: 

(e) Vz(Eb,z A Axy(Exz A ySx — Eyz) 

A Axy(Exz a Av(Evy @ Evx v vex) > Eyz)), 

for by its construction the set of all things out of D satisfies precisely 

the involved condition on z, and is also the only one in D* to do so. On 

the other hand, there are formulas that hold for D but not for D*, e.g.: 

(f) AxVyExy. 

The ‘new’ sets of D* are not elements of things in D*. On the other hand, 

every thing in D is either an element of b, or a sub-set of some b,. 

These, however, are elements of b,, . 

The relation which is expressed here between the levels of D and D* 

is typical of ‘construction’ in set theory. Whenever a D has been estab- 
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lished as totality of the sets introducible under the procedures already 

admitted, we may stop there; and in most cases the domains of sets thus 

described are beyond the average person’s powers of imagination. How- 

ever, one may consider it desirable to include this totality and its parts 

as new sets in a domain D*, and to stop there for the time being.!! 

It then holds both ‘for D’ as well as ‘for D*’ that 

(g) AxNAVzAy(Eyz > Eyx a Ay) 

Further, the following variant of (a) holds, written here in an abbreviated 

form which we hope will be intelligible without strict definition: 

(h) AAVzAy(Eyz > Ay), (i.e. A defined over D, z being in D*). 

D D* D 

Not surprisingly a contradiction will result if the two levels D and D* 

are confused: 

On the axiomatic basis suggested above we thus have the choice: 

(A) To formulate all theorems for an indeterminate domain of 

sets to be subsequently fixed, though only closed under 

specified procedures. This gives us the advantage that 

ordinary predicate logic can be used; the disadvantage being 

that the admitted procedures must be formulated by axioms. 

(B) To formulate all theorems for an open concept of sets. This 

has the advantage that no more or less arbitrary limit need 

be imposed; the disadvantage being that predicate logic, 

which is based on the conception of a fixed (though in- 

determinate) domain of objects, has to be modified. This 

can be done by a number of different available methods, and 

it is shown in the process that the most important concepts 

relating to language are open. 

2. PROPOSITIONS THAT ASSERT THEIR OWN FALSEHOOD 

The problem with which we shall be concerned in this section was already 

familiar to the Greeks and may be formulated as follows: 

Someone (let us say: X) says: 

(1) ‘I am lying at this moment.’ 

Does X speak truly or falsely? 

114 



PROPOSITIONS THAT ASSERT OWN FALSEHOOD VI2 

Or, to take another example, at 8 p.m. on July 6th 1968 someone 

makes the following remark in the course of a speech: 

(2) “What I say at 8 p.m. on July 6th 1968, is false.’ 

Or take the following non-fictitious example (cf. Tarski [2], p. 271; 

[3], p. 158): 

(3) What is written in lines 6 and 7 on page 115 of this book, 

is false. 

In all three cases we are concerned with a linguistic structure having 

the form of a proposition and making a statement about itself!2 (viz 

that it is false). This is important — unlike the objection that examples 

(1) and (2) cannot be regarded as instances of straightforward linguistic 

utterances being, in fact, reports about a linguistic utterance. 

No difficulties seem to be raised by the notion of our talking in a 

language about this language, so long as we can distinguish clearly 

whether a statement is being made or whether something is being said 

about a statement. This means, however, that we must be able to name 

or describe propositions. For purposes of general discussion, we shall 

follow a convention established by Frege, whereby we use as name for a 

linguistic structure, this structure placed in inverted commas. Apart 

from this, we shall also use other names or descriptions, as e.g. in (1)-(3). 

Only this allows us to formulate a proposition that asserts something 

about itself, for under Frege’s convention a proposition about the propo- 

sition A must always contain at least the inverted commas in addition 

to A,13 i.e. must be longer than A. 

If we define ‘to lie’ as ‘to speak a falsehood’, then the concept false 

occurs formally in each of the examples (1)-(3). If it is possible to rep- 

resent this concept adequately in a language by means of a predicate 

‘is false’, then all propositions must hold that are formed from the schema 

(4) a is false if and only if it is not the case that A, by writing a 

proposition in place of ‘A’ and a name for this proposition in 

place of ‘a’, as in the following examples: 

(4.1) *3+2=5? is false if and only if it is not the case that 3+2=5, 

(4.2) 2-2=5? is false if and only if it is not the case that 2-2=5, 

and equally in cases where the name of the proposition is 

formed otherwise than under the Frege-convention. 

Thus on the right-hand side of the above equivalences an assertion is 

made about numbers; on the left, about propositions about numbers. 
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Here, then, we have a counterpart to the requirement in respect of an 

adequate concept of truth, formulated by Aristotle and developed in 

detail by A. Tarski [2]: 
(5) a is true if and only if A, 

must yield a valid proposition demonstrable against an adequate defi- 

nition, if ‘A’ is replaced by a proposition and ‘a’ by a description of this 

proposition. 

Now if ‘U’ is an abbreviation and ‘u’ a name!4 for proposition (3), 

then on the basis of the construction of ‘U’ the following holds: 

(6) u is false if and only if U; 

and equally, applying (4) and (5): 

(4.3) u is false if and only if not U, 

(5.1) u is true if and only if U. 

From (6) and (4.3) we now obtain (by virtue of the correspondence of 

the left-hand Sides): 
(7) U if and only if it is not the case that U; 

and from (6) and (5.1) (by virtue of the correspondence of the right-hand 

sides): 

(8) u is false if and only if u is true. 

We shall limit our discussion to (7), since the formal contradiction 

contained in (8) is less easily demonstrated. 

What, then, is the basis of the contradiction in (7)? On the assumption 

that the concept expressed by ‘is false’ has been meaningfully introduced, 

we have succeeded in formulating a proposition (viz the proposition on 

p. 115, lines 6, 7 of this book) that asserts its own falsehood. The 

concept ‘is false’ was regarded as a property of linguistic structures, 

defined by schema (4). However, the explanation of a new concept by 

means of a definition in the narrower sense, presupposes that the concepts 

used in the definition have been previously meaningfully introduced. 

This assumption is not met in the case of the application of the schema 

to proposition (3), as here the phrase ‘is false’, which has yet to be inter- 

preted, occurs on the right-hand side. Of course, it is possible to explain 

the application of a new concept in stages, so to speak, and thus to obtain 

a definition in the wider sense: the application of the concept in one case 

is explained in terms of already explained cases (although eventually 

we have to return to cases where the definition is in the narrower sense). 

Such definitions always require to be specially validated. The above 
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contradiction shows that definition (4) of ‘is false’ as well as definition 
(5) of ‘is true’ cannot be validated in this general form. The application 
of (4) to (3) results in a previously not explained case occurring on the 
right-hand side. 

To obtain a genuine step-by-step definition, which can be validated, we 
proceed as follows: we first define the property expressed by ‘is true’, 
resp. by ‘is false’, for a part of the language!5 where these phrases are not 
used, then for the part for which the use of ‘is true’ and ‘is false’ is 
meaningfully explained by this definition, and so on. This procedure may 

be repeated any number of times, so that eventually definitions of truth, 
resp. of falsehood, are obtained for every proposition previously admitted 
into the language and containing one of these phrases. 

However, by applying this procedure we do not, in fact, define two 

concepts (true, false) but two series of concepts, which may be designated 

more precisely by 

‘true’, ‘false ,”, ‘trues’, ‘false,’, ‘true,’, ‘false,’, .... 

Now (3) cannot be formulated at all in this way. 

There are comprehensive definitions of the form 

(9) A is true, if A is true,, where n is the smallest n for which 

‘A is true,’ is defined;1® 

(10) A is false, if A is false,, where n is the smallest n for which 

‘A is false,” is defined;1® 

but even such definitions do not enable us to extend the above procedure 

to cover the use of the phrases ‘is true’, ‘is false’ where no reference is 

made to stages, since the phrases ‘A is true, , ‘A is false,” are meaningful 

for propositions in which ‘is true,’ or ‘is false,’ occurs but not for propo- 

sitions containing ‘is true, or ‘is false,”. That is to say, even the concepts 

introduced by (9) and (10) only represent a segment. (The index ®, which 

we have employed in (9) and (10), is the customary set-theory symbol 

for the stage following the series 1, 2, 3, ...). The truth, resp. falsehood, 

of propositions containing ‘true,,’, or ‘false, may then be defined in the 

subsequent stage, being symbolised by ‘true, ,’ and ‘false, .,’. 

Of course, we normally use the words ‘true’ and ‘false’ correctly with- 

out the addition of indexes: we have explained the use of such indexes 

here in order to draw the reader’s attention to the segments involved in 

an exact definition of the open concepts ‘true’, ‘false’; and it must be 

borne in mind that these segments are involved in any sound definition 
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quite apart from the difficulties raised by the occurrence of the contra- 

diction in (7). 

On the other hand, if (4) and (5) are regarded not as definitions but as 

axioms for characterizing the concepts ‘true’ and ‘false’, then the contra- 

dition in (7) shows that there cannot be any concepts with these general 

properties. In the case of an axiomatic characterization of these concepts 

it is therefore just as necessary to make their openness explicit by the 

introduction of segments. 

3. THE SET OF THINGS THAT CAN BE NAMED IN A LANGUAGE 

The schema 

(1) ‘The set of things that can be named (in L)’ 

gives rise to antinomies, if we assume that the language L has certain 

possibilities of expression. For the sake of simplicity, let us allow the 

case where L is a somewhat artificially delimited part of a natural 

language (which, however, contains these possibilities of expression). 

Let L be the totality of names, resp. of descriptions, of numbers in the 

English language, consisting of not more than one hundred letters.1’ 

Then the set S of natural numbers that can be named in L is in any case 

finite. For if, for the sake of simplicity and definiteness, we count the 

punctuation marks: full stop, comma, semicolon, as well as blanks, 

as letters, then we have in all 30 ‘letters’. Now if we imagine short 

names as made up with blanks to the length 100, then we can form 

30100 = 30 -...- 30 sign sequences of length 100, of which only a part will 
N — 

100 

be meaningful and only a sub-part descriptive of natural numbers (0, 

1524, %). 

Since there are infinitely many natural numbers, there are numbers 

that cannot be named in L and among these, precisely one smallest one. 

However, THE SMALLEST NATURAL NUMBER THAT CANNOT 

BE NAMED WITH ONE HUNDRED LETTERS, can be named with 

far fewer than one hundred letters, viz with 73, as simply counting will 

confirm. Now the limit ONE HUNDRED, which we chose for simplicity, 

could be refined if desirable. 

For our present purposes, however, it suffices to state that: 

The smallest natural number that cannot be named with one hundred 
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letters, can be named with fewer than one hundred letters or, if we fill up 
with blank spaces, with one hundred letters. 

How can this be explained? Let us call this curious number X. Now 
the very possibility of this short-hand description is odd, for now we 
have named the number with one single letter. However, in order to 

understand this designation we need to have a good deal of prior in- 

formation, and this suggests that we investigate critically the concept of 

naming (more precisely, the relation: the word complex W names the 

thing z). 

If we try to obtain an exact definition, we find that initially this is 

possible only for such W where the concept of naming does not occur, 

and we shall assume (analogously to VI 2) that we have thus defined 

“W names, z’. On the basis of this definition we can define ‘W names, 2’, 

where such W are admitted in which ‘names,’ occurs. And so on. It 

seems a fair assumption to make that a sequence of the above naming 

conventions (e.g.) ‘names,’, ..., ‘names,’ will yield a new naming con- 

vention ‘names,’ where the same things have in general considerably 

shorter names than previously. Our antinomy thus arose through over- 

sight of the fact that the concept of naming is an open one. 

We obtain an interesting variant of this antinomy if we apply its under- 

lying schema to a language Lg of the theory of so-called ordinal numbers. 

These are abstracted from the counting of segments of such iterations 

where we can meaningfully speak of the segment following upon an 

infinite sequence of segments.18 This would be the case in our above 

example if ‘W names z’ were to be defined for such W where ‘names,’ 

is allowed to occur for all finite numerals n or even: where ‘names,’ with 

a variable n for finite numbers is used. Adopting the usual designation 

we should here write ‘W names, Z instead of ‘W names z’. Cf. also VI 1, 

VI 2. 

As is customary, we have designated the first segment ‘following’ 

1, 2, 3, ... with ‘@’. We then form @+1, @+2, +3, ... whereupon 

follows @ +. Next we have 2+ 0+1, ©+@+2, 0+0+3, ..., and then 

@+@-+ 0. If ‘on’ is introduced as abbreviation for @+...+@, the subse- 
N 

n 

quent series can be written more simply, viz: ®-3+1,@-°3+2,@:3+3,..., 

which leads to w- 4. Theseries m- 1, @: 2, m: 3, ... is followed by - @, also 
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written ‘@2’. The series © - 1, @? - 2, ®2 - 3, ... leads to @? . @, i.e. @°; and 

the series m1, 7, w°, ... leads to @®. 
Now let S be a system of designations which, as suggested by our 

earlier examples, is to contain names for ‘as many’ ordinal numbers ‘as 

possible’, and where the names may be of any finite length whatsoever. 

Then ‘the first ordinal number following the totality of ordinal numbers 

that can be finitely named in S’ will be named by a well-determined 

ordinal number y, if ‘S’ is replaced by a complete description of the 

system of designation indicated by ‘S’. (For example: let S contain 

precisely what can be formed from 1, @ by the ‘application’ of «+f, 

resp. additionally of « - B, resp. also of «P.) This gives us an unambiguous 

description of y with reference to the given system of designation S, but 

not in S. We reason analogously in the case of much more far-reaching 

systems of designation S; cf. in this connexion Bachmann [1] and, for 

a methodological refinement, Kleene [2]. 
On the other hand, the expression ‘the smallest ordinal number that 

cannot be finitely designated, resp. named’ would be a meaningful 

description of an ordinal number only if we could regard the totality of 

all finite systems of designation as one system of designation, which would 

then be the most comprehensive one. But precisely on this assumption we 

obtain a finite designation for the smallest ordinal number that cannot be 

finitely designated, and hence an antinomy. 

Thus there can be no system of designation which is the most com- 

prehensive, just as there can be no such domain of sets (VI 1) and no 

such definitions of truth and falsity (VI 2). 

NOTES 

1 Regarding y as an attribute we should say that y holds for x. 

2 By way of specification we can either say: ‘We all know what these are’ or, more 

cautiously: ‘They are chosen according to a purpose, but fundamentally the choice is 
arbitrary.’ 

3 Cf. Cantor [1]; translation taken from Fraenkel [1], p. 9. 

4 Our initial use of the assumption is a cautious one, so as to make the subsequent 
misuse stand out more clearly. 

5 It is thus assumed that for any set s whatsoever (i.e. in this context, bı) we can 

constitute or ‘think of’ each of its sub-sets. In the case of infinite s this is a very large 

assumption which is tenable, if at all, only if we do not equate ‘constituting’ with 

‘describing’ (by an individual definition). We have here avoided the term ‘construct’, 
since ‘constructible’ refers to a certain type of definability. 
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6 By means of circumscriptions such as B*(bn) = Bn, B*(A) = U we could, if we 
wished, avoid using a language whose correct interpretability has, after all, not yet 
been established. 

? Because under the conventions of predicate logic the quantifiers Vz and Ax must 

refer to the same domain of objects, i.e. in this case, D. 

8 It is sometimes claimed that this is no contradiction (which would have to be of the 

form p A — p) but represents instead a kind of oscillation between the truth values 
T and F, since (c) contains the two implications Ezz — — Ezz and — Ezz > Ezz. 

However, these will yield an immediate contradiction in the narrower sense via the 
propositional logic theorems (p — —7 p) > — p and (-; pp) — p. Instead of the 

latter, (— p > p) >—-7 p would be sufficient; this theorem is also valid in Intuitionist 
propositional logic, cf. IV 3, p. 79. 

9 Then bı is the empty set as element of D. 

10 Tn fact, ‘very many’, i.e. a number ‘greater’ than that of the elements of D. 

11 On the other hand, one may be interested in the sequence of these possible segments. 
The ordering of such levels is itself a subject-matter of set theory. We shall discuss this 

below in VI 3, p. 119 f., in terms of a somewhat simpler model. 

Additionally we may observe: A concept as given by a formula in general changes 

its course-of-value, hence its meaning if that formula is interpreted (as) referring to 

different levels. In simpler cases the course-of-values in the extended model can be 
a continuation of the course-of-value of the ‘shorter’ model. This observation suggests 

certain ‘identifications’: concept = formula = course-of-value (the latter as the avail- 

able part of something quite inexhaustible). But the hard fact that the continuability 
situation is restricted to fairly simple formulas should be a warning against the general 

constructivist identification of concepts and formulas. 

12 Jt might be objected that truth is not a property of linguistic structures but of their 

meanings. By transferring the problem to the linguistic level it can be more satis- 
factorily analysed; otherwise we are reduced to saying that (3) is meaningless. 

13 Thus if we had written: ‘must always contain at least “‘A’’’, this would have meant 

‘must always contain at least the letter A’. 

14 Strictly speaking, the use of ‘(3)’ as a name for the proposition under discussion 

is questionable, since such ‘formula counters’ are frequently regarded as abbreviations. 

15 Because of the indeterminateness of natural languages the procedure here outlined 

must be applied to a symbolic notation. 

16 And since an adequate definition of fruen+ı (resp. of falsen+1) comprises that of 

truen (resp. of falsen), we could write: where r is any n for which .... Theindex will 

be explained below. 
17 The choice of a limit in terms of numbers of words rather than letters might seem 

more obvious. However, as number words can easily be coalesced, the length of words 
would have to be restricted and this would complicate considerably our considerations 

below. 
18 Ordinal numbers are usually introduced within the framework of set-theory, where 

they first occurred (cf. for example Halmos [1]). A treatment of them as objects of a 

generalized arithmetic will be found e.g. in Bachmann [1]. Ordinal numbers are in a 

sense the prototype of an ‘open totality’. For every given (‘finished’) set S of ordinal 

numbers there is a smallest ordinal number which is greater than all elements of S. 
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CHAPTER VII 

LOGIC AND THE CRITIQUE OF REASON 

The great questions of the critique of reason are: “What can I know?’, 

‘What ought I to do?’, ‘What may I hope?’.! Only to the first of these can 

logic provide a direct? answer and one, furthermore, that bears primarily 

on the knowledge systematized in the so-called deductive sciences. On the 

other hand, largely on the basis of investigations by Gédel, Tarski and 

others, we are today much better informed on this topic than could have 

been thought possible at the time when these questions were first formu- 

lated. 

There exists a widespread misconception that what matters in mathe- 

matics, that prototype of all deductive sciences, is solely to have the right 

concepts and axioms, everything else — the working out of answers and 

decisions on problems through proof of relevant theorems — being only 

a matter of applying the appropriate rules of logic. It is held that mathe- 

maticians are guided solely by considerations of expediency or by aesthetic 

principles when deciding whether to tackle one problem rather than 

another; that they discover by trial and error which of the accepted rules 

to apply, and that at best, to help them with future problems, they 

develop a kind of ‘sixth sense’ — which, it is said, is precisely the quality 

that characterizes a good mathematician. 

This idea would not be so far off the mark if the set of theorems valid 

for each field — delimited by a domain of formulas — were in fact defined 

by means of axioms and the accepted rules of inference, i.e. were defined 

syntactically in the sense of IV 2, p. 70. In fact, however, validity is 

usually, and in traditional mathematics always, defined — or at any rate 

must be assumed as being defined - via an interpretation in a determinate 

domain of objects, or in a well-determined totality of domains, as the 

case may be; i.e. it is defined semantically in the sense of III 3, p. 62, 

and a calculus is nothing else but a tool for the discovery of theorems. 

In many cases there are calculi which yield precisely all the originally 

semantically defined theorems (cf. IV 3), and this is probably the reason 

why many theories are given by a purely syntactic definition. There is a 
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fairly obvious psychological motive here: in some vague sense a definition 

in terms of the tool used, seems more trustworthy. (Thus: ‘Round means 

whatever can be produced on a turning-lathe.’) 

The above-mentioned results obtained by Gödel and Tarski and in- 

vestigations based on them have, however, shown that there are problem 

complexes in mathematics — and therewith also in logic - that cannot be 

adequately treated by means of calculi. By a problem complex we here 

mean a domain of formulas L (e.g. in the form of III 2, C, p. 53 f.) 

and a semantic theorem or consequence definition for L (e.g. in the form 

of III 3, pp. 60, 61). 

1. SETS THAT CAN BE PRODUCED COMBINATORIALLY. 

A GENERAL CALCULUS CONCEPT 

If we disregard the fact that the expressions in the calculus definition in 

IV 2, p. 70 f., are interpretable, we are left with some rather curious 

rules for the production of sign strings. Now in order to obtain calculi 

that are as fruitful as possible, one will try to generalize the accepted 

form of the rules as far as is compatible with the minimum requirement, 

viz that the applicability of every basic rule must be verifiable in a finite 

number of steps. If we attempt to define ‘verifiable’ in this context by 

‘derivable in another calculus’, we are faced with an endless regress, 

unless we stipulate limiting conditions for this latter calculus, a procedure 

which, however, is difficult to validate. 

As our language for formulating rules, let us use the language Ly of 

predicate logic (cf. III 2, C, p. 52), or one of the extensions outlined in 

V, 1-3. Many more relations can be expressed in these languages than 

one will want to use for formulating rules, and it has been shown that 

all relations whose holding-true cases are describable by means of any 

one of the calculi? acceptable for this extended language, can already be 

expressed in L;. (It is, in fact, possible to avoid any explicit use of the 

concepts of identity (p. 51) and of finiteness (p. 103), intuitive as such use 

might be.) 

We shall consider such interpretations D of L, where the sign strings 

of the calculus C to be described belong to the domain of objects D, 

and where there occur as basic concepts: the combination (‘concatena- 

tion’) of sign strings, producibility in C (‘provability’), and from case to 
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case specific auxiliary concepts such as are required for the description 

of calculi. 

Thus let C be a calculus with axioms and rules described by a formula 

Ac out of Ly, where Ac comprises: 

(1) a description of operations with the sign strings of C, 

(2) a description of the axioms and rules of C. 

Such a calculus C itself will describe a generally infinite catalogue C, 

in the sense of II 2, p. 31 for a property within the set of sign strings, for 

instance, formulas; and thus the formula A. is also a ‘description’ of this 

catalogue C,. (The question arises whether a catalogue specified in any 

way whatsoever can be adequately described by a calculus.) 

A description of the composition of C yields the formula A; roughly 

thus: 

Let the basic signs (atoms) of C be given in a specific sequence (e.g. 

A, B, C, ...vor Ap, Ay, Az, ...). As series of names for these in the PC 

we then select the terms a, f'a, f'f*a, ... etc., formed with a specific 

object variable a and a specific function variable f!.4 We further select 

a two-place function variable f?, which is to express the concatenation 

of sign strings. In this way we are able to describe all compound sign 

strings of C, and we choose a systematically distinguished® term tz 

designating the sign string Z. If B is the predicate with which the ‘prov- 

ability’ of Z in C - via Bt, - is to be expressed, then the rules of C are 

formulated with it and with additional auxiliary predicates. Thus A. 

is now determined in principle. 

The producibility of Z in the calculus C can be expressed via the 

demonstrability of Ac > Btz in the FC, ice. 

(3) Fr(Ac > Btz) if and only if + <Z. 

Let us say that the set of Z with the property that |Z, is regularly 

defined by C, resp. by Ac. Since the Ly-formulas are here used to say - 

via an interpretation — something about the calculus C, we should really 

write the semantic concept ‘F,’ in place of ‘+7’. It is only by reason of 

the completeness of the FC that we can write ‘+ ,’, and it is only by making 

this transition that we ensure that (3) does not ‘cover too much’. (Think 

of F,., instead of Fr!) 

Thus (3) places ‘all thinkable’ complexities of the rules of C within a 

formula A¢ which is fixed for C, and from which they can be recovered by 

124 



SETS PRODUCED COMBINATORIALLY VIIl 

means of the rules of the FC. (In fact, as could be shown subsequently, 
only a very simple sub-section of the FC would be required.) It would 
thus seem to be convincingly demonstrated that in order to obtain a 
calculus that is to yield the most general combinatorially producible set, 
we need no more complicated rules than those of the FC. 

We now define: a set S of sign strings is said to be producible com- 

binatorially by means of rules, or regular®, if there is a formula A so 

that for any sign string Z whatsoever out of the given store of symbols 

it holds that 

(4) Z belongs to S if and only if FF(A > Bt,). 

These specifications are met, at any rate, by those sets S that are defined 

by a calculus C, i.e. that can be described by an A.. But this is all, since 

the remaining A (as can be demonstrated via (5)) do not yield anything 

new. 

Let us, for example, take the case where C is the FC itself. Admittedly, 

it would be a very laborious task to specify a formula A,. with the 

property,that for every sign sequence Z of the FC it holds that: 

(5) Fr(Arc > Btz) if and only if + ,Z. 

However, if we assume this to have been achieved’, then we have the 

not very surprising result that the set of the theorems of the FC is regular. 

We should, after all, only have verified that the axioms and rules for the 

FC can also be formulated in the FC. 

A. A set that cannot be produced combinatorially 

Of much greater interest is the question whether there is also a formula U 

with which the set of non-theorems® of the FC can be described as 

regular, viz in terms of the condition 

(6) Fr(U > Bt,) if and only ifnot FZ, 

for this would mean that we could give a positive characterization of the 

non-theorems in terms of the theorems. 

Let us suppose, then, that there is such a U. We would then be able to 

characterize non-theorems of the form (Z > Btz) in the same way, viz by a 

formula V together with 
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(7) +.(V > Btz) if and only if not +(Z > Btz). 

Such a formula V could be constructed out of the assumed formula U 

e.g. as follows: 

(8) V = U(B/C) a D(A”) a AyAz(Cy a A?yz > Bz).?® 

If we now substitute the formula V for Z in (7), it will be seen that (7) 

and therewith also (6) are impossible. Thus the set of non-theorems of the 

FC cannot be regularly defined (Church’s theorem [2]; the germ of a 

proof can be found already in Gédel [2]). 

B. On the generality of the approach 

By way of preparation for a discussion of the significance of this result, 

we shall présent a number of arguments to show that our definition of 

regularity as a clarification of the intuitive concept of a set specifiable 

by rules of production, has the necessary generality. It is, at any rate, 

conceivable that ‘more’ could be obtained by replacing the FC in our 

definition by as powerful a calculus as possible for one of the extensions 

of predicate logic discussed in V 3. In reply to this objection we offer first 

this ‘internal’ argument: the FC is adequate for the description in the 

sense of (3) of all known calculi. 

Over and above this, however, the following is an important ‘external’ 

argument: Several very different definitions have been proposed in an 

attempt to clarify the most general concept of producibility (or connected 

concepts), among them those of A. Church [1], K. Gödel [3], S. C. 

Kleene [1], A. A. Markov [1], A. Mostowski [1], E. L. Post [1], [2], 
R. M. Smullyan [1], A. M. Turing [1], (our definition (3) being an 

apparent generalization of Post [2] or Smullyan [1]). Many of these 

definitions are initially restricted to sets of natural numbers, and are 

then transferred with the aid of a constructive denumeration, so-called 

Gödelization, to domains of sign strings etc. Including this addition, 

where applicable, all definitions have so far shown themselves to be 

equivalent. This is a strong argument in support of the claim that each 

is right in its own way. 

For a detailed treatment of the questions touched on in this section, 

the reader is referred to Davis [1] and Hermes [1]. 
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2. DEGREES TO WHICH PROBLEM COMPLEXES ARE 

AMENABLE TO COMBINATORIAL TREATMENT 

By a problem complex we here mean a domain of formulas, i.e. a well 

defined language L (cf. our remarks at the beginning of this chapter). 

If the definition of the theorems of L is already in the form of a decision 

procedure, as in the case of the semantic theorem definition for proposi- 

tional logic in III 3, p. 57, or if it proves to be equivalent to such a defini- 

tion, then in a sense we can speak of having complete mastery over the 

problem complex indicated by L - since every relevant question can be 

answered with the aid of the decision procedure, that is, we can recognize 

not only every theorem in L but can also uncover every non-theorem. 

This ‘recognition’ can in all cases be given the form of an enumeration, 

or production, procedure (i.e. of a calculus in the sense of VII 1). It 

would not be difficult, though laborious, to express the construction of 

formulas of PC by means of an Ac:, resp. Ac- in the form of VII 1, 

(3), p. 124, with ‘+’, resp. ‘—’ indicating the cases of theorems, resp. 

non-theorems. 

If, on the other hand, two calculi C* and C™ are given for a domain of 

formulas L, which enumerate two mutually complementary sub-sets of 

L, S* and S~ (in other words, S* and S~ have no elements in common 

and together constitute L), then these calculi together provide a procedure 

for deciding membership of S* (or of S~): For every formula A of L 

the decision regarding membership of S* (and equally: of S~ ) is obtained 

by denumerating all proofs of C* and C’, alternating constantly be- 

tween C* and C’, until eventually A is ‘judged’. If one were to restrict 

oneself to C*, one would in general not know, so long as A was not 

caught by C*, whether one had finished or not; and analogously for 

C~. Thus C* and C together form a finite ‘calculized’ description of 

a catalogue C, in the sense of II 2, p. 32 in a domain L of formulas. The 

introduction of calculus C~ side by side with C* corresponds precisely 

to the transition discussed there from a catalogue C, to a catalogue C,. 

Let us say that S* is coregularly defined by C™ (similarly S~ by C*), 

since S* may be described as ‘the complement in L’ of S~, and since, via 

C~, S~ may be said to be regular in the sense of VII 1. In general a set 

S is to be called coregular if the complement of S (in relation to a basic 

set L) is regular. The sub-sets S defined by a decision procedure in a set L, 
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are thus both regular and coregular. Such sets shall therefore be called 

biregular. 

This analysis of a decision procedure into two enumeration procedures, 

i.e. the two calculi C* and C, is in general not practically utilizable; 

nevertheless it is of theoretical interest, since it enables us to describe 

partial control of a problem complex. 

Sets that are ‘properly’ (i.e. exclusively) regular or properly co-regular 

would appear to deserve equal interest in the sense of both being ‘half- 

controllable’. If, however, we are concerned with the set S of the theorems 

of a theory 0, then there is a considerable difference: after a theorem P 

has been derived by means of C*, and hence proved, we not only know 

something about the theorem as a formula, but we also know something 

about the things with which the theory @ deals. After deriving a non- 

theorem N through C” — hence: after uncovering it — we in general know 

only that there is no sense in attempting a further derivation of N through 

C*. We thus learn only indirectly about the things with which 0 deals, 

since the negation of a non-theorem in general does not produce a 

theorem. 

The conclusion reached in VII 1, A, p. 125 f., can thus be interpreted 

as follows: The set of theorems of the FC is properly regular, i.e. un- 

decidable. Nevertheless, we are able to control the ‘better half’, since 

we have at our disposal an enumeration procedure for the theorems. 

On the other hand, there are important problem complexes where the 

set of theorems is so defined that all non-theorems can be ‘uncovered’ 

by means of a systematic search for a counter-example — just as in the 

case of the PC — but where, diverging from the case of the PC, infinitely 

many trials would be required to determine theorems by means of the 

definition. Since the systematic search for counter-examples can be re- 

duced to the form of a calculus, such sets of theorems are coregular, and 

there are very natural problem complexes where they are properly co- 

regular. Thus no calculus acceptable for such sets of theorems can yield 

all theorems. 

Over and above this there are problem complexes whose set of theorems 

is neither regular nor coregular — and among them are most of those 

which are obtained by restricting modern mathematical enquiries to 

appropriate formula domains L. This is even possible if L is the language 

of predicate logic, since the enquiries often lead to a theorem concept 
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defined in terms of validity for a specific interpretation, or else for a 

narrower totality than was stipulated in the definition of the predicate- 

logic concept of validity. Such a problem complex cannot therefore be 

even half controlled. If, however, it is of such importance that even 

individual theorems are of interest, one will naturally try to find the 

most powerful calculi that are acceptable for the set of theorems. These 

calculi are then the only ‘tangible’ thing about the problem complex, 

and for this reason a problem complex is often identified with the set of 

theorems of its most powerful known calculus - particularly by researchers 

with constructivist leanings. 

This procedure is adequate so long as one’s aim is merely to demon- 

strate individual theorems, since for this purpose the best tool is the most 

powerful known calculus. On the other hand, the situation becomes more 

difficult if we attempt to extend to the general case the ‘constructive 

definition’ 

true (resp. valid) = demonstrable, 

which only happens to be adequate in the case of regular problem com- 

plexes. Such propositions A may then occur where neither A nor —A 

is ‘true’ (i.e. demonstrable). This is not surprising where calculi are 

concerned that are related to a totality of interpretations for the purpose 

of obtaining theorems; for A could be true for some of these inter- 

pretations and false for others. However, as will be shown by the exam- 

ples in VII 3, p. 134, there are also non-regular sets of theorems which are 

defined in terms of a single interpretation. If one tried to maintain the 

‘constructive definition’ for such cases, one would have to pay for the 

gain in precision by a loss in adequacy — and this is too high a price in 

my opinion. 

3. PROBLEM COMPLEXES NOT AMENABLE 

TO COMBINATORIAL TREATMENT 

The methods outlined above allow us to demonstrate that a problem 

complex is undecidable, that is, that there exists no common method for 

all problems of the ‘complex’ represented by a set of formulas. The same 

situation obtains if a problem complex is represented by one formula A 

with a variable a occurring in it, since this can represent, say, the set of 

sentences A(a/0), A(a/1), A(a/2), .... 
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The situation alters if we ask what is meant by saying that a specific 

individual problem, represented by a sentence A, is undecidable. If A 

belongs to a non-regular problem complex and if C is an admissible 

calculus for it, i.e. one that is necessarily incomplete, then A may be 

undecidable in C. This would be the case where A is a theorem of the 

problem complex not covered by C, so that A cannot be disproved either, 

because of the admissibility of C; in other words: A is not demonstrable. 

Under the conditions stated, there are thus for every C sentences un- 

decidable in C. 

Various attempts have been made to deal with this problem of the 

relativity of C. The suggested definition: 

‘undecidable’ = ‘undecidable in every admissible calculus’ 

is surely inadequate, since for every proposition A there is calculus C that 

is formally Adequate to decide A: taking either of the sentences ‘A’ or 

‘_,A’ as an additional axiom (under the usual rules), we always obtain 

one admissible calculus C. There is just no universal method that allows 

us to ‘discover’ such C. And such C could hardly count as a tool for 

determining the truth of A or of —A. This is by far less than we need; 

for ‘absolute undecidability’ ought to mean precisely that there can be 

no way to one particular case. And that is why there is no question here 

of referring to the most powerful known calculus. So far as I am aware, 

no one has yet succeeded in formulating an acceptable definition of the 

‘absolute undecidability’ of individual problems. 

Let us now look more closely at some typical undecidable problem 

complexes, i.e., using the terminology of VII 2, p. 128, non-biregular ones. 

A. Properly regular sets of theorems 

According to VII 1, p. 125 f., the set of theorems of predicate logic, or 

equivalently: of the FC, is properly regular, hence non-decidable. This, 

however, may be due to the very large expressive range of L; (cf. III 2, 

C, p. 52 f.), and attention thus becomes focussed on reasonably delimited 

sub-sets of Ly. On the one hand, the aim is to control as large sub-sets 

as possible through decision procedures.? On the other hand, there are 

difficulties, since already for quite small sub-sets S of Ly it is possible 

to show that the set of theorems thus limited to S remains properly 

regular. The proofs usually take the form of showing that the sub-set S 
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already contains, though often very unobtrusively, the complete expressive 
range of Lrc. 

Thus, for example, already the set of theorems of the form A,c>Bt 
(cf. VIL 1 (5), p. 125) is properly regular. The reason is that the whole 
complexity of the FC is here concentrated in the one formula Agc, whilst 

Bt can express the demonstrability of any formula whatsoever. 

Most of these proofs, however, have the form of one of the following 

examples:10 

Already the set of theorems of the form Va, ... Va,A, where A 

is constructed in terms of propositional logic out of atomic 

formulas without the use of =, but with function variables, 

is properly regular. 

Already the set of theorems of the form Va,Va,Va,AbA, 

where A is constructed in terms of propositional logic out of 

atomic formulas of Ly; with at most two-place predicate 

variables and without function variables, is properly regular, 

A further group of proofs concerns special mathematical theories 0, 

which can be formulated in Ly or L;. Let Ag be the formula formed by 

condensing the axioms of 6, and let B stand for any formula whatsoever 

with at most the same non-bound variables (the ‘basic concepts of 0’) 

as Ag, then the set of theorems of the form Ag>B is properly regular 

for many important theories. For example, let us make the following 

substitutions among the L,-variables: let n stand for ‘0’, e for ‘1’, f? for 

‘[xy | x+y]’, g? for ‘[xy | x - y]’, A” for ‘[xy | x<y]’.1 If we then for- 

mulate certain simple properties of the natural numbers (0, 1, 2, ...) and 

if these are condensed into a formula Ag, we obtain one of the simplest 

properly regular problem complexes.!? 

However, this problem complex is not ‘the theory of numbers’, since 

nothing need be said in Ag of the fact that the natural numbers consist 

of ‘nothing more’ than the series 0, 1, 2, ...18 

B. Properly coregular sets of theorems 

Whereas in the above examples the natural numbers were used merely as 

a background for an axiom system, properly coregular sets of theorems 

will be obtained if we define the theorem concept for specific formula 

domains L, in terms of validity ‘for the natural numbers’. The formula 

domains L; may be thought of as sub-domains of L,; but for the sake 
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of legibility we shall replace the variables n, e, f?, g?, A? (which here 

have a fixed interpretation as zero, one, addition, multiplication, smaller- 

than, i.e. as constants), by the customary ‘constants’: 0, 1, +, -, <. 

We shall extend a formula domain L,, which is obviously too narrow, 

step by step until the final extension results in a properly coregular set 

of theorems. That the sets of theorems occurring in the process are at 

any rate coregular, follows from the following property of all occurring 

formulas A: if all variables x,, ..., x;, on which depends the truth value 

of A, are replaced by numerals x,, ..., x; — formally ‘A(x,/x,, ..., x;/x;)’ 

or simply ‘A(x,, ..., %)’ — then the value of A(x,, ..., ¥;) can always be 

calculated in a finite number of steps.14 But then we could in principle 

discover every non-theorem by calculating A(&,, ..., ¥;) in turn for all 

X15 2. ¥, Where ¥,+...+x%,=0, +... +%;=1, ..., &+...+%=k. (In 

practice this procedure is, of course, out of the question in most cases.) 

Let L, consist of those equations t, =t, that can be formed from terms 

constructed exclusively out of 0, 1, +, +, X, x2, ..., and parentheses 

(really not ofinweyf7seg7, xyes, a): 

A well-known theorem formulable in L, is 

(1) X1° (Xp + X3) =X ° Xp +X ° Xz. 

An example of a non-theorem is: 

(2) Xy + X_°X3 = (% + X2)° (X, + X35), 

as is demonstrated by substituting x,/1, x2/1, x3/0. 

Elementary algebra provides an admissible calculus for the set of 

theorems on the natural numbers, formulable in L,. This set is thus bi- 

regular, and most of us learn to deal with it in the middle forms of our 

secondary school. 

Let L, consist of all formulas of the form A>B, where A and B are 

L,-formulas. Although the value of L,-formulas can be calculated for 

given values of the variables just as easily as the value of L,-formulas — 

all we need to use additionally is the table for > (II 2, p. 37) - until 1969 

we had no complete calculus for the set of L,-theorems nor a proof that 

this set is properly coregular. But see footnote 21. 

Let L, consist of all formulas that can be formed from L,-formulas by 

any propositional logic combination whatsoever. The problems formul- 
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able in L; are, of course, generalizations of L,-problems; and, as can 

be demonstrated, they are inessential generalizations. For every L;- 

problem we can fairly easily find a finite set of L,-problems, whose 

solution would also solve the L3-problem in question. 

Let L, again be a generalization of L;: and let conjunctions and dis- 

junctions of the form A(x/0) A A(x/1) A... A A(x/t) resp. A(x/0) v A(x/1) 

Vv... VA(x/t) be additionally admitted, the term t in most cases con- 

taining variables; i.e. we are concerned with conjunctions and” dis- 

junctions with variable numbers of components. We could write instead 

in ‘closed’ form (i.e. without the reiteration dots) 

IN) resp. NL AR), 
x<tti x<t+1 

thus generalizing propositional logic —junctions; or we could write 

Ax(x<t+1—>A(x)) resp. Vx(x <t + 1A A(x)),1 

which formulas are rather particular examples of the expressive possibili- 

ties of predicate logic. It will be seen from the above motivation that the 

bound variable x must not occur in t;16 although, of course, variables y 

occurring in t may be bound by ‘restricted quantifiers’ Ay(y<t,—...) or 

Vy(y<t, A...) placed further forward, as in the examples:!? 

(3) Vx(x< a+ 1aVyy<xt+1laa=x-x+y-y)) 

Bie YONA NOP (Om ar) 
x<a+1 ysxti zg<yti u<z+1 

As will be easily verified by trial and error, (3) is not a theorem of Ly 

(a counter-example is afforded by substituting ‘3’ for a). On the other 

hand, (4) is a theorem of number theory 18 - a fact, however, that cannot 

be verified by trial and error. It cannot be verified directly, since this 

would require an infinite number of trials; nor can it be done in the wider 

sense in which we might say that by systematically listing all correct 

proofs for one suitable calculus, every theorem of number theory could 

be found, for 

(5) the set of theorems on the natural numbers, formulable in L, 

is properly coregular. 

The proof, of which we cannot give details here, rests on the possibility 

of expressing the non-demonstrability of any calculus whatsoever in terms 

of the validity of suitable L,-formulas. 
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It is only after we have successfully formulated a proof that we know 

that a calculus - insofar as it is a systematization of specific methods of 

proof — is adequate for the solution of a problem posed by a formula, 

e.g. (4). 

C. Sets of theorems that are neither regular nor coregular 

Sets of theorems of this kind are obtained by means of certain straight- 

forward extensions of the languages with which we have so far concerned 

ourselves. The point of view of predicate logic suggests extending L; 

not into L, but rather into a language L;, by admitting non-restricted 

quantifiers on natural numbers. Since every L,-formula A may be equiv- 

alently19 replaced by an L,-sentence (viz by Ax, ... Ax,A, if x1, ..., X, are 

precisely the variables still free in A), L, lacks the property that charac- 

terizes2° L,-L,, viz that the value of sentences is determinable in a finite 

number of steps. Moreover it is evident that: 

(6) The set of L,-theorems is not regular. 

For otherwise the set of L,-theorems of the form Ax, ... Ax,A, where A 

is a theorem of L,, and therewith the set of L,-theorems would be regular 

and also biregular in contradiction to (5). 

(7) The set of L,-theorems is not coregular. 

For otherwise the set of L,-theorems of the form —Ax; ... Ax,A resp. 

Vx, ... Vx„—A, where A is a non-theorem of L,, and therewith also the 

set of L,-non-theorems would be coregular, and hence biregular in 

contradiction to (5). 

Properties whose applicability to one number essentially involves the 

whole number series, can be formulated in L;. For example, the property 

of being the number of a formula which is undemonstrable in C, can be 

expressed for every calculus C through a formula in L, — and not merely 

in metalogic, as would be the case if it were expressed via the validity of 

a formula of L,. 

D. Sets of theorems of logic 

The extensions of predicate logic itself, as explained and outlined in V 3, 

yield analogous results. The decisive step is the introduction of ‘all’ and 

‘there is (are)’ for predicate variables, i.e. the addition of AA‘ and VA’ 

to the predicate logic symbolism; in other words the transition to L2 

in the sense of V 3, p. 101. The theorems formulated below for L2 will 
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also hold for all extensions of predicate logic that have at least the 

expressive range of L?. 

Since already the set of theorems of logic formulable in L, is not co- 

regular, the same holds for all extensions of Ly with analogously extended 

syntactic or semantic theorem definitions. The following holds for L} 

with a ‘normal’ semantic theorem definition (V 3, p. 101); 

(8) The set of theorems of logic formulable in L} is not regular. 

The demonstration of (8) is based on the possibility of using L2- 

theorems to describe L,-non-theorems, whose set is properly coregular, 

as shown in VII 1, p. 125 f. For the fact that such a L,-formula A is a 

non-theorem, can be expressed via the general validity of a L2-formula 

N(A) formed from A. If U is a L2-sentence that asserts that there are 

infinitely many objects, and if v,, ..., v, are all the variables occurring 

unbound in A, we can write: 

(9) N(A) = pV ER Av, ... AvyA. 

Here we make use of the fact that for L,-formulas validity in infinite 

domains coincides with general validity. (The general validity of the 

simpler formula — Av, ... Av,A would express that every domain of 

objects provides a counterexample to A.) 

There are so many L2-sentences U, that express the infinity of the 

domain of objects, that already the set of all propositions of the form 

U, + U, is neither regular nor coregular. The same holds for the set of 

propositions of the form — U, > — Uj. This transformation is indeed 

fairly simple; the result (Mostowski 1938), which may be formulated as 

follows, is all the more surprising: 

In no calculus can all possible definitions of finiteness be 

demonstrated as equivalent; 

in other words: 
No codifiable system of deductive possibilities exhausts the 

meaning of the intuitive concept of finiteness. 

NOTES 

1 Kant, Critique of Pure Reason, Transcendental Doctrine of Method, p. 635 (A 805, 

B 833). Transl. by N. Kemp Smith, London 1929. A = Ist German edition, B = 2nd. 

2 It can of course, provide an indirect answer to the other questions, too; e.g. I may 

not hope that at a specific time and in a specific place it will rain and not rain. Similarly 

in more important cases. 
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3 This statement could be challenged, since it is necessarily based on our experience 

of tested rather than thinkable calculi. We assume, however, that any extension 

beyond the possibilities of FC would have shown itself within the tested calculi related 
to the languages outlined in V. 

4 If C only has a finite number (e.g. n) of atoms, then we can simply use the object 

variables ai ..., dn as their names. 

5 Thus if e.g. A, B, C are the atoms of C, and if a, b, c are the selected names in FC, 

then both f2af2be and f?f? abc are names for the sign string ‘ABC’. One is inclined 

to distinguish the simpler second form here, and in this case f2f2f2abbc, for example, 
would be the distinguished name for ‘ABBC’, i.e. tazzc. 

6 The standard term for this - referring to a different but equivalent definition — is 

‘recursively enumerable’ (r.e.). Still other definitions are referred to by ‘canonical’ 
resp. ‘formally representable’ (f.r.): see Smullyan [1]. 

7 Cf. the analogous definition in Scholz-Hasenjaeger [1], § 235. 

8 So far as the basic idea of the demonstration is concerned, it is immaterial whether 

we take these to be the non-theorems among the signstrings or among the formulas 

of the FC. In the case of a detailed proof this question would, of course, have to be 

settled. 

8a That is, B is replaced throughout U by a ‘new’ C, and terms are then added that 

allow the transition from C to B. D (4?) stands for the (somewhat complex) definition 

of an auxiliary concept 42, which may be said to describe y as of the form (z > Btz). 

9 A report on the present state of these investigations will be found in Ackermann [2]. 
10 Information about the present state of these enquiries will be found in Suränyi [1]. 

11 The comprehensors introduced formally in V 2, pp. 94 and 97, are here used to 
suggest the intended interpretations. 

12 This and many other results obtained in connexion with the form described in this 

section, are contained in Tarski-Mostowski-Robinson [1]. 

13 As Th. Skolem [1] has shown, this fact cannot be expressed at all by means of 
axioms formulated in Lz. 

14 This is by no means self-evident: although only a finite number of words is required 

to define B*(AxA), its calculation would require the infinitely many values B*(A(0)), 

B*(A(1)), B*(A)), .... 
15 We have written ‘x < t + 1’ to adapt the closed forms to our above formulations. 

The general form with ‘x < t’ would not result in properly increased expressiveness. 
16 Ax(x <x-+1-— A(x)) surely does not say the same as A(x/0) A A(x/1) A... 

A A(x/x); and analogously in the case of more complex terms. 

17 Where, for the sake of example, we shall use both the notations introduced above. 

18 Lagrange’s theorem: Every natural number is the sum of four squares (exactly 

four if zero is admitted, otherwise at most four). The formulas express in addition that 

the squares are to be arranged in (weakly) decreasing order. 

19 In the sense of: F A iff EAxA, but in general not: F A«> AxA. 
20 At least: Li—La are typical instances; moreover, each extension of Li or... or La 

obtained by adjoining constants for computable functions and/or decidable attributes 
can be translated into, hence be understood as a part of La. 

21 (Added in proof.) This instructive escalation has recently (1969, publ. 1970) been 

cut short by a result of Matiyasevich: With much harder efforts, La can even be trans- 

lated into that sublanguage of La, where B is a contradiction like 0 £ 0 or 0 = 1. 

136 



CHAPTER VIII 

TOWARDS THE LOGIC OF PROBABILITY 

The theory of probability has a curious dual position: on the one hand, 
the validity of probability judgments forms a part of the subject matter 
of logic; on the other hand, its applications, for example, to games of 
chance, to mass phenomena and in particular in modern physics, often 
produce such complex combinations of the basic operations that a large 
part of the theory of probability consists in solutions to the resultant 

counting problems. The present introductory text cannot hope to deal 

with the mathematical techniques involved, techniques which in some 

cases yield merely approximate descriptions of the underlying conditions 

by means of an ‘escape into infinity’. We shall, on the contrary, restrict 

ourselves to problems concerning the modes of validity of propositions, 

although occasionally we shall refer to results by way of example but 

without giving demonstrations. For the requisite mathematics the reader 

is referred to Jeffreys [1]. 

1. THE THEORY OF PROBABILITY AS A GENERALIZED SEMANTIC 

THEORY. A MEASURE OF POSSIBLE KNOWLEDGE 

The two-valued semantic theory outlined in III 3 A, p. 56; C, p. 59; can 

readily be transferred schematically to arbitrary domains of ‘values’ for 

which counterparts to the truth functions are introduced, by means of 

which the proposition-forming expressions (cf. II 2, p. 36) are interpreted. 

Specific “designated values’ (one or more) will then correspond to the 

designated truth value T. The formal theory of such ‘many-valued logics’ 

has been considerably developed.’ On the other hand, no interpretation 

of the values admitted in such logics as ‘values representing validity’ has 

been able to carry general conviction. Nor do ‘mixed truth values’ (in 

symbols e.g.: x? - T+y? - F, with x?+y?=1), as values of generalized 
attributes, appear to be suitable for describing imprecise concepts. Jan 

Lukasiewicz had earlier attempted to introduce one additional truth 

value P (‘possible’) between T and F; but although this has produced an 
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interesting calculus, it is not one that sufficiently corresponds to the 

‘ordinary usage’ of ‘possible’. On the other hand, the outlook is more 

promising if we start from the comparative use of ‘possible’. We can then 

introduce a whole scale of possibilities which may be described quali- 

tatively, if imperfectly, e.g. as follows: certain, almost certain, probable, 

possible, improbable, almost impossible, impossible. The linearly ordered 

‘truth’-values of many-valued logic (see above) or the more complex 

‘truth’-table structures of modal logic? are intended as formal counter- 

parts (i.e.: as clarifications) of these or such degrees. But I think the 

correspondence of the related calculi to the intuitive use of those concepts 

is not quite convincing (see Rosser-Turquette [1], pp. 3-8). On the 

other hand, a full scale of degrees of certainty (the appropriate calculus 

being some calculus of probability rather than syntactic many-valued 

or modal logic) is available from the so-called urn schema, as it yields a 

kind of ‘standard measure’ or ‘weighting norm’ for such degrees of 

possibility or propensities.? 

A measure of the certainty of drawing a white ball at one random draw 

out of an urn containing black and white balls, which in all other respects 

are indistinguishable for practical purposes, is given by the ratio of the 

number w of white balls to the number 5b of black ones; or better:5 

of w to w+b. 

The fact that a degree of the certainty of their occurrence may be 

assigned as ‘validity value’ to specific propositions, viz propositions 

about the occurrence of possible events, suggests that such degrees of 

certainty be correlated to arbitrary formulas as validity values by means 

of generalized evaluations. The origin of these validity values will in- 

dicate which of the laws previously formulated (in III 3, p. 57) for 

evaluations, still hold. It goes without saying that, as in the case of {T, F} 

assignments, we should not expect pure logic to determine the probability 

assignment ‘valid’ according to the state of affairs (described by a formula 

or by natural-language formulations). 

If these probability assignments — which, in conformity with accepted 

usage in probability theory, we shall simply call distributions — are to be 

suitable for appropriately describing operations with degrees of certainty 

(possibly not restricted to propensities), then the laws formulated for 

them must at any rate accord with what we have learned from the example 

of the urns. For example, if A, and A, are propositions about urn-type 
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experiments using different urns, i.e. independent experiments, but with 

w: (w+s)=1/2 for each, then the relevant part of the distribution YB is 

YWA,) = WA, AA,) = W(A,) = W(A,AA,) = 1/2, 
but YB(A,AA,) = 1/4, 

for the case where AAB describes simultaneous experiments involving 

both urns. That is, Y(A A B) cannot be determined by W(A) and W(B) 

(cf. on the other hand, III 3, p. 57). 

The ascription here of probabilities to formulas rather than to the 

events § (strictly: the types of events) they describe, requires to be justified. 

At any rate, formulas describing the same event, must be given the same 

value. This applies to ‘logically equivalent’ formulas and possibly to 

formulas equivalent under premises describing factual evidence. We 

suggest that the logic introduced in III 2, C and III 3, C be presupposed’; 

in the simplest cases, propositional logic (III 2, A and III 3, A) will be 

found sufficient. 

A. Distributions 

The following axioms V1-V4 are easily substantiated for formulas A, 

describing events with ‘natural’ propensities YB(A). We can, however, 

only give a partial answer here to the much more far-reaching question 

whether all probability assignments having the properties expressed by 

V1-V4, should be accepted as valid descriptions of degrees of certainty. 

(The outline of a more detailed analysis will be found in VII 1, B, p. 145.) 

Basing ourselves on Kolmogorov [1], but omitting the (essential) part 

referring to infinite sums, we formulate: 

Vl. QB(A)=0 
V2. ‘If FA, then W(A) = 1 
V3. If EAB, then W(A) < YB) 
V4. If (AaB), then W(AvB) = W(A) + WB). 

While V1 and V2 express a standardization of the scale of degrees of 

certainty; V3 expresses i.a. (see V8 below) that equivalent formulas also 

get equal certainty values. V4 however, describes a property of degrees 

of certainty that can easily be transferred from the urn example to 

arbitrary propensities, but not as obviously to degrees of certainty not 

based on propensities.® The question arises, what properties degrees of 
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certainty (as abstract entities in their own right) must have for us to be 

able to ‘measure’ them in terms of numbers - like any other physical 

objects or states. (This would make the subsequent choice of the scale 

expressed in V1 and V2 merely a matter of convention.) It seems meaning- 

ful to assume: 

(1) A linear order? with property V3 should be available for the 

degrees of certainty. 

(2) If F— (A,AB,), W(A,) S W(A,), WiB,) < WB), 
then also MA, vB,)< W(A, vB,); 

i.e., if both components in A, v B, are replaced by at least equally prob- 

able ones, we obtain an at least equally probable proposition, provided 

that the substituted formulas A,, B, logically exclude each other.!0 It 

follows from (2) that on the assumption that F—(A”B), the value 

YB(A v B) is uniquely determined by W(A) and WB), let us say as 

@(YB(A), Y8(B)). There then follow from the logical properties of v 

those properties of ®, that allow ®(g, g,) (for abstract degrees of cer- 

tainty g,, g2) to be replaced precisely by x+y (for numbers). 

Further properties of the distributions DW may now be deduced as 

theorems from axioms V1-V4. The following theorems have been selected 

so as to bring out the role of distributions as generalized evaluations ®* 

(III 3 A). On the basis of V1-V4 it holds that: 

NE (from VI, V4) 
v6. W(AvB) = M(A) + WB) — WAAB) 

(from YB(A vB) = WA) + YW AaB), 

DB) = WA AB) + Wi AnB)) 

V7. W(AvB) < WA) + WB) (V6, V1) 
V8. «If FA<B, then W(A) = Y(B) (V3) 
V9. - YB(A) < W(AvB) (V3) 
V10.  QB(AAB) < WA) (V3) 
Vil.  B(AAB) = WA) + WB) - 1 
Vioe tt CAA > C 

then W(A) + W(B) — 1 < WC) (V3 and V11) 

For the case, assumed here for the sake of simplicity, that the ‘world’ 

can be described by a finite number of ‘independent’ propositions 12 

Aj, ..., An (e.g. by a catalogue C, in the sense of II 2, p. 32) every complete 

140 



THE THEORY OF PROBABILITY VIII 1 

description of a state of this world can be rendered in terms of a con- 

junction of the form 

(S): [7] A,A [5] 424...A[5] A, 

where for every A the bracketed ‘—,’ may either stand or not. For n 

propositions A; there are thus 2 - ... - 2=2" propositions of form (S). 

A state s may also be given by that particular {T, F} assignment %,-of 

the ‘variables’ A,, ..., A, (in the sense of III 3, p. 57) which satisfies the 

formula (S). We are here using the word ‘independent’ initially in the 

weaker sense in which every state S is possible, i.e., every ®, is admitted. 

Different conjunctions of the form (S) exclude each other, and every 

formula B constructed within propositional logic out of A}, ..., A, is 

equivalent to a disjunction C constructed from specific formulas (S). 

Thus by repeated applications of V4 we obtain: 

V13. Me) = BC) = 
+ Bo] Aı Al] 421... A[-] A,) + ---; 

where ‘on the right-hand side’ a summand is yielded by precisely those 

formulas (S) from which B follows logically. Every distribution is thus! 

completely determined by the values for the ‘state descriptions’ (Carnap 

[1]). In other words: the distribution of ‘weights’ gq (whose sum is 1) 

on the 2” possible assignments ®, determines W(B) as the sum of the 

99 for all assignments ¥ that satisfy B. 

Since an assignment gives a complete description of the ‘world’, so 

that the ‘correct’ assignment ® corresponds to complete knowledge, a 

distribution may be understood as an expression of incomplete knowledge 

of the ‘world’: 

| has the probability g,, ..., Wj, has the probability g.n. 

On the other hand, a formula B, which is equivalent to a disjunction C 

(with at least two components) formed out of state descriptions, also 

expresses incomplete knowledge. 

At first sight these two kinds of incomplete knowledge appear to be 

incomparable; for in general B does not determine a YB (i.e., a sequence 

915 «++5 Jan), and YB does not determine a B. But if, on the other hand, 

we regard sets14 of distributions as expressions of possible knowledge, 
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then the two can be reconciled. In this case YB is the set {YB} out of 
one distribution, whilst B comprises the set of all distributions WB with 

M(B)=1. (In other words: the states that are incompatible with B are 

weighted as 0, but otherwise weightings are left open.) 

The distinguished distributions Yq = W,,, with 

Wg(B) = 1 if and only if B*(B) = T, 
Wn (B) = 0 if and only if B*(B) = F, 

correspond to the value assignments ® (resp. to the evaluations ¥*) 

discussed earlier in this section, and it therefore seems justifiable to 

regard distributions as generalized truth-value assignments. 

Conversely, one might wish to extend the object language by 

introducing ‘distribution descriptions’ in a sense suggested by the 

following: 

Let A, B be descriptions of different states (in the sense of p. 141) and 

let C, D be descriptions of distributions W., YBp, with e.g. 

M(A) = 0.64, Wc(B) = 0.36; 
My(A) = 0.36, Wo(B) = 0.64. 

Since YB-(A v B)=YB,(A v B)=1, i.e., since Av B also holds in the situ- 

ation described by C (resp. by D), it seems fairly natural to extend the 

concept of consequence to the extent that for propositions like C, D 

it holds that 

CEAVB, DFAvB, 

and, additionally to use disjunctions like Cv D in such a way that we 

should also have 

CvDEFAvB 

(situations that are subsumed by CvD - in the sense in which C is 

subsumed by AvB - are also subsumed by AvB, if we already know 

what C, D, Cv D are). 

In a discussion of questions such as whether it is always the case that 

F Cc, oC, for We, — We, 

and whether (in the example) AvB F Cv D also holds, i.e., a fortiori: 
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AECvD, BECvD, 

it would turn out that not all laws of two-valued logic can be retained for 

a logic extended to cover propositions like C, D, Cv D. For example, the 

so-called distributive law, the essential meaning of which may be expressed 

in 

Ar(BvC) F (AAB)v (AAC), 

would have to be abandoned. 

The fact that C F Av B, resp. D F Av B, could tentatively be expressed, 

for example, by the following ‘composition’ of MW. resp. Wp out of 

W,, Ws: 

We = 0.64 Wa cia 0.36 Ws; 

MW) = 0.36 W, + 0.64 We. 

But this, by way of simple algebra, would uniquely determine the corre- 

sponding composition, (e.g.): 

W, = 2.2857 We — 1.2858 Wp, 

and since this can hardly be interpreted as a mixture of possibilities, it 

is not in accordance with ‘A F Cv D’, which should remain acceptable 

in this context. 

For comparison with the following we mention the correspondingly 

suggested definitions of C, D: 

C = 0.64 A + 0.36B, D = 0.36 A + 0.64 B, 

which are subject to the same objections. 

Anyway, any attempt to treat linear combinations of states should 

harmonize with the data of modern physics — which suggest an ‘ontology 

of states’. A somewhat simplified ontology of this kind is expressed in the 

following definition. If S,, ..., S$, (k=2") are (resp. describe) the states 

(S) in the sense of p. 141, then the ‘proposition’ 

Y = x,S8, +... + x,5,, with? x7+..4+2x2=1 

shall describe the distribution Wy with15 Wy(S,)=x7, (i=1, ..., k), so 

that (in terms of our example) 

C,=08A+0.6B, D=06A+0.8B 

but equally e.g. 
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C,=0.8A—0.6B, Das above. 

That on this definition we also have A F C, vD and B F C, vD, follows 

from the conversions 

A= 0.8 C, + 0.6D, B= — 0.6C, + 0.8 D, 

which indicate that C,, D and A, B have ‘equal claims’. Whether the 

converses for C,, D: 

A = 2.8571 C, — 2.1429D, B= —2.1429C, + 2.8571 D, 

will similarly yield A — C, vD, B F C, vD is, however, a question that 

cannot be answered without further analysis.16 

The ‘equality of claim’ mentioned above suggests that all ‘propositions’ 

Y be regarded as state descriptions. This symmetry and the fact that 

different states (in our example: C,, C,) belong to the same distribution 

in respect of previously given states S,, ..., S, (in our example: A, B), 

harmonizes so well with the data of quantum physics (data sometimes 

designated as paradoxical) that it may perhaps be desirable to base the 

extension of propositional logic outlined in this section on a footing as 

independent as possible of quantum physics. It seems feasible to suggest 

that a propositional logic expanded by means of distribution descriptions, 

will provide a framework within which the new data (of quantum physics) 

may be accommodated.17 

It is questionable whether it is possible to establish a connexion between 

the DW, which we have here been considering, and the conditioned 

distributions DW, (VII 2, p. 149): from one point of view the YB, are 

more general, presupposing as they do an extended logic;!® from a 

different point of view the YB, are more general, because in them B is 

not restricted to state descriptions. 

Without such a connexion, however, the above analysis does nothing 

to facilitate the important practical task of ‘judging’, on the basis of 

knowledge K, a proposition H not fully determined by K (i.e., neither 

K F Hnor K FH, in terms of a non-expanded logic) by the allocation 

of a YB(H), - or, at any rate, an estimated Y8(H). For, with the exception 

of the excluded limiting cases, all values for Y3(H) are compatible with 

MK)=1. 
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The indication seems to be that we should try to express partial or 

complete ignorance not, after all, in terms of a set of distributions but 

through one suitably determined distribution. In the ideal case more and 

more instructive distributions would be obtained as a result of this 

initial knowledge being corrected by ‘experience’.19 

B. A Measure of Possible Knowledge 

We conclude this section by discussing an attempt to characterize one 

initial or a priori distribution as an expression of minimal knowledge. 

This attempt is based on the following assumptions: 

(1) The specific distributions YB, contain maximal information about 

a ‘world’ describable by ®. 

(2) On the whole we find out more, if we learn which possibility out of 

a larger set of possibilities is the correct one. 

This, however, needs to be qualified in several respects; among other 

things, the following must be made clear: 

(3) We learn more, if the less probable of two possibilities proves to be 

the case. 

(4) In the case of m - n ‘equipossibilities’ (which may be imagined as 

arranged in a rectangle consisting of m rows and n columns) the in- 

formation consists of the information about the correct row and the 

information about the correct column. 

A measure of information for IB, which — abstracting from the content 

— measures only what we learn ‘more’ in the sense of (2) and (3), and 

which allows us in the case of (4) to add the measure for the rows to that 

of the columns, is given by the following definition of Shannon’s: 

(2) UM) = —(g; 108291 +... + 9x 10829), 

where gj, ..., 9, are the weightings correlated by W to the possible k 

states resp. assignments. (*) comprises: 

(a) If one g;=1 (i.e., if all others = 0), then IW)=0. 

(b) -G log, 4 + 4° log, 4) = — log, 4 = log, 2 = 1. 

That is, if Y(A)=Y(—A) =3, then we obtain the unit of information 

when we learn ‘the truth’ about A. This unit is known as a bit (an abbrevi- 

ation of binary digit). 
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1 1 1 1 1 (c) = (soe a + ~ +5 lon 5) = Tah er 

log, je =f. 

That is, if from among 2” equipossible states (as described, e.g., by (S) 

on p. 141) we learn the correct one, then we have learned n bits. This 

corresponds to the description of (S) by n independent decisions about A,. 

Here k=2"=1/g;. It can be shown that the above definition of I(W) also 

characterizes arbitrary distributions: 

(d) We learn log, 1/g;= —log, g; bits, if we learn that a state expected 

with a probability g; actually obtains. Thus I(W) is the average informa- 

tion gain (in bits) resulting from our learning the correct one of a number 

of states expected with the probabilities given by YB. (Since the ith state 

with the probability g; is the correct one, the ‘weighted mean’?! must here 

be formed with the weights g;.) 

Thus I(¥S) is a measure of uncertainty (obtaining before any eventual 

complete information). This suggests that as a description of minimal 

knowledge we choose a distribution with maximum uncertainty. As can 

be demonstrated, this is uniquely determinable as the W, with g;=1/k, 

in the case where k states are possible, i.e., an equal distribution. 

This might be a satisfactory answer to our question if for every partic- 

ular problem, we know the possible states from among which the one 

obtaining must be ascertained. 

Let us take the case of an urn containing a known number of balls of 

two colours but with the ratio of the two colours unknown, the problem 

set being to discover the colour ratio by means of successive random 

draws, with each ball drawn being replaced before the next is drawn. 

Our reason for citing the urn example here, is that it provides a simple 

model for processes where (e.g. by reason of physical laws) we are unable 

to observe more. To be considered as possible state descriptions in this 

case are, e.g., the following: 

(1) propositions that determine colour for every individual ball, 

(2) propositions about the number of white balls, 

(3) propositions expressing the occurrence of a specific colour. 

It is evident that a requirement of equal distribution for (1), resp. (2), 

resp. (3) will in each case yield quite different distributions. If in this 
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instance one thinks of (1) as the most natural choice, one introduces a 
kind of physics. This is inevitable if an infinity of competing possibilities 
is to be considered. 

2. LOGICAL, SUBJECTIVE AND STATISTICAL PROBABILITY 

The use of the urn schema as a weighting norm (VIII 1, p. 138) needs to 

be more precisely validated, and the starting point of such validation for 

degrees of certainty will differ from those for propensities, although 

eventually the resulting formulas will coincide. This is connected with 

the fact that axioms V1-V4 ‘hold’ both for degrees of certainty as well 

as for propensities??, despite the fact that their validations might differ. 

Here we must distinguish between on the one hand the structural content 

of the axioms, which expresses the capacity of the values for being ordered, 

the relation of this order to implication, and the existence of a function 

with the properties appropriate to disjunction 23; and on the other hand, 

the conventional content which concerns simply the standardization of 

© (as sum) and therewith the choice of scale (from 0 to 1). 

(a) If it is certain that a draw is being made, then it is certain that one 

of the (w+5) balls will be drawn. Then the sum of the degrees of certainty 

for the propositions that each describe the finding of one specific ball, is 1. 

An equidistribution, describing minimal knowledge **, will then assign to 

each ball (really: to the proposition that expresses its having been drawn) 

the probability — Then the probability of an arbitrary white ball 

1 w en 
rg +..+ ee, Probabili- 

ties calculated on the basis of a validation of this kind, may be termed 

logical probabilities, since they are grounded in a linguistic representation 

of ontological presuppositions (i.e., presuppositions concerning possible 

states). Cf. in this connexion Carnap [1], p. 162 ff. 

(b) If for purposes of representing the knowledge contained in 

DB(A draw will be made)=1, 

we find ourselves confronted with the set of all such distributions YB, 

then there still remains the possibility of selecting one admitted distribution 

in the expectation at best that this choice will be corrected by experience.?® 

Here we should, of course, avoid ‘sclerodox’ prior judgments or pre- 

being found is given by V4 as 
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judices, that cannot be corrected by any experience, i.e., we should not 

assign the weight 0 to any state that is still possible.26 This interpretation 

of distributions is often called subjective probability (for a criticism see 

Carnap [1], p. 42 ff.). Perhaps it should be understood rather as a naive 

description or the correction of transformation of an undetermined ‘choice’ 

by that experience, or at its best: of a transformation of an undetermined 

initial distribution of distributions. (See p. 167 note 14.) 

(c) If on the other hand we assume that the experimental conditions 

assign to every ball in the urn a propensity to be drawn — we may make 

this assumption on the basis of ‘metaphysical’ reasoning or within the 

framework of a physical theory — then perhaps the best way of getting 

beyond the general proposition D(...)=1, is to infer the equality of the 

weights from the physical hypothesis of the ‘symmetry of the experi- 

mental conditions’. In this case an equal distribution expresses the fact 

that the infotmation is the maximal one available on the basis of the 

theory and the experimental conditions. We then have (in our example) 

w : (w+b) as the propensity for ‘white’, i.e., formally as under (a).?? 

The link between these interpretations is the assumption of equipos- 

sibility of competing events — though based in each case on different 

considerations. Let us refer in both cases to an assumption of equipos- 

sibility of type 1. Like every other physical hypothesis, that of symmetry, 

which includes in particular the assumption of the irrelevance of 

colour, is subject to the test of experience. Cf. in this connexion VIII 4, 

Dp. 1628 

(d) We may reject as ‘metaphysical’ the assumption of the existence of 

propensities, e.g., for the behaviour of a real, that is, in general slightly 

unsymmetrical die: for example, the die may be destroyed after a small 

total number of throws (although this line of reasoning would also exclude 

the definition of probability as limiting value of relative frequencies). 

In this case we might attempt to express everything in terms of propositions 

about degrees of certainty. (Cases where the existence of an objective 

degree of certainty is doubtful, could be formally covered by stipulating 

that all values remain possible.) 

Whereas degrees of certainty close to 1 (‘almost certain’) or close to 0 

are intuitively accessible, other degrees may at first appear to be ‘meaning- 

less’ since they say ‘nothing’ about individual cases. However, if we 

agree that there are cases where the same degree of confirmation p under- 
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lies each of a series of n ‘independent’ events, then a refinement of axioms 

V1-V4, which comprises the correction of distributions in the light of 

experience, enables us to assert ‘almost certain’ propositions about the 

‘relative frequency’ of the occurrence of the event in question. For: 

with a ‘large’ n it is ‘almost certain’ that the ratio of cases of occurrence 

to the total number n is ‘in the neighbourhood of’ p. This will be clarified 

below, but first a word of caution. On an entirely different basis an 

assumption of equipossibility — of type 2, as distinct from the one intro- 

duced earlier — will here yield a relation between a probability and a 

ratio of ‘favourable’ to ‘possible’ cases. But the difference in validation 

alone should warn us not to ‘define’ ‘the’ concept of probability in terms 

of such a ratio. 

(e) Basing ourselves on a frequency interpretation we may define the 

probability of A on the presupposition of B,?8 viz W,(A), out of YW 

by means of 

(*) AN ne 

We thus introduce W3, as the correction, conditional on experience B, of 

MS. It readily follows that several corrections may be comprised together, 

1.€.: 

wn.) cay = SEARS) _ WARCAB): ME) | WAABAC) 
N oO  ME-MErAd «DEAS 

= MW;,c(A), in brief: (Ws)c = Wace 

Despite the additional ‘knowledge’ B, W, can represent greater ignorance 

than W, cf. for example VIII 4, p. 164. 

(f) Let us now find a different basis for (*), since we do not wish to 

take the correspondence of degrees to frequency phenomena for granted. 

We shall express the fact of dependence on the experience expressed in 

the ‘evidence’ B, by means of a second argument - thus recognizing that 

in general a probability judgment depends on the evidence available. Let us 

symbolize these evaluations, which have again been generalized, by 

w(A, B) - for W,(A). For a constant knowledge B we then obtain as a 

counterpart to V1-V4, axioms W1, W2, W3, W4. These will be supple- 

mented by a readily intuitive counterpart W3’ to V8, which expresses 
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that what is ‘logically equivalent’ is also of equal value as evidence (cf. 

Carnap [1], p. 285). 

WI.  w(A,B)2 0 
w2. IC EA, then w(A, C) = 1 
W3. IfCEA-—B, then w(A,C) < w(B, C) 
W3’. If EB <+C, then w(A, B) = w(A, C) 
W4.  IfCE-—(AAB), then w(AvB,C) = w(A,C) + w(B, C). 

W2, W3, W4 have here been strengthened as against V2, V3, V4 in that 

in each case a presupposition of ‘logical truth’ is replaced by one of 

‘factual truth’ (i.e., on the basis of the respective non-contradictory 

evidence C). 

We now add an axiom that relates distributions on the basis of different 

evidence: 

WS. IfAEC, BEC, AED, and BED, 

w(A,C) _ w(A,D) „, 
he ey re 

w(B,C) w(B,D) 

W5 expresses that the ratio of degrees of certainty (from A to B) is 

independent of any change of evidence (C resp. D) as far as only con- 

sequences of A, and of B separately (i.e.: of AvB) are considered. 

The particular choice D=AvB could be used to simplify the axiom, 

but the chosen version has the advantage of being as free of particular 

concepts as possible. 

Derivations from V1-V4 (cf. p. 140 f.) may be transferred in an anal- 

ogous sense. We merely note for subsequent use 

W6. IfCEAB, then w(A,C)=w(B,C) (cf. V8). 

The most important derivation, which is based essentially on W5 and 

which is usually formulated as an axiom,3° is 

W7. w(AAB,C) = w(A, C) - m(B, AAC) 

Proof. Propositional logic yields 

(1) CFEAABSAABAC, 

(2) CFEASAAC, 
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(3) AABAC EC, 

(4) AABACEAAC, 

(5) AaC FEC, 

(6) AAC EAAC, 

(7) AAC FAABAC S&B. 

Suitably substituting, we then derive from W6 with (1), (2) 

w(AaB, C) bi w(A a BaC, C) 

8) DCA C) PP" WAAC C) 

Further, from W5 with (3), (4), (5), (6) 

_ wW(AABaC,Aac) 

0) w(AAC, AAC) 

And from W6 with (7) and (6) 

w(AAB,C) w/(A,AAC) 

fe wiA;C) 1 
= w(A, AAC) 

Hence by cancelling out the denominator, W7. In the form (10), W7 

is a precise counterpart to the definition of YB,(A) discussed above 

under (e). Important derivations*! from W7 are 

w(B, AAC) 
W8. PABA i=) (Age) SE 8 w(A, BAC) = w(A,C) w(B, ©) 

and 

wo. w(A,, BAC) _w(A,C). w(B, A,AC) 

w(A,,BAC) w(A,C) w(B,A,AC) 

Proofs. Because of F BA AA AB, for line (2), we have 

(1) w(B, C)- w(A, BAC) = w(BAA, C) (W7) 
(2) = w(AAB, C) (W6) 
(3) = w(A, C)-w(B, AAC) (W7) 

Dividing by w(B, C), we then obtain W8. And, substituting A, resp. A, 

for A in W8 and dividing, W9 follows as an immediate inference, since 

w(B, C) which is independent of A is eliminated. 
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(g) We may fairly assume that one and the same degree of certainty 

underlies a sequence of events (see above under (d)), in the case where 

random draws are made out of an urn, with each ball drawn being re- 

placed before the next is drawn, or in the case where random throws are 

made with an unbiassed die (if we are justified in assuming that the die is 

not altered by being thrown). (Whether propensities come into play, 

shall here be left open, since our aim is to understand the situation in 

terms of degrees of certainty.) If C expresses our general prior knowledge, 

A the outcome of the preceding draws resp. throws?2, B the observational 

result about to be obtained, then according to the assumptions implicit 

in the experiment, we have 

w(B, AAC) = w(B,C) (briefly: = p), 

i.e., the preceding observations give no additional information about the 

outcome of the next attempt. If B=B, refers to the mth attempt, then 

we may have 

A,-1 = [7] BA... A[>] B,-1 

i.e., in general either 

A, = A, AB, or Ay = A,aa Ai B, 

If we now apply W7 in order to determine w(A,, C), we obtain either 

w(A,, C) = w(A,-ı A Bs C) 7 w(A,-1, C) 2 w(B,, Alas A C) 

= w(A,_ 1, C) > w(B,, C) = p- w(A,_1, C) 

or 

w(A,, C) = w(A,-1A —B,C) 
= w(A,-1,C) - w(— B,, A,-1 AC) 
= w(A,—1, C) - w(— B,, C) 
= (1 — p)-wlA,-1, ©). 

For a sequence of n observations with results described by A, and with 

B and —B occurring g and (n—g) times, respectively, we obtain the 

following permutational analysis:33 

w(A,; C) =pta(h= pyr. 
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Let us begin by grouping together all possible observational sequences 

with the same g*4 and then all sequences with g:n close to p. (All 

sequences that are different at one point mutually exclude each other, so 

that their weights can be added together.) The precise formula for the 

degree of certainty of g-n falling between p—e and p+e (where ¢ is 

thus a measure of imprecision) is so unwieldy, that in most cases we use 

an approximating formula — which, however, yields a precise estimate of 

the degree of certainty. We thus obtain a relationship between the im- 

precision (e), the number of attempts (7) and the degree of confirmation 

w(p—eSg:n<p+se, C), where ‘p—eSg:nS p+e indicates a disjunc- 

tion of all propositions about trial sequences of length n with g:n between 

p-e and p+e. Let us give an example. For an urn with balls of six 

different colours in equal numbers or for a ‘good’ die, p=1:6=0.16 = 

0.1666 ... . Then for a sequence of 1000 trials we may expect the result 

g:n as follows:35 

between with the (degree of) s:(1—5)36 

certainty s 

p + 0.008 0.503 1.0 

p+0.01 0.604 1.3 

p + 0.02 0.910 10 

p + 0.03 0.989 90 

p + 0.04 0.999 31 1 500 

p + 0.05 0.999 978 45 000 

p + 0.06 0.999 999 64 2 800 000 

p &+ 0.07 0.999 999 997 1 340 000 000 

p + 0.08 0.999 999 999 988 860000 000 000 

In order to double the precision obtained (which is the same as halving 

the limits for g :n) with the same degree of certainty, four times as many 

trials are required; and for k times the precision, k* as many. On the 

other hand, the table below (with p again = 1:6) shows how the degree of 

certainty increases with increasing length n of the trial series if the pre- 

cision is constant (+ 0.008 in our example). 
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Length n | certainty s s:(1-5) 

1.000 | 0.5 1 

1 560 | 0.6 15 

2 310 | 0.7 23 

3590 | 0.8 4 

6 250 | 0.91 10 

14 400 | 0.99 100=10? 

23 600 | 0.999= 1-10”? 10° 

32.800 |.1-10”* 10* 

42 300 | 1-10” ° 10° 

52.000 | 1-10 ° 10° 

81 400 | 1-10”? 10° 

approx. 100.000 | 1-10”! I 

It should be noted that accordingly there is no length n, for a prescribed 

degree of precision, that guarantees with absolute certainty that this 

precision will be met, although on the other hand such sequences yield 

values g:n ‘in the neighbourhood of’ p not only ‘in the long run’ but in 

general already within their fairly long segments. This corresponds 

exactly to our experiences with sequences of trials incorporating ran- 

domizing devices. A definition of probability as limit of a sequence of 

relative frequencies (von Mises [1], p. 17) does not seem to me to take 

due account of these experiences, although it has been possible to avoid 

the formal contradictions of von Mises’ original formulation. 

We have calculated predictions with a ‘high degree of certainty’ about 

the behaviour of observable sequences, basing ourselves on the general 

properties of degrees of certainty, and assuming an equipossibility of 

kind 2 together with independence of the trials one from the other - 

which is basically equivalent to assuming that we have as datum 

an object of the theory restricted to frequency phenomena.?? On the 

other hand, even those who wish to restrict the application of the concept 

of probability to frequency phenomena, will ultimately have to ascribe 

a degree of certainty to that individual event which consists in the total 

sequence having a specific property (viz its relative frequency being 

within a given interval).°8 This again seems to suggest that degrees of 
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certainty, i.e., types of validity, be regarded as the objects of the theory 

of probability — a conception that would still allow us to base assumptions 

of equipossibility of kind 2 made in applications of the theory, on special 

assumptions of similarity (e.g., about the presence of propensities). In 

this way statistical probability may be subsumed as a special case under 

the concept of degrees of certainty. 

The above-mentioned connexion between p and g:n indicates that the 

determination of g:n from a sufficiently long series of observations be 

regarded as a measurement of p, understood as the (same) degree under- 

lying each case. An initial difficulty arises from the fact that the requisite 

propositions about the precision and certainty of this precision would 

presuppose knowledge of p. However, this may be circumvented by 

exploiting a different connexion between g:n and p, viz one that is 

based essentially on W8 resp. on W9. Cf. in this connexion VIII 4, p. 165. 

3. RULES OF INDUCTIVE INFERENCE 

From the point of view of traditional logic, inductive inference is one 

from the particular to the general — in contrast to deductive inferences, 

for which the inference ‘from the general to the particular’ (which is 

represented in our symbolism by ‘AxA(x) F A(y)’) is regarded as a 

particularly characteristic example. Since what one has in mind here are, 

of course, ‘reasonable’ inductive inferences, the word ‘particular’ is used 

to mean a body of experience admittedly incomplete yet nonetheless 

sufficiently large to allow general laws to be ‘inferred’ — as (apparently) 

happens successfully in the empirical sciences. Thus we might say that the 

decisive factor is the drawing of inferences from incomplete information; 

and that it is plausible that such inferences carry degrees of (un)certainty. 

The importance of ‘inductive’ inferences arises from the fact that all 

information yielded by observations on a sufficiently ‘rich’ world is 

incomplete. We cannot, however, establish their validity by arguing that 

they have proved themselves so far and will therefore continue to do so. 

For this would be to argue in a circle, since our reasoning would be based 

on an inference of the kind to be validated. However, one might regard 

such reasoning as the abstract form of a behaviour pattern innate in man - 

and presumably also in animals®9 - and one could then infer from the 

fact that such beings (still) exist, that behaviour on this pattern is 
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appropriate to our environment, at any rate partially. Our environment 

therefore, so the argument would run, at least approximates to the ideal 

structure, on the basis of which inductive inferences are justified. 

However, we shall no doubt have to accept the fact (as in the case of 

two-valued logic4°) that the only way of avoiding a vicious circle is to 

undertake an analysis rather than a validation. And here again it may 

turn out that an adequate analysis of a theory 8 presupposes a theory 0* 

more powerful than 0. 

In view of the fact that inductive inferences are often made unconsci- 

ously 1 — with a greater or lesser degree of skill — let us begin by drawing 

attention to the underlying rules. Some of these rules are given in Pölya 

[1], [2], at first as rules of plausible inference in a qualitative formula- 
tion,4? and include: 

A implies B (i.e.: B follows from A) 

at B (turns out to be) true 

A is more credible, or likelier. 

A implies B 

B is credible 
P2: 

A is (somewhat) more credible, or likelier. 

A implies B 

B is very improbable in itself 

B is (however) true 
P3. 

A is very much more credible. 

In these general formulations the comparatives are still, so to speak, 

‘in the air’. Perhaps an example in illustration of P3 will indicate what 

needs to be added in every instantiating case: Ifa is a poisoner, then a must 

have procured poison. It is very improbable that anyone should buy 

poison. However a has bought poison. Consequently: it is much more 
likely (than before this information was obtained) that a is a poisoner. 

One is tempted to describe the subjective formulations here, such as 
‘credible’, by introducing degrees of certainty. However, Pölya himself 
prefers to think of his rules as pointers to the discovery of mathematical 
theorems, and it seems doubtful to me whether w(..., ...) resp. W(...) 
could be meaningfully applied to mathematical statements. (Can a 
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probability alter as a result of a successful mathematical demonstration ?) 

On the other hand, the objection that unique chance occurrences cannot 

be thus described, could be met by pointing out that in such cases the 

theory yields only relations between degrees of certainty, and not values 

of them. 

If by rules of inductive inference we understand rules where probability 

statements occur in a premise or in the conclusion, then the simplest such 

rules are those that form a link between deductive and inductive in- 

ferences. The following holds: 

K,A,A, FB 

w(A,K)21-e. w(A,,K)21-—- 

w(B, K) 2 1— (e; + €2) 
Rl. 

where K expresses the knowledge available and where probabilities close 

to 1 are indicated by 1-e (i.e., with small ‘uncertainty’ e). 

Proof. From K, A,, A, F B, it follows that 

(1) K FA,AA, > B, hence, with W3 

(2) w(A, AA,, K) S w(B, K). 

On the other hand, from W1—W4 there follows the counterpart to V11 

(3) w(A, AA,, K) = w(A,, K) + w(A;, K) — 1. 

On the basis of the presuppositions of R1, we have 

(4) w(A,,K) + w(A,,K) -l2l—e,+1—e8,-1 

=1- (&ı + &,), 

hence 

(5) w(A,AA,K)21- (&, + &). 

Finally, the assertion of R1 follows from (2) and (5). The following 

generalization of R1 is proved similarly: 

K, A,, ...5 A, FB 

w(A,, K) = 1 — &1> sees w(A,, K) > 1 = En 
* 

moe w(B,K) = 1 — (€; +... + &) 

Because of K, A, (A > B) FB, an initial application of Ri yields the rule 
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w(A,K)21—e, w(A>B, K)21-8, 

w(B, K) 2 1 — (e&, + &) 

In the same way there corresponds to every deductive step in a deductive 

argument, a probability inference with accumulating degrees of non- 

confirmation. 

In the case of an application of R1* the certainty attainable by B 

does not depend on the complexity of a derivation of B out of Aj, ..., A,; 

but in the case of a sequence of inferences of kind R2, all degrees of 

uncertainty accumulate. Thus in general one will fare worse, i.e., obtain 

a weaker conclusion, if instead of applying R1* once at the end of a 

purely deductive proof, one applies the probability inference analogous 

to R2 at every stage. Perhaps we may see in this a justification for a logic 

that is more precise than the conditions to which it is to be applied.*3 

The following modes of inference may be regarded as counterparts to 

certain plausibility inferences, although translation into the language of 

degrees of certainty is not straightforward: 

€ K,A FB 

© w(A, KB) 2 WA K) Sr 
The premise in Pl: ‘B is true’ is thus taken into account in that the 

probabilities ‘for K’ and ‘for KAB’ are compared. It should be noted 

that here — as in Pl - the inference ‘from B to A’ involves a kind of 

reversal of the deductive premise. 

A refinement of R3 is 

K,A FB w(B,K)<1 w(A,K)>0 

w(A, KAB) > w(A, K) 

Proofs for R3 and R4. The premise K, A FB yields that 

K, A F KAA = B. Therefore according to W2 and W6 

(1) w(B, KAA) = 1. 

R2. 

R4. 

According to W8 we have 

(2) w(A, KAB) - m(B, K) = w(B, KAA) - (A, K). 

Hence, with q for w(B, K) and with (1): 

(3) w(A, KA B)+q = w(A, K) 
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i.¢:, for ¢ + 0 

(4) w(A, KA B) = (1/qg) - w(A, K) 

Because of KFB>K we have gS 1 (cf. W2 and W3), i.e., 1/g21. Then 

the assertion of R3 follows from (3). For the strengthened assertion R4 

we require g < 1 (which corresponds to the second premise in P3) and 

also w(A, K) > 0, since otherwise everything in (3) could be = 0. For 

very small q (but with q + 0) 1/q is very large. This gives us a variant of 

R4 that is still closer to P3. 

The presupposition that B does not follow from K alone? is expressed 

in a different way by the following variant of R4: 

K,AEB w(B,Ka—A)<1 0<w(A,K)<1 

w(A, KAB) > w(A,K) 
RS. 

Proof. Because of K FBo(BAA)v(BA—A), we have 

(1) w(B, K) = w((AnB)v (AB), K) 
(2) = w((AAB, K) + w(— AaB, K) (W4) 

(3) = w(A, K)-w(B, KAA) + 
w(— A, K) -w(B, Ka — A) (W7) 

Because of K, A FB we have w(B, KAA) = 1, i.e., 

(4) w(B, K) = w(A, K) + w(— A, K)- w(B, Ka — A) 

(5) = w(A, K) + 
w(— A, K): (1 — (1 — w(B, KA A))). 

(6) le wish re 
(7) = i — (1 — (A; K))-(1 —w(B, Ka -A)). 

According to the premises of R5 the product on the right-hand side is 

not 0, i.e., w(B, K) < 1; thus R4 is applicable. 

By formulating rules R3, R4, R5 after the pattern of Pl and P3 we 

have perhaps veiled the essential meaning of these inferences. It may be 

clearer in the following formulation: 

0 < w(B, KA +A) < w(B, KAA) 0<w(A,K)<1 

w(A, KAB) > w(A, K) 

Proof. In view of W9 (with A for A,, — A for A) 

R6. 
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w(A,KAB) _ w(A,K) — w(B, KAA) 

(1) ws A,KAB) w(>A,K) w(B,Ka —A) 

According to the premises both right-hand quotients are meaningful, 

w(A, KB) w(A, K) 
ws A, KAB)~ wm A,K) 

Since here numerator + denominator =1 in each case, we have 

(3) w(A, KA B) > w(A, K). 

(2) 

Let us assume, by way of example, that we know (K) that an urn which 

we have is one of two with different ratios of ‘black’ and ‘white’. Let A 

describe the case of ours being the ‘whiter’ urn, and let B stand for a white 

ball being drawn (under the usual conditions of drawing and replacing). 

Then the premises of R6 will have been met, and the conclusion expresses 

the plausible fact that every ‘white’ draw increases the probability of our 

urn being the ‘whiter’ one. 

Our example also enables us to compare R6 with rules R3-R5. For the 

sake of simplicity, we shall not change the number of urns involved. Then 

R3 corresponds to the borderline case where all that is known is that the 

urn described by A is ‘pure white’; on the other hand, the application of 

R5 requires the additional knowledge that the urn described by —A is 

‘mixed’. And R4 is the more obvious rule to apply if a (specific) value 

for w(B, K) is known even though this is not expressed by ‘w(B, K) < 1’. 

4. PROBABILITY AND TRUTH. ON OUR DEPENDENCE 

ON A PRIOR JUDGMENT 

Rules R3-R6 do not directly contribute to the solution of the practically 

important tasks of inductive logic, which are 

(A) to make probability statements about a hypothesis H (i.e. to 

calculate a degree of certainty w(H, K)), on the basis of knowledge 

expressed in the truth of a proposition K; 

(B) to decide on the truth of a proposition on the basis of the knowl- 
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edge of relative frequencies (as approximating values for degrees of 
certainty). 

Thus such inferences always depend on additional presuppositions 
about distributions, and these presuppositions must therefore be validated 
‘in some way or other’. 

Further to (A): When we determine w(H, K) resp. W,(H) with 

DW; = [H| w(H, K)] (cf. V 2, p. 97) 

we in effect distinguish one distribution as an expression of logical prob- 

ability; or at any rate, we restrict the domain of admissible distributions 

by means of objective criteria, since except for borderline cases all values 

for W,(H) are compatible with the presupposition W,(K)=w(K, K)=1. 

However, the indeterminateness of the W, must not be understood as 

the determinateness of a WB, through X according to the formula #5 

MWx(H) = w(H, X) = en (cf. VII 2, p. 149) 

with an already distinguished 98, since all available knowledge - i.e., 

including any expressed in X — is comprised in K. In fact, all YW, with 

Mo(X)=+0, are still to be taken into account here. 

In the light of V 2 (p. 97), we have W%,=2B,_=[H | w(H, L)] with ‘L’ 

standing for an arbitrary propositional logic theorem. It thus seems 

more appropriate (rather than attempt ad hoc determinations of W,) 

to distinguish, if possible, one VB, as an expression of logical probability, 

thus also determining w. 

It has turned out that the assumption of equipossibility of kind 1 

suggested by the propositional logic structure of the object language, is 

not always appropriate; but that, e.g., the structure of monadic predicate 

logic indicates other symmetries and hence equipossibilities of kind 1. 

This has led R. Carnap (cf. Carnap [2]) to develop methods for the 

determination of WB). These have so far allowed YB, to be specified for 

monadic predicate logic (which in any case is essentially more com- 

prehensive than traditional syllogistic), the specification depending on 

a decision regarding the extent to which ‘items of a priori knowledge’ 

resp. ‘empirical facts’ are to influence a judgment. 

Thus we may select a distribution YB, but all values calculated from it 
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will reflect the bias already inherent in our choice of language, which 

selects a finitely describable part out of the wealth of phenomena. 

Further to (A) and (B). If we make an assumption of equipossibility of 

kind 1 (including, where appropriate, in the above-mentioned extended 

sense) in a sequence of cases, then this amounts to an assumption of 

equipossibility of kind 2, and Bernoulli’s analysis (VIII 2 (g), p. 152 f.) 

may then be applied on the basis of the inferred equipossibilities of kind 2. 

We may then test the substantiation of YB, as follows. The degree of 

confirmation p calculated from YB, for the ‘same’ event r (in the cases 

under consideration) is set against the observed relative frequency g:m 

for the occurrence of r: 

If YB, has been correctly determined, then 

g.:m is almost certainly close to p; 

i.e., since our antecedent here does not depend on the events: 

It is almost certain that for a correctly determined DB, 

g:mis close to p, 

1.e., if the observed ratio g:m is not close to p, 

It is almost certain that DB, (together with its substantiation) is not 

appropriate. 

Apart from making clear what we mean by close to and almost certain 

(cf. VII 2 (g), p. 153), we also need to decide on the degree of certainty 

that is to bridge the gap between the almost certain and the true - in 

order that the above considerations provide an example of a solution of 

task (B), viz to reach a (substantiated) decision on YB, on the basis of 

g:m. 

But even so, our example only provides a partial solution of task (B), 

for it permits at most a negative judgment (other W, could yield the 

same p). On the other hand, we did not require any additional pre- 

suppositions about distributions. 

No doubt the main problem involved with tasks of type (B) is to 

render such presuppositions harmless: 

The example of the two urns (p. 160) may serve as a (highly simplified) 

model for the task of deciding, on the basis of observations, on the 

‘correctness’ of theories making predictions about observable events 

differing from each other only in degree of certainty (of happening). Thus 

let A, express that we have an urn with 2/3 white and 1/3 black balls, 

and A, that we have one with 1/3 white and 2/3 black balls.4” Further, 
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let B; stand for a draw consisting of a white ball and —B, for a black one 
at attempt 7. Then for arbitrary knowledge K compatible with the ‘rules 

of the game’ we have 

(*) w(B; KAA,) = 2/3, w(oB,KAA,)= 1/3 
w(B;, KAA,) = 1/3 w(—B;, KAA,) = 2/3 

Let us analyse the judgment that normally leads us, after a fairly large 

number of observations, to the conclusion: 

This is ‘certainly’ the first, resp. second, urn. 

According to W9 we have, as in the proof of R6, with values out of (*) 

w(A;,KAB) _w(A,K) w(B, KAA;) 
OT AKER Tinta see) 

_w(A,k) 2 
2 PRArK es 

w(A,Kı-B,) w(A,K) wl B, KaA;) 
( ) w(A,, Ki B;) B w(A,, K) w(> Bi, KaA,) 

h _w(A,K) I 
2) I AR 2 

Since in (1’) and (2’) K stands for arbitrary knowledge already supple- 

mented by preceding observations, the following holds (with B* describing 

a sequence of observations consisting of w white and b black draws 

(in arbitrary order)): 

w(A;, Ko AB*) — w(A,, Ko) | (—)"- ( 1 ji 

w(A;, Ky AB*) w(A,K,) \ 1 ye 
@) s 

= wlAr, Ko) -Qw-b 48 
w(A,, Ko) 

But on account of Ky F Ay-—7A,, we have 

w(A,, Ko) ar w(A,, Ko) 

= w(A,, Ky A B*) + w(A,, Ko A B*) =|], 

and (3) therefore shows how (e.g.) w(A,, KoAB*) is determined by 
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w(A,, K,). Thus apart from the initial bias which is expressed in the 

value of w(A,, Ky), and thus determines w(A,, Ko A B*), there is also 

a decision as to that deviation from 1 (for w(A,, Ko A B*)) within which 

A, may be regarded as ‘practically certain’. 

For some observations of w—b in the special case of an equal distri- 

bution,*® i.e., where w(A,, Ky)=mw(A,, K,)=1/2, the degrees of con- 

firmation are given in the following table: 

w—b w(A,, --.) w(A,, ...) 

1 0.67 0.33 
2 0.80 0.20 
3 0.89 0.11 
4 0.941 0.059 

‘5 0.970 0.030 
6 0.985 0.015 

10 0.999 02 0.000 98 
13 0.999 88 0.000 12 
17 0.999 992 4 0.000 007 6 
20 0.999 999 05 0.000 000 95 
30 0.999 999 999 07 | 0.000 000 000 93 

It should be noted that an initial bias deviating from an equal distri- 

bution could be expressed in terms of black and white balls. The first 

trial sequences might then decrease the amount of information. 

A more extensive investigation would show that for every initial bias — 

expressed in a non-sclerodox initial distribution and a certainty require- 

ment - it is as certain as required that a sufficiently long series of trials 

will as certainly as required indicate the present urn to be present, so 

that our experience with the required certainty eventually leads us to a 

judgment whose content, though admittedly not its degree of certainty, 

is independent of our initial bias. Those few confronted with ‘wrong’ 

sequences of experience will go crazy and can be thought of as the 

‘victims of statistics’. 

However, if we attempt to transfer this reasoning from the two-urn 

model to the case of deciding between two (e.g. physical) theories, we 
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find that the proposition A, »—A, (which now asserts that precisely 
one of the theories in question is correct) is itself in the nature of a theory 
and can therefore be included only with reservations among the items of 
knowledge Ky. Apart from this it would seem that our example differs 

from practical cases only in that in general there is a greater number of 

theories under discussion (e.g., A,, ..., A, instead of A,, A,) and there 

are more observable events to be considered (e.g., B,, ..., B, instead of 
B, —B). If we know the schema of values w(B,, KA A;) corresponding to 

(*) (p. 163), then we calculate the distribution correction (as above by 

means of W9) out of the w(A,, ...) on the basis of the observation 

described by B,, i.e.: 

w(A;, K a By) Pr w(A,, K) w(B,, KAA,) 

where, of course, we now have w(A,, ...)+...+Ww(A,, ...)=1.50 

Let us illustrate this by two examples: 

(1) Let A,-A,o0 stand for assumptions to the effect that in an urn 

containing 100 (white or black) balls, the number of white ones is precisely 

that stated by the index. Then a sufficiently long series of attempts with 

an unknown one of these urns will ‘eventually’ assign the highest degree 

of certainty to the correct one. If we now drop the simplifying restriction 

of a fixed number of balls’,51 we obtain correspondingly high degrees of 

certainty for the propensity p ‘effective’ in the series of trials being within 

a prescribed neighbourhood of the observed ratio w/(w+b). Then a 

sufficiently long series of trials may be regarded as a measurement of p 

with the result w/(w+5), in which case, incidentally, the certainty reached 

will eventually be (largely) independent of the initial bias. 

(b) Let A, and A, be physical theories that yield different numerical 

values a resp. b (with a > b) for a measurable quantity; and let a—b be 

smaller than possible errors of measurement, so that the theories cannot 

be precisely distinguished on the basis of measurements of this quantity. 

Further, let the precision of measurement be independent of whether A, 

or A, ‘holds’, and let it be given by the standard error s (on the usual 

assumption about the distribution of possible errors of measurement). 

Then one measurement (described by M,) with the result x, yields the 

correction of the degree of certainty implied by the following ratio 

correction: 
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w(A, KAM,) w(A,K), 
w(A, KAM,) w(A,,K) 

with’? Q =e = 

a-b %  atbd ii} ( a+b 

7 & E28 ) s2 ae) 
e 6 

The first form of QO shows that it is a question merely of ratios of the 

theoretical values (a, b) and the measured ones (x) fo the standard error s. 

In its second form Q indicates that (because a > b) every measured 

> — is evidence for A,, every x < a. for A, -and by how much. 

Thus when we apply rules like (a) and (b), our commitment to an 

assertion or a theory is always dependent upon certain previous decisions 

(as to the degree of certainty required and the nature of the initial distri- 

bution). Perhaps we should take this as indicating that - except in border- 

line cases — ‘logical thinking’ can only prepare the ground for decisions 

but cannot replace them. 

NOTES 

1 Cf., for example, Rosser and Turquette [1]. 

2 See Lewis—Langford [1]. 
3 The idea is Popper’s [1]. His term reflects a propensity to happen at different degrees 

of certainty. There are attempts to understand the measured certainty as a more basic 

concept, of which those based on propensities only are best understood instances. 

Carnap’s [1] term ‘degree of confirmation’ reflects more a dependence on supposed or 
explicitly given evidence than the ‘nature’ of the values. 

4 Exactly as in the case of the original standard of measure, this convention pre- 

supposes specific empirical knowledge, which we might express in idealized form in 
the following propositions: 

(1) Experimental conditions of this kind yield degrees of certainty; 

(2) These degrees of certainty depend only on the numerical ratios. 

We must here dispense with the question whether the experimental conditions are 

‘ideally realizable’, since it needs a developed mathematical error theory. 

5 The two formulations are equally justified in principle, but on the whole w: (w+ 5) 

(i.e., for the general case: the ratio of the number of cases of one kind to the total 

number) yields simpler formulas; cf., for example, p. 167, note 11. 

6 It is no doubt more than merely fortuitous that the extension of the concept of 

assignment should here parallel the (intuitive) interpretation of formulas in terms of 
events (cf. p. 108, note 24). 
? For counter-arguments, cf. p. 143. 

8 Conversely: once these laws have been validated for arbitrary degrees of certainty, 
they can, of course, also be applied to propensities; cf., for example, VIII 2, (g), p. 152f. 
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® This is a relation — usually symbolised by ‘S’ - with the properties 
EN ta YAS FNS 7 eS eV ERS xe Sy Ay Sixx Ty: 
10 Without this subsidiary condition it would be easy to find counter-examples. 
11 The details of this analysis would show what properties must here be presupposed 
for the scale of the abstract degrees of certainty. The choice of x-+ y is, however, not 
cogent. Our initial simple choice above of w : b instead of w : (w-+5), would here be 
matched by the much clumsier 

x+y+2xy 

1—x-y’ 

resulting from the immanent transformation of the scales (0 to 1, respectively 0 to 
infinity). 
12 We have written ‘A ...’, instead of ‘A ...’ in order to indicate that these propositions 
are here to be regarded as undecomposable, i.e. as variables. But, if there is something 
‘variable’ here, it is the state of that supposed world. 
13 This depends on the simplifying assumption that only a finite number of states are 
possible. In the general case only suitable sets of states could be weighted, or given a 
measure. 
14 The question whether distributions of distributions would be more adequate here 
will have to be left undiscussed for the simple reason, among others, that if we intro- 
duced them, we should have to give up our restriction to the finite to an even greater 
extent than we have already done by introducing distributions. 

15 This is a properly inadmissible simplification; strictly, we should write xı®, so 
as to include the case of complex coefficients. 
16 One difference between C2, D and Ci, D is that with YBa(B) = 0, we have on the 
one hand Yc,(D) = 0 but on the other hand Yc, (D) + 0. 
1? The question whether quantum physics needs or suggests a non-classical logic is 
still controversial. For instance, pro see Suppes [1], contra see Fine [1]. 

18 For which e.g.Q3(A A B) = WA) -YBa(B) would not hold generally. 
19 Cf. in this connexion VIII 4, p. 163 f. 

20 logex is the number y with 2¥ =x. This can be simply calculated with the aid of a 

logarithm table, using the formula y = (log x) : (log 2). 

21 Such weighted means, known in probability theory as ‘expectations’, play an im- 
portant part in the theory. 

22 Presumably the word ‘probability’ goes back to the conception which we have 

expressed in ‘degree of certainty’, but it has today become so overlaid with connota- 
tions based on frequency interpretations that two concepts have had to be distinguished; 
thus Carnap’s probability: (degree of confirmation, likelihood) and probability2 (relative 
frequency). Cf. Carnap [1], p. 25 ff. This distinction may be accepted as illuminating 
if probabilitya is understood in a sense of propensity more closely related to frequency 
phenomena than the more general idea of certainty. 
23 Cf. VIII 1, p. 140. If the reader is familiar with the concepts of modern algebra, 

he may wish to formulate this more precisely. 
24 For objections to this inference, see above p. 146. 

25 Cf. in this connexion VIII 4, p. 164. 
26 K.g.: ‘There is such a thing as telepathy’, ‘There are flying saucers’. Correction in 

the light of experience should yield appropriate degrees of certainty even for contested 
propositions such as these, insofar as there are no limits set to our calculations by the 

complexity of the empirical evidence (which would include the credibility of witnesses). 
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2? We cannot here discuss the question whether the choice of the same scale conceals 

a real difference or avoids making an unreal one. For a possible approach, cf. VIII 2 

(g), p. 152 ft. 
28 This ‘conditioned probability’ Mg(A) must not be confused with M(B — A). 
Cf. also p. 144, and note 18. 
29 This formulation presupposes that no denominator is 0; similarly in some other 

cases. Though here the technically adequate handling of the borderline cases is a 

matter of simple algebra, there is a problem: the extension to richer languages seems 

to necessitate the introduction of infinitely small values different from 0, hence a 

‘non-archimedean’ scale of degrees. 
30 Carnap [1], p. 285: ‘... accepted in practically all modern theories of probability’. 

Jeffreys [1] has a similar reduction of W7 to W5, which is introduced there as an 

extrapolation of provable cases. 
31 Which express what is known as Bayes’s Theorem; for an application cf. below 

pp. 158, 160, 163. 
32 The reader should keep in mind that urns and dice here merely serve as examples 

for a general case. 
33 This is a typical problem of analysis in probability theory, the solution of which 

goes back to Jacob Bernoulli [1]. 

34 Combinatorics tells us that there are 

a" (n 1) © (net) 
1 . gu ... ‘g 

different ways of doing this. 

35 Our table, calculated with the use of approximating formulas (error function with 

h = 60, see for instance Jeffreys [1], p. 72), holds only for p = 1:6; it is, however, 

typical. 
36 These ratios, that correspond to the possibility discussed above (p. 138), presumably 

form the basis for formulations such as ‘a high degree of certainty’ for degrees close to 1. 

37 Perhaps our choice of a scale for degrees of certainty (0 to 1) needs the justification 

of the fact that it makes the link with relative frequencies particularly easy. 

88 Cf. von Mises [1], p. 186. 

39 There are many transitional stages between the formation of conditioned reflexes 
and learning from experience. 

40 Cf. VI 2, p. 115 f. 
41 Thus, e.g., usually in the case of learning from experience. 

42 That is, without reference to degrees of any kind, with which calculations could be 

performed. 

43 Cf. our remarks on idealization in I 1, p. 11 and III 3, p. 62f. A more precise analysis 

would have to show whether R1* can be applied even in cases where the lack of con- 

firmation of the probability statements depends not (only) on the incompleteness of 
the available information, but (also) on the indeterminacy of concepts. 

44 Forif K,A F B, then: K F Bifand onlyifK,—,A FB. 
45 Cf. above, note 29. 

46 The reader is reminded that such an analysis is possible only on the highly ideal 

condition of the ‘world’ to be described being capable of only a finite number of states. 

47 To prepare the way for more general formulations let Aı again stand for A, Ae for 

— A; and let it be assumed that Aı <> — As is included among the initial knowledge 

Ko. Note that, in general, such an assumption could reduce the remaining possibilities 
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to an infinitely small amount, such that only degrees in that wider sense mentioned in 

note 29 could yield a well-defined quotient. 

48 The mere relevance of the difference is, of course, a peculiarity of our example. It 

is chosen for this simplicity; but it could be understood as another kind of norm: 
for (still) two cases (urns) to be compared, but general values in the schema (*) viz p, 

1—p, resp. q, 1—q, the exponent (also to be applied in the subsequent table for w—b) is 
w: loge(p:q) +5 : loga(1 — p):(1 — q). 

49 On the subject of ‘equal distribution’ cf. VIII 1, p. 146; 2, p. 147 f. 

50 In the case where for some i, k 10(Bx, K A A;) is zero, the appurtenant A; is, of course, 

excluded by an observation Bx. Such borderline cases are automatically covered by 

the conventional mathematical formulation. 

51 This simplifying restriction amounts, after all, to a sclerodox initial judgment about 

the possible ratios. 

52 We here have e = 2.71828 ..., which results from the quotient of two terms for the 
normal error law. Since a—b > 0, we have e(¢—*)/s? — 1. In order to make this correc- 
tion comparable with formula (3) p. 163, we could further write 

a—b (x a+b 

Q = 20.693 :s? 2 

where 0.693 ... is due to the change of bases (from e to 2.) 
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Besides places of definitions indicated by bold face page-numbers, occasion- 

ally other relevant pages are mentioned. Numbers in parentheses refer 

to passages relevant without showing the entry, or a variant. Upper 

indices at page-numbers identify notes. If need be, specification of field 

is indicated, particularly by: C (comprehensor), D (decision), F (function), 

I (identity), P (proposition), Q, Q? (quantification-, predicate), S (many- 

sorted), T (type), 8 (probability), & (syllogistic), » (sequence). 

eet eta Pit tare te... 

* A. SYMBOLS, ALSO RELATED TO PART B 

not 35, 51 

and Sul 

or aa 

if — then 37, 51, 69 

if 37 

iff 37, 51 

nand 37 

nor 37 

but not 37 

not, but 37 

either - or Sm 

(generally) valid, follows 57, 61 

(demonstrable, derivable zul 

sequence, consequence 71 

A all, each 39, 52 

V some, exist 39, 52 

= identical 87 

< order 1679 
ix (individ.) description 92 

[x|...] C, (abstract) description 94, 97 
(A intersection 96 
U union 96 

€ element 101 

3 applies to 101 
= sub-set 111 

ER er 96 
GB assignment 60 
(03) (ordinal number) 119 

B. ALPHABETICAL PART 

a (all) 215 ff.; Q 25; a 58 
Ac 124; Arc 125; Ag 131 

absolute D; 101; D 130 

Ackermann 113, 136 

addition F 97 f.; T 106; YB 139 f., 150 
-adic (functions) P 34, 38; Q (30 f.) 53; 

T 104f 
Aebi (63), 65 
Ajdukiewicz (105) 
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all X15 f., 18, 39 f., 48, 60; Q2 100, (114), 
134 

almost (certain) 138, 148, 162 f.; (im- 
possible) 138 

alternation (disjunction, adjunction) 53; 
(normal form 58) 

and 14, 36 f., 55, (57) 
Antinomy (log./semant.) 109; (Russell’s) 
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a priori distribution 145, 164 

applica -tion, -bility Q (32); F 45, 98; 
(of rules) 66, 123 

argument F 45 

Aristotle 12, 16, 26, 116 

assertion 49, (55) 

assignment P 57; 2 58; Q 59; (modified) 

60, 95, 97; T 104, 138, 141; also see 
evaluation 

assumption 10, 20; (physical) 42; (tested) 
162 

at least one 38 ff., 60; — least/most two, 
three 88 ff. 

atomic Wf XY 52; Q 53; I 87; C 94; 

S 100; Q? 101; T (104, 106) 
attribute 33; (open/closed) 43; C 94; 

S 100; (set th.) 110 
available (numbers) 44; (calculus) 129 

axiom 2 20; (calculi 70; I 87, 93, 102; 

(geom.) 56, 100; (of truth) 118; (de- 
fining theories) 122; WB 139, 150 

axiomatic (limits of method )102, 131 ff.; 

(defined set domains) 114 

B see basic element 

Bachmann 120 f. 

basic connectives; — signs & 19, 51; 
PA1sQ 52; » 72 

basic element/object 110 f. 

basic rules/theorems (generally 66-72; 

(- sequences) 72; P 73 f.; Q 75 f., 78 

Begriffsschrift 44; see conceptual/symbolic 

notation 

Bendiek 26 

Bernoulli (152), 162, 168 
Beth 85 
bias 147, 162, 164 
biconditional 54 

biregular 128, 132 

bit 145 f., 
Bochenski 9 

border-line cases 15 ff., (59) 

bound (re-naming) 75; (variable) 54, 92, 

95 
Boole 12 

C... see catalogue 
calculus (general) 70 ff., 79 f., 122 ff.; 

> 72; P 58-73; Q 74, 124; I 88; S 100; 

T 106 

Cantor 110 

Carnap 141, 147 f., 150, 161 

catalogue Ci 31 f., 124; Ca 32 f., 42, 

140; C4? 32 f., 42 
category, gramm./log. 53 f. 

certain 138; (almost) 138, 148, 162 f.; 
(‘practically-’) 164 

certainty (degree) 138 ff., 152; (require- 

ment) 164; (listed instances) 153, 154, 

164; see also confirmation 

chains (for finiteness) 103 
Chrysippos 12 

Church 45, 106, 126 

circle (of foundation) (56 f.), 155 

closed (attribute) 43; (domain) 78 
codified 66, 135 

Cogan 45, 10718 

combinatory logic 10713 

complement(ary) & 18 ff., 25; (relative -) 
(44), 58; C 96, 127 

complete (calculi) P 81; Q 82 ff.; C 95; 

see also incomplete (state description) 

140 f. 
composition YB 143 
compound propositions 34 ff., (49 f.), 

1327 
comprehensor (39), (641817), (75), 94 f., 

97, 102 f., 106, 107 
concatenation (of relations) 96, (102 £.); 

(of sign strings) 123 f. 

concept(ion) (subj., pred.) 14 f.; (attr.) 
32 f, (= pred.) 6411 

conceptual language/notation 30, 44 

conclusion 10, 14, 19; see also deduction 

conditional (or implication) 54 

conditioned WB 144, 150 ff. 
congruence (property) 88 

conjunction 53; see and; (in grammar) 55 

consequence (relation) 61 ff., (deduction 

extended) 67; S 71 ff.; (vs. calculi) 
79 f.; UB 142 f. 

constants P see functor; Q 55; T 105 f.; 

(set th.) 110 
constructive (logic) 69; (sets) 113; 

(enumeration) 127; (definition) 129 

content (proposition) 38, 47; (- expres- 

sions) 40 
continuous (vs. discrete) 41 
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contradiction 73, (135?) 
contraposition (10), (13), 20, (24) 

converse (of function, relation) (92, 96), 

98 
conversio simplex 19 

coregular 127 f., 131 f. 

course-of-value (attr.) 33; P 58 

credible 33, 156 

Curry 107 

cut 72 

D (domains) & Q 59; Q 82; S 100; 

Q? 101; T 104 f.; (of sets) 110 ff.; 
D* 113 f. 

Davis 126 

decision (procedure) 128, 130; ¥B 164, 166 
deduction theorem 69 
deductive (sciences) 122; (possibilities) 

135; - inductive) 155, 157 
definability 2°18; P (37, 45) 58 f.; (by 

a calculus) 78, 122; (set through prop- 

erty) 112 

defined (regular) 124; (coreg.) 127 
definition 2 18 f.; (simultaneous) 94; 

I 102; C (finite) 102 f.; (step-by-step) 
117; WB 148, 154 

demonstrability 79, (123); (non -) 133 

denying (vs. complement) 24, 96 

derivable 67, 71 ff., 79; also see calculus 

derivations (instances) 2 19 ff., 71 f.; 
P 74; Q 76 f. 

description (individual) 92 ff.; CF 94; 
(state) 141, 143 f., 146 

designation (system of) 120 

discrete ontology 28, 38 f., 52, 78 f., 87 

distinguish (theories) 165 f. 

distribution 138 ff.; (conditioned) 149, 

150 f.; (description of —) 142 f.; (- of 
distribution) 167 

distributive law P (58), 143 

divisible (math.) 10; (matter) 41 f. 

domain (of objects) 78; (of sets) 110 ff.; 

(open/closed) 78, 114 
Döhmann 45 

e (no) 14 ff., 18; Q 25 

E (element) 110 f. 

either — or 36 f. 
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element (101), 110 f. 

empty (concepts) &' 16, 20, 23; (domain) 
60, 65 

enumerable 136, 127 f.; see also regular 

equal distribution 164 

equation 87 f. 

equipossibility 145 ff.; (assumption type 1) 

148, 161; (type 2) 149, 154, 162 
equivalence (54); — rel. 87 
equivalent (58), 139, 150 

event (repeatable) 43, 149; (as object) 

100, 139; (individual -) YB 154 
Euler 65 

Euclid 26 

every 27 f.; (property) 112; see also all 

exactly one, two ... 89 f. 

exclude (log.) 140 

existential formulas 54 

expectation JB 168 
experience 44; (corrected by) 145, 149 f., 

162, 164 
expressions Q 53; S 72; T 106 

extension (of term) 19; (of logic) 94, 
100 ff. 

F (false) 33 ff., 56 f. 
false 33, 79, 116 ff., 120 
favourable/possible 149 
FC 74 
Feys 107 

fictionalist 28 

figure & 15; (derivation, proof) 20 ff., 

71 f.; (instances) 74, 76 f. 

Fine YB 167 
finitary (consequence) Q 62, 84 

finite (universe) 38, 59 f., 140 f.; (def.) 

103 f., 135; (calculus) 123 f. 
follows 14, 55, 61 ff., 71 ff.; (vs. if - then, 

derivable) 49, 73 

form (of world) 27; (of language) (19), 
30, 47 f., 50 

form expressions 40 

formulas see wffs 

Frege 12, 44, 115 

frequency phenomena YB 148 ff., 167, 154 
FSK 80 

function (log.) 34 f.; Q 52; T 97; (vs. 

value) 45, 94; also see functor 

functor P 51; Q (53); (descr.) 92; F 97 
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g 141, 145 

generalization (A -rule) (67); Gi Gs 74 f. 

generally valid 28, 50; P 57, 79; & 59; 

Q 60, 62, 79 (124); I 87; T 101, 134 
genidentity 41 

Gentzen 72 

geometry 11, 56, 100 

Gi 75 
Gödel 62, 123 ff., 126 
grammatical (usage) 26; 

(categories) 53 

graph 96 f., 108 

Gs 74, 83 

(form) 48; 

Hasenjaeger see Scholz-Hasenjaeger 

Hailperin 65 

Hermes 126 

Heisenberg 56 

Heyting 85 

higher-order (rules) 66, 69, 73; (logic) 

100 f., (104) 
hold 31 f.; (attr.) 33, 110; Q2 101 

IC...) see information 

i (some) 14 ff.; Q 25; ı& 59 

t (operator) 92 

idealist 28 

idealized 30, 41, 4511, 62, 156, 168 
identity 87 ff., 102 

if 37, — then 13 f., 37, 48 f., (56 f.); (vs. 
follows) 55, 61; (vs. derivable) 69 

if and only if (= iff) 37, 53 
incomplete (statements) 26; (calculi) 102, 

(128 f.), 134 f.; (knowledge) 141, 155, 
168 

independent (propositions) 140 f., 146; 

(events) 148, 154; (of bias) 164 

individual description 91 f. 

inductive inference 155 ff. 

inference (rules of) 67 ff.; (deductive/ 

inductive) 155, 157; (plausible) 156 

infinite 31 f., 84, 135, 136; Y 137 
information (measure, unit, gain) 145 f.; 

(incomplete) 155; see also knowledge 

inter-connecting of inference 20 ff.; 

(structure of —) 85; see also derivation 

interpretation (translation) 54; (seman- 

tics) 54, 56, 122; (def. of W*) P 57; 
2 58, Q.59 f.; C:95, 97 

intuitionistic 27; P 78 f., 121 

invisible predicates 101 

Jeffreys 137 

judging D 127; YB 137, 149, 163; see 
also bias 

-junctions P 37 f., 53 f. 

justified (member of proof) 72; (legiti- 

macy of descr.) 92 ff., 107 f. 

juxtaposition (of inferences) 20 

Kant (65), 135 

Kleene 85, 120, 126 

knowledge WB 149; (measure, unit, - 
gain) 145 ff. 

Kolmogorov 139 
Kripke 78 

Kuratowski 104 f. 

Lp 51, 56 f.; Ly 51, 58 f.; Lr 52 f., 59 f., 
123; Lr 87 f.; Lx? 102; Le) Lag) 104; 
Lr 105 f. 

Lagrange 13618 

Langford 78 

language (standard) 48 ff.; 

about -) 56 ff., 115 

law (of nature) 30, (155 f.), 165; (of logic) 

see rule, theorem 

Leibniz 9 

Lewin 41 

Lewis 78 

likely 156, 16722 

logic (vs. math.) 30; (of relations) 12; 

YB 45, 137 ff.; S 99 £.; T 104 ff. 
logical (function) 33, 34; (theorem) see 

general validity (antinomy) 109; IB 
147, 161 

logistic 12 

Lorenzen 69 

Löwenheim 102 

Lukasiewicz 137 

(talking 

many-sorted logic 99 f. 

many-valued logic 85, 137 

Markov 126 

Mates 10 

mathematics (deduct. science) 30, 122; 

(logic of math.) 44, 102, (104), 109 
Matiyasevich 13671 
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matrix 34 f., 78; see also truth-table 

maximal (interpretation) 101; (domain 

of sets) 120; (knowledge) 145, 148 

mean (weighted) 146 

meaning 55 ff., 12112 

measure (numbers) 42, 46; (of certainty) 

138, (141), 145 £.; (-ment) 155, 165 
metalogic 13, 134; -language 56, 109, 

(116 ff., 156) 
methods 66 ff.; (limitations) 129 ff. 

middle-term 14 

minimal knowledge 146 

von Mises 154 

modalities 78 
mode (of inference) 9; 2 15 ff.; (of 

validity) (85); (vs. schema) 29 f., 

(67); (= rule) 122; YB 137, 155 
modus ponens 67, 70, (72 f.); Q 74 
monadic P 34 f.; Q F 54; T 104 f. 

Mostowski 126,135, 13612 
multiplication F 97 f.; T 106; YB 150 ff. 

n (complement, denying) 18 ff., 96 

nand 37 

natural (language) (11), 47 f., 54 f.; 
(use of ‘all’) 16; (numbers) 131 ff.; 

(number words) 88 

necessary 78 

neither — nor 37 

no 14, 17; see also e 

non-theorems 132, 135, 136 

nor 37 

normal (interpretation) 101, 135; (form) 

P 58 (- of proof) 73 

not 13, 24, 28, 33 f., 35, (57) 
number (natural) 118; (theory) 131 ff.; 

(real) 42, 46; (imagin.) 63, (144) 

number words (‘naive’) 88 f.; (abstract) 

106 f. 
numerical propositions 88 f. 

o (some — not) 14 ff., 18; Q 25 

object 110 ff. 

object language 56 

occurring of variables 75, 83 f. 

ontology 27 ff.; YB 144; see also discrete, 

continuous, available 

open (attr.) 43, 49; (set concept) 113 f.; 

(true/false) 117 f.; (maming, ordinal 
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numbers) 119 
operation (log.) 31 ff.; (by rules) 70 f., 

(123) 
operators Ax Vx 54; ıx 92; [x|...] Q 94; 

F 97 
or 30, 36 f., 55, (57) 
order (linear) (31), (65), 140, 167° 

ordinal numbers 119 ff. 

P (proposition) 51; (possible) 137 
paradoxical conclusion (73), 109; (contra- 

diction) 112, 116 

parentheses (saving of) 54; (omission) 
6425 

Peano 12 

Peirce 12 

Pi 75, 84 
PL (= valid in propositional logic) 76 
plausible (assumptions) 109; (inference) 

156 f. 
Polya 46, 156 f. 

Popper 166° 

possible 78; (comparative use) 138 

Post 126 

predicate 2 14; Q 50, 53; C 94; Q2 101; 
(calculus) 74 

predicate logic 25; (language) 52 f.; 

(interpretation) 59 ff.; (calculus) 74; 

(use in math.) 133; YB 161 
prejudice see bias 
premise (rule) 10; (figure 2’) 14, 20, 25, 

49, 55; $ 71 f.; see also assumption 

Principia Mathematica 45, 93 
probable 448, 4526, 137 ff.; (log.) 147, 

161; (subj.) 147, (164); (statist.) 155; 
(conditioned) 149 f., 16828 

problem complex 123, 127 ff. 

produce 123 ff.; see also regular 

proof 62, 73; (metalog.) 80, 81 f.; see 

also calculi 

propensity 138 ff., 148, 152, 165 

properly (reg.) 128, 130; (coreg.) 131 

property 30; (vs. qualities) 42; (- of 

attributes) 94, 103 ff. 

proposition 10, (31), 49 f., 63; D 130 

propositional logic (Stoic) 10, 12; 25 
(language) 51; (interpreted) 56 f.; 

(variants) 78 f.; (completeness) 81; 

YG 139, 144; (instance) 150 f. 
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Ps 75 
PSC 72, 80 

qualities 43 

quantum physics (42), 167 

quantifier, quantor 40, (52 f.), 60, 121; 
(restricted) 133 

quaternio terminorum 26, (63) 

Quine 45, 113 

quotation marks (30), 45, 115 

Rb (= bound renaming) 75 

realist 28 

recursive see biregular; (-ly enumerable) 
136 

regular 124 f.; (properly) 128 

Reichenbach 19 

relations 12, 14, 30 f., 43; — between 

attributes 33; (— instances) 96 f.; (de- 
fining rules) 85, 123; (— of equivalence/ 

congruence) 87 f. 

renaming (bound) (55), 75, 86 

reversible (rule) 85 

Robinson 136 

Rosser 166 

tule of inference 66 ff.; (syntactical —) see 

calculus; (semantical —) see consequence 

Russell 12, 93; (antinomy) 112 

satisfy 60, 62 

SC 72 
scepticism (selective) 29 
schema 29, see also form 

Schneider 65 

scholastic 12 

Scholz 9; (-Hasenjaeger) 64 f., 85, 136 

Schönfinkel 105 

Schröder 12 

Schutte 78 

sclerodox 147, 164 f., 169 

scope 54, 75 (of ıx...; 92) 

second-order logic 100 f. 

semantic 56 ff., 62; (foundation) 66; 

(antinomies) 109; (problem complex) 
123 

sequence (N-tuple) 38; (derivation) 71 ff. 
set theory 49, 97, 101, 121; (naive —) 110 

sets (106), 110 ff.; (domain of -) 120; 

(- of distributions) 142, (16714) 

Shannon 145 

simultaneous definition 107 
Skolem 102, 136 
Smullyan 136 

some 14; also see i, at least one, o 

sound 78, 80 f.; (accepted rules) 122 
square 12, 26; (negative) 63; (sum of -) 

133, (137), (143) 
standard (language) 38; (model) 101 

standard form (of phrases) 48 f.; P 

(normal form) 58; (of proof) 73 

state of affairs (33), 56; (event as object) 
108, 139 

Stoa 10, 12 

subject-term & 14 

subjective 28 148 
sub-set 111 f. 

substitution 2 19, 21, 24; Q 31; (Rb, TS) 

75, 85; (descriptions) 93 
Suppes YB 167, 148 
Suranyi 136 

syllogistic 12 f., 17 f., 44, S1 f., 58 f., 161 
symbolic (logic) 12; (method) 17 f.; 

(notation 11, 56) 

syntactic def. of theorem 70, 122; see 

also calculus 

T (true) 36; YB 139 ff.; (gen. truth table) 85 
tz 124 

Tarski 116, 123, 136 

tautological see generally valid P 

term 2 14, 52; Q 53; D 92, 97; T 106 
term-substitution Q 75 f.; D 93 f.; see 

also TS 

theorem 66 ff., 70, 128 

theory 27, (42); - of numbers) 131 ff.; 

(tested) 165 

therefore 10, 14; see also rule 

there is 28; see also at least - 

....thing 14, 28, 40; (material existence) 

41; (domain of objects) 42; (obj. of 

thought) (100), 110 
thinkable (calculi) 124, 136 

tree-like (proof figure) 20 ff., 71 f. 

tres oi tl 19 56E 6 fie 1200137 fe: 
(logical/factual truth) 150 

truth-functions, -tables, 34-37, 64; -values 

33 ff., 57; generalized 851’, 137 ff. 

TS 75, 83, 96 
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tuple = finite sequence: (objects) 32, 

59; (truth values) 34, 38 

Turing 126 

Turquette 166 

two-valued (log. function) 33 f.; (matrices) 

34 ff.; (propositional logic) 73, 143 

type theory 104 ff.; languages see Los) 

Laz) Le 

uncertainty (measures) I(Z3) 146; e 157 f. 

undecidable 128; (absolutely) 130; see 

also decision 

union (96, 113) 

universal (formulas) 54; (validity) 28; 

see also general — 

universe of discourse 28 

urn (as weighting norm) 138; (model) 
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146, 152, 160, 162 f. 

XY (assignment); W* (evaluation) P 57; 
58: Q 59 f., 62; C 95, 97 

valid & 16, 59; (D-) 2 59 f.; Q 60, 82; 

(S-) 61; (of rules) 68 f. - and Fc 79 
8.3 (def.) 122°£.; 52 130 fh scegaiso 

generally — 

valid in PL Q 74 ff., 85? 
validity value 138 

variable P & 51; Q 52; T 103, 105; 

(assigned) P 57; 2 58; Q 59 

YB 139, 140 ff.; w 150 ff. 
wi P2513 0527.51 875,8 9977 108% 
Whitehead 12, 93 
world 27, 56, 140, 145 
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