

Using Computers in Linguistics:

A Practical Guide

Computing has had a dramatic impact on the discipline of linguistics and
is shaping the way we conceptualize both linguistics and language.

Using Computers in Linguistics provides a practical introduction to recent
developments in linguistic computing and offers specific guidance to the
linguist or language professional who wishes to take advantage of them.

The book is divided into eight chapters, each of which is written by an
expert in the field. The contributions focus on different aspects of the
interaction of computing and linguistics: the Internet, software for fieldwork
and teaching linguistics, Unix utilities, the availability of electronic texts,
new methodologies in natural language processing, and the development
of the CELLAR computing environment for linguistic analysis.

Features include:

� a glossary of technical terms, including acronyms
� chapter appendices which list and review relevant resources, such as

books, software, URLs
� more extensive and regularly updated appendices of resources on the

World Wide Web:
http://www.lsa.umich.edu/ling/jlawler/routledge

Using Computers in Linguistics will be indispensable for anyone interested
in linguistics.

John M.Lawler is associate professor of linguistics at the University of
Michigan and director of its undergraduate program in linguistics.

Helen Aristar Dry is professor of linguistics at Eastern Michigan
University, and is co-founder and moderator of The LINGUIST List, a
9000-member electronic discussion forum for academic linguists.

Using Computers in
Linguistics

A Practical Guide

Edited by John M.Lawler and
Helen Aristar Dry

London and New York

First published 1998
by Routledge
11 New Fetter Lane, London EC4P 4EE

This edition published in the Taylor & Francis e-Library, 2003.

Simultaneously published in the USA and Canada
by Routledge
29 West 35th Street, New York, NY 10001

©1998 John M.Lawler and Helen Aristar Dry

All rights reserved. No part of this book may be reprinted
or reproduced or utilized in any form or by any electronic,
mechanical, or other means, now known or hereafter
invented, including photocopying and recording, or in any
information storage or retrieval system, without permission
in writing from the publishers.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the
British Library

Library of Congress Cataloguing in Publication Data
Using Computers in Linguistics: a practical guide/edited
by John M.Lawler and Helen Aristar Dry.
p. cm.
Includes bibliographical references (p.) and index.
1. Computational linguistics. I Lawler, John M., 1942– .
II. Dry, Helen Aristar, 1946– .
P98.U767 1998
410´.285–dc21 97–23787

 CIP

ISBN 0-203-05901-8 Master e-book ISBN

ISBN 0-203-21742-X (Adobe eReader Format)
ISBN 0-415-16793-0 (pbk)
ISBN 0-415-16792-2 (hbk)

This book is dedicated to the editors’ parents:

Ida Maye Smith Dry
Harold Franklin Dry
Agnita Margaret Engler Lawler
and to the memory of

Edward Michael Lawler (1914–54),
who would have liked both computing and linguistics

vii

Contents

List of figures x
List of contributors xiii

Introduction
John M.Lawler and Helen Aristar Dry 1
0.1 Computing and linguistics 1
0.2 Needs 2
0.3 Purpose and provenance of the book 3
0.4 Overview of the chapters 4
0.5 Conclusion 8

1 The nature of linguistic data and the requirements of
a computing environment for linguistic research 10
Gary F.Simons
1.1 The multilingual nature of linguistic data 11
1.2 The sequential nature of linguistic data 15
1.3 The hierarchical nature of linguistic data 16
1.4 The multidimensional nature of linguistic data 19
1.5 The highly integrated nature of linguistic data 20
1.6 The separation of information from format 22
1.7 Toward a computing environment for linguistic research 23

2 The Internet: an introduction 26
Helen Aristar Dry and Anthony Rodrigues Aristar
2.1 Introduction 26
2.2 What is the Internet? 28
2.3 Basic Internet functions 31
2.4 Finding information on the Internet 42
2.5 World Wide Web 50
2.6 Conclusion 58
Appendix 59

viii Contents

3 Education 62
Henry Rogers
3.1 Introduction 62
3.2 Software for teaching linguistics 63
3.3 Computer assisted instruction 64
3.4 Theory modeling 67
3.5 Computers in specific areas of linguistics 69
3.6 Developing teaching software 80
3.7 Prospects 87
Appendix 88

4 Textual databases 101
Susan Hockey
4.1 Acquiring and creating electronic texts 101
4.2 Markup schemes 107
4.3 Basic analyses 115
4.4 Conclusion 132
Appendix 134

5 The Unix™ language family 138
John M.Lawler
5.1 General 138
5.2 History and ethnography of computing 139
5.3 Bits and ASCII: phonetics and phonology 145
5.4 Grammar 150
5.5 Editing and formatting 160
5.6 Filters 162
5.7 Unix resources for users 164

6 Software for doing field linguistics 170
Evan L.Antworth and J.Randolph Valentine
6.1 Hardware and operating systems 170
6.2 General-purpose versus domain-specific software 172
6.3 Criteria for evaluating software 173
6.4 A catalog of linguistic software 177

7 Language understanding and the emerging alignment
of linguistics and natural language processing 197
James E.Hoard
7.1 Overview 197
7.2 The changing relationship between linguistics

and natural language processing 198
7.3 Understanding language 201
7.4 Linguistically-based and statistically-based NLP 225
7.5 Controlled language checking 226

Contents ix

8 Theoretical and computational linguistics: toward
a mutual understanding 231
Samuel Bayer, John Aberdeen, John Burger,
Lynette Hirschman, David Palmer, and Marc Vilain
8.1 Introduction 231
8.2 History: corpus-based linguistics 233
8.3 History: evaluation 235
8.4 Methodology 240
8.5 Example: sentence segmentation 242
8.6 Example: parsing 245
8.7 Benefits 250
8.8 Conclusion 253

Glossary 256
Bibliography 272
Index 283

x

List of figures

2.1 Initial screen of the Pine e-mail program 33
2.2 Results of an Archie search 43
2.3 Archie search results displayed by a graphical Archie

client 44
2.4 Menu produced by a Gopher server 45
2.5 The initial screen of the trn newsreader 49
2.6 Hypertext page listing WWW sites dedicated to specific

linguistic topics (From the LINGUIST List website) 52
2.7 Homepage of the website dedicated to Lexical Functional

Grammar 53
2.8 The sample HTML text as displayed by Netscape 56
3.1 Arabic data for a morphology problem 64
3.2 A lesson on inalienable possession from William Labov’s

LX Problems 66
3.3a The genitive form of “Achilles” from A World of Words 67
3.3b An explanation of “case” from A World of Words 68
3.4 Words containing clicks in Nama from Sounds of the

World’s Languages 71
3.5 A HyperCard stack on acoustics from Valentine’s

Introduction to Linguistics 72
3.6 From a HyperCard stack: English Consonants from

Valentine’s Introduction to Linguistics 74
3.7 A short demonstration from PC-KIMMO 75
3.8 An example from LX Problems, showing where Bontok is

spoken 77
3.9 The relationship of Indo-European and Latin consonants

from A World of Words 78
3.10 Trajan’s Inscription from the Roman Forum 79
3.11 A card from Phthong showing an exercise in phonemic

transcription and English orthography 82
3.12 A card from Phthong showing an exercise in English

orthography and phonemic transcription 83

List of figures xi

4.1 The beginning of Section A of the Brown Corpus
showing the fixed format locators 109

4.2 The beginning of The Merchant of Venice showing
COCOA-format markup 110

4.3 Part of Walter Pater, The Child in the House, encoded
in TEI SGML by Wendell Piez 113

4.4 Word list in alphabetical order 116
4.5 Word list in frequency order 117
4.6 Concordance of word I in Section R of the Brown Corpus 118
4.7 Word list showing alphabetization of Spanish 120
4.8 Concordance showing apostrophe and & as diacritics 122
4.9 Concordance showing apostrophe as padding letter 123
4.10 Concordance showing hyphen treated as a word separator 125
4.11 Index showing words sorted by their endings 126
4.12 Concordance of words ending in ing 127
4.13 Concordance of phrase in <anyword> of 128
4.14 Concordance showing occurrences of that sorted by right

context 129
4.15 Concordance showing occurrences of that sorted by left

context 130
4.16 Part of a word frequency distribution 131
5.1a Data analysis problem (A–B) 141
5.1b Data analysis problem (C–D) 142
5.2 Parse of command line: 143

rev word.big|sort|rev>speculum

5.3 ASCII chart 146
5.4 Top of man page for ls command 153

man ls|head

5.5 From man page for ls command: 154
effects of -t, -s, and -r switches

5.6 Synopses and syntax of selected Unix commands 155
5.7 Operation of the definitions alias 156
5.8a The loopedit script, with commands in editcmds file

(Figure 5.8b) 157
5.8b The editcmds file, input to ex on the loopedit script

(Figure 5.8a) 158
5.8c Parse of the edit command in editcmds file (Figure 5.8b)

interpreted by ex in the loopedit script (Figure 5.8a) 159
5.9a Simple examples of regular expressions and the strings

they match 162
5.9b Complex examples of regular expressions and the strings

they match 163
6.1 A record in Shoebox 179
6.2 Lexicon record in askSam (MS-DOS version) 180

xii List of figures

6.3 Dynamic dialectological map produced in HyperCard 181
6.4 A sample lexical database in LinguaLinks 182
6.5 Display of an utterance in CECIL 184
6.6 Display of an utterance in Signalyze 185
6.7 Results of a search in FindPhone 186
6.8 Sample word parse in PC-KIMMO version 2 188
6.9 Sample sentence parse in PC-PATR 189
6.10 Sample grammar card in Rook 190
6.11 Annotation window in Macintosh IT 192
6.12 Text and concordance windows in Conc 195
6.13 A record in WORDSURV 196
7.1 Overall information extraction architecture 207
7.2 Conceptual architecture for a meaning-based language

checker 228
8.1 Sample ATIS log file (excerpt) 237
8.2 Rate of progress in the DARPA Spoken Language

Program for context-independent sentences 238
8.3 Sample document and template fragment from MUC-4 239

xiii

List of contributors

Evan L.Antworth has worked with the Summer Institute of Linguistics
for 19 years, including seven years of work in the Philippines. Since the
early 1980s he has worked with field linguists as a consultant in the area
of using microcomputers to do linguistic field work. In 1989 he began work
in the Academic Computing Department of SIL in Dallas, Texas where
he is now associate editor of the department’s series Occasional Publications
in Academic Computing. He has collaborated on several software
development projects of interest to linguists, including writing a book on
PC-KIMMO, SIL’s implementation of Kimmo Koskenniemis’ two-level
model of morphology.

Anthony Rodriques Aristar is Associate Professor of Linguistics at Texas
A&M University and co-moderator of The LINGUIST List, which he
founded in 1989 when he was a Lecturer in Linguistics at the University
of Western Australia. Previously he was the Chief Linguist of a natural
language research group at Microelectronics and Computer Technology
Corporation, where he developed the first fully functional Arabic
morphological analyzer. His primary research interests are typology,
morphology, and historical linguistics. His recent publications include
“Binder Anaphors and the Diachrony of Case Displacement” in Double
Case-agreement by Suffixaufname, ed. Franz Plank (Oxford University Press:
1994) and “On Diachronic Sources of Synchronic Pattern: An Investigation
into the Origin of Linguistic Universals,” Language 67:1–33 (1991).

Helen Aristar Dry is Professor of Linguistics at Eastern Michigan
University. She is co-founder and moderator, with Anthony Aristar, of
The LINGUIST List, a 9000-member electronic discussion forum for
academic linguists. She received her PhD in 1975 in English Language
and Linguistics from the University of Texas at Austin; and her primary
research interests are textlinguistics, linguistic stylistics, and discourse
analysis. Her publications have appeared in Style, Language and Style, Text,

xiv List of contributors

Journal of Literary Semantics, Studies in Anthropological Linguistics, and
others. Recently she has done considerable legal consulting on author-
ship identification, and her non-academic publications include several
articles on this topic.

James E.Hoard received his PhD in Linguistics from the University of
Washington, where he was a National Defense Foreign Language Fellow
and a Woodrow Wilson Dissertation Fellow. Dr. Hoard is currently the
Program Manager of the Natural Language Processing Program, Boeing
Information and Support Services, Research and Technology organization.
He is responsible for the program’s long range research and development
plan and is the principal investigator of the Natural Language
Understanding project. Dr. Hoard is also an Affiliate Professor at the
University of Washington and teaches courses in computational linguistics.
Recent publications include “The Application of Natural Phonology to
Computerized Speech Understanding” (with R.Wojcik, in B.Hurch and
R.A.Rhodes (eds), Natural Phonology: The State of the Art, Trends in
Linguistics, Studies and Monographs, 92; 1996, pp. 121–131).

Susan Hockey is Professor in the Faculty of Arts at the University of
Alberta. She has been active in humanities computing since 1969. From
1975 to 1991 she was at Oxford University where her most recent position
was Director of the Computers in Teaching Initiative Centre for Textual
Studies and Director of the Office for Humanities Communication. From
1991 to 1997 she served as the first director of the Center for Electronic
Texts in the Humanities (CETH) at Princeton and Rutgers Universities,
where, together with Willard McCarty, she founded and directed the CETH
Seminar on Methods and Tools for Electronic Texts in the Humanities.
She is chair of the Association for Literary and Linguistic Computing and
a member (currently chair) of the Steering Committee of the Text Encoding
Initiative. Her experience in electronic texts includes text archiving,
concordance and retrieval software (development of the Oxford
Concordance Program), teaching literary and linguistic computing (for 15
years), corpus design and development, cataloguing and documenting
electronic texts. She is the author of two books, editor of three collections
of essays, and author of approximately thirty articles on various aspects of
text analysis computing.

John M.Lawler is Associate Professor of Linguistics at the University of
Michigan in Ann Arbor, where he is Director of the Undergraduate
Program in Linguistics, and teaches also in the Residential College. As chair
of the Linguistic Society of America’s Computing Committee, he organized
the symposium and software exhibit that generated this volume. After a
BA in Mathematics and German, an MA thesis on Some Applications of

List of contributors xv

Computers to Linguistic Field Methods, and several years of teaching English
as a Foreign Language, he received his PhD under George Lakoff and
Robin T.Lakoff. He is a software author (A World of Words, The Chomskybot)
and has been a consultant on computing organization and software
development for industry and academia. A generalist by inclination, he has
published on a broad spectrum of linguistic topics, including the semantics
of generic reference, second-language learning, Acehnese syntax, metaphor,
English lexical semantics, metalinguistics, negation and logic, sound
symbolism, and popular English usage.

Henry Rogers, having received a PhD in Linguistics from Yale, is an
Associate Professor of Linguistics, Anthropology, and Speech Pathology
at the University of Toronto, and currently Associate Chair of Linguistics.
He is the author of Theoretical and Practical Phonetics, the co-author of two
software packages for teaching linguistics—Phthong and Arbourite, and
the developer of a phonetic font family—IPAPhon. In 1994, he was the
Acting Director of the Centre for Computing in the Humanities. His
research interests are writing systems, phonetics, and Scots Gaelic; currently
he is working on a book of the writing systems of northern South Asia.

Gary F.Simons is Director of the Academic Computing Department at
the international headquarters of the Summer Institute of Linguistics in
Dallas, Texas. In this capacity he has led a number of projects to develop
software for field linguists, including the CELLAR project described in
this volume. Prior to taking up this post in 1984, he did fieldwork with
SIL in Papua New Guinea (1976) and the Solomon Islands (1977–1983).
He was active in the committee that developed the Text Encoding
Initiative’s guidelines for text analysis and interpretation (1989–1994), and
currently serves as a member of the TEI’s Technical Review Committee.
He received a PhD in general linguistics (with minor emphases in computer
science and classics) from Cornell University in 1979.

J.Randolph Valentine is an Assistant Professor in Linguistics and
American Indian studies at the University of Wisconsin-Madison. His
research interests include the theory and practice of comprehensive
grammatical documentation, especially as applied to Algonquian languages.
He is also an avid student of Ojibwe ethnopoetics and stylistics, and seeks
to develop a comprehensive approach to Ojibwe oral traditions, encom-
passing linguistic, antropological, folkloristic, and literary approaches. His
work has involved extensive use of computer technology in the research
and presentation of Algonquian languages.

The Natural Language Group at the MITRE Corporation in
Bedford, Massachusetts has been investigating the properties of human

xvi List of contributors

language in text and interactive discourse for many years. The integrated
approach of the group reflects the authors’ diversity. The director of the
group, Dr. Lynette Hirschman, holds a PhD in computational
linguistics and is a leader in both the speech understanding and
evaluation-based language processing communities. Dr. Samuel Bayer
holds a PhD in theoretical linguistics, and currently coordinates MITRE’s
internal research effort in human-computer interaction. Marc Vilain
leads MITRE’s message understanding effort, and has contributed
innovative research to the areas of corpus-based language processing,
knowledge representation, and message understanding. John Aberdeen
holds MA degrees in both linguistics and cognitive psychology and has
made broad contributions to MITRE’s message understanding work, both
in primary development and technology transition. David Palmer holds
an MS in computational linguistics and specializes in text segmentation,
both at the word and sentence level. John Burger has both contributed
to and led research in a wide range of areas related to language
processing, including multimodal interaction, discourse understanding,
and information retrieval. For a bibliography and more information,
please visit the group’s Web site at:
http://www.mitre.org/resources/centers/advanced_info/g04h/nl-index.html

1

Introduction

John M.Lawler and Helen Aristar Dry

0.1 COMPUTING AND LINGUISTICS

In the last decade computers have dramatically changed the professional
life of the ordinary working linguist, altering the things we can do, the ways
we can do them, and even the ways we can think about them. The change
has been gradual, incremental, and largely experiential. But the handwriting
is already on the screen—the rate of change is accelerating, and the end is
not in sight.

The relations between computing and linguistics are in fact deeper and
more interesting than mere technological change might suggest. Indeed,
the advent of widespread access to computing power may well have had
an effect on the discipline comparable to that of the early study of Native
American languages. In the first half of this century, the experience of doing
fieldwork on Native American languages shaped the concepts and
methodologies of American Structuralism; now, in the second half of the
century, the common experience of using computers is shaping the way
we conceptualize both linguistics and language.

This is apparent, for example, in the metaphors we use. As is widely
recognized, the metaphor of automatic data processing underlies and
informs the goals and methodology of generative grammar. And, whatever
the validity of this image as an intellectual or ideological basis for linguistic
theory, it is unquestionably valid in representing the actual experience of
doing linguistics today, as anyone who has studied both syntax and
programming will attest.

Of course, one reason the computing metaphor works so well is that
language truly is a form of software. Just as the human brain was the model
for computer hardware, human language was the model for computer
software—and we are now, after a decade of widespread, intensive
experience with computers, in a position to recognize experientially what
that means. The social, cultural, and intellectual activities of linguistics and
computing (in academia, in hardware and software industries, and in
various user communities) are woven of many of the same conceptual

2 John M.Lawler & Helen Aristar Dry

threads. The relations between linguistics and computing are not only
metaphoric, but symmetrically so, and represent a natural and useful
description of important aspects of both phenomena.

It is no wonder, then, that linguists were among the first scholars outside
of the strictly technical fields to become generally computer-literate.
Computational technologies offer linguists significant benefits, both at the
individual and the disciplinary level. They can facilitate our individual
research and teaching, allowing us to gather information more quickly,
analyze large bodies of data more efficiently, and reach a more varied group
of students through individualized teaching programs. At the same time,
they are reshaping the discipline, bringing to light new areas of research,
new types of data, and new analytical tools.

This book is an attempt to help the ordinary working linguist take full
advantage of these technological opportunities. It provides wide-ranging
information on linguistic computing, in all the senses of that phrase; and
it was written specifically for readers with some knowledge of language
and linguistics, as well as some curiosity about computing. This description
fits not only linguists per se, but also an expanding group of individuals
who are not professional linguists, but who deal computationally with
language: among others, programmers and analysts, library information
specialists, and academic humanists engaged in the study of texts. We have
tried to meet the needs of these readers, at the same time as we focus on
computational information particularly relevant to linguistics. Section 0.2
enumerates some of the features which are designed to make the book
accessible to a wide range of readers.

0.2 NEEDS

First and foremost, the contributors were asked to write in a non-technical
style and to assume a minimum of computational knowledge on the part
of their readers. Given the claims in Section 0.1 about the general computer
literacy of the discipline, this request may seem to require explanation. But,
in the first place, the book is intended for students as well as working
linguists. And, in fact, as noted in Section 0.4, most of the chapters would
be effective as classroom introductions to particular topics, or as
supplementary background reading.

And, in the second place, our experience suggests that—however
computer-literate linguists are as a group—few individual linguists outside
the strictly computational subfields would lay claim to thorough
understanding of the technologies they use or perfect confidence in learning
new ones. Many feel that their computer knowledge is spotty rather than
systematic, since often it was acquired “on the fly,” in bits and pieces, under
pressure of the need to solve a particular problem or per-form a specific

Introduction 3

task. Such linguists, we believe, may welcome overviews which “begin at
the beginning,” even on topics they already know something about.

Similarly, many linguists may welcome guidance on choosing or adapting
linguistic software, even though they are experienced computer users.
Computer technology is, of course, complex and rapidly changing, and the
readily available commercial programs often turn out to be ill-suited to the
needs of academics. As a result, most of us hesitate before embarking on
learning a new piece of software or Internet functionality. After all, what we
learn may soon be made obsolete by newer developments. And furthermore,
it is difficult to tell, ahead of time, whether the benefits we will gain from
the software will justify the effort involved in mastering it.

In such quandaries, we have received only minimal help from the
software industry. Commercial developers rarely write software for
academic purposes; and, as a result, there are few published evaluations
to guide us in choosing software for teaching or research.

Commercial software development is, of course, a competitive business;
and the particular economics of the industry almost insure that scholars
will not be a primary market. Unlike many other industries, the software
industry sustains development costs that far exceed manufacturing costs.
Designing reliable software is a difficult, lengthy process; and it is also
extremely expensive.1 By contrast, the costs of duplicating the final
deliverable programs are negligible. This means that software
manufacturers must recoup what they spend on development by selling
multiple copies of the finished product.

As a result, software development is driven by the perceived needs of
businesses, which can and will pay high prices for multiple copies of
programs, and which can and will upgrade their software regularly.
Scholars, on the other hand, represent a small, specialized, and
comparatively impoverished market. Those whose needs dovetail with the
needs of business may be able to find useful commercial software. But those
whose computing needs are more complex are usually disappointed. This
group includes many linguists. And some of these have filled the gap by
developing their own software, while others have learned to modify or
enhance common software packages to suit their specialized purposes.
Much of this “homegrown” software and many of the development tools
could be useful to other linguists; so several of the overviews in this book
also survey and evaluate relevant software.

0.3 PURPOSE AND PROVENANCE OF THE BOOK

This book sprang from a single event, a colloquium entitled “Computing
and the Ordinary Working Linguist,” which the editors organized for the
1992 meeting of the Linguistic Society of America in Philadelphia. John
Lawler also organized the first annual LSA software exhibit for that

4 John M.Lawler & Helen Aristar Dry

meeting. Together these two events drew the attention of many linguists
to the role of computing in their professional lives; and there were requests
for a printed followup. This book is the result: its topics and contributors
include many from the original panel, although the two lists are not
identical.

Besides this introduction, the book has eight chapters, each focused on a
different aspect of the interaction of computing and linguistics. The topics
are arranged roughly in the order of increasing specialization. The early
chapters are thus more general, and in some cases more accessible, than the
last. However, all are designed for a non-technical audience. To that end,
the book includes a glossary of the special computing terms used in the
various articles. Terms in the glossary appear in bold italic upon their first
occurrence in a chapter. And, where relevant, chapter appendices provide
annotated lists of selected print, software, and network resources to guide
the reader in learning more about the topic. Fuller versions of these
appendices are also available on the World Wide Web (see Section 0.5).

0.4 OVERVIEW OF THE CHAPTERS

Chapter 1, “The nature of linguistic data and the requirements of a
computing environment for linguistic research” by Gary F.Simons, the
Director of Computing in the Summer Institute of Linguistics, discusses
language data and the special demands which it makes on computational
resources. As Simons puts it:

1 The data are multilingual, so the computing environment must be able

to keep track of what language each datum is in, and then display and
process it accordingly.

2 The data in text unfold sequentially, so the computing environment
must be able to represent the text in proper sequence.

3 The data are hierarchically structured, so the computing environment
must be able to build hierarchical structures of arbitrary depth.

4 The data are multidimensional, so the computing environment must
be able to attach many kinds of analysis and interpretation to a single
datum.

5 The data are highly integrated, so the computing environment must
be able to store and follow associative links between related pieces of
data.

6 While doing all of the above to model the information structure of
the data correctly, the computing environment must be able to present
conventionally formatted displays of the data.

This chapter prefigures most of the major themes that surface in the other
chapters, and contains some discussion of the CELLAR prototype

Introduction 5

computing environment now under development by SIL. It should be read
first, and in our opinion it should be required reading for anyone planning
a research career in linguistics.

Chapter 2, “The Internet: an introduction” by Helen Aristar Dry of
Eastern Michigan University and Anthony Rodrigues Aristar of Texas A&M
University, the co-moderators of the LINGUIST List, is intended to be
an Internet primer—it offers an overview of the workings of the Internet
and prompts the reader to try out several basic Internet technologies. After
a discussion of the immediate effects of the net on linguists, it describes
the protocols that make the Internet possible, discusses the software that
implements features of the net like e-mail, ftp, gopher, and the World Wide
Web, and concludes with instructions on constructing a Web page. The
authors attempted to make the chapter clear enough to help new Internet
users but also comprehensive enough to fill in gaps in the knowledge of
“old hands.” Linguists who make use of the Internet in their courses may
find this a useful chapter to distribute to students at the beginning of the
term.

Chapter 3, “Education,” by Henry Rogers of the University of Toronto,
an author of both linguistic teaching software (Phthong) and linguistics
fonts (Palphon), explains the advantages and drawbacks of using software
for teaching linguistics. It also offers tips on developing teaching software,
useful to the many linguists who choose to create their own programs or
customize existing software packages in order to better meet their needs.
Besides a great deal of good advice, derived from experience, this chapter
includes a complete, annotated survey of the currently available educational
software for linguistics. It should therefore be very valuable to professors
already committed to computer-aided instruction, as well as to those who
have just begun looking for new ways to present linguistic material to their
students.

Chapter 4, “Textual databases” by Susan Hockey of the University of
Alberta, a major figure in the establishment of the Oxford Text Archive
and the Text Encoding Initiative, is a discussion of the generation,
maintenance, and study of large text corpora. The availability of data
collections like the Brown and LOB corpora has dramatically changed
many areas of language scholarship (see for example the chapter by Bayer
et al. in this volume). This chapter describes what corpora are, where they
can be accessed, how they are annotated, what the various types of markup
communicate, and what software is available to manipulate them. SGML
and the work of the Text Encoding Initiative are concisely explained; in
sum, the article represents a succinct and authoritative overview useful to
anyone wishing to use electronic texts in their teaching or research.

While Chapter 4 deals with getting and organizing textual data, Chapter
5, “The Unix language family” deals with what you can do with it once
you’ve got it. This chapter, written by John M.Lawler of the University of

6 John M.Lawler & Helen Aristar Dry

Michigan, is an introduction to Unix, the most widely-used computer
operating system for workstation-class machines. It is written in the form
of a language sketch, à la Comrie (1987), on the assumption that linguists
who are comfortable with complex technical subjects like case and aspect
systems, complex clauses, and formal grammars will find the technical
complexities of Unix more amenable if they are presented in familiar ways.
Among other topics, it explains regular expressions (a formal
specification of lexical strings for search-and-replace operations), filter
programs, and software tools. Examples include simple scripts and
aliases, and techniques for construction of lexical analysis tools from
standard Unix programs. For experienced computer users who have yet
to try creating programs, the chapter demystifies the construction of
software tools. And it should be valuable to computer novices as well, since
it shows what can be accomplished by ordinary linguists using only analytic
thinking and the power of Unix.

In Chapter 6, “Software for doing field linguistics,” Evan L.Antworth
of the Summer Institute of Linguistics and J.Randolph Valentine of the
University of Wisconsin-Madison discuss a basic problem for ordinary
working linguists: how to use computers to advantage in organizing and
analyzing linguistic data. Along the way, they give thoughtful and detailed
answers to some perennial questions, like “What kind of computer should
I buy?” and “What criteria should I use to judge software for linguistic
use?” The chapter concludes with an annotated survey of available language
analysis software, focusing on “readily available, low cost software products
that run on personal computers, especially portable computers.” This
survey should be an important resource list for research linguists and their
students, whether or not they ever do fieldwork.

The final two chapters deal with Computational Linguistics (CL),
or Natural Language Processing (NLP), an area that is as much a part
of Computer Science as of Linguistics, and that is terra incognita for many
linguists, even those who regularly use computers. It is also an area that
has significant commercial applications, and both chapters are written by
computational linguists working in non-academic environments.

By design, they constitute a point-counterpoint discussion of the recent
history and prospective future of the field of NLP. While the authors of
both chapters agree on the importance of NLP and its eventual impact
on linguistic theory, they represent two quite distinct viewpoints on the
nature and practice of natural language processing, and its relation to
traditional linguistics.

In Chapter 7, “Language understanding and the emerging alignment
of linguistics and natural language processing,” James E.Hoard of the
Boeing Corporation suggests that NLP has already developed the
technology necessary to produce commercial-quality products which can
perform the following functions:

Introduction 7

Grammar and style checking—Providing editorial critiques of
vocabulary usage, grammar, and style—improving the quality of all sorts
of writing—especially the readability of complex technical documents.

Machine translation—Translating texts, especially business and technical
texts, from one natural language to another.

Information extraction—Analyzing the meaning of texts in detail,
answering specific questions about text content. For many kinds of text
(e.g., medical case histories) that are in a well-bounded domain, systems
will extract information and put it into databases for statistical analyses.

Natural language interfaces—Understanding natural language
commands and taking appropriate actions, providing a much freer
interchange between people and computers.

Programming in English—Enabling the use of carefully controlled, yet
ordinary, human language to program computers, largely eliminating
much of the need for highly-specialized and arcane computer
“languages.”

Modeling and simulation—Enabling computer modeling and simulation
of all manner of real-world activities and scenarios where symbolic
information and symbolic reasoning are essential to success.

Hoard’s discussion is based on a “top-down” model of language
understanding, with syntactic, lexical, semantic, and pragmatic
components, most of which are familiar enough to traditional linguists. He
advances the thesis “that the need for language understanding to meet the
goals of NLP will have a profound effect on the objectives of linguistics
itself,” outlines criteria for applying linguistic theory to the goals of
language understanding, and concludes:

The effect of NLP on academic linguistics will produce a profound
enlargement in its scope and objectives and greatly influence the work
of its practitioners. The shift will be…one that places the present focus
on language description, including the concern for language acquisition
and linguistic universals, within the much larger (and to my mind, much
more interesting) context of language understanding.

This is a provocative article, and it has provoked a response from
representatives of a radically different tradition in NLP, that of Corpus-
Based Linguistics. In Chapter 8, “Theoretical and computational
linguistics: toward a mutual understanding,” Samuel L.Bayer and his
colleagues at Mitre Corporation point out that, since its inception,

CL has alternated between defining itself in terms of and in opposition
to mainstream theoretical linguistics…. Since the late 1980s, it seems that
a growing group of CL practitioners has once more turned away from

8 John M.Lawler & Helen Aristar Dry

formal theory. In response to the demands imposed by the analysis of
large corpora of linguistic data, statistical techniques have been adopted
in CL which emphasize shallow, robust accounts of linguistic phenomena
at the expense of the detail and formal complexity of current theory.

This “bottom-up,” data-driven, statistical model of NLP has had great recent
success, which Bayer et al. describe in detail. Linguists have always known
that natural language is significantly redundant, though this has often been
seen more as a performance matter than something linguistics should deal
with. What the results of Corpus-based NLP seem to show is that, on the
contrary, this is an exploitable design feature of natural language, and with
the advent of powerful means of statistical analysis of large corpora, a
surprising amount of structure and meaning can be extracted from text
without recourse to techniques grounded in linguistic theory. A crucial point
made in this chapter is that:

a large subset of language can be handled with relatively simple
computational tools; a much smaller subset requires a radically more
expensive approach; and an even smaller subset something more expensive
still. This observation has profound effects on the analysis of large corpora:
there is a premium on identifying those linguistic insights which are
simplest, most general, least controversial, and most powerful, in order
to exploit them to gain the broadest coverage for the least effort.

Those who have wondered what has been going on in NLP, and how it
will eventually affect conventional linguistics, should find much of interest
in these chapters.

0.5 CONCLUSION

The eight chapters, then, explore many different facets of the interaction
between computers and linguistics. In approach, they range from “How to”
chapters teaching basic skills to knowledgeable overviews of whole
subdisciplines, such as NLP. Together, they offer a range of linguistically
relevant computing information intended to address some of the needs noted
in section 0.2, e.g., the need for:

Coherence—The initial chapters by Simons, and by Dry and Aristar, though
very different in level and scope, both attempt to provide systematic
explanations of topics which many linguists understand only partially.

Evaluation—Each chapter includes some evaluative material, intended to
compensate for the scarcity of evaluations of academic software. But the
chapters by Rogers, and by Antworth and Valentine are primarily

Introduction 9

concerned with surveying the programs available for language scholarship
and education.

Development and application—The chapters by Rogers and Lawler offer
advice on customizing existing software and creating new software, often
on an ad hoc basis, to solve immediate problems in language analysis.

Knowledge of the discipline—The chapter by Hockey describes a new
datasource which is having considerable impact on several linguistic
subfields. And, finally, the last two chapters on NLP by Hoard, and by
Bayer et al., suggest ways the discipline may develop in response to the
changing scholarly and economic environments. These three chapters
acquaint the reader with the effect that computer technology is having
on the evolution of the field.

We hope that the book will serve novice linguists as a primer at the same
time as it serves others as a handbook and guide to resources. Any such
guide dates rapidly, of course; but we have attempted to maintain the
book’s technological relevance as long as possible by:

� focusing on technology that is both mature enough to be useful, and

likely, in our opinion, to continue growing in importance to linguistics
� addressing each topic at a sufficiently general level, so that the usefulness

of the information is not tied to a specific implementation or environment
� posting each chapter’s annotated resource list as an online appendix on the

World Wide Web. The appendices appearing in the printed book represent
only the most important and stable resources. On the Web pages, these have
been augmented with additional listings and live links to current Internet
resources. These Web pages will be regularly updated by the authors. They
can be found at the URL: http://www.routledge.com/

In this way, we hope to take advantage of one of the new avenues of
communication opened up to academics by Internet technology. We expect
electronic communication to become ever more important to our discipline,
since a field like linguistics is defined in the last analysis by who
communicates with whom, and how they interact. There is now a totally
new communicational topology in linguistic demography, due in large part
to the widespread use of computers. We hope this book will be of use to
those mapping out these new lands.

NOTE

1 A glance at Brooks (1995) provides ample evidence of the inherent difficulties
and the expense.

10

Chapter 1

The nature of linguistic data and
the requirements of a computing
environment for linguistic research

Gary F.Simons

The progress made in the last decade toward harnessing the power of
electronic computers as a tool for the ordinary working linguist (OWL)
has been phenomenal. As the eighties dawned, virtually no OWLs were
using computers, but the personal computer revolution was just beginning
and it was possible to foresee its impact on our discipline (Simons, 1980).
Now, more than fifteen years later, the personal computer is commonplace;
battery-powered laptops have even made computing a routine part of life
for the field linguist. But despite widespread success at getting hardware
into the hands of linguists, we have fallen short of realizing the full potential
of computing for the OWL. Why is this? Because commercial software does
not meet all the requirements of the linguist, and the linguistic community
has not yet been able to develop all the software that will fill the gap.

Other chapters in this book (particularly the survey by Antworth and
Valentine) document the software that is available to the OWL. There are
many good tools that many linguists have put to good use, but I think it is
fair to say that this body of tools, for the most part, remains inaccessible
to the average OWL. There are two chief reasons for this. First, there is a
friendliness gap—many programs are hard to use because they have one-
of-a-kind user interfaces that have a steep learning curve and are easy to
forget if not used regularly. The emergence of graphical user interface
standards (such as for Windows and Macintosh) is doing much to solve
this problem. Second, there is a semantic gap—many programs model data
in terms of computationally convenient objects (like files with lines and
characters, or with records and fields). They require the user to
understand how these computational objects map onto the objects of the
problem domain (like grammatical categories, lexical entries, and
phonemes). In cases where programs do present a semantically transparent
model of the problem domain, the programmer has typically had to build
it from scratch using underlying objects like files, lines, and characters.
While the results can be excellent, the process of developing such software
is typically slow.

The nature of linguistic data 11

As we look to the future, better (and faster) progress in developing
software for linguists is going to depend on using methods that better
model the nature of the data we are trying to manipulate. The first five
sections of this article discuss five essential characteristics of linguistic
data which any successful software for the OWL must account for, namely
that the data are multilingual, sequential, hierarchically structured,
multidimensional, and highly integrated. The sixth section discusses a
further requirement, namely that the software must maintain a distinction
between the information in the data and the appearance it receives when
it is formatted for display. The concluding section briefly describes a
computing environment developed by the Summer Institute of Linguistics
to meet these (and other) requirements for a foundation on which to build
better software for the OWL.

1.1 THE MULTILINGUAL NATURE OF
 LINGUISTIC DATA

Every instance of textual information entered into a computer is
expressing information in some language (whether natural or artificial).
The data that linguists work with typically include information in many
languages. In a document like a bilingual dictionary, the chunks of data
switch back and forth between different languages. In other documents,
the use of multiple languages may be nested, such as when an English
text quotes a paragraph in German which discusses some Greek words.
Such multilingualism is a fundamental property of the textual data with
which OWLs work.

Many computerists have conceived of the multilingual data problem as
a special characters problem. This approach considers the
multilingualism problem to be solved when all the characters needed for
writing the languages being worked with can be displayed both on the
screen and in printed output. In the computer’s way of implementing
writing, each character (like a letter of the alphabet or a punctuation mark)
is assigned to a character code; this is a number that is used to represent
that character in the computer’s memory. All the character codes that are
defined to implement a particular way of writing form a character set.
In the ASCII character set, for instance, capital A is assigned to code 65,
capital B to 66, and so on.

In the MS-DOS environment it has been difficult to do much with
special characters since the operating system views the world in terms of
a single, predefined set of 256 characters. Linguists have had to resort to
using character shape editors (see, for instance, Simons, 1989b) to define
a customized character set that contains all the characters they need to
use in a particular document. The limit of having only 256 possible
characters is exacerbated by the fact that each combination of a diacritic

12 Gary Simons

with a base character must be treated as a single composite character.
For instance, to correctly display a lowercase Greek alpha with no
breathing, a smooth breathing, or a rough breathing, and with no accent,
an acute accent, a grave accent, or a circumflex accent, one would need
to define twelve different characters; only then can we display all the
possible combinations of diacritics on a lowercase alpha.

The Windows and Macintosh environments have made a significant
advance beyond this. Rather than a single character inventory, these
operating systems provide a font system. Data in languages with different
writing systems can be represented in different fonts. This means that the
total character inventory is not limited by the number of possible character
codes. One could put Roman characters in one font, Greek characters in
another font, and Arabic characters in still another. The same string of
character codes can then be displayed as different characters on the screen,
depending on which font is selected. By switching between fonts in the
application software, the user can access and display as many characters
as are needed.

The Macintosh font manager offers yet another advance in that it
supports zero-width overstriking diacritics. An overstriking diacritic is a
character that is superimposed on-the-fly over a separate base character
(somewhat like a dead key on a conventional typewriter). It is possible to
build thousands of composites dynamically from a single font of 255
characters. Thus, for instance, almost all the European languages with
Roman-based writing systems can be rendered with the basic Macintosh
extended character set. (The Windows font system still has no notion of a
zero-width diacritic. An overstriking diacritic can be simulated, however,
by creating an extremely narrow character that spills over onto the
neighboring character it is meant to overstrike. This works quite
satisfactorily on some systems, and can be a real mess on others. The
outcome depends on how the screen driver for the particular hardware was
implemented.)

The special-character approach encodes information in terms of its
visual form. It says that if two characters look the same, they should be
represented by the same character code, and conversely, if they look
different, they should have different codes. In so doing it causes us both
to underdifferentiate and to overdifferentiate important semantic (or
functional) distinctions that are present in the encoded information. We
underdifferentiate when we use the same character codes to represent words
in different languages. For instance, the character sequence die represents
rather different information when it encodes a German word as opposed
to an English word.

We overdifferentiate when we use different character codes to represent
contextual variants of the same letter in a single language. For instance,
the lowercase sigma in Greek has one form if it is word initial or medial,

The nature of linguistic data 13

and a second form if it is word final. An even more dramatic example is
Arabic, in which nearly every letter of the alphabet appears in one of four
variant forms depending on whether the context is word initial, word
medial, word final, or freestanding. Another type of overdifferentiation
occurs when single composite characters are used to represent the
combination of base characters with diacritics that represent functionally
independent information. For instance, in the example given above of using
twelve different composite characters to encode the possible combinations
of Greek lowercase alpha with breathing marks and accents, the single
functional unit (namely, lowercase alpha) is represented by twelve different
character codes. Similarly, the single functional unit of rough breathing
would be represented in four of these character codes, and in two dozen
others for the other six vowels.

To represent our data in a semantically transparent way, it is necessary
to do two things. First, we must explicitly encode the language that each
particular datum is in; this makes it possible to use the same character codes
for different languages without any ambiguity or loss of information. (This
also makes it possible to correctly perform the language-specific aspects of
data processing that will be discussed shortly.) Second, we need to encode
characters at a functional level and let the computer handle the details of
generating the correct context-sensitive display of form.

It was Joseph Becker, in his seminal article “Multilingual Word
Processing” (1984), who pointed out the need to distinguish form and
function in the computer implementation of writing systems. He observed
that character encoding should consistently represent the same information
unit by the same character code. He then defined rendering as the process
of converting the encoded information into the correct graphic form for
display. He observed correctly that for any writing system, this conversion
from functional elements to formal elements is defined by regular rules, and
therefore the computer should perform this conversion automatically.
Elsewhere I have described a formalism for dealing with this process (Simons,
1989a).

The writing system is the most visible aspect of language data; thus
we tend to think first of graphic rendering when we think of multilingual
computing. But the language a particular datum is in governs much more
than just its rendering on the screen or in printed output; it governs many
other aspects of data processing. One of these is keyboarding: a
multilingual computing environment would know that part of the
definition of a language is its conventions for keyboarding, and would
automatically switch keyboard layouts based on the language of the datum
under the system cursor.

Another language-dependent aspect of data processing is the collating
sequence that defines the alphabetical order for sorted lists in the language.
For instance, the character sequence ll comes between li and lo in English,

14 Gary Simons

but in Spanish it is a separate “letter” of the alphabet and occurs between
lu and ma. Still other language-dependent aspects are rules for finding word
boundaries, sentence boundaries, and possible hyphenation points. Then
there are language-specific conventions for formatting times, dates, and
numbers. As stated in the opening sentence of this section, “Every instance
of textual information entered into a computer is expressing information
in some language;” it is necessary for the computer to know which language
each string of text is in, if it is going to be able to process the information
correctly.

There are two recent developments in the computing industry which
bode well for our prospects of having a truly multilingual computing
environment. The first of these is the Unicode standard for character
encoding (Unicode Consortium, 1996). The Unicode Consortium,
comprised of representatives from some of the leading commercial software
and hardware vendors, has developed a single set of character codes for
all the characters of all the major writing systems of the world (including
the International Phonetic Alphabet). This system uses two bytes (16 bits)
to encode each character. Version 2.0 of Unicode defines codes for 38,885
distinct characters (derived from 25 different scripts). There are still many
scripts that are not supported (especially ancient ones), but the standard
does reserve an unallocated block of 6,400 character codes for “private
use.” A major aim of Unicode is to make it possible for computer users to
exchange highly multilingual documents with full confidence that the
recipient will be able to correctly display the text. The definition of the
standard is quick to emphasize, however, that it is only a standard for the
interchange of character codes. Unicode itself does not address the question
of context-sensitive rendering nor of any of the language-dependent aspects
of data processing. In fact, it is ironic that Unicode fails to account for
the most fundamental thing one must know in order to process a stream
of character data, namely, what language it is encoding. Unicode is not by
itself a solution to the problem of multilingual computing, but the support
promised by key vendors like Microsoft and Apple is likely to make it an
important part of the solution.

The second recent development is the incorporation of the World
Script component into version 7.1 of the Macintosh operating system
(Ford and Guglielmo, 1992). Almost ten years ago, Apple developed an
extension to their font manager called the script manager (Apple, 1988).
It handled particularly difficult font problems like the huge character
inventory of Japanese and the context-sensitive rendering of consonant
shapes in Arabic. A script system, in conjunction with a package of
“international utilities,” is able to handle just about all the language-
dependent aspects of data processing mentioned above (Davis, 1987).
The script manager’s greatest failing was that only one non-Roman script
system could be installed in the operating system. World Script has

The nature of linguistic data 15

changed this. It is now possible to install as many script systems as one
needs. Nothing comparable is yet available for Windows users; at one time
the trade press reported that Apple intended to port this technology to
the Windows platform, but we are still waiting. As software developers
make their programs take advantage of technology like this, adequately
multilingual computing may become a widespread reality.

1.2 THE SEQUENTIAL NATURE OF
LINGUISTIC DATA

The stream of speech is a succession of sound that unfolds in temporal
sequence. Written text is similarly sequential in nature, as word follows
word and sentence follows sentence. The order of the words and sentences
is, of course, a significant part of the information in text, since changing
the order of constituents can change the meaning of the text.

We almost take this aspect of text for granted since our text editors and
word processors support it so transparently. They excel at modeling the
sequential nature of text, but fall short in modeling the other aspects of the
information structure discussed below in sections 3 through 5. In particular,
word processors do not allow us to represent the multidimensional and highly
integrated nature of text. These are the areas where database systems shine;
it is thus appealing to consider using a database system to model textual
information.

Ironically, when it comes to the sequential nature of text, database
management systems are as weak as word processors are strong. The
relational database model, which is the model embodied by most popular
database systems, does not inherently support the notion of sequence at
all. Relations are, by definition, unordered. That is, the rows (or records)
in a data table are inherently unordered. If one wants to represent sequence
in a database model, one must add a column (or field) to store explicit
sequence numbers and then manipulate these values to put pieces in the
right order. For instance, if a data table represented a text and its rows
represented the sentences in the text, then the table would need a column
to store the sequence number of the sentence. A view that printed the text
would first have to sort the rows by sentence number. With just sentences
this does not sound too bad, but if we want a richer model that includes
paragraphs, sentences, words, and morphemes, then we end up needing
four columns for recording position in sequence. When the data model
becomes this complex, relational database report generators do not have
built-in views that can display the data as a conventionally formatted text.

Though relational databases do not model sequence as transparently
as word processors, it can in fact be done. For instance, Parunak (1982)
presents an approach to modeling Biblical text in a relational database;
his model provides columns for book, chapter, verse, and word number.

16 Gary Simons

Stonebraker et al. (1983) have developed extensions to the relational
database model that make it better able to cope with texts. The main
innovation was to implement a new kind of relation, called an “ordered
relation,” which supports the notion that text is inherently sequential.
Unfortunately, extensions like this have not become commonplace in
commercially available database systems.

1.3 THE HIERARCHICAL NATURE OF
LINGUISTIC DATA

The data we deal with as linguists are highly structured. This is true of
the primary data we collect, as well as of the secondary and tertiary data
we create to record our analyses and interpretations. One aspect of that
structuring, namely hierarchy, is discussed in this section. Two other
aspects, the multidimensionality and the interrelatedness of data elements,
are discussed in the next two sections.

Hierarchy is a fundamental characteristic of data structures in linguistics.
The notion of hierarchy is familiar in syntactic analysis where, for instance,
a sentence may contain clauses which contain phrases which contain words.
Similar hierarchical structuring can be observed at higher levels of text
analysis, such as when a narrative is made up of episodes which are made
up of paragraphs and so on. We see hierarchy in the structure of a lexicon
when the lexicon is made up of entries which contain sense subentries
which in turn contain things like definitions and examples. Even meanings,
when they are represented as feature structures which allow embedded
feature structures as feature values, exhibit hierarchical structure. The list
of examples is almost limitless.

As fundamental as hierarchy is, it is ironic that the tools that are most
accessible to personal computer users—word processors, spreadsheets, and
database managers—do not really support it. There is little question about
this assessment of spreadsheets; they simply provide a two-dimensional grid
of cells in which to place simple data values. In the case of database
management systems (like dBase or 4th Dimension) and even card filing
systems (like AskSam or HyperCard), a programmer can construct
hierarchical data structures, but such a task would be beyond the average
user. This is because the inherent model of these systems is that data are
organized as a flat collection of records or cards.

Even word processors do not do a good job at modeling hierarchy. They
essentially treat textual data as a sequence of paragraphs. They typically
support no structure below this. For instance, if a dictionary entry were
represented as a paragraph, the typical word processor would have no way
of modeling the hierarchical structure of elements (like headword,
etymology, sense subentries, and examples) within the entry. Rather, word
processors can only model the contents of a dictionary entry as a sequence

The nature of linguistic data 17

of characters; it would be up to the user to impose the internal structure
mentally. Going up the hierarchy from paragraph, word processors do a
little better, but it is done by means of special paragraph types rather than
by modeling true hierarchy. For instance, if a document has a structure of
chapters, sections, and subsections, this is imposed by putting the title of
each element in a heading paragraph of level 1, 2, or 3, respectively. Under
some circumstances, such as in an outline view, the word processor can
interpret these level numbers to manipulate the text in terms of its
hierarchical structure.

A new generation of document processing systems with a data model
that is adequate to handle the hierarchical structure in textual data is
beginning to emerge. They are based on an information markup language
called SGML, for Standard Generalized Markup Language (Goldfarb,
1990; Herwijnen, 1990; Cover, 1992). SGML is not a program; it is a
data interchange standard. It specifies a method for representing textual
data in ASCII files so that the data can be interchanged among programs
and among users without losing any information. The information in
focus is not just the stream of characters, but also detailed information
about the structure of the text. In 1986 SGML was adopted by the
leading body for international standards (ISO, 1986); since that time it
has gained momentum in the computing industry to the extent that
SGML compatibility is now beginning to appear in popular software
products.

The basic model of SGML is a hierarchical one. It views textual data
as being comprised of content elements which are of different types and
which embed inside each other. For instance, the following is a sample of
what a dictionary entry for the word abacus might look like in an SGML-
conforming interchange format:

<entry>
<headword>abacus</headword>
<etymology>L.abacus, from Gr.abax</etymology>
<paradigm>pl.-cuses, or -ci</paradigm>
<sense n=1><pos>n</pos>

<def>a frame with beads sliding back and forth
on wires for doing arithmetic</def></sense>

<sense n=2><pos>n</pos>
<def>in architecture, a slab forming the top of

the capital of a column</def></sense>
</entry>

Each element of the text is delimited by an opening tag and a matching
closing tag. An opening tag consists of the name of the element type
enclosed in angle brackets. The matching closing tag adds a slash after the
left angle bracket. In this example, the entry element contains five elements:

18 Gary Simons

a headword, an etymology, paradigm information, and two sense subentries.
Each sense element embeds two elements: a part of speech and a definition.
The sense elements also use the attribute n to encode the number of the
sense.

Rather than forcing the data to fit a built-in model of hierarchical
structure (like a word processor does), SGML allows the model of data
structure to be as rich and as deep as necessary. An SGML-conforming
data file is tied to a user-definable Document Type Definition. The DTD
lists all the element types allowed in the document, and specifies the
allowed structure of each in terms of what other element types it can
contain and in what order. Though the notation of a DTD may be daunting
at first, the concept that lies behind it should be very familiar to a linguist.
A DTD is really nothing more than a context-free grammar. The left-hand
side of each rewriting rule names an element, and the righthand side tells
what elements are allowed to occur within it. For instance, consider the
following rewrite rule for the structure of a book:

book—>front-matter body (back-matter)

That is, a book consists of front matter, followed by a body, optionally
followed by back matter. The SGML notation for declaring this same rule
in a DTD is as follows:

<!ELEMENT book—(front-matter, body, back-matter?)>

In addition to sequence and optionality, the pattern for the right-hand side
(called the “content model” in SGML parlance) may also express
alternation, repetition, and grouping. This formalism provides the power
to describe very rich document structures and to do so precisely and
unambiguously.

The DTD is a machine-readable document with a formal syntax
prescribed by the SGML standard. This makes it possible for SGML-based
application software to read the DTD and to understand the structure of
the text being processed. Because the DTD is a plain ASCII file, it is also
human readable and thus serves as formal documentation, showing other
potential users of a data set how it is encoded.

Perhaps the greatest impact of a formal definition of possible document
structure is that it helps to close the semantic gap between the user and
the computer application. This is particularly true when the formal model
of the structure matches the model in the minds of practitioners in the
domain, and when the formal model uses the same names for the data
element types that domain specialists would use to name the corresponding
real-world objects. For instance, an SGML-based document editor starts
up by reading in the DTD for the type of document the user wants to

The nature of linguistic data 19

create (whether it be, for instance, the transcription of a conversation or a
bilingual dictionary). The editor then helps the user by showing what
element types are possible at any given point in the document. If the user
attempts to create an invalid structure, the editor steps in and explains what
would be valid at that point. The formal definition of structure can help
close the semantic gap when data are processed, too. For instance, an
information retrieval tool that knows the structure of the documents in its
database can assist the user in formulating queries on that database.

The academic community has recognized the potential of SGML for
modeling linguistic (and related) data. The Text Encoding Initiative (TEI)
is a large-scale international project to develop SGML-based standards for
encoding textual data, including its analysis and interpretation (Burnard,
1991). It has been sponsored jointly by the Association for Computers and
the Humanities, the Association for Linguistic and Literary Computing,
and the Association for Computational Linguistics and has involved scores
of scholars working in a variety of subcommittees (Hockey, 1989–92a).
Guidelines for the encoding of machine-readable texts have now been
published (Sperberg-McQueen and Burnard, 1994) and are being followed
by many projects. The TEI proposal for markup of linguistic analysis
depends heavily on feature structures; see Langendoen and Simons (1995)
for a description of the approach and a discussion of its rationale. See
Section 4.2.1 of Hockey’s chapter in this volume on “Text databases” for
more discussion of SGML and TEI.

While the power of SGML to model the hierarchical structure in linguistic
data takes us beyond what is possible in word processors, spreadsheets, and
database managers, it still does not provide a complete solution. It falls short
in the two aspects of linguistic data considered in the next two sections. The
attributes of SGML elements cannot themselves store other elements; thus
the multidimensional nature of complex data elements must be modeled as
hierarchical containment. To model the network of relationships among
elements (i.e., the integrated nature of linguistic data), SGML offers a
pointing mechanism (through IDs and IDREFs in attribute values), but there
is no semantic validation of pointers. Any pointer can point to any element;
there is no mechanism for specifying constraints on pointer destinations in
the DTD. Thus the only relationships between element types that can be
formally declared in the DTD (and can thus be enforced by it) are sequential
precedence and hierarchical inclusion.

1.4 THE MULTIDIMENSIONAL NATURE OF
LINGUISTIC DATA

A conventional text editing program views text as a one-dimensional
sequence of characters. A tool like an SGML-based editor adds a second
dimension—namely, the hierarchical structure of the text. But from the

20 Gary Simons

perspective of a linguist, the stream of speech which we represent as a one-
dimensional sequence of characters has form and meaning in many
simultaneous dimensions (Simons, 1987). The speech signal itself
simultaneously comprises articulatory segments, pitch, timing, and intensity.
A given stretch of speech can be simultaneously viewed in terms of its
phonetic interpretation, its phonemic interpretation, its morphophonemic
interpretation, its morphemic interpretation, or its lexemic interpretation.
We may view its structure from a phonological perspective in terms of
syllables, stress groups, and pause groups, or from a grammatical perspective
in terms of morphemes, words, phrases, clauses, sentences, and so on.

The meaning of the text also has many dimensions and levels. There is
the phonological meaning of devices like alliteration and rhyme. There is
the lexical meaning of the morphemes and of compounds and idioms which
they form. There is the functional meaning carried by the constituents of
a grammatical construction. In looking at the meaning of a whole utterance,
there is the literal meaning versus the figurative, the denotative versus the
connotative, the explicit versus the implicit. All of these dimensions, and
more, lurk behind that one-dimensional sequence of characters which we
have traditionally called “text.”

There are already some programs designed for the OWL which handle
this multidimensional view of text rather well, namely interlinear text
processing systems like IT (Simons and Versaw, 1987; Simons and Thomson,
1988) and Shoebox (Davis and Wimbish, 1993). In these programs, the user
defines the dimensions of analysis that are desired. The program then steps
through the text helping the user to fill in appropriate annotations on
morphemes, words, and sentences for all the dimensions. Another kind of
program that is good at modeling the multidimensional nature of linguistic
data is a database manager: when a database record is used to represent a
single object of data, the many fields of the record can be used to represent
the many dimensions of information that pertain to it.

While interlinear text processors and database managers handle the
multidimensional nature of linguistic data well, they fall short by not
supporting the full hierarchical nature of the data. To adequately model
linguistic data, the OWL needs a system which has the fully general, user-
definable hierarchy of elements (such as SGML offers) in which the
elements may: (1) contain the smaller elements which are their parts, and
(2) have a record-like structure of fields which can simultaneously store
multiple dimensions of information concerning the elements.

1.5 THE HIGHLY INTEGRATED NATURE OF
LINGUISTIC DATA

Sequentially ordered hierarchies of data elements with annotations in
multiple dimensions are still not enough. Sequence and hierarchy, by

The nature of linguistic data 21

themselves, imply that the only relationships between data elements are
those inherent in their relative positions in sequence and in the hierarchy
of parts within wholes. But for the data on which linguistic research is
based, this only scratches the surface. Crosscutting the basic hierarchical
organization of the elements is a complex network of associations between
them.

For instance, the words that occur in a text are composed of
morphemes. Those morphemes are defined and described in the lexicon
(rather than in the text). The relationship between the surface word form
and its underlying form as a string of lexical morphemes is described in
the morphophonology. When a morpheme in an analyzed text is glossed
to convey its sense of meaning, that gloss is really an attribute of one of
the senses of meaning listed in the lexicon entry for that morpheme. The
part-of-speech code for that use of the morpheme in the text is another
attribute of that same lexical subentry. The part-of-speech code itself does
not ultimately belong to the lexical entry. It is the grammar which
enumerates and defines the possible parts of speech, and the use of a
part-of-speech code in the lexicon is really a pointer to its description in
the grammar. The examples which are given in the lexicon or the
grammar relate back to the text from which they were taken. Cultural
terms which are defined in the lexicon and cultural activities which are
exemplified in texts relate to their full analysis and description in an
ethnography. All the above are examples of how the different parts of a
field linguist’s database are conceptually integrated by direct links of
association. Weber (1986) has discussed this network-like nature of the
linguistic database in his description of a futuristic style of computer-
based reference grammar.

This network of associations is part of the information structure that is
inherent in the phenomena we study. To maximize the usefulness of
computing in our research, our computational model of the data must
match this inherent structure. Having direct links between related bits of
information in the database has the obvious benefit of making it easy and
fast to retrieve related information.

An even more fundamental benefit has to do with the integrity of the
data and the quality of the resulting work. Because the information
structures we deal with in research are networks of relationships, we can
never make a hypothesis in one part of the database without affecting other
hypotheses elsewhere in the database. Having the related information linked
together makes it possible to immediately check the impact of a change in
the database.

The addition of associative links to the data structure also makes it
possible to achieve the virtue of normalization, a concept which is well
known in relational database theory. In a fully normalized database, any
given piece of information occurs only once. That piece of information is

22 Gary Simons

then used throughout the database by referring to the single instance rather
than by making copies of it. If, instead, there are multiple copies of a given
piece of information throughout a database, the ubiquitous problem known
as “update anomaly” is sure to arise when that piece of information needs
to be changed. An update anomaly occurs when some of the copies of a
given piece of information get updated, while others are overlooked. The
end result is a database that is inconsistent in the best case, or invalid in
the worst. Smith (1985) gives a good explanation of a process by which
the design of a relational database can be normalized.

A linguistic example may help to illustrate the importance of database
normalization. Consider, for instance, a lexical database. One kind of
associative link that occurs in a lexical database is cross-references from
one entry to another. One piece of information that occurs in each entry
is the spelling of its headword. If we were using a text editor to build and
manage the database, we would be likely to make cross-references by typing
the headword for the entry we want to reference. However, this violates
the normalization principle since the spelling of the headword now occurs
more than once in the database. If we were to change the spelling of the
headword in its main entry, then all cross-references to it would break and
refer to a nonexistent entry. Another example is part-of-speech labels. If
the labels are typed out in every lexical entry, then one is almost certain
to introduce inconsistencies over the life of the database. The ideal solution
in both cases is to use a database system that truly supports the integrated
nature of the data by allowing direct links between data items. The cross-
reference would be stored as a pointer to another lexical entry; the part-
of-speech would be stored as a pointer to a part-of-speech object in the
grammar. The latter would be the only place in which the label for the
part-of-speech is actually spelled out. When the analyst decides to change
the spelling of the label, all references are simultaneously updated since
they now point to a changed spelling. When the data are normalized like
this, an update anomaly is not even possible.

1.6 THE SEPARATION OF INFORMATION
FROM FORMAT

It is imperative that any system for manipulating linguistic data maintain
the distinction between information and format. In printed media, we use
variations in format to signal different kinds of information. For instance,
in a dictionary entry, bold type might be used to indicate the headword,
square brackets might delimit the etymology, while italics with a trailing
period might mark the part-of-speech label. The bold type is not really
the information—it is the fact that the emboldened form is the headword.
Similarly, the square brackets (even though they are characters in the

The nature of linguistic data 23

display) are not really part of the data; they simply indicate that the
delimited information is the etymology.

Generalized markup (the GM in SGML) is the notion of marking up
a document by identifying its information structure rather than its display
format (Coombs, Renear, and DeRose, 1987). For instance, in a dictionary
entry one should insert a markup tag to say, “The following is the headword”
(as does the <headword> tag in the SGML example given above in section
1.3, rather than putting typesetting codes to say, “The following should be
in 10 point bold Helvetica type.” In the generalized markup approach, each
different type of information is marked by a different markup tag, and then
details of typesetting are specified in a separate document which is often
called a style sheet (Johnson and Beach, 1988). The style sheet declares
for each markup tag what formatting parameters are to be associated with
the content of the marked up element when it is output for display.

The separation of content and structure from display formatting has
many advantages. (1) It allows authors to defer formatting decisions. (2)
It ensures that formatting of a given element type will be consistent
throughout. (3) It makes it possible to change formats globally by changing
only a single description in the style sheet. (4) It allows the same document
to be formatted in a number of different styles for different publishers or
purposes. (5) It makes documents portable between systems. And perhaps
most important of all for our purposes, (6) it makes possible computerized
analysis and retrieval based on structural information in the text.

The lure of WYSIWYG (“what you see is what you get”) word processors
for building a linguistic database (like a dictionary) must be avoided at all
costs when “what you see is all you get.” On the other hand, a database
manager which allows one to model the information structure correctly, but
cannot produce nicely formatted displays is not much use either. The OWL
needs a hybrid system that combines the notion of generalized markup for
faithfully storing the information structure of the data with the notion of
style sheets that can transform the information into conventionally formatted
displays.

1.7 TOWARD A COMPUTING ENVIRONMENT
FOR LINGUISTIC RESEARCH

The above sections have discussed six requirements for a computing
environment that manages linguistic data:

1 The data are multilingual, so the computing environment must be able

to keep track of what language each datum is in, and then display and
process it accordingly.

2 The data in text unfold sequentially, so the computing environment must
be able to represent the text in proper sequence.

24 Gary Simons

3 The data are hierarchically structured, so the computing environment
must be able to build hierarchical structures of arbitrary depth.

4 The data are multidimensional, so the computing environment must be
able to attach many kinds of analysis and interpretation to a single
datum.

5 The data are highly integrated, so the computing environment must be
able to store and follow associative links between related pieces of data.

6 While doing all of the above to model the information structure of the
data correctly, the computing environment must be able to present
conventionally formatted displays of the data.

It is possible to find software products that meet some of these requirements,
but we are not aware of any that can meet them all. Consequently, the
Summer Institute of Linguistics (through its Academic Computing
Department) has embarked on a project to build such a computing
environment for the OWL. We call it CELLAR—for Computing
Environment for Linguistic, Literary, and Anthropological Research. This
name reflects our belief that these requirements are not unique to linguists—
virtually any scholar working with textual data will have the same
requirements.

Fundamentally, CELLAR is an object-oriented database system
(Rettig, Simons, and Thomson, 1993). Borgida (1985) gives a nice
summary of the advantages of modeling information as objects. Zdonik
and Maier (1990) offer more extensive readings. Booch (1994) and Coad
and Yourdon (1991) teach the methodology that is used in analyzing a
domain to build an object-oriented information model for it.

In CELLAR each data element is modeled as an object. Each object
has a set of named attributes which record the many dimensions of
information about it (addressing requirement 4 above). An attribute value
can be a basic object like a string, a number, a picture, or a sound; every
string stores an indication of the language which it encodes (requirement
1; see Simons and Thomson (forthcoming) for a detailed discussion of
CELLAR’S multilingual component). An attribute can store a single value
or a sequence of values (requirement 2). An attribute value can also be
one or more complex objects which are the parts of the original object,
thus modeling the hierarchical structure of the information (requirement
3). Or, an attribute value can be one or more pointers to objects stored
elsewhere in the database to which the original object is related
(requirement 5).

Each object is an instance of a general class. Each class is sanctioned
by a user-definable “class definition” which describes what all instances
of the class have in common. This includes definitions of all the attributes
with constraints on what their values can be, definitions of virtual attributes
which compute their values on-the-fly by performing queries on the

The nature of linguistic data 25

database, definitions of parsers which know how to convert plain ASCII
files into instances of the class, definitions of views which programmatically
build formatted displays of instances of the class, and definitions of tools
which provide graphical user interfaces for manipulating instances of the
class. The latter two features address requirement 6; see Simons (1997)
for a fuller discussion of this aspect of CELLAR.

CELLAR is really a tool for building tools. Programmers will be able
to use CELLAR to build class definitions that model the content, format,
and behavior of linguistic data objects. These models are the tools that
OWLs will use. Because CELLAR’S model of data inherently supports
the very nature of linguistic data, the programmer can quickly build
semantically transparent models of linguistic data. CELLAR was first
released to the public in December 1995 as part of the product named
LinguaLinks. LinguaLinks uses CELLAR to implement applications for
phonological analysis, interlinear text analysis, lexical database
management, and other tasks typically performed by field linguists. See
SIL’s home page on the Internet (http://www.sil.org) for the latest
information concerning availability.

26

Chapter 2

The Internet: an introduction

Helen Aristar Dry and Anthony Rodrigues Aristar

2.1 INTRODUCTION

Most linguists make regular use of several Internet functions: e-mail, ftp,
telnet, and WWW browsers. Indeed, these functions are beginning to be
taken for granted as pan of our professional lives. However, many of us
do not know what the Internet actually is or how it works. This chapter
attempts to remedy this. It is essentially an Internet primer. It offers basic
information about the operation of eight Internet technologies, as well as
a brief review of Internet history, emphasizing how the Internet has
changed linguistics in just a few short years.

Before the advent of the Internet, there were essentially only two
ways to learn what others in the field were doing. One was by reading
published material or private letters. The other was by verbal
communication, at a conference, at work, or over the phone. Since work
in some linguistic subfields was likely to be out-of-date by the time it
was published, and much current work was circulated in draft form,
the research that many individual linguists were aware of was limited
to that of the small subset of linguists with which they were in regular
contact. Isolation from the central figures in the discipline meant
isolation from current scholarship.

Furthermore, much linguistic infrastructure was what may be called
“local.” Jobs, conferences, and graduate programs were often advertised
only within national boundaries. As a result, many universities hired only
their own nationals; and many linguists attended only conferences which
reflected the theories predominant in their own countries.

Then, in the late 1980s, a change began. What had once been a
network which linked US government research computers—the
ARPAnet—began to be made more generally accessible. By 1990, it had
changed into the Internet, which linked the computers at most
universities and colleges. Accounts on these computers became available
to university faculty and students. And linguistic information began to
be commonly disseminated among individuals who had no other

The Internet: an introduction 27

professional contact. In 1989 the first linguistic mailing list was
established. Shortly thereafter linguistics archives began to be made
accessible via anonymous ftp. And before long the Internet had
effectively eroded the isolation of the “lone linguist.”

If you were on the Internet, it mattered less and less whether you worked
as the only linguist in a foreign languages department, whether you lived
in Australia or San Francisco, whether you were part of a central network
of linguists or part of no network at all. The Internet enabled you to find
out what other linguists were saying. It also enabled you to have an impact
on the discipline previously available only to those at prestigious
universities: if you had something of interest to say, you could say it at an
international forum without leaving home.

Today, information about conferences, fellowships, linguistics programs,
and jobs is distributed within a much wider geographical area. And because
a small local conference can be advertised as widely as a large one,
organizers often find that the number of submissions has increased, with
a commensurate increase in quality. Similarly, universities are experiencing
increases in the number and diversity of job and fellowship applications.
The Chair of Linguistics at a Scandinavian university recently told us that
applications had increased threefold since they began advertising job
openings on the electronic mailing list which we help to run. (This is the
LINGUIST List, discussed in section 2.3.1.4 below. Inevitably, many of
our generalizations about the Internet derive from our experience with this
list.) Similarly, one of our own universities received 130 applications
following a single job announcement on this list—the job was filled before
it was ever announced on paper.

Information about individual research has also become more widely
available, in part because of new technologies which put the distribution
of information into the hands of individuals. Publishing a book or starting
a large e-mail list requires the cooperation of a considerable number of
people, from editors to university administrators. Setting up a World Wide
Web page, however, requires little more than a personal computer, a
modem or ethernet card, and software obtainable free from the Internet.
World Wide Web technology, in short, allows linguists for the first time to
take control of the means by which their ideas are disseminated,
substantially decreasing the lag-time between the completion of a piece of
work and its publication.1

Given the impact of Internet technologies on the discipline and on the
individual linguist, it is useful for linguists to know how Internet technology
functions, what Internet services are commonly available, and how these
can be used to enhance research. This chapter attempts to provide some
of this information, in a style accessible to beginners. Let us begin by
looking at one of the fundamental metaphors which describes the operation
of the net.

28 Helen Aristar Dry & Anthony Aristar

2.2 WHAT IS THE INTERNET?2

The metaphor upon which the Internet is based is the metaphor of a
protocol. In human terms, a protocol is a way some interaction must be
carried out. Likewise, a computer protocol specifies the way that two
machines must interact. However, Internet protocols not only tell the
machines how to transfer data, they also ensure that the pieces of data they
send are well-formed (i.e., “grammatical”). Protocols are the linguae francae
of the Internet: they specify both the grammar of the language and the
pragmatics of the interaction.

Protocols became the core of Internet operations because of the physical
limitations of the earliest nets. When the first incarnation of the Internet,
the ARPAnet, was put in place, there were no completely reliable networks.
What lay between your machine and the machine you wished to
communicate with was an unpredictable mixture of cables, phone-lines,
and satellite relay stations. It was never certain whether all of the bits in
between the machines were going to work. Connectivity, then, could not
be based upon one invariant path to a destination. It required that machines
be able to select alternate paths. But alternate paths might lead to different
types of machines. Thus it was also necessary to transfer data in a way
that was only minimally dependent on the nature of the machines involved.

2.2.1 Internet Protocol

The solution was provided by the combination of the Internet Protocol
(IP), and the router. The IP is simply a set of instructions which tells a
machine (1) what form the data it transfers must have, (2) how to open a
connection with another machine, (3) how to transfer data, and (4) how
to close the connection. All data, IP says, must be sent in “packets.” A
packet is a chunk of data surrounded by what is called an “envelope.” This
is accompanying information which tells the forwarding machine the
unique address of the machine the packet is being sent to. This address is
a 32-bit number, a sequence of 32 binary values like:

10000011 00001011 00000011 00000011

This usually appears to human beings in the form of “dotted octet”
notation. Dotted octet notation groups the 32 bits of the real address into
4 sets (or bytes) of 8 bits. So, for example, the 32 bit address above is
divided into 4 parts, each of which is interpreted as a single binary number:

10000011=131
00001011=18
00010111=23
00000011=3

The Internet: an introduction 29

Combining these numbers gives 131.18.23.3 in dotted octet notation. This
is called the IP number of the machine.

2.2.2 Domain names

For the benefit of human beings, each Internet machine has not only a
unique IP number, but also a unique name. These names are arranged in
dotted “domains” which can be read right to left by machines. The
rightmost domain always indicates a domain which is more general than
the one to its left. Thus, if we find an address like zippy.bangor.uk, we
know that “uk”—which is the domain name for the United Kingdom—is
more general than “bangor”—which is the domain name for the University
of Bangor in Wales—which in turn is more general than “zippy”, which is
the name of the machine at Bangor which is to receive the packet.

When human beings send a message to zippy.bangor.uk, this address
has to be translated into an IP address. This mapping is done by software
called a “resolver”, which sends a request to a set of machines called
Domain Name Servers (usually abbreviated DNS). These servers may
not themselves know every IP number on the Internet, but they know how
to find them by interrogating other name servers. They can then return a
valid IP number to the resolver, so that the source machine can create
envelopes for each of the packets making up the message.

2.2.3 Routers

After a machine breaks the data it is sending into packets and encloses
each in an IP envelope, it sends them to a router. A router is simply a
machine whose specialized job is finding paths for packets through the
Internet. It looks for functional, uncongested paths to destinations, and
sends packets along them. If some part of the network is unresponsive or
overused, it finds other paths to the target machine.

One reason the Internet has been able to grow so fast has to do with
Internet addressing and the way routers work. No router needs to know
the address of every machine on the Internet, because the Internet is
hierarchically organized into networks and sub-networks. The largest
network is indicated by the first set of digits in the IP number.3 The second
set of digits indicates a subnet of the major network, and the third a subnet
of the subnet. If a router, then, needs to send a packet to the IP number
164.76.28.2, all the router needs to know is how to send the packet to the
164 network. The router at 164 will know how to get packets to the subnet
76, and so on down to the machine numbered 2, which is the target
machine.

30 Helen Aristar Dry & Anthony Aristar

A major advantage of this addressing system is that all IP number
assignment can be handled locally. And, as a result, a new machine at any
site can become part of the Internet freely and immediately. If subnet 76
is assigned to a university, for example, with subnet 28 being one of its
LANs (Local Area Networks), a new university machine can be assigned
the number 164.76.28.16 by the local system administrators, without
applying to any outside authority. Because of the router system, no machine
outside the university network needs to be informed of the new address.
It just needs to be able to get the information when it needs it.

2.2.4 Transmission Control Protocol

The packet surrounded by the IP envelope usually contains, along with
the data, some information added by another important Internet protocol,
TCP (Transmission Control Protocol). TCP is necessary because IP
only delivers packets. It does not ensure that they will arrive in the same
order as they were sent. So different packets belonging to the same body
of data may arrive at their destination by totally different routes, and at
different times.

For many kinds of interactions this is not acceptable. If you make a remote
log-in (e.g., to read your mail when away from home), you must interact
with the remote machine in real time, and it must receive your commands
in the order you send them. You cannot have the packets that contain those
commands arriving out of order. This is where TCP comes in. TCP puts
sequence numbers in the packets. These numbers allow the receiving
machine to rearrange the packets back into their original order. They also
allow it to tell if anything is missing. If only packets 1, 2, 3, and 5 arrive, the
machine knows that packet 4 is missing and gets it retransmitted.

TCP also allows the specification of what are called ports, so that a
particular set of packets will be sent to a particular port on a machine. These
ports are not real physical ports, but rather instructions to the receiving
machine about the way it is supposed to handle the incoming data.

Recipient Internet machines often run a piece of software called Inetd,
which “listens” simultaneously for messages on several ports and, when
data arrive, starts the software appropriate to the port. When a message is
directed to port 25, for example, Inetd wakes up the mailer software. If a
message arrives at port 23, it activates telnet software. If a message arrives
at port 21, it activates ftp software, and so forth.

However, when many functions are run on the same machine, it becomes
inefficient to activate them each through Inetd. To increase speed, software
for each function can also be run as a daemon, a preactivated program
that is always ready to perform its task. World Wide Web servers are usually

The Internet: an introduction 31

daemons; they “listen” on port 80 and spawn a process whenever a message
is directed to that port.

2.2.5 Clients and servers

The simplicity of the way the Internet works makes it very flexible. Almost
all interactions between machines are based upon the protocols outlined
above. If a machine installs a version of TCP/IP, it doesn’t matter what
platform it is, whether it’s a Mac (where the protocol is called MacTCP
or TCP/IP) or a DOS machine running Windows 3.1 (where it’s usually
called Winsock) or a big Sun 1000 server (where it’s called TCP/IP); using
this protocol, all these machines can function on the Internet.

However, some Internet operations require two additional pieces of
software, one residing on the target machine and one residing on the home
machine. These are called, respectively, the server and the client. TCP/
IP ensures that machines can connect with each other and send packets
of data, sequentially numbered, to the right ports. It does not ensure that
the packets will contain the right kind of information. Servers are pieces
of software which know how to access information of specific types, and
clients are pieces of software that know how to request information from
the appropriate servers.

Of the three basic functionalities created to use TCP/IP (electronic mail,
ftp, and telnet), two of these, ftp and telnet, require client and server
software. To telnet to another machine, for example, you must run a telnet
client on your machine and contact a telnet server on the other end. Most
large Internet machines run ftp and telnet servers as a matter of course,
so that other Internet machines can ftp or telnet to them; and they also
run telnet and ftp clients, so that their own users can initiate ftp or telnet
sessions to remote machines.

As more and more personal machines become part of the Internet, more
individuals are installing ftp or telnet clients on their own machines. And
some are even installing servers, so that others can connect to the machine
and retrieve information. Suppose, for example, that you create an extensive
database of Klingon Battle Poetry (the most popular genre on the Klingon
homeworld). To make this important resource available to the Internet
community, you can simply put it on your local machine and install an
appropriate server. If you install an ftp server that accesses your Klingon
directory, for example, then anyone with an ftp client on their machine
can log on and copy your files of battle poetry to their own disk.

2.3 BASIC INTERNET FUNCTIONS

Sections 2.3.1, 2.3.2, and 2.3.3 below treat electronic mail, ftp, and telnet,
describing how to access these functions and giving some hints about their

32 Helen Aristar Dry & Anthony Aristar

use. However, users familiar with these services may wish to skip ahead to
Section 2.5, where we discuss the World Wide Web.

2.3.1 Electronic mail

By now everyone is familiar with e-mail. Indeed, it is e-mail and mailing
lists which have been primarily responsible for the changes in information
dissemination described in Section 2.1. However, e-mail does have
limitations which make other types of transfer more practical for some kinds
of files.

On the Internet, mail delivery usually uses a piece of software called an
MTA (Mail Transport Agent) which sends data via SMTP (Simple Mail
Transfer Protocol). On a Unix platform, the MTA is usually sendmail, and
it can be accessed directly by typing sendmail at the root prompt. However,
users normally don’t do this; rather they interact with sendmail via a mail
interface, or mailer. On a Unix platform, the default mailer is usually either
mail or mailx.

If mailx is your default, you activate it when you type mail at your home
prompt; and it allows you to, e.g., display a list of the headers of incoming
mail by typing h, read messages by typing their numbers, and send mail
by typing mail plus an e-mail address. Mailx is actually a multifunction
mailer that will allow you to perform numerous other operations, such as
activate an editor within an e-mail message, make aliases for frequently
used addresses, or save and concatenate messages in files. However, mailx
is not menu-oriented, so it is not particularly easy to learn; and, unless
you use an editor to compose your e-mail messages, it is fairly unforgiving:
it will not allow you to move back a line in order to correct a mistake; nor
will it wrap lines for you. If you forget to add returns at the ends of your
lines, your message may display correctly on the screen but, unless it is
very short, you will not be able to send it.

For these reasons, many people prefer other mail interfaces like Pine or
Elm. One of these is likely to be available on your mainframe account;
and they are significantly easier to learn than mailx, since they are menu-
driven.

Figure 2.1 below, for example, gives the screen which displays when we
type pine at the home prompt.

Some people prefer their mailers to be even more user-friendly and to
reside on their home machines. Some mailers like Eudora and the mailer
that comes with Netscape (a World Wide Web browser described in Section
2.5.3) allow you to access your mail on a mainframe account without ever
having to log on to the mainframe. You simply call up your mail client and
tell it to “Get new messages” or “Check mail.” The client then logs on to
the mainframe for you and transfers your new mail to the machine on your
desk.

The Internet: an introduction 33

2.3.1.1 The limitations of electronic mail

Despite the utility of electronic mail in facilitating both discussion lists and
personal correspondence, e-mail does have salient limitations for linguists.
These limitations derive from two sources: the kind of encoding mail-
messages require, and the way that fonts are handled on computers.

Normal mailers can handle only one kind of text, 7-bit US-ASCII.
ASCII is a means of encoding characters that was designed in the bad
old days when no one could imagine that anyone would wish to send a
message in any character not used in English. ASCII cannot encode many
of the characters used in European languages, let alone non-Latin
characters and IPA (International Phonetic Alphabet). These are either lost
or damaged in the mail transfer. You can’t, therefore, simply put a
wordprocessor file into a mail-message and expect it to arrive at the other
end in a usable form. Almost all word-processors use non-ASCII characters.

Fonts are also a problem. When you type a letter into a word-processing
system, what you’re really doing is adding a code which is represented in
a specified font as a particular glyph. That same code will map to a totally
different glyph in another font.

Figure 2.1 Initial screen of the Pine e-mail program

34 Helen Aristar Dry & Anthony Aristar

For example, when you type a p you add a code which is equivalent to
the decimal number 112. But if you’re typing in Hindi, 112 will map to a
totally different glyph, since Hindi, which uses Devanagari script, also uses
a different set of fonts. So, if someone sends a document in Hindi to
someone who doesn’t have a Hindi font, what will appear on their screen
is a series of meaningless Latin characters. What this means for linguists
is that any special fonts you might use—for example IPA—may be
unreadable to your correspondents.

There are three ways around this difficulty. One is a permanent one:
to change the way that fonts are encoded so that a particular code always
maps to the same character in the same script no matter what font is
used. This solution is on the horizon: it is called Unicode, and is a
mapping scheme which assigns (or will ultimately assign) unique codes
to all the symbols used in the representation of human language. Unicode
mailers are already starting to appear, e.g. the Panglot mailer. When these
come into common use, we can stop worrying about the fonts our
recipients are using.

Meanwhile we have to tolerate less satisfying solutions. One is to use a
utility which turns a text containing non-ASCII characters into a text which
has only ASCII characters. The file can then be transmitted by mail to
another machine where—hopefully—your recipients will have software
which will turn the file back into its original non-ASCII version.

If you are on a Unix machine, the utility which turns non-ASCII to
ASCII and back again is called uuencode. If you’re on a Mac, the same
functionality is served by BinHex. Word (and some other wordprocessing
programs) can do something similar. You can save a word-processing file
as RTF (Rich Text Format), which turns a wordprocessing file into 7-
bit ASCII. If you save a file in RTF and send it via e-mail, your recipients
can download it, remove the mail-header, and use Word to display it with
its original formatting on their own computers.

However, if you use special fonts, such as an IPA font or an Arabic font,
to write the file, you’ll have to send the font along with the file unless your
recipients already have it. Even then, unless your recipients are on the same
platform, you can’t be sure that the characters you typed will be the ones
displayed on their machines. Although there are programs which translate
fonts, e.g., Mac TrueType fonts into Windows TrueType fonts, these do
not work flawlessly; often characters are lost.

There is another way to transmit non-ASCII files, one which is in many
ways superior to the methods mentioned above, though it shares—and
even compounds—some of its problems. This is to use mailers which can
encode messages in MIME. Since MIME is becoming a more and more
important way of sending mail, we will explore it in a little more detail
here.

The Internet: an introduction 35

2.3.1.2 MIME

MIME, an acronym for “Multipurpose Internet Mail Extensions,” is a
protocol which allows mail messages with a very varied content to be
exchanged successfully. With non-MIME mailers, you can’t simply send a
file in a word-processing format (such as Word or Word Perfect) and expect
it to arrive undamaged at its destination, since only 7-bit US-ASCII and
lines shorter than 1000 characters will survive the transfer. Images and
audio files will also be damaged in transit.

MIME mailers are a partial solution to this problem. Such mailers
include information in the messages which allows the recipient mailer to
understand what kind of message it is receiving. And they allow you to
include any kind of data in a mail message by encoding the message into
the form mail messages must have, i.e. 7-bit US-ASCII with a line-length
less than 1000 characters. The recipient mailer can then decode the
message and return its contents to the original form.

Suppose, for example, you use a Mac and wish to send your friends
your latest work on the syntax of Ngarindjin. You tell your MIME mailer
to attach the file to your mail-message. The mailer encloses the message
within lines (which are called boundary-markers), and sends it off to your
friends. When they receive the message, their MIME mailers take note of
the markers, which indicate the file type and the kind of decoding needed
to turn the file back into its original form. If, for example, the message is
a binhexed file, and if the recipient is also running a Mac, a MIME mailer
will unbinhex it and save it as a file on the desktop. All your friend now
needs to do is click on the file and read it.

With a MIME mailer you can even include sound files of Ngarindjin
or picture files showing the ghost gum tree beneath which you collected
your data. Your recipients may need to have special software on their
machines in order to turn your files back into sound and/or pictures; but
a fully MIME-compliant mailer will be able to tell them what kind of files
they have received and what additional software is needed.

This does not mean that all difficulties disappear when a MIME mailer
is used. There is still the problem of fonts. If you send someone a phonetic
transcription of some data, the material will still be unreadable unless he
or she has the same font you used for the transcription. What is more, like
ordinary mailers, MIME mailers do not allow you to mix fonts easily in
the same message. This means also that you can’t use many different scripts
in a single message, e.g. you can’t have a message written in English which
includes data in Thai script. However, with a MIME mailer you can at
least write your message using a word-processing program and then add
the word-processor file as an attachment to your MIME message. Most
word-processing programs have no trouble handling different fonts in the

36 Helen Aristar Dry & Anthony Aristar

same document; and this way you’ll at least be able to send the information
via e-mail.

However, if you use a MIME mailer you may encounter another problem
as well: incompatibility with non-MIME mailers. Suppose someone who
uses a MIME mailer sends a message to someone who does not have one.
If the message uses only ASCII characters, the recipient will have no trouble
reading it. Most people won’t even notice that the message contains MIME
headers. Thus a message such as the following, typed into a MIME mailer:

Hi, Penny! Congratulations on tenure!

will appear just as above. The only clue that a MIME mailer sent the
message will be a line in the header which will say the following:

Content-Type: text/plain; charset=“us-ascii”

But if the message was written in, say, Word, and then attached to the
message, the result will be a message like the following, which is totally
unreadable by a human being:

It’s not enough, then, that you have a MIME mailer. The recipient has to
have one too, or at least have software (such as mpack, munpack, or
Metamail) which can convert what you have sent. Such software usually
prompts the user to save the mail message as a file, which can then be
transferred to the user’s home computer and read using a word-processor.

At this writing, there are still many people using non-MIME mailers.
If you use a MIME mailer, it’s very likely that your attachments will be
unreadable to some of your correspondents. So it is important that you
know what kind of mailer you have.

Many people are using MIME mailers without knowing it, since some
of the most user-friendly mailers are, in fact, MIME-compliant. Here we

The Internet: an introduction 37

can not give a list of all MIME mailers for all platforms. But the following
are the most common: Eudora, Pine, Elm, Netscape Mail, Explorer Mail.
Most mailers included in the software packages of Internet providers are
now also MIME-compatible.

Thus, though MIME is undoubtedly the wave of the future, the future
is not quite with us yet. It may be a while before we can assume that every
e-mail message we send will be easily read by every recipient.

2.3.1.3 E-mail addresses

In the early days of e-mail correspondence a recurring problem was that of
finding an individual’s e-mail address. Today most associations publish the
e-mail addresses of members with their membership lists, so the directory
of a linguistic society may be all you need. However, many universities and
organizations are also simplifying addressing, so that it is becoming easier
to make a good guess. They have compiled a mailer-accessible database of
all the different e-mail addresses on site, so, if you know that someone works
at, for example, the University of Texas, you can simply type your
correspondent’s name plus the university designation, e.g.:

Jane.Doe@utexas.edu
jdoe@utexas.edu
doe@utexas.edu

You no longer need to know the department name or machine name in
order to reach a correspondent.

Another source of linguists’ e-mail addresses is the Linguists’
Nameserver at the address:

linguists@let.uva.nl

You ask this server for a linguist’s address by sending it an e-mail message
consisting of the command:

list SURNAME

This server has no connection with the e-mail discussion list called The
LINGUIST List, but it is also possible to use The LINGUIST List to find
an e-mail address (see section 2.3.1.4 below).

2.3.1.4 Mailing lists

As far as we know, the first electronic mailing list designed specifically for
linguists was The LINGUIST List, started in 1989 at the University of
Western Australia with 69 subscribers. By 1997, it had grown to over 9400
subscribers from 82 different countries, thereby offering a concrete
illustration of the popularity and utility of mailing lists. The LINGUIST

38 Helen Aristar Dry & Anthony Aristar

List has become a general clearinghouse for all kinds of information relating
to the discipline, but it still remains a vehicle for the linguistic discussion
it was founded to carry. It can be accessed at the e-mail address

linguist@linguistlist.org

or read at one of its World Wide Web sites. We give only the main
LINGUIST site here. From it, you can find a site which may be nearer to
you, and thus faster to access:

http://linguistlist.org/

You can use the search facility on the LINGUIST web site to find the e-
mail address of another subscriber. Simply click on “Addresses” on the
home page. Also, if you are a LINGUIST List subscriber, you can retrieve
subscriber addresses by e-mail. Simply send the command

review linguist by name

to the LINGUIST listserv address:

listen@linguistlist.org

You will receive the names and e-mail addresses of all current subscribers.
The file you receive is huge, however. So you should save the file immediately,
without reading it (it will take 10 minutes to scroll across your screen as a
mail message). Once you have saved the list as a file, you can use a search
utility like grep to extract the name and address you want.

The LINGUIST List is also a good starting point from which to locate
other linguistic resources on the World Wide Web. Every Web address which
passes through LINGUIST is “captured” and added to its lists of
datasources. The lists are extensive, since almost all linguistic Web addresses
appear at some time in LINGUIST issues. In addition, LINGUIST now
maintains the Virtual Library in linguistics, formerly at Brown University.
Thus the LINGUIST homepage now offers access to the Web addresses
of linguistic programs, software, corpora, mailing lists, fonts, conferences,
jobs, personal pages of linguists, associations, journals, publishers,
bibliographies, course syllabi, dictionaries, and sites dedicated to specific
topics, e.g. sign language. (Most of the addresses in this article were
retrieved from the LINGUIST website.)

There are numerous other mailing lists of interest to linguists, focussing
on everything from the interface between archeology/prehistory and language
(ARCLING. Server: listproc@anu.edu.au) to comparative linguistics in
African Languages of the Sahel-Sahara zone (COMPARLINGAFRIC at

listserv@unice.fr). Mailing lists frequently fade away, or change locations
and contact persons. So if you are interested in joining a discussion list on
a particular topic, it’s a good idea to check one of the several regularly-
updated lists of mailing lists, e.g.:

The Internet: an introduction 39

The List of Language Lists prepared by Bernard Comrie and Michael
Everson:

http://www.indigo.ie/egt/langlist.html

The List of Mailing Lists kept by the LINGUIST list:

http://linguistlist.org/lists.html

Both of these are preceded by useful instructions on how to join a mailing
list. Usually you can subscribe by sending to the list address a message
consisting of the single line:

subscribe <listname> <firstname> <lastname>

List subscription is usually automated., and there are four software
programs commonly used to maintain lists: Listserv, ListProc, Mailbase,
and Majordomo. Interaction with the list server will differ slightly
depending on what program the list uses.

2.3.2 File transfer protocol

Because of the limitations of e-mail, it is often practical to use ftp or File
Transfer Protocol to transfer files between remote machines. If you are
collaborating on a manuscript with a colleague, for example, you may well
find it faster and more reliable to send your drafts back and forth using
ftp rather than mail.

Ftp works as follows. If you wish to get a file from a remote machine,
you must start an ftp client on your own machine, and tell it to access the
target machine’s ftp server. You do this, on most machines, by typing the
following:

ftp machine-name

e.g.

ftp zippy.org

At this point you will be asked to type your login name, and your password.
Usually you must already have an account, or know an account name and
password, on the remote machine. However, some machines allow what is
called anonymous ftp so that you can access files which have been made
available to the public. These machines let you log in using anonymous as
your login name and your e-mail address as the password.

After login, you will see a prompt like this:

ftp>

In order to find out what files are available on the remote system you can
type one of two things: dir (for “directory”) or ls (for “list”). Both will

40 Helen Aristar Dry & Anthony Aristar

give you a directory of files, though ls will provide less information about
them than dir. If you want to transfer a copy of one of these files to your
home machine, you can type:

get filename

e.g.

get klingon.ode

If you want to get multiple files, then you use mget. For example, you might
type the string:

mget *.ode

The remote machine will then transfer each file whose suffix is .ode to your
machine, asking you each time whether you want the file. If you don’t want
to be asked, start ftp by typing ftp -i. This could be a dangerous
operation, since there are tens of thousands of Klingon odes, and you have
just given the command to download all of them. But if you have lots of
disk space, ftp is a fast and easy way to retrieve multiple files, or large files
such as electronic texts or corpora.

If you want to put a file on a remote machine, you use put to copy a
single file, and mput to copy multiple files. You can transfer even non-ASCII
files this way, without having to uuencode, binhex or zip them. However,
non-ASCII files must be sent using binary transfer. You set ftp to binary
transfer by simply typing binary, e.g:

ftp>binary

Most ftp programs will reply as follows:

200 Type set to 1

If you want to transfer a word-processing file, or a font, or a piece of
software, always set binary, or it will fail to work on the other end. After
binary transfer is complete, you can reset ftp to ASCII transfer (also called
text transfer) simply by typing ASCII, e.g.:

ftp>ASCII

And the ftp program will reply as follows:

200 Type set to A

However, you should probably make it a rule always to set binary for ftp.
Certainly, if you don’t know whether a file contains non-ASCII characters,
you should transfer it as a binary file. To transfer an ASCII file as binary
usually does no harm: it just takes slightly longer. The reverse, however, is
not true. If you don’t set binary, ftp will interpret anything you send as
ASCII, deleting or mistranslating non-ASCII characters.

The Internet: an introduction 41

2.3.3 Telnet

It is often the case that you are on one machine but need to do something
on another. You might, for example, be visiting Los Angeles and need to
read your mail on a machine in Chicago. If your Chicago machine allows
remote logins (some do not, for security reasons), you can actually
interact with its processor just as if you were sitting at your own home
terminal.

You do this by typing the function telnet followed by an argument which
is your machine’s full Internet name, e.g:

telnet trixi.uchicago.edu

The telnet software will respond with the following kind of message:

Trying…
Connected to trixi.uchicago.edu.
Escape character is ’ˆ]’.
SunOS UNIX 4.1 (trixi.uchicago.edu) (ttyp7)
login: <yourname>
Password: <yourpassword>

When you’ve typed your password, you’ll be logged onto “trixi”; and
everything should seem just like it is at home, although the commands
you type may take somewhat longer to execute. What’s actually happened,
of course, is that you’ve opened a TCP/IP connection with the remote
machine. And there is a great deal going on in the background. For
example, telnet must be able to tell what kind of machine you’re on, since
a Mac, for example, will handle output to the screen differently from an
IBM.

Telnet is useful for other purposes than simply reading mail from a
remote terminal. Thousands of libraries across the world are accessible by
telnet; when you log on to a remote library to find a citation or “read the
shelves” to find new books, you are searching the card catalog by telnet.
The Appendix to this chapter includes addresses at which you can find
lists of libraries available via telnet.

There are also some linguistic databases which can be accessed in this
way, e.g. the South Asia database at columbianet.columbia.edu (select
the menu item called CLIO Plus), and the Australian Language &
Literacy database at lingua.cltr.uq.oz.au (login as dbguest, password
NLLIA-db). Once logged on, you can search the database and display
records by keying in commands, just as you would if the database were
on your own machine. However, you can download copies of the records
only in rather inconvenient ways, i.e., by having your machine record the
whole telnet session as a file, or by telling your machine to Print Screen
periodically.

42 Helen Aristar Dry & Anthony Aristar

2.4 FINDING INFORMATION ON THE INTERNET

The three functionalities we have discussed allow you to contact other
machines and thus to retrieve information whose location you know. What
they don’t do, however, is help you find information. Finding information
has, of course, always been a problem on the Internet, since there is no
central index of available files or sites. And the problem is being exacerbated
by the daily establishment of thousands of new World Wide Web pages.
Whatever their information potential, Internet sites are valueless if no one
knows they exist.

Three of the most important and earliest solutions to this problem were
Archie, Gopher, and WAIS. As we shall see, the first two are now often
accessed via Web browser interfaces, such as Netscape, Lynx, Explorer or
Mosaic, whose primary protocol is http (hypertext transfer protocol).
And both Archie and WAIS are becoming less and less useful as World Wide
Web search facilities proliferate. However, they are still independently
accessible on most mainframes and many workstations. So we describe
them briefly in the sections which follow.

2.4.1 Archie

The most basic search system is called Archie, which is essentially a search
facility for public ftp archives. Any such archive can register with Archie,
and then keep what is called an ls-lR file, which is a recursive listing of all
the files in that archive. Users may then use Archie to search all such
registered files for substrings. Archie searches are very fast. For example,
we searched on the string “linguist” and in approximately 3 seconds we
received the information given as Figure 2.2.

In other words, Archie told us that if we ftp’d to any of the 4 hosts listed
and changed the directory to the one specified after “Location,” we would
find a sub-directory there called “linguist.” The string after
“DIRECTORY,” e.g., “drwxr-xr-x,” tells us that “linguist” is a directory
and that it is accessible to the public; the first “d” in the string indicates
directory and the 3 “r’s” in the string tell us that it is readable by user,
group, and others. Note that Archie did not tell us what’s in the directories
it found. To see a list of available files when using ftp, you’ll have to type
dir, as described in 2.3.2 above.

Most large sites have an Archie client, which can talk to Archie servers,
so that you can perform Archie searches from your command line when
logged on to your mainframe account; you do this just by typing Archie
followed by a search-term, as we did above. But you can also use e-mail
for an Archie search, simply by sending an appropriate request to an
Archie server. There is, for example, an Archie server at a machine called
archie.internic.net. Here you use special commands. The command

The Internet: an introduction 43

prog, for example, tells the Archie server to find any file containing your
search-string. So if you send a message to the address:

archie@archie.internic.net

containing the search command:

prog linguist

you will, in due course, receive a message from that Archie server telling
you the location of all the files which match that search-string.

Alternatively, if you have an ethernet connection or are running the kind
of software that allows you to use a graphical browser on your personal
machine, you may be able to install one of the more user-friendly Archie
clients. A search on “linguist” via one of these clients, produced the screen
given as Figure 2.3.

This helpful Archie client labels the search returns as hosts, directories,
and files. It also allows you to see the size of the file and the date it was
written, and to bring it down to your home machine simply by clicking
on it with your mouse.

Figure 2.2 Results of an Archie search

44 Helen Aristar Dry & Anthony Aristar

2.4.2 Gopher

Gopher is a system which complements Archie, in that it organizes data
in a different way, and will thus enable you to find a different subset of
the body of information. Archie searches through directory and file names
(and in some instances through file descriptions) in order to determine
whether a particular string is present. If it finds such a string, it returns a
listing of the file. What this means, of course, is that there is no necessary
relation between a file-name and its content. A file might be named
“bubble-gum” and be a screensaver. So if you really are looking for files
on bubble-gum, you’re going to have to sift through files which are
irrelevant to your search.

Gopher to some degree obviates this, because it is based on human-
produced indices, and human beings (usually) know what their files
contain. The way Gopher works is as follows. If a site has information,
human beings group the files into categories and put them in files in a
special form. They install a Gopher server which has access to the Gopher
files and responds to Gopher clients by showing the categories in the form
of a hierarchical set of menus. These menus typically include things like
“libraries,” which will allow you access to catalogs of on-line libraries, or
local news. You can see such a menu in Figure 2.4:

Figure 2.3 Archie search results displayed by a graphical Archie client

The Internet: an introduction 45

The particular set of menus you see varies according to the way your
local Gopher server is set up. Since you can easily move to other Gophers,
you can see their menu hierarchies as well. In Gopherspace, you can access
any Gopher’s menus, but what one site catalogs under one menu item
might be catalogued under quite another at a different site. One site, for
example, indexes Virginia Woolf’s To the Lighthouse under literature, another
under women’s writing, a third under romance. And if you don’t know
what category something is catalogued under, you can’t find it.

Gopher, however, has one utility which allows you to sidestep this
problem. It’s a utility which searches through file-names, just as Archie does,
except that it searches inside Gopherspace. This utility is called Veronica,
after the girlfriend of the comic-book character Archie, though it sometimes
appears in Gopher menus under the anonymous menu-item “Search Titles
in Gopherspace.” With this utility you can often find what you want rather
more easily than by browsing menus. But, of course, as with Archie, you
can’t rely on the title of a file to have any connection to its content.

Like many Archie clients, Gopher will not only allow you to find the
files you want, it will also go get them for you as well. If, for example, you
want the on-line version of To the Lighthouse you discovered through
Veronica, a simple command will have Gopher initiate an ftp session to
that site and download a copy onto your disk. Gopher will also initiate
telnet sessions if that is the appropriate action. Suppose, for example, you
find through Gopher a genetics database which you can interrogate by
telnet. Gopher will open the session for you, hand over control to telnet,
and return when you’ve ended the telnet session. This ability to access the

Figure 2.4 Menu produced by a Gopher server

46 Helen Aristar Dry & Anthony Aristar

basic TCP/IP functions makes Gopher very useful. All you need to know
is how to use Gopher. If you wish, you can avoid the intricacies of
anonymous logins or accessing ftp and telnet directly.

Until the advent of World Wide Web browsers, Gopher was the only
utility which allowed you this kind of flexibility. And it is still sometimes a
useful means of finding information in cyberspace, although Web browsers
are fast making it obsolete. Most Unix platforms have Gopher installed
already, so to initiate Gopher on a Unix platform all you have to do is to
type gopher and follow the menus which this command shows you.

2.4.3 WAIS

The last search utility which we’ll discuss here is WAIS, which is an
acronym for “Wide Area Information Service.” Like Gopher, it relies on
indexes. But it differs from Gopher in that these are indexes of the text
inside files rather than an index categorizing files by content. For example,
suppose you wish to find a file of Hungarian recipes for soup. WAIS will
make an index of the words occurring in the file itself, e.g., cabbage, paprika,
sour cream, whereas Gopher will index the file under larger category
headings like Food > Hungarian > Recipes > Soup.

WAIS has one feature that is potentially very useful: it gives each word
in the document a relevancy score. This means that if you institute a search
using the word cabbage, WAIS will not only retrieve a list of documents which
includes the Hungarian recipe file but it will also tell you how important a
word cabbage is within that document. It is able to tell you this because WAIS
databases are indexed by a special program called waisindex which gives each
word a score based on:

� the word’s frequency per 1000 words. Words occurring more frequently

in the document get higher scores.
� the position of the word in the document. Words in titles and headings,

for example, get higher scores.
� the rarity of the word in all the documents WAIS knows about. Words

which are generally rare in documents get higher scores. This may, at
first, seem counter-intuitive, but consider a document that contains both
the words language and anaphora. Anaphora is certainly the rarer word,
and if it occurs in this document, there must be a reason—probably that
the document is about anaphora.

To institute a WAIS search on a Unix platform, you can type

waissearch <searchterm>

e.g.,

waissearch anaphora

The Internet: an introduction 47

at the root prompt. If your machine has a WAIS client, this will connect
you to the default host machine and search the default database. If you
want to search another database, you must specify the host machine and
database, following the flags -h (host) and -d (database), respectively. So
if you want to search for the word “syntax” in the Welsh database
maintained on the sunsite.unc.edu host, you would type:

waissearch -h sunsite.unc.edu -d Welsh syntax

One of the problems with WAIS is that for waissearch to query a WAIS
index, someone must already have gone to the trouble of producing such
an index. To date, we have not found many WAIS-indexed databases
relevant to linguistics. Another problem with using WAIS is that only
Mosaic among the graphics Web browsers can handle WAIS addresses.
Using other Web browsers, you have to contact WAIS servers indirectly,
by going through a Web-to-WAIS search facility or using a Web-to-WAIS
gateway. For these reasons, we find WAIS to be a less useful search facility
than Gopher or Archie.

2.4.4 News

News is not so much a search facility as a place where computer users
can interact, and thus find information by asking questions, or by
downloading files individuals have posted to News. News works somewhat
differently from the other Internet utilities, in that it uses multiple servers,
as well as a user-oriented client. The major News facilities are USENET
and ClariNet. Each is a distributed network, which means that news items
sent to one USENET or ClariNet server are “propagated,” or distributed
by the server to all the other servers which act as clearinghouses for
USENET or ClariNet news items. To read News, you must have access to
a news client and a news server which is part of the News network. The
news server may also serve as a central site for news items sent to purely
local newsgroups (e.g., groups advertising rental property or jobs in the
area). Because all news servers organize newsgroups in the same way, news
items originating at ClariNet, at USENET, or a local server can be treated
the same way by the client; that is, they can be displayed on your screen
as part of the same hierarchical list.

ClariNet is a News system which takes its news items from wire services
such as The Associated Press or Reuters and organizes them into
newspaper-like categories, e.g., World News, Entertainment, Syndicated
Columns. A subject listing of ClariNet newsgroups can be ftp’d from:

ftp.clarinet.com/clarinet_info/quickref

USENET is the very large set of newsgroups which take their news items
from individual posters. When an individual posts a message to a USENET

48 Helen Aristar Dry & Anthony Aristar

newsgroup, a client at the local site sends these messages to the server
which distributes (“propagates”) the message to other servers which handle
this newsgroup. Each server acts as a distributor, or newsfeed, for a chosen
set of newsgroups. The systems administrator at each site decides which
groups to make available to its clients. Your local news server may get
newsfeeds from one server or from many different servers, depending on
the diskspace available and the predilections of your systems administrator.
(Some local sites—e.g., universities with timid administrators—filter out
the more risqué USENET newsgroups.)

If you wish to read News, you start up your local client, which is called
a newsreader. This newsreader goes to the local server and asks for a listing
of the newsgroups which are available. Because there are many newsgroups
(USENET alone has thousands), many newsreaders only list the groups
to which you have previously subscribed. If you are a first-time user,
however, the newsreader will ask if you want a listing of all the newsgroups
available to your local server. Retrieving this list can take a considerable
time, but it may be the only way for you to find groups you want to
subscribe to. When the client displays the list of available newsgroups, you
select one to read, and the client goes back to the news server for a list of
headers of all relevant news items. When you select a news item to read,
the newsreader goes back to the news server once again to get the item
you requested.

There are many different kinds of newsreaders. If you read News from
a Unix account on a mainframe, you may activate your newsreader by
typing rn (“read news”), trn (“threaded rn”) or even nn (“no news”—a
name spawned by the saying “No news is good news”). Figure 2.5 below
is part of the screen we got when we typed trn at a Unix prompt.

Note that in Figure 2.5 the bottom of the screen tells us how to subscribe
to groups using the syntax “g” followed by the newsgroup name. Then it tells
us there are 48 unread news items in the newsgroup news.announce.
newusers and asks us if we want to read these. We don’t. So it tells
us that we are at the end of our subscribed newsgroups and asks “What
next?” At that point we subscribe to the newsgroup sci.lang.

In addition to Unix news clients like trn, there are clients which can be
run on your personal machine. These are often much easier to use than a
mainframe newsreader, since they often provide menus of permissible
operations (reply to the newsgroup, save the news item as a file, etc.),
present newsgroup choices as an organized list, allow you to thread (i.e.,
to group together) news items having the same topic or subject line, and
allow you to use a mouse.

Furthermore, later versions of most Web browsers, e.g., Netscape 2.0
or later, can function as newsreaders, giving you all the advantages listed
above, plus the ability to view pictures contained in news items, and even
to play sound files. However, a newsreader must have access to a local

The Internet: an introduction 49

hdry-ut{12}%>trn
Trying to set up a .newsrc file—running newsetup…
Welcome to trn. Here’s some important things to remember:
° Trn is an extension of rn and has a similar command

syntax,
° Typing a space to any prompt means to do the normal

thing. You could spend all day reading news and
never hit anything but the space bar.

° If you have never used the news system before, you
may find the articles in news.announce.newusers to
be helpful.

° Please consult the man page for complete information.

Creating/home/uts/li/ligt/hdry/.newsrc to be used by
news programs.
Done.
To add new group use ”a pattern” or ”g newsgroup.name”.
To get rid of newsgroups you aren’t interested in,
use the ’u’ command.
Unread news in news.announce.newusers 48 articles
****** 48 unread articles in news.announce.newusers—
read now? [ynq]
****** End of newsgroups—what next? [npq] g sci.lang
Newsgroup sci.lang not in .newsrc—subscribe? [ynYN]
Put newsgroup where? [$ˆLq]
****** 472 unread articles in sci.lang—read now? [ynq]

****** End of newsgroups—what next? [npq]

Figure 2.5 The initial screen of the trn newsreader

news server; if your Web browser can not read News, it may be because it
lacks such access.

Newsgroups are usually presented as hierarchical lists, because News
is organized into categories and sub-categories, ostensibly by subject. For
linguists the best metaphor for this arrangement is the tree. Every
newsgroup is dominated by a node that includes all groups whose topics
are, in the opinion of the organizers of News, sub-categories of the node
topic. In the name of the newsgroup, each node is separated from its
dominating node by a dot. So, for example, a newsgroup called rec.art.folk
would be a group on the recreational activity of art which deals specifically
with folk-art.

The hierarchical organization of News, it may be observed, follows its
own rules. The dominating node alt for “alternative” (e.g. alt.abortion.
recovery, alt.arts.ballet), for example, indicates not so much similarity of

50 Helen Aristar Dry & Anthony Aristar

content, as an implication of similarity of attitude on the part of those who
post messages there. Groups dominated by alt tend to be groups where
anything goes. The content of these groups is hard to predict, and ranges
from the quirky to the frankly obscene. Groups dominated by soc (for
“social”), on the other hand, tend to be more serious. Groups dominated
by sci discuss scientific issues. This is where the major linguistic newsgroup,
sci.lang, resides.

To some degree News fills the same role as e-mail discussion lists, but
it has important differences. For example, the reason why so many people
like News is that reading News is a maintenance-free occupation.
Subscribing to an e-mail discussion group is not. When you receive e-mail
you have to do something with it, even if only delete it. With News, if you
fail to read anything for weeks, all that will happen is that you will get
behind in the discussion. Items you failed to read will eventually disappear
all by themselves. You can, what is more, move freely between groups,
reading a little here, dropping the group for a while, and going back later
if you wish. It’s easy to stumble across a newsgroup on an interesting topic
(your newsreader, after all, will provide a list), post a few messages to it,
and move on.

The easy availability of newsgroups has, however, some bad effects. It’s
as easy for the uninformed as for the expert to post a message on a topic,
and thus newsgroups tend to contain a very mixed set of items. Sci.lang,
for example, supposedly treats the scientific study of language. In practice,
however, it mixes news items reflecting “scientific study” with news items
of awe-inspiring linguistic naiveté. (This can also be true of mailing lists,
of course; but mailing lists on specific topics do require some knowledge
and initiative to find, qualities presumably lacking in the “drive-by” poster.)
Newsgroups are also hard to keep focused and are often subject to flame-
wars, since personal connections between posters are tenuous and, if a
dispute arises, no one has the authority to intervene.

2.5 WORLD WIDE WEB

Each of the Internet functionalities discussed so far does only a few, specific
things: mailers send and receive mail, ftp servers transfer files, Gopher
servers find information, and so on. The World Wide Web, however, is
different. It is an Internet functionality which can do something none of
the other utilities can: it can do everything.

2.5.1 What is the Web?

The Web does not exist as a concrete entity. “Web” is a metaphor for the
multiplicity of links effected by the new technologies called web browsers
and web servers. Unlike a Gopher client, which requires a Gopher server

The Internet: an introduction 51

on the other end, a browser can interact with (almost) any kind of server,
as long as it knows the server type. Thus the information it exchanges can
also be of virtually any kind: a text, a photograph, a sound, a movie, a
program, or a mail-message.

However, the facility which has made the Web what it is is the use of
hypertext as a way of accessing Internet facilities. And the HTTP server,
i.e., a server running HyperText Transfer Protocol, is the facility that has
come to be known as a “Web server.” As most users know by now,
hypertext is text which has links to other texts embedded in it, so that the
user can select a link with a mouse or a keystroke and “go to” the linked
text. On the World Wide Web, the links are called URL’s (Universal
Resource Locators); and they have a three-part syntax:

a) The kind of resource being accessed. Is it an HTTP server, a Gopher

server, a WAIS service, an ftp site, telnet site or a News group? Each of
these has a different prefix: HTTP, GOPHER, WAIS, ftp, TELNET and
NEWS.

b) The address of the service, in domain name form, preceded by a colon
and two slashes. If a port has to be designated, it follows this, preceded
by a colon. The address ends with a slash.

c) The path to the right file. This will include the name of each subdirectory
in the path, followed by a slash, and the filename if you know it.

Thus, if a file called default.html exists inside the directory files and is
present on a machine called engserve.tamu.edu which has an HTTP server
and uses Port 8000, the correct URL would be

http://engserve.tamu.edu:8000/files/default.html

A telnet connection would appear as follows:

TELNET://engserve.tamu.edu/

2.5.2 Hypertext

Even though you can use a browser to access a Gopher server and retrieve
plain text or an ftp server and retrieve files, it is most likely that you will
want to access an HTTP server and retrieve documents in hypertext,
because it is hypertext documents which contain links to other documents.
If, for example, your browser displays a hypertext document that lists the
datasources collected by The LINGUIST List, e.g., the homepage at:

http://www.linguistlist.org/

and you decide you want to see the list of sites dedicated to specific
linguistic topics, you select that link and retrieve another hypertext
document, this one containing links to these sites (Figure 2.6).

52 Helen Aristar Dry & Anthony Aristar

Selecting a link to a specific site, e.g., Lexical Functional Grammar, will
retrieve yet another hypertext document, this one listing (and potentially
linking you to) information about LFG (Figure 2.7). It is this ability to
link one text to another which has caused the set of protocols we are talking
about to be called a “web.”

2.5.3 Web browsers

Web browsers, which run on the user’s own machine, are the key Web
technology. There are a number of browsers available for different
platforms. There are text browsers, such as Lynx, which cannot handle
graphics but which have the advantage of not requiring that the machine
run TCP/IP. Text browsers will work over a serial line, i.e., one which
transmits series of characters, not data in Internet Protocol. This means
that you can use a text browser with your ordinary modem and phone line
and very basic software. However, you won’t be able to take advantage of
the full capacity of the Web. For that, you need a graphics browser. The
earliest graphics browser was NCSA Mosaic, but it has been largely
superseded by browsers such as Netscape and Explorer. Both Netscape
and Explorer are available by anonymous ftp.

Figure 2.6 Hypertext page listing WWW sites dedicated to specific linguistics
topics (From the LINGUIST List website)

The Internet: an introduction 53

The addresses are:

ftp.netscape.com

and:

ftp.microsoft.com

Ftp to one of these sites as described in section 2.3.2 above, log in using
“anonymous” and download the browser version which is appropriate to
your machine. Netscape is free to educators, though others must pay a
small fee. Explorer is free to everyone.

Browsers not only know how to ask different kinds of servers for
information, they know what to do with the different types of information
they retrieve. If the file is a graphics file, the browser will display it on screen
as a picture. If the data is text, the browser will display it in a text window.
If the connection is to an ftp port, the browser will save the data as a file.
This means that users can do highly sophisticated things without ever
needing to learn the specific technologies operating behind the scenes.

Browsers themselves are very easy to learn. To use a browser, all you
need to know is how to run the browser software, how to distinguish a
hypertext link from other text (by color, underlining, or shading), and how
to open links (by selecting them with a mouse or the keyboard). For

Figure 2.7 Homepage of the website dedicated to Lexical Functional Grammar

54 Helen Aristar Dry & Anthony Aristar

persons with graphics interfaces (e.g. MAC, Windows), browsers are the
epitome of “point-and-click” technology: you open a browser by clicking
on its icon and you access its functions and links by clicking on menu items
or highlighted text.

However, in order to use a graphics browser like Netscape, Explorer or
Mosaic, and thereby enjoy all the features of the Web, your machine must
have an IP connection (e.g., TCP/IP, Ethernet), or run software using a
protocol which makes the other machine think it does. PPP (Point to
Point Protocol) and SLIP (Serial Line Internet Protocol) are protocols
that fool the Internet into thinking that your personal computer is an
Internet machine. However, they can be tricky to install. Many universities
are now giving out an Internet connectivity package which includes
MacTCP, TCP/IP, or Winsock and which—theoretically, at least—installs
itself using an easily-run setup program. If such a package is available to
you, by all means use it.

However, you should know that you will need a good deal of memory
(at least 8 MB) and a fairly fast connection. Otherwise Web access can be
painfully slow. The Web makes no distinction between different kinds of
text; and some of these “texts”—like movies, pictures, and sounds—are
very bulky. A single short computer movie is the size of all of Jane Austen’s
combined works. To move this kind of information around at all requires
at the minimum a high speed modem. An ethernet connection is even
better.

2.5.4 Writing a Web page

One of the reasons that the Web has been so successful is that it’s very
easy to set up a Web site. You have to have a certain amount of knowhow
to make information available on the Internet via Gopher or WAIS or
Archie, but setting up a Web page with all the hypertext links you want is
so easy that individuals who have absolutely no computational expertise
can do it. All you need is an account on a machine where a Web server is
running and some introduction to a simple markup language called
HTML.

If you’re a student or employee of a university, it’s very likely that you
have access to an HTTP server through the same account as you use for
e-mail. Even if such a server is not running on your own machine, it’s
probably running on other university machines, and you can request an
account on one of these for your Web page files. In that case, all you have
to do is create a hypertext document and store it as a file in a directory
which is accessible to the server.

To create a Web page, the first thing you should do is download a Web
browser like Netscape or Explorer, since the browser will help you

The Internet: an introduction 55

download all the additional software you need. See Section 2.5.3 for
instructions.

Next you will need to learn how to write HTML (HyperText Markup
Language), so you may wish to download the hypertext primer available
at the URL:

general/internet/www/HTMLPrimer.html

Just access this URL through your browser and save it as a file on your
own machine. (Your browser will probably have a “Save as” option in the
File menu.) Then you can print it out and refer to it as you mark up your
Web page. The grammar of HTML is very easy to learn, but—if you’re
like us—you may have trouble remembering the vocabulary items and be
grateful for a glossary.

2.5.4.1 HTML basics

In HTML, the analogue of a vocabulary item is the tag. A tag consists of
a left angle bracket (<) followed by the name of the tag, e.g. B for bold, or
I for italic. A right angle bracket preceded by a slash (/>) closes almost
all of the tags. The two exceptions are the <P> tag, which marks the end
of a paragraph, and the
 tag, which marks a line break.

Tags are instructions to the Web browser. Most of these instructions tell
the browser how to format the page it is displaying. So, for example, in
the markup below

 This is boldface. </7>

the tag tells the Web browser to bold the text until it finds the ,
when it will stop holding the text. (Case never matters inside a formatting
tag.4 So and would work just as well.)

Titles are marked by the <TITLE> tag, and end with the </TITLE> tag.
Every Web page should have a title, as this is what is displayed at the top
of the window when the page is read with a browser. Headings are indicated
by tags beginning with H, e.g. <H1> </H1>, <H2> </H2>. The larger the
number to the right of the H, the smaller the heading. Lists of various
kinds (bulleted, indented, numbered, etc.) can also be formatted by using
appropriate tags.

Consider the following HTML text:

<TITLE>This is an Example of HTML</TlTLE><H1>Now we have
a heading</H1>Now we have some text, followed by a
paragraph break<P>And then another<P>And then some
bold text

This will display in Netscape as in Figure 2.8.

In addition to formatting commands, you will almost certainly wish to
add links to your document, so that the user can move from your page to

56 Helen Aristar Dry & Anthony Aristar

related files or documents. Links are added by surrounding the address of
the resource and the words you wish to use as a link with anchor tags.
The browser will indicate that the selected words are a link by changing
their color and/or underlining them.

The hyperlink anchor tag always starts with <A. It is followed by
HREF, which tells the browser that this is a Hypertext REFerence. Then
comes an equals sign, then the quoted address of the file you wish to link.
If the file is local, and in the same directory, the filename will serve as the
address, e.g.

If the file is on a remote system, however, you must use the URL scheme
(see Section 2.5.1) to specify the file.

After specifying the address, you type the words you wish to be
highlighted in your text to indicate the link, i.e., the words you want the
user to “click” on. Then you close the link with , as in:

This is a link.

2.5.4.2 Mounting your Web page

Once your page is furnished with links and formatted to your liking, you
simply save it as a file in the proper subdirectory. If it is your main page,
you should give the file a name that the Web server recognizes—usually
index.html or default.html—so that it will display this page first when
someone visits your site with a browser.

The directory to which you save the file can be a subdirectory within
your own account, but it too must be a directory that the HTTP server

Figure 2.8 The sample HTML text as displayed by Netscape

The Internet: an introduction 57

can read, so you may have to ask your local help desk administrator what
the directory should be called, and how to set protections so that outsiders
can read it. Most HTTP servers are programmed to read directories called
either www or public_html.

For example, if you have a university account with the address

foobar@sloppy.emich.edu

and the machine called “sloppy” is running a Web browser, you can place
your Web page in a subdirectory of this account, perhaps one called /usr/
local/foobar/www/. Anyone wishing to read the page with a Web browser
would access it at the URL:

http://sloppy.emich.edu/-foobar/

By convention, the main Web server at each site has the alias www. So, if
“sloppy” houses the main Web server, your page can also be accessed as

http://www.emich.edu/-foobar/

This URL tells the browser to contact the machine at Eastern Michigan
University which is running the primary WWW server and to go to the
WWW-accessible directory in the account of “foobar.” The server will find
the file called index, html in this account and—if the HTML markup was
done correctly—display it with proper formatting and live links.

2.5.5 Setting up a Web server

If you do not already have an account on a machine running an HTTP
server, you may be required to set up a Web server in order to make your
Web pages available to the public. If you have a certain amount of
computational experience, you will find setting up a Web-server only about
as complicated as installing a word-processor. However, this chapter is
intended for beginners, so we will not go into this process in detail.

Many Web servers are free; and you can find a list of available servers
at a number of different sites on the Web, e.g.:

http://www.uiuc.edu/help/servers.html

Note, however, that running an HTTP server on your own machine
requires that:

� your machine be directly connected to the Internet. If you have an

Ethernet connection, you automatically have an Internet connection too.
� your machine be running all the time. Once you set up an HTTP server,

you’ll receive connections from all over the world at all hours of the
day.

58 Helen Aristar Dry & Anthony Aristar

If you decide to set up a Web server, we recommend that you consult a
book on the subject; the most helpful book we know is an O’Reilly and
Associates Nutshell book called Managing Internet Information Services (Liu
et al, 1994).

2.6 CONCLUSION

In this chapter we have tried to outline the nature of the Internet, and how
you, as a linguist or linguistics student, can take advantage of it. In this space,
it has been impossible to do more than introduce the eight Internet
technologies we have discussed; but we have tried to provide enough
information to allow you to decide which of these are likely to be most useful
to you. The Appendix to this chapter lists resources which will allow you to
learn more about the ones you choose to investigate further.

Many of the resources are themselves on the Internet, so we urge you
to sit down at the computer and try to find them. Simply surfing the net
is probably the best way to learn—certainly, a lot of the information in
this chapter was acquired that way; and it was (dare we say it) a lot more
fun than going to a library. This is fortunate, since we all need to continue
exploring the Internet: so much valuable linguistic information now appears
there that we cannot ignore it for long without losing contact with
important research.

NOTES

1 One of the authors of this chapter had a paper accepted in 1991. It did not
appear in print until 1995. And this is probably not at all unusual.

2 For a more extensive overview of the Internet and how it works, we refer readers
to Liu et al. (1994), from which much of the following information is drawn.

3 IP numbers, then, are ordered the opposite way to domain names. The leftmost
octet of an IP number indicates the widest network, whereas the widest domain
is indicated by the rightmost portion of a dotted domain name.

4 It does matter in addresses, e.g., filenames, when talking to a Unix machine.
So, when enclosing material within anchor tags, make sure that upper and lower
case are quoted exactly.

59

Appendix

PART I BOOKS

Krol, Ed. 1994. The Whole Internet. Sebastopol, CA: O’Reilly & Associates.
There is an Academic Edition adapted into a textbook by Bruce
Klopfenstein. One of the best books for those who want a good
introduction to how the Internet works. There is considerable detail here,
and it’s very clearly written.

Liu, Cricket, Jerry Peek, Russ Jones, Bryan Buus, and Adrian Nye. 1994.
Managing Internet Information Services. Sebastopol, CA: O’Reilly &
Associates. A more advanced book for those who want set up their own
site. It will teach you how to set up Web servers, e-mail lists and ftp sites.

Miller, D., S.Fowell, N.Ford. Forthcoming. Information Skills in an Electronic
Age: The Student’s Handbook. London: Routledge. A book aimed at the
particular needs of students who use the Internet as part of their
education and research.

Quarter-man, John S. 1995. The Matrix: Computer Networks and Conferencing
Systems Worldwide. Bedford, MA: Digital Press. This is the standard
handbook on the Internet. It is bulky, and can be very complex, but it
is well worth reading nevertheless.

Unicode Consortium. 1996. The Unicode Standard: Version 2.0. Reading,
MA: Addison-Wesley. (See also http://www.unicode.org.) The standard
reference work on Unicode, the character encoding system which will
allow linguists (and a whole lot of other people) to use any script they
wish on the Internet.

PART II SOFTWARE

Web browsers

Internet Explorer: Produced by Microsoft, this is one of the fuller featured
browsers available. The latest version of Explorer is Unicode-compatible.
http://www.microsoft.com/msdownload/default.asp

60 Helen Aristar Dry & Anthony Aristar

Netscape: Another full-featured browser, and, at the moment, probably the
most common. The latest version of Netscape is Unicode-compatible,
http://www.netscape.com/

Tango: The first of the new wave of browsers whose native character
encoding is Unicode. This makes it particularly interesting to linguists,
since it makes the display of unusual characters possible.
http://www.alis.com/index.en.html

HTML editors

Netscape: Some versions of the Netscape browser have editing software
added on. Netscape Gold is one such version, as is the browser package
called Netscape Communication. The Windows version is better than
the Mac versions, but this is changing fast and both are good ways to
begin writing HTML. You don’t need to know a lot of HTML with these
editors. They will do much of the work for you.
http://www.netscape.com/

Word: Later versions of Microsoft Word also function as HTML editors
and are integrated with the Explorer browser.

PART III NETWORK RESOURCES

A Beginner’s Guide to HTML: One of the better guides to writing HTML
on the Web.
http://www.ncsa.uiuc.edu/General/Internet/WWW/HTMLPrimer.html

Deja News: A quick and easy way to read News without having access to
a news server. It will also allow you to search all news postings and
retrieve those you’re interested in.
http://www.dejanews.com/

E-mail addresses of linguists: A service of the LINGUIST list. This lists
most of the ways you can find a linguist’s address, and includes search
facilities for some of these.
http://linguistlist.org/addresses.html

Killersites: Creating good websites is not as easy as it seems. This site
attempts to explain what good pages should look like.
http://www.killersites.com/core.html

Library Catalogs on the Internet: A list of libraries available by telnet.
http://library.usask.ca/hywebcat/

The LINGUIST List: A good place to start in tracking down linguistic
information on the Web.
http://www.linguistlist.org/

Searchable List of Mailing Lists: If you want to find a mailing list in some
particular area, this is a good place to begin.
http://tile.net/lists/

The Internet: an introduction 61

SIL: Another good site from which to find good linguistic information.
Includes the famous Ethnologue, a description of all the World’s known
languages.
http://www.sil.org/linguistics/linguistics.html

Virtual Library in Applied Linguistics: An excellent, well-maintained site
for information on this topic.
http://alt.venus.co.uk/VL/AppLingBBK/

The World Wide Web Consortium: If you want to find out more about how
the World Wide Web works, this is the place to go to.
http://www.w3.org/pub/WWW/TheProject.html

62

Chapter 3

Education

Henry Rogers

3.1 INTRODUCTION

Linguistics is a discipline of great intricacy: students have to learn to
manipulate and interrelate small bits of data. At the same time, linguistic
theory tends to be quite abstract; to neophytes the theory they read about
seems quite unconnected to the phonemes and morphemes they see strewn
across a homework assignment. Bloomfield’s sentence “Phonemes
contrast” is straightforward to the initiated—indeed, elegant in its
simplicity; to the uninitiated, however, it is opaque and unhelpful.
Linguistics instructors are challenged to make visible both the forest and
the trees.

Computers add to the techniques in a linguist’s pedagogical repertoire.
Computers can be used to help instructors in presenting new information,
and to help students in practicing new techniques. They can allow us to
combine and examine more information in a greater variety of ways and
in less time than was previously feasible.

For teachers, using computers in teaching offers several advantages.
Visual and sound presentations in lectures can be improved. More class
time can be spent on difficult or interesting issues, and less on repetitive
drill. Complex data, large corpora, and sophisticated analytical techniques
can be introduced earlier or more easily than with traditional methods.

From the students’ point of view, computers allow them to work at their
own pace receiving immediate feedback without academic penalty—in
short, they can “play” with the data. For some students, using a computer
means that they can master the basics, rather than merely survive the
course. In other cases, students are able to make a better analysis of a
problem than they could have done using traditional methods. Most
students find educational programs on the computer enjoyable, even if they
are not previously familiar with computers.

All computer programs require learning how to use them. In general,
there is a trade-off between ease of learning and power. Programs which
are easy to learn generally have fewer features and are less flexible and

Education 63

can do fewer things. The programs with powerful features usually have high
learning curves. In this chapter we survey some of both types. See the
appendix to this chapter (and the online appendices at http://
www.routledge. com/routledge.html) for details of the programs mentioned
in the text.

3.2 SOFTWARE FOR TEACHING LINGUISTICS

This section explores ways of using computers as a teaching assistant. Here
the computer imitates some of the activities of an instructor. Information
is presented to the student, questions are asked, and the student’s answers
are evaluated. Occasionally someone suggests that in future all teaching
will be done by computers and that teachers will become redundant. These
suggestions are more commonly advanced by those with little experience
in teaching or computing. In my view, teachers are a basic requirement of
a complex civilization; computers are tools. Good teachers have a
responsibility to use the most advantageous tools available; for many tasks,
a computer is a useful tool.

Teaching linguistics is a complex endeavor. In elementary courses,
students have to comprehend a number of difficult concepts, and they have
to acquire certain skills requiring considerable practice. Fortunately, some
students will learn linguistics no matter how it is taught. These we can
forget about in this chapter: there is no need to devise better ways of
teaching mathematics to young Newtons. However, instructors in
introductory linguistics courses typically find that there are some students
who, although they are motivated and clearly capable in other fields, never
come to control basic notions in linguistics—they are not easily able to
“see” relationships in data in the way linguists do. Many of the ideas
developed in this section relate particularly to lessening the difficulties these
students experience in elementary courses.

In more advanced undergraduate courses and in graduate courses,
students have to develop research skills in finding order in large sets of data,
in formulating hypotheses in terms of a theory, and in testing those
hypotheses. Certain areas of linguistic education involve specialized training.
In phonetics, for example, students need ear training and practice in
transcription; they need to learn to acquire and interpret acoustic and
physiological data. In some fields, students need to learn statistical
techniques. As students progress in their education, the difference between
their study and the work of an experienced scholar lessens, and the computer
shifts from an instructional to a research tool. The use of the computer in
research is more fully discussed in other chapters of this book.

We are still at the beginning of using computers as teaching tools.
Linguistics, so far, has rather little in the way of such software. Although I
have mentioned existing programs where I am aware of them, much of

64 Henry Rogers

the material that follows is hypothetical in that it discusses the types of
programs that might be developed rather than ones which are currently
available.

3.3 COMPUTER ASSISTED INSTRUCTION

Computer assisted instruction (CAI) is a term applied to situations in
which the student works alone at a computer to study material presented
as structured lessons. (For recent general discussion, see Hockey (1992b)
and Irizarry (1992); also Bantz et al. (1989), Burns et al. (1991), and Psotka
et al. (1985). For discussion specifically aimed at linguistics, see Ansel and
Jucker (1992)). The software containing these lessons is known as
courseware. Typically, students go to an instructional computer laboratory
where computers containing the programs are found; they select the
appropriate program and follow the instructions provided. Increasingly,
CAI programs are made available through the electronic network.

Courseware may present new material; more often, however, it extends
the activity of the lecture or tutorial. CAI is particularly suited for
introductory courses and for teaching specific skills.

The simplest format of CAI is an explanation of the point at hand,
followed by a question to which the student responds. A correct answer
allows the student to proceed to the next lesson. With incorrect answers,
the student tries again. The computer might, for example, present a set of
Arabic data as in Figure 3.1.

After examining these data, the student can be asked a question such
as: “What consonants do all these forms have in common?” The student
then enters the answer. If the answer is the correct one—/k t b/, the
computer shows a message such as “CORRECT,” and the student goes
on to the next question. If the student gives an incorrect answer such as /
ʔ k t b/, the computer shows a message that the answer is incorrect, possibly
providing some help such as “You have too many consonants; not all of
these occur in every form.” At this point the student tries again.

kataba ’he wrote’ jaktubu ’he writes’

kitba ’writing’ kattaba ’to make write’

ka¯taba ’correspond’ taka¯taba ’to keep up a

correspondence’

ʔiktataba ’copy’ kita¯b ’book’

maktaba ’library’ mikta¯b ’typewriter’

ka¯tib ’writer’ maktu¯b ’letter, note’

Figure 3.1 Arabic data for a morphology problem

Education 65

We can easily image how this lesson might be expanded with further
questions: “What meaning do all these forms have in common?” “If /ð k
r/ is the root meaning ‘remember,’ what would be the Arabic for ‘he
remembered’?”

Essentially, problems of the sort traditionally found in workbooks have
been moved to the computer. The difference lies in the ability of the
computer to give immediate feedback to the student. Some materials are
better suited to CAI than others. In general, questions which have clearcut,
finite answers work well; for example:

What is the underlying form of X?

Which phonemes belong in the class defined by the features shown?

‘What you need most is a good rest.’ This sentence is a cleft sentence,
pseudo-cleft sentence, neither?

The passive of ‘Mary bit the snail’ is___.

Familiar pedagogical techniques such as problem solving, matching, filling
in the blanks, multiple choice, and true or false can be used. Questions
requiring discussion or explanation do not work so well.

Courseware may cover an entire course, or it may deal with only certain
aspects. The program LX Problems by Labov (Figure 3.2) presents a wide
range of material appropriate to an introductory course. Programs of a
larger scope have the advantage of providing a unified approach over a
longer period of study. The smaller programs are more easily modified and
thus more easily used by other instructors and in other situations.
Computer programs are more rigidly structured than books. Where the
instructor’s own method of teaching follows the same structure as that of
the program, there is of course no problem. However, two teachers rarely
follow the same syllabus. In my own department, some instructors prefer
to introduce phonology before morphology in Introductory Linguistics;
others reverse this order. Designing a single computer program that allows
this kind of flexibility is difficult.

An alternative approach to the large, all-inclusive program is a modular
approach with a series of smaller programs each focusing on a specific area.
An example of the smaller program is Phthong (described more fully
below) which teaches a specific skill, the phonemic transcription of English.

One particular type of program which should be mentioned here is
hypertext (specific versions are produced under several names, such as
HyperCard, SuperCard) which has been used extensively for courseware
(Figures 3.3a and b). The basic conception of hypertext is a stack of cards
through which the user navigates. The user sees one card at a time. The
card typically presents text along with various buttons; by clicking on the

66 Henry Rogers

appropriate button, the user can go to the next card or return to the
previous card. Other buttons can take the user to a related card. For
example, if one card mentions “isogloss,” the program could be set up so
that by clicking on “isogloss,” the user is taken to a card explaining
isoglosses. Any number of such connections is possible. A different situation
might allow the user to see how different theoreticians have analyzed the
same point. Cross-references, footnotes, bibliographic references, and
explanations can be made available as necessary. A collection of cards is
known as a “stack,” hence the term “stackware” which refers to a set of
material that can be run using a hypertext program.

The advantage of hypertext is that students are encouraged to interrelate
information and to examine it from different perspectives rather than just
to process ideas in a linear fashion (the ordinary way of reading a book).
Ansel and Jucker (1992) discuss specific uses of hypertext; see also the
description of Phthong below. Hypertext systems generally allow someone
without programming skills to produce simple educational stacks without

Figure 3.2 A lesson on inalienable possession from William Labov’s LX Problems.
The student has already divided the words into morphemes. When this card is
introduced, the student hears the voice of a native speaker pronouncing the
forms. After checking “Possessed” or “Possessor,” the student’s answer is
evaluated. The boxes at the bottom allow the student to perform various actions,
such as quit, go elsewhere in the program, get help, change the speaker volume,
or go to the next card.

Education 67

a great deal of difficulty. Professional programmers can use an associated
programming language for much more sophisticated results.

3.4 THEORY MODELING

In research, computers are often used to model theories: that is, the
computer program produces the same results as those which the theory
predicts, given the same input. In linguistics, a model might simulate the
way government and binding works, or feature geometry. For a specific
situation, such as for a particular language, we propose hypotheses framed
in terms of our theory. The computer model could then test our
hypothesis.

Much research in linguistics involves applying a theory to a set of data.
By being able to test hypotheses using a theoretical modeling program,
we can formulate better hypotheses and identify points where the theory
has difficulty in accounting for data.

Figure 3.3a In A World of Words, John Lawler presents a hypertext version of a
short passage in the Iliad. In this card, we see that the genitive form of “Achilles”
occurs. Note that certain words in this card are underlined. If the user clicks on
one of these words, another card explaining that term appears. For example, a
student who does not understand the meaning of “genitive case” can click on
“genitive case” and the card shown in Figure 3.3b will appear.

68 Henry Rogers

In introductory classes, students need to learn about the basic relationship
of theory and data. For example, they have to learn how a phrase structure
grammar can be used to generate sentences. Computer programs which
model theories can be useful in this type of teaching. A possible syntactic
program could provide students with practice in a variety of tasks. Students
could be given a grammar and some sentences and asked to determine
whether the sentences are grammatical or not. In a different problem,
students could be given a simple grammar with appropriate lexical items
and asked to generate grammatical sentences. A more complex task would
be to ask students to modify an existing grammar to account for additional
sentences, or to create a grammar to account for certain data.

Many students not specializing in linguistics experience difficulty in
learning linguistic theory. Part of this difficulty for some students is clearly
the formal nature of theory; for many students, linguistics is their first
encounter with this type of thinking. Rather than avoiding theory at the
elementary level, Sobin (1991) suggests that we meet this fear of formalism

Figure 3.3b This card from A World of Words explains “case,” including the
“genitive case.” The bold face print makes it easy to identify the technical terms.
If students are uncertain about other terms such as “noun,” clicking on “noun”
will take them to another card which explains that term. Students can retrace
their steps or return to the original card when they wish. Moving through a text
in this nonlinear fashion is known in hypertext as “navigating.”

Education 69

head-on. He describes the use of the programming language Prolog in
teaching basic syntactic skills in an elementary course. Sobin argues that
by allowing students to construct grammars and to manipulate them, the
process “turns an otherwise very abstract subject into a much more
concrete one, which makes non-majors much more comfortable dealing
with the subject matter. Prolog materials are frequently aimed at audiences
with background in logic, linguistics, or computer science. However, I have
found that it is quite possible to use the Prolog generative rule facility
successfully with an audience untrained in any of these.”

Another area where modeling could be of use in teaching is phonology.
Here, for example, feature trees could be introduced. Students could practice
construction of these trees to match segments against feature trees. They
could be given a phonemic inventory of a language and asked to construct
appropriate trees for the segments.

From such exercises in modeling, students become familiar with a
theory; they learn its internal rules, how it accounts for data, the difference
between grammatical and ungrammatical data, how rules and constraints
are used to account for data and to exclude non-occurring possibilities.

At a more advanced level, computer simulations of models could be used
to test descriptions of languages. A model could be used to point out any rules
in the description which are inconsistent with the theory or with each other.

A practical difficulty is that computer models of theories require
considerable programming effort and theories change rapidly, possibly
rendering a model useless. Further, the computer requires specificity
whereas the theorist may prefer to leave various points vague. The field of
computational linguistics has done quite sophisticated work in this area,
particularly with English syntax and morphology. See the chapters in this
book on natural language processing (Chapters 7 and 8), and also Ide
(1991), Dresher and Kaye (1990); and GTU, SysPro, YOUPIE in the
appendix.

3.5 COMPUTERS IN SPECIFIC AREAS OF
LINGUISTICS

Butler (1985), Ide (1991), and Roach (1992) are general sources of
information on the use of the computer in linguistics.

3.5.1 Core areas of linguistics

3.5.1.1 Phonetics

Computers have enormously changed our ability to do phonetic work, and
they have great potential to improve the way we teach phonetics (Knowles,
1986).

70 Henry Rogers

To be used by a computer, sounds must be digitized. This is easily
accomplished with a tape recorder (or microphone) and a digitizer.
Computers are now available with a digitizer built-in; traditionally, however,
the digitizer has been separate: either a card placed inside the computer,
or a separate device attached between the tape recorder and the computer.
One difficulty is that digitized sounds take up a great deal of memory,
requiring a large hard disk or other storage device.

Ear training and transcription are areas in which the computer can
help the instructor. The Phonetic Symbol Guide—Electronic Edition by
Allen, Pullum, and Ladusaw allows the user to hear the sounds of the
International Phonetic Alphabet. The Electronic Edition is a talking
accompaniment to the Phonetic Symbol Guide (Pullum and Ladusaw,
1996). Similarly, the sounds accompanying Ladefoged’s A Course in
Phonetics (1992) are available in a digitized form. Jonesphones allows the
user to hear Daniel Jones pronounce the cardinal vowels, as well as
providing a limited drill in identifying the cardinal vowels. Courseware
for ear training can be further useful in that students can work on their
weak spots, those with poor preparation can upgrade their skills, and
anyone planning field research could brush up on the sounds likely to
be encountered.

Phonemic transcription can be taught using a computer (see discussion
of Phthong below). Essentially items are presented to the student who
enters a transcription, and the transcription is evaluated by the computer
for accuracy. The phonetic symbols are entered by clicking on an area of
the screen where the symbols are shown. The open-ended nature of
narrow transcription presents a problem for the computer. If the number
of possibilities is limited, however, then the same type of format used
for phonemic transcription can be used to teach narrow transcription.
Access to the larger number of symbols required for this type of
transcription can be provided by a palette of symbols lurking in the
background of the screen.

Most students find practical work with vowels particularly difficult,
needing a great deal of practice to be able to perceive, produce, and place
them on a vowel chart accurately. Courseware could be used to teach them,
starting with a limited number of vowels and gradually increasing the
number that the student must discriminate. A related type of exercise would
require students to put a dot on a cardinal vowel chart corresponding to
the vowel they hear, with the computer evaluating the answer. A more
complex program would make an acoustic analysis of the students’ vowels
and chart the formants.

The Sounds of the World’s Languages (see Figure 3.4) provides examples
of a large number of contrasts found in languages around the world. For
example, one can hear preaspirated consonants in Icelandic or clicks in
Nama. This program is a valuable source of material useful for classroom

Education 71

presentations and for student research projects. These sounds can be
analyzed acoustically.

Computers offer excellent opportunities for teaching the anatomy
needed in phonetics. Interesting exercises could be devised where the
student has to assemble a larynx on the screen by dragging the cartilages
into their correct positions. Three-dimensional models could be made
which would allow the student to rotate a model of the larynx and view it
from different angles. Some of the work that our medical colleagues are
doing might well be useful to us in this area.

The UCLA phonetics laboratory has developed a program which models
the vowel sounds that would be made with a vocal tract of a particular
shape. A similar program might model the sounds produced by varying
the position and tension of the vocal folds.

Waveforms and spectrograms can easily be used for classroom

Figure 3.4 Words containing clicks in Nama from Sounds of the World’s
Languages. Individual words are played by clicking on the word. Columns or
rows can be played by clicking on the titles at the top or at the left. The
loudspeaker plays all words. “Nama Sounds” provides further information. “Maps”
and “Language Index” takes the user to cards with further information; there is
also an index of sound types. The sound files can be opened by other programs,
such as an acoustic analysis program for making spectrograms. This large
database showing contrastive sounds makes an excellent source for laboratory
projects in acoustic phonetics.

72 Henry Rogers

demonstrations and discussions (Signalyze). Laboratory exercises using
prepared materials can be used for more advanced assignments. UCLA’s
Sounds of the World’s Languages provides excellent material for student
projects in acoustic phonetics. In future years, we should see much more
in the way of databases of digitized sounds which can be used for teaching
purposes. The acoustic program by Randolph Valentine (Figure 3.5) allows
the user to measure and compare the fundamental frequency of speech
from a child and from an adult.

One example of this is the Oxford Acoustic Phonetic Database which
has appeared as a CD-ROM. The disk contains spoken words from several
languages or dialects: English (US, RP), French, German, Hungarian,
Italian, Japanese, and Spanish. The corpus was constructed to illustrate
the consonants and monophthongal vowels of each language. This sort of
material seems ideal for individual projects in acoustic phonetics. Students
could be assigned topics such as “Geminate length in Italian,” “A
comparison of glides in XYZ,” “Moraic duration in Japanese,” “Taps and
trills in Spanish.”

We can easily foresee the appearance of similar collections of data in other
areas of linguistics. Databases can be of various forms in linguistics (Knowles,

Figure 3.5 In this HyperCard stack on acoustics from Valentine’s Introduction to
Linguistics, students use the ruler to measure fundamental frequency of a sound.
A subsequent card allows the student to compare the measurements made for
the fundamental frequency used by the two speakers.

Education 73

1990). They can be corpora of raw materials, or structured in some fashion;
they can be in ordinary orthography or in a phonemic transcription. They
can be digitized sound for phonetic research, as in the Oxford collection,
and they can be coded to identify morphological and syntactic units.

The computer provides not only the access to the data, but also the tools
for the analysis. CD-ROMs (very similar to compact disks for music) are
particularly suitable for this as they are capable of storing large amounts
of data and they can be produced quite inexpensively.

3.5.1.2 Phonology

Phonemic transcription needs a great deal of drill, and thus it is an area
especially well suited to CAI. Programs for this are CAPTEX, Phonetics,
Phonetics Tutor, and Phthong (discussed in some detail below).

Elementary phonology problems could easily be used on a computer.
Structured lessons could be effectively used to supplement the lecture and
tutorial material to give students a large number of problems exhibiting a
variety of phenomena. Structured lessons could also drill students in
recognizing typical phonological processes such as palatalization. Valentine’s
Introduction to Linguistics (Figure 3.6) teaches phonological feature
specification.

One difficulty in learning phonology is to learn to distinguish probable
solutions from far-fetched ones. We have all had students who are frustrated
because their answer was marked wrong although it “worked”: e.g., “voicing
of the initial consonant is determined by the height of the second vowel in
the following word.” Multiple choice questions could address this problem
directly by asking students to choose the best answer among various ones
that technically “work.”

At a more advanced level, computers are a useful way to present students
with more complex sets of data. Even basic tools such as a spreadsheet
could be used to reorder the data in various ways or to search for all
occurrences of an item.

Phonological theories can be implemented as a computer program.
Dresher and Kaye (1990) developed a program YOUPIE to model the
cognitive ability a child uses to learn the stress system of a language.

The UPSID database of phoneme inventories which Maddieson has
constructed provides an excellent source for projects in phonological
universals.

3.5.1.3 Morphology

At the elementary level, students can use appropriate courseware to learn
basic notions by practicing basic tasks such as dividing a word into
morphemes, listing other allomorphs, identifying cranberry and port-

74 Henry Rogers

manteau morphs (See the example from LX Problems in Figure 3.2). A
more demanding program could ask the student to show the constituent
structure of a word, labelling each portion.

Klavans and Chodorow (1991) used an instructional morphological
parser to teach morphological theory at the graduate level allowing students
to test analyzes that morphological theory predicts. See also PC-Kimmo
(Figure 3.7).

3.5.1.4 Syntax

Instructors in elementary linguistics courses are reporting that many
students arrive at university nowadays unfamiliar with simple grammatical
notions such as subject, preposition, and prefix—never mind gerund,
relative clause, or subjunctive. Exercises can be developed to bring students

Figure 3.6 From a HyperCard stack: English Consonants from Valentine’s
Introduction to Linguistics. Here the student is asked to describe the set of
features for /z/. At the beginning of the exercise, all the sounds in the panel at
the upper left are highlighted. As the student selects plus or minus values for
each of the features, highlighting is removed from those sounds which no longer
fit the features selected. At the moment of the picture, the student is about to
select a wrong answer [-continuant] (note the position of the hand) which will
remove the highlighting from all the sounds indicating that the student has made
a wrong choice.

Education 75

up to speed who have deficiencies is this area. The individual use of the
computer allows students to work on those areas which are a problem for
them without requiring the time of the entire class.

Certain notions in syntax are quite challenging for some students: e.g.
the relationship of an underlying string to a surface string. At Toronto,
Arbourite is being developed to provide students with help in mastering
this concept. Arbourite will, as well, have a tree-drawing facility. Students
will be required to draw an accurate tree for a particular sentence.
Ultimately, we would like to have a program that could parse strings for
us; to avoid dealing with the complexity of a parser immediately, however,
we are going to use exercises with prepared answers, stored in the computer
as labeled bracketed strings which the computer will convert to trees.
Several people in our department teach introductory linguistics at various
times. No two of these use exactly the same theory; therefore, we want to
make our program adaptable to all of them, and to even greater variation
at other universities. Different instructors will be able to modify the analysis
used by other instructors to suit their own needs.

Figure 3.7 A short demonstration from PC-KIMMO which relates lexical
representations with their surface forms. Here we see two examples: foxes and spies.

76 Henry Rogers

For advanced work in syntax, there is a great deal of work in natural
language processing (see Chapters 7 and 8 in this book); see also Bakker
et al. (1988). LFG-PC, ProfGlot, Stuf, SYNTACTICA, and PC-PATR.

3.5.1.5 Semantics

Some students find semantics difficult, particularly in making fine
distinctions of meaning. Computers offer a good opportunity for extensive
practice in this area. Probably some ideas could be borrowed from
programs used for teaching logic such as Tarski’s World.

Advanced students in semantics will find much of the work in natural
language processing of use (see Chapter 7); see also FrameBuilder,
Semantic Tutorial, and SEMANTICA.

3.5.2 Other linguistic courses

3.5.2.1 Structure and history of English

Many universities offer courses titled something like “The structure and
history of English,” where English could be any language. Here the
opportunities for computers are not in set exercises, although they could
be used, but in the wealth of material that could be made available to
students. For structure, sizeable corpora of various sorts could be used;
any of the topics mentioned above—phonology, morphology, syntax, etc.—
could be available. For history, a wealth of interesting material could be
made available, such as digitized reconstructions of historic pronunciations,
maps, dialect information, pictures of manuscripts, etc.

3.5.2.2 Languages of the world

Here the need is for a breadth of material covering linguistic, anthropological,
and sociolinguistic data. Multimedia presentations of text, sound, and video
could give students a concentrated look at important and interesting aspects
of a language and its culture; maps (Figure 3.8), samples of texts, speech,
and writing could be used. These presentations could be used both for
individual work and classroom presentation. The large storage capacity of
CD-ROMs could provide a large variety of materials from which instructors
could select the ones most useful to their purposes. A basic source of
information about most of the world’s languages is the Ethnologue.

3.5.2.3 Dialectology and historical linguistics

Courses in these areas share a good deal: they often present data in a
geographical and temporal dimension. The geographic dimension can easily

Education 77

be shown by maps; computers, however, can add the temporal dimensions
showing changes over time (World of Words, Figure 3.9). These features can
be accompanied by sound illustrating these and other dimensions of dialect
such as social class, age, sex, etc. Theoretical models could be used to test
hypotheses of language change. Programs available now can convert data
to charts and maps, providing excellent ways of illustrating dialectal
information. Computers also can ease the introduction of statistical
methods. See also Smith (1987) and IVARB/ MacVARB.

3.5.2.4 Sociolinguistics

In sociolinguistics, multimedia presentations could show language in action
in different social situations. Kinship studies (Findler, 1992) might
especially find computers useful. Classroom presentations could be quite
effective in demonstrating different kinship systems. Theories of kinship
could be simulated and tested. Projects on color terminology could be set
up with a computer, replacing the need for color chips.

Figure 3.8 This example from LX Problems, showing where Bontok is spoken,
is an example of the kind of information that could be provided in a course on
Languages of the World. The map is accompanied by a short recording in
Bontok.

78 Henry Rogers

3.5.2.5 Psycholinguistics

Student projects in psycholinguistics often involve experiments in areas
such as the response time in various situations. The questions can be posed
on the computer screen and the response time can be calculated by having
the computer determine and record how long the subject takes to press a
key. Graphic programs offer easy ways of turning numerical data into more
readily understood charts. Many psycholinguistic experiments require the
use of statistical programs. See EDW in the appendix.

3.5.2.6 Writing systems

The ease with which different fonts for alphabets and scripts can be used
on a computer is an asset in teaching writing systems both in presentations
and in structured lessons. Exercises could be used for learning about a
writing system as students often do in a general course, or they could be
used for more intensive practice aimed at mastering a particular writing
system. A large number of computer fonts are available through the Internet

Figure 3.9 One part of A World of Words shows the relationship of Indo-European
and Latin consonants. Here the user has selected Latin /f/. The program shows
a reconstructed root in Indo-European, as well as a Latin example, together with
an English word containing the Latin form.

Education 79

from computer archives. Figure 3.10 illustrates how two fonts can be used
to demonstrate different ways of writing Latin in ancient times.

3.5.2.7 Speech pathology

Many of the techniques of phonetics are easily adaptable to teaching speech
pathology simply by varying the content somewhat. In phonetics, for
example, sounds of disordered speech, such as denti-labial stops or cleft
palate speech, could be added to those of the normal speaker. Programs
could be organized so as to give students practice in particular interview
schedules, guiding them in entering, sorting, and interpreting data from
interviews (PEPPER). Exercises aimed at learning to recognize disorders
could be devised; for example, sound recordings could be available along
with acoustic and physiological data. Computer simulations could be used
to introduce students to various laboratory instruments.

Figure 3.10 Trajan’s Inscription from the Roman Forum. The upper form uses a
typeface closely resembling the original inscription; the lower form shows how it
might have looked in Roman handwriting of the time.

80 Henry Rogers

2.5.2.8 Lexicography

Lexicography is rather seldom taught as a course on its own, but problems
could well be presented using a computer with collections of relevant
citations. Many dictionaries are now available in electronic form and could
be used for student projects. See Cone, FrameBuilder, and MacLex in the
appendix to this chapter.

3.6 DEVELOPING TEACHING SOFTWARE

I have been involved in developing two projects: Phthong and Arbourite.
My remarks in this section are clearly personal, stemming from my own
experience in these two programs. I use Phthong as an example, not as
any sort of ideal, but because I know the history of its development best.

3.6.1 Design

Developing linguistic software requires two types of expertise: linguistic
and programming. These may be found in the same person or in two. Many
programs have been developed by linguists cum amateur programmers. The
efficiency and sophistication, however, that a professional programmer can
bring to a project should not be underestimated. Phthong was developed
by a linguist and a programmer.

At the outset, the scope of the project needs to be considered. In
developing Phthong, we wanted a rather small, self-contained program to
teach the phonemic transcription of English. It is also important not to
reinvent the wheel; so we checked available sources as much as possible
to make sure that no one had developed or was developing a similar
program. Other programs existed but were different in some way from what
we hoped to achieve.

We also knew that we wanted two kinds of flexibility. First, instructors
have rather strong preferences as to the symbol inventory and
transcription systems that they use. Since we wanted the program to be
used at other universities, we saw the need for a flexibility that would
allow instructors to choose various transcription systems. Second, we
wanted to be able to change the examples; this ability would also allow
instructors to modify the answers to suit their own preferences or dialect
areas. Ultimately, we achieved this flexibility by having a separate set-up
module which allows the instructor to choose the transcription system
and to modify the entries.

The linguist was responsible for the basic design and the linguistic
content and accuracy. For Phthong, we decided to use a simple linear
design in which the sounds would be presented one by one. The effect is
like being shown a series of cards with questions on each. For each sound

Education 81

we have a short introduction showing the use of the sound, then a set of
about five or six cards is presented in sequence with each card giving a
word illustrating the sound in phonemic transcription and asking the
student to supply the ordinary English orthography. Then, the process is
reversed: the student is presented with a similar number of cards giving
the English orthography and asked to provide the phonemic transcription;
then, on to the next sound.

The programmer was responsible for preparing the program, a set of
instructions in a computer language which directs the computer to perform
the desired task. It is not always easy to remember or to figure out what
the computer code is trying to accomplish at each point in the program.
For this reason, it is important that the programmer document the code
fully, by inserting explanatory notes.

At the outset, basic programming decisions have to be made. For
Phthong, we chose the Macintosh computer because that was the ordinary
machine used in our department and the university had a Macintosh
teaching site in place, and we chose to use HyperCard (see the general
discussion on hypertext above), which is not a language in the usual sense,
but a program itself which allows programs, called stacks (sets of interactive
cards), to be constructed. We knew that HyperCard stacks had been quite
successful in other educational programs. The basic conception of
HyperCard as a stack of cards through which the user navigates fit our
own design well.

To start the actual development on its way, we made an initial mockup
of what each type of card should look like, and we picked a couple of
examples for each type of card. The programmer then was able to make a
small prototype of Phthong.

Fairly early on, the design of the interface (Schneiderman, 1987) was a
joint concern for the linguist and the programmer. Two considerations were
important: function and appearance. Ideally one wants the operation of
the program to be immediately apparent and natural to the student. Small
items are extremely important: size and placement of each item on the
screen, the number of items on the screen at once, and the method of
signaling correct or incorrect answers to the student.

Figure 3.11 illustrates a phonemics-to-English card in Phthong. Here,
students are given the phonemic transcription and asked to produce the
ordinary English spelling—seat. The right and left arrows are buttons,
which, when clicked on, take the student to the next or to the preceding
card. LISTEN plays the sound of the word. TEST lets students test their
answer. ANSWER shows the correct answer for as long as the mouse button
is depressed. The HELP button in the upper left corner gives assistance
with this type of card. The TOC button in the upper right corner takes
students to the Table of Contents, a point from which they can go to other
lessons or exit the program.

82 Henry Rogers

Figure 3.12 shows the other type of card where students are given teak
and asked to enter the phonemic transcription—/tik/. Each of the phonetic
symbols at the top of the card is a button. When the student clicks on a
symbol, that symbol is entered in the answer box.

If the student’s answer is correct, the word “CORRECT” appears at
the bottom of the card. For incorrect answers, a hand appears below the
answer with a finger pointing to the leftmost error with a short message
such as “you have too many symbols,” “you don’t have enough symbols,”
or “you have the wrong symbol here.” We had hoped to have more detailed
messages such as “you have forgotten that mid tense vowels in English
are diphthongs,” but incorporating such messages proved quite difficult.

When students are completely stymied, they can click on ANSWER,
and the answer will appear for as long as the mouse button is depressed.
We felt that providing this device would help prevent students from giving
up in complete frustration.

Programs inevitably have problems. Once a basic model is running, it
is important to test it as much as possible. Programs need to be tested on
different machines and with different users. With Phthong, the early testing

Figure 3.11 A card from Phthong showing an exercise where the student is given
the phonemic transcription and asked to produce the ordinary English
orthography. Here the student is testing the answer by pressing on the “TEST”
button, and receives a message “CORRECT.”

Education 83

was done by the linguist, with the program shuttled back and forth between
the linguist and the programmer for revisions. We tried to use only one
version at a time so as to avoid any confusion.

Once we had a working model, Phthong was tested with three
volunteers. Using inexperienced people is important in finding out
whether the interface works properly. Fortunately, the university computer
services staff were willing to run these tests. We also felt that it would be
useful for the developers not to be present for the testing. Various
suggestions for improvement emerged. For example, we realized that we
needed some basic instructions on using the computer when one student
was observed waving the mouse in mid-air at the screen as if to say “Beam
me up, Scotty.”

Further testing involved trying it out as a part of regular courses. The
next step was to send it to instructors at different universities; this phase
is known as beta-testing.

For the full scale model, we needed a full list of words to be used. The
linguist was responsible for providing these with the appropriate
transcriptions in order that each example included only sounds already

Figure 3.12 A card from Phthong showing an exercise where the student is given
the ordinary English orthography and asked to produce the phonemic
transcription. Note the buttons at the top allowing phonemic symbols to be
entered. Here the student has entered a wrong answer, and Phthong has
provided some help in identifying the error.

84 Henry Rogers

introduced. When the longer list of words was introduced, we found that
using HyperCard directly was unpleasantly slow in moving to the next item.
The programmer was able to solve this problem by storing the data in text
files which HyperCard could use more efficiently. A structural change such
as this required a major programming change.

An important part of any program is the documentation for the user,
the printed materials that accompany the software disks. In commercial
enterprises, the writing of documentation is a specialty of its own,
experience having shown that developers are not always the best people
to explain a program to new users. Linguistic programs are unlikely to have
that kind of luxury, and documentation will probably be prepared by the
developer. Fortunately, our basic trade skill is explaining complexities.

As the program matures, developers think about improvements which
make the program more interesting—bells and whistles. In Phthong, we
have done little yet in this direction, but some possibilities include an
animated vocal tract showing the production of each new sound as it is
introduced, accompanied by a playing of the sound itself. We could use a
more imaginative “CORRECT” message: perhaps a random choice of
flares of rockets, polite golf applause, trumpet fanfares, or a genteel “Good
show!” These adornments are clearly optional, but they use the computer
to merge work and play, an old-fashioned teaching technique.

After Phthong had been used for some time, the electronic network
increased significantly in importance. The university wanted to shift
teaching programs to the Web and to restrict computer laboratories to
Internet use only. We are currently developing a Web version of Phthong
which students can access from a computer, either in the lab or by modem
from home. The advantage is that anyone can use any platform and no
longer has to go to a specified laboratory during certain hours.

At some point, ownership and copyright of the program have to be dealt
with. Universities typically have policies which regulate such matters, at
least in part. Clarifying such issues at an early point will help prevent
unpleasantries from emerging later.

Distributing software successfully is difficult. Software can be distributed
commercially, whereby unlicensed copies are illegal. Unfortunately, the
distributional infrastructure for educational software is not as well
developed as it is for books. Software can be distributed free, with unlimited
copying allowed. A third method is called shareware, in which anyone can
make a copy to try out the program; users are expected to remit a fee
(usually small) to the developer if they keep the program, otherwise to
destroy it. Sometimes, programs start out as freeware or shareware and
become commercial after their value and reliability are proven.

Linguists developing teaching software will obviously use it in their own
classes if the institution has appropriate facilities. Like-minded colleagues
in other universities are often interested in trying out a program. Many of

Education 85

our colleagues use computers mainly for wordprocessing and have little
special interest in trying new methods of teaching. In helping such linguists
to see the possibilities of teaching with computers, it is important to be
clear about meeting their needs. A program has to help them do their job
better, otherwise it is just a toy.

Arbourite is a program for drawing syntactic trees and teaching the
relationship of underlying and surface structure. My colleagues in syntax
were clear that this was an area of difficulty for beginning students.
Although I do not teach syntax, I felt that this was an appropriate area for
a CAI program. We formed a steering committee for general supervision,
and we have gone through course outlines and homework assignments to
see what teaching strategies used in traditional teaching might be
implemented on a computer. We have tried to make Arbourite a
departmental project to ensure that it meets the needs of those who will
use it.

3.6.2 Problems

3.6.2.1 “There is a really neat program for doing just
what you want that will be out real soon now.”

The computing world has developed a bound morpheme -ware as in
software, hardware, shareware. An unfortunately common species is
vaporware, software which lives in the heart and soul of the developer, but
not on the machine quite yet. In developing software, there is many a slip
twixt conception and fruition.

An instructor wanting to use CAI is likely to have trouble finding a
suitable program. Little is available. Linguistics is a small discipline. Few
people have the combination of knowledge, time, and incentive to develop
materials for such a small audience. At present, there is no well-developed
distribution scheme for getting what does exist to the instructor. Book
publishers, on the whole, have not been enthusiastic about publishing
software, and traditional software publishers have not been terribly keen
on the academic market. Occasionally, a potentially useful program is
available on a platform (e.g.., IBM v.Macintosh) which is unsupported at
the local institution.

The appendix lists programs which might be of use in teaching. Some
of these are quite general in their purpose, and their use is obvious. Others
emerged from quite specific needs; adapting them to someone else’s course
might be quite difficult. A program might, for example, be an excellent
tool for teaching morphology using an item-and-arrangement approach
with Greek examples, but of little use to someone using a different
theoretical framework or who was teaching the structure of English.

86 Henry Rogers

3.6.2.2 “This program is fantastic, and I just don’t understand why
it isn ‘t working right this afternoon.”

Medieval scribes had a patron demon Titivillus who caused them to make
errors in their writing. With the increasing cutbacks in manuscript
production, Titivillus has shifted his operations recently to the equally fertile
field of computer programming. Bugs can and do happen in every aspect
of program development. Trained programmers are an asset here: first, they
have experience in locating problems and fixing them, and second, they have
a reassuring professional perspective that views bugs as an ordinary part of
programming life.

Robustness describes a program’s ability to operate well in different
environments. Large software developers have the resources to test their
products in a wide variety of settings (and even then they cannot completely
eradicate Titivillus’ work); linguistic programs are usually developed under
much more constrained circumstances with inevitable problems as they are
moved to different machines and to different sites. Realistically, users of
linguistic teaching software have to be prepared to deal with a lower level of
robustness and reliability than they would tolerate in commercial, general-
purpose products.

Even when a program is available and works properly, its usefulness can
be undermined by its design. We can imagine a wonderful syntax program
capable of analyzing complex sentences. It is less easy to imagine two syntax
instructors using exactly the same theory. This is a particularly difficult
problem at the elementary level. An instructor may feel that an AUX node
is a troublesome nuisance for beginners, but our wonderful syntax program
may stick them in faithfully. Students at more advanced levels can deal
with this kind of diversity; beginners have more trouble. In doing exercises
in a traditional manner, the instructor can tell students just to omit the
AUX. The computer program, however, tells students they are “wrong” every
time they omit the AUX. Teaching programs need to allow flexibility for
instructors to modify them to suit their own needs and teaching styles.

3.6.2.3 “Our present budget projections do not envision further expenditures
on what many of my decanal colleagues frankly consider frills.”

Computing costs money. Administrators have to carefully dispense the little
money they have. Given the experimental nature of computers in teaching,
finding money for computer sites may be an uphill struggle. Sites also
require security and maintenance, items with costs attached. The software
itself is usually a more manageable expense.

Some of our older colleagues immediately think of steel pen-nibs at the
mention of “high-tech”; they tend not to be well disposed to spending money

Education 87

on “frills” such as computers. Others see computers as limited to the “hard”
sciences, with strong doubts about their usefulness in linguistics.

Any academic contemplating software development should be aware that
it can be very time-consuming. Further, administrators tend to view such
work with little enthusiasm in making decisions about tenure, promotion,
and merit increases.

Ideally, to develop teaching programs, we need projects combining
linguistic and programming expertise; unfortunately, educational
development grants for producing instructional software are rare.

3.7 PROSPECTS

A colleague has often told the story that manufacturers thoughtfully
equipped the earliest automobiles with buggy-whip holders because of their
proven use on vehicles to that date. Our normal pattern is to use new
technology very conservatively to make old methods better and easier.
Gutenberg tried to make his bible look like a manuscript, and laser printers
still come with fonts to look like a typewriter.

Predictions about how computers will change our lives are unreliable. We
are still waiting for the paperless office. Predicting how computers will affect
teaching is no easier. The presentation of information will remain as much
of a skilled craft—or art form, if you prefer—as it is today with books.
Textbooks will likely continue as a major component for instruction. They
offer a convenience and ease of reading that is hard to replace.

For providing access to data, computers will likely prove superior to
printed alternatives. The ease with which data can be manipulated, analyzed,
and presented in various formats is very persuasive. In many cases we are
likely to see linguistic workbooks replaced with computer programs. Larger
problem collections will become available.

Teaching aids, which have been rare in linguistics, are likely to become
much more common allowing instructors to make livelier and more
sophisticated presentation of certain material in their lectures.

Software can help teaching in three areas: providing interesting exercises
where basic skills must be learned, allowing data to be manipulated in various
ways to reveal the underlying structure; testing hypotheses with various
models.

Given the opportunity of studying philosophy with Aristotle or with a
computer, most students would choose Aristotle. Nevertheless, computers
do offer many opportunities in teaching; most of those opportunities are still
not clear to us.

88

Appendix

PART I SOFTWARE

See the online appendices (http://www.lsa.umich.edu/ling/jlawler/routledge)
for price and current status information.

Acoustic phonetics

Explains the basic concepts of acoustic phonetics. There are
demonstrations of the movements of the air particles in a sound wave,
and interactive displays allowing the user to superimpose two waves and
see and hear the result. Later sections allow the manipulation of damped
wave trains similar to formants and show the user how the air in the
vocal tract vibrates. Basic notions of formant speech synthesis are
demonstrated, using recordings showing the building up of a synthesized
sentence, one parameter at a time. Fourier analysis is explained
graphically. HyperCard.
Systems supported: Macintosh
Developer/Distributor: Phonetics Laboratory, Dept. of Linguistics, UCLA,
405 Highland Ave., Los Angeles, CA, 90024–1543, USA.

Barlow HyperCard STACKS

Simple interactive exercises for introductory course: Indo-European
roots, exploring the relationship of PIE, Latin, Greek, and English;
Grimm’s Law; three morphology problems, comparative reconstruction
of Polynesian; American English phonemic transcription; recognition of
vowel of American and British English.
Systems supported: Macintosh
Developer/Distributor: Michael Barlow, Dept of Linguistics, Rice
University, Houston, TX, 77005, USA.
barlow@ruf.rice.edu
http://www.ruf.rice.edu/~barlow/#soft/

Education 89

Calling

HyperCard stack for introductory linguistics.
Systems supported: Macintosh
Developer/Distributor: Marmo Soemarmo, Ohio University.
soemarmo@oak.cats.ohiou.edu

CAPTEX

Teaches phonemic transcription by setting, correcting, and scoring
exercises. It also gives help and error feedback and logs student activity.
Teachers may use the program to create new phonetic symbols and
exercises, and to treat different accents of English or other languages.
Systems supported: MS-DOS
Developer/Distributor: Oxford University Phonetics Laboratory, 41
Wellington Square, Oxford, OX1 2JF, UK.

CG laboratory [categorial grammar]
DCG laboratory [definite clause grammar]
PATR laboratory
PSG laboratory [phrase structure grammar]

A group of programs for writing grammars in a form which can be
manipulated by students to explore formal grammars. It helps the
student understand the relationship between strings, rules, and trees,
and to grasp parsing, generation, ambiguity, and recursion.
Systems supported: Macintosh
Developer/Distributor: Linguistic Instruments, Department of Linguistics,
University of Göteborg, S-412 98 Göteborg, Sweden.
li@ling.gu.se

Conc

A concordance program for the Macintosh specially designed for
linguistic analysis. Conc produces keyword-in-context concordances of
texts. The sorting order is defined by the user. The user can restrict
which words will be included in or excluded from a concordance on
the basis of frequency, length of word, inclusion in a list, or pattern
matching. Conc can concord both flat text files and multiple-line
interlinear texts produced by the IT program. Can also produce letter
(character) concordances to facilitate phonological analysis.
Systems supported: Macintosh
Developer/Distr ibutor: John V.Thomson. International Academic
Bookstore, 7500 W.Camp Wisdom Road, Dallas, TX, USA.
academic.books@sil.org

90 Henry Rogers

http://www.sil.org/computing/conc/conc.html
Review: Bauer, Christian. 1992. “Review of Conc,” Literary and
Linguistic Computing 7(2):154–156.

Ear tour

Illustrates anatomy of the ear. HyperCard.
Systems supported: Macintosh
Developer/Distr ibutor: David B.Williams. Office of Research in
Technology, Illinois State University, Normal, IL, 61761, USA.

EDW

A speech display and editing program for preparing stimuli in speech
perception experiments and as an aid in the acoustic analysis of digitized
utterances. A spectrogram based on the waveform can be displayed along
with the waveform itself. EDW has no built-in capability to digitize
speech and relies on other programs to create the waveform files it is
used to edit. Several auxiliary programs are included for basic acoustic
analysis and measurement and for manipulating X-Ray Microbeam data.
Systems supported: MS-DOS; Sun
Developer/Distr ibutor: H.Timothy Bunell, Applied Science and
Engineering Labs., Alfred I.duPont Institute, 1600 Rockland Rd.,
Wilmington, DE, 19899, USA.
bunnell@asel.udel.edu
ftp://asel.udel.edu/pub/spl

Ethnologue

An online database of basic information about most languages in the
world. It can be searched by language name, country or linguistic
affiliation.
http://www.sil.org/ethnologue/ethnologue.html

FrameBuilder

Allows creation of lexical database with semantic definitions. As an aid
to lexical database acquisition, FrameBuilder makes possible the efficient
creation of theoretically sound and internally consistent lexical/semantic
definition to a lexical database by a linguistically inexperienced student.
HyperCard.
Systems supported: Macintosh
Developer/Distributor: Donalee H.Attardo, Purdue University, West
Lafayette, IN, 47907, USA.

Education 91

GOLDVARB See IVARB

Grammar and trees

A HyperCard stack containing a context free phrase structure parser
and a tree drawing routine for students to explore context free phrase
structure grammars, and particularly to see the relationship between
rules and trees. Some sample exercises are included.
Systems supported: Macintosh
Developer/Distributor: Christopher Culy, Linguistics Department, The
University of Iowa, Iowa City, IA, 52242, USA.
chris-culy@uiowa.edu

GTU [Grammatik-Text-Umgebung]

Tutorial software in computational linguistics. The program takes a given
sentence, parses it, and displays its PS-tree.
Systems supported: MS-DOS
Developer/Distributor: Martin Volk, Institute of Computational Linguistics,
Universität Koblenz-Landau, Rheinau 3–4, 5400 Koblenz, Germany.
martin.volk@informatik.uni-koblenz.de

Introduction to Linguistics

Several stacks for use in an introductory class in linguistics, including
phonetic transcription, phonological features, and acoustics. HyperCard.
Systems supported: Macintosh
Developer/Distributor: J.Randolph Valentine: jvalent@facstaff.wisc.edu

IT [Interlinear Text]

A tool for building a corpus of analyzed texts. The analysis is embodied
in user-defined annotations which are displayed in a form that is
unsurpassed for clarity of presentation—the form of interlinear, aligned
text. IT also manages the database of lexical information derived during
the analysis of texts.
Systems supported: MS-DOS, Macintosh
Developer/Distributor: Gary F.Simons and Larry Versaw. International
Academic Bookstore, 7500 W.Camp Wisdom Road, Dallas, TX, USA.
academic.books@sil.org
(MS-DOS) gopher://gopher.sil.org/11/gopher_root/ computing/software/
linguistics/text_analysis/it/
(Mac) ftp://ftp.sil.org/software/mac/

92 Henry Rogers

IVARB (MacVARB for Macintosh; also known as GOLDVARB)

Performs variable rule (VARBRUL) analysis on naturally occurring data
in all areas of linguistics. A VARBRUL study analyzes the choice made
by speakers between discrete alternatives during language performance:
different pronunciations, lexical items, word orders, syntactic structures,
etc. This choice may be influenced by many factors, such as syntactic
or phonological environment, discourse function and style, age,
socioeconomic class, and sex of the speaker. VARBRUL is suited to
corpus-based research where the number of occurrences of different
contexts varies.
Systems supported: MS-DOS, Macintosh
Developer/Distributor: IVARB—Sharon Ash, Dept. of Linguistics, Univ.
of Pennsylvania, Philadelphia, PA, 19104–6305, USA; MacVARB—
David Sankoff, Centre de recherches mathématiques, Univ. de Montréal,
CP 6128, succ. A, Montréal, P.Q., H3C 3J7, Canada; also UMich.

JonesPhones

A digitized version of Daniel Jones pronouncing the cardinal vowels.
Some exercises are included. HyperCard.
Systems supported: Macintosh
Developer/Distr ibutor: Tom Veatch, 619 Williams Hall, Univ. of
Pennsylvania, Philadelphia, PA, 19104, USA.

K-TEXT

KTEXT is a text processing program that uses PC-KIMMO to do
morphological parsing. KTEXT reads a text from a disk file, parses each
word, and writes the results to a new disk file. This new file is in the
form of a structured text file where each word of the original text is
represented as a database record composed of several fields. Each word
record contains a field for the original word, a field for the underlying
or lexical form of the word, and a field for the gloss string.
Systems supported: MS-DOS, Macintosh, UNIX
Developer/Distributor: Evan Antworth, Academic Computing Department,
Summer Institute of Linguistics, 7500 W.Camp Wisdom Road, Dallas,
TX, 75236, USA.
evan@sil.org

LX Problems

A series of programs for introductory linguistics, covering phonetics,
phonology, morphology, dialectology, and sociolinguistics. The problems

Education 93

combine sound and graphics to bring the user into close contact with
the phonetics and culture of a particular dialect of a language. Analytical
problems use a variety of computational techniques to lead the student
to the correct solution. The program stores each action taken by the
student in a separate file so that teaching assistants can review students’
progress and problems. HyperCard.
Systems supported: Macintosh
Developer/Distributor: William Labov, Linguistics Laboratory, Univ. of
Pennsylvania, 1106 Blockley Hall, Philadelphia, PA, 19104, USA.
labov@central.cis.upenn.edu.

MacLex

Creates and maintains a lexicon.
Systems supported: Macintosh
Developer/Distributor: Bruce Waters
ftp://ftp.sil.org/software/mac/

MACVARB See IVARB

PC-Kimmo

Program for computational phonology and morphology. Typically used
for testing morphological descriptions by relating lexical and surface
forms. Takes two files—a rules file specifying the phonologic rules of
language, and a lexicon file with glosses and morphotactic constraints—
and takes the lexical form and produces the surface form, or takes the
surface form and produces the lexical form with its gloss.
Systems supported: MS-DOS, Macintosh, UNIX
Developer/Distr ibutor: David Smith, Gary Simons, and Stephen
McConnel
International Academic Bookstore, 7500 W.Camp Wisdom Road, Dallas,
TX, USA, tel. (214)709–24045, fax (214)709–2433.
http://www.sil.org/pckimmo/

PEPPER

Programs to Examine Phonetic and Phonologic Evaluation Records. Ten
programs for phonetic analysis in normal and disordered speech.
Systems supported: MS-DOS
Developer/Distributor: Lawrence D.Shriberg. Dept. of Communicative
Disorders. Univ. of Wisconsin-Madison, Room 439, Waisman Center,
1500 Highland Ave., Madison, WI, 53705, USA.

94 Henry Rogers

Phonetic Symbol Guide—Electronic Edition

A talking encyclopedia of phonetic symbols; accompanies Pullum and
Ladusaw (1986). Organized by the shapes of symbols, each entry gives a
name for the symbol, its usage—by the IPA, by American phoneticians,
and by others—variations on its shape, its source, and additional useful
comments. There are 311 entries, plus an explanatory introduction, a
glossary a list of references, and a dozen pages of symbol charts. HyperCard.
Systems supported: Macintosh
Developer/Distributor: George D.Allen, Michigan State University, College
of Nursing, East Lansing, MI, 48824, USA.

Phonetics Tutor

A tutorial program that assists in phonetic transcription of English,
employing American symbols, with IPA symbols in sample lessons as
an option. The lessons can be edited. The program also teaches phonetic
terminology and distinctive features.
Systems supported: MS-DOS.
Developer/Distributor: Center for Applied Linguistics, Language and
Linguistics Software, 1118 22d St. NW, Washington, DC, 20037, USA.

Phonetics

Teaches phonemic transcription of RP.
Systems supported: MS-DOS
Developer/Distributor: Martin Sawers, 71a Westbury Hill, Westbury-on-
Trym, Bristol, BS9 3AD, UK.

Phono

Phono is a software tool for developing and testing models of regular
historical sound change. An ordered set of sound-change rules is tested
either on a data file or interactively. It is accompanied by a model for
Spanish.
Systems supported: MS-DOS
Developer/Distributor: Lee Hartman, Dept. of Foreign Languages,
Southern Illinois University, Carbondale, IL, 62901–4521, USA.
lhartman@siu.edu
http://www.siu.edu/~nmc/phono.html

PHTHONG

HyperCard stack for teaching phonemic transcription, using a graded

Education 95

set of cards introducing material in a cumulative fashion. First the
transcription is from a phonemic transcription to ordinary English
orthography, then from English orthography to phonemic transcription.
Reviews and other exercises are also used. A setup module allows
instructors to customize the transcription to fit their preferences or
dialect area.
Systems supported: Macintosh
Developer/Distributor: Henry Rogers, Dept. of Linguistics, Univ. of
Toronto, Toronto, Ont., M5S 3H1, Canada.
rogers@chass.utoronto.ca
http://www.chass.utoronto.ca/~rogers/
http://www.chass.utoronto.ca/~rogers/phthong.html

ProfGlot

Implementation of the theory of Functional Grammar as described in
Dik (1989). The program is an integrated system in that it can deal with
different languages in terms of very similar structures and procedures,
and it has the capacity not only of producing linguistic expressions in
those languages, but also of parsing them, of translating between these
languages and of drawing certain inferences.
Systems supported: MS-DOS
Developer/Distributor: Amsterdam Linguistic Software, P.O. Box 3602,
1001 AK Amsterdam, The Netherlands.

Semantic Tutorial

Tutorial in semantic/pragmatic portion of introductory linguistics course;
part of a proposed larger series of courseware in linguistics. Part of a
larger “Linguistics Online” project. HyperCard.
Systems supported: Macintosh
Developer/Distributor: Victor Raskin, Purdue University, West Lafayette,
IN, 47907, USA.

SEMANTICA

Produces semantic interpretation of sentence from phrasal and lexical
rules provided by user. The program also presents a World Window,
which depicts a three-dimensional graphical landscape and various kinds
of geometric objects in it. In this window, the student can explore the
relation between the first-order interpretation and a depicted world.
Systems supported: NeXT
Developer/Distributor: Richard Larson.
rlarson@semlab1.sbs.sunysb.edu

96 Henry Rogers

Signalyze

An acoustic analysis program. It allows digital speech signal editing,
analysis, and manipulation. It includes multiple window display and
zoom. It includes three types of pitch analysis; a variety of spectral
analyses including Fourier analysis with several bandwidths, linear
predictive coding, and cone kernel analysis; and cepstral analysis.
Further functions include exportable data scoring, arithmetic and
transcendental transformations, power and RMS envelopes, down- and
up-sampling, derivative differences, and zero-crossings. Several sound
formats are supported.
Systems supported: Macintosh
Developer/Distributor: InfoSignal Inc. Distributed by Network Technology
Corp. 91 Baldwin St., Charlestown, MA, 02129, USA, and by InfoSignal
Inc., C.P. 73, CH-1015, Lausanne, Switzerland.
gopher://uldns1.unil.ch:70/11/unilgophers/gopher_lett/ LAIP/speech/
Signalyze/

Sounds of the World’s Languages

Illustrates phonological contrasts in about 100 languages. A phonetic
transcription and a gloss of each word is given. The pronunciation of
each word can be heard. For each language there is a general information
card, and in a few cases, additional data such as reproductions of
aerodynamic data or tracings of X-rays. The location of each language
is shown on a map which also serves as an index to the languages. Other
indexes include the list of languages, a list of sound types, and IPA
charts. HyperCard.
Systems supported: Macintosh
Developer/Distributor: Phonetics Laboratory, Dept. of Linguistics, UCLA,
405 Highland Ave., Los Angeles, CA, 90024–1543, USA.

Speechlab

An introductory course on phonetics, explaining acoustics, physiology
and spectrography interactively, with a complete lexicon of German/
American speech sounds, with videos, anatomical illustrations, acoustic
analysis and detailed description of each sound, and a bibliography of
4,000 items.
Systems supported: Windows (3.2, 95, NT). Sound card recommended.
Developer/Distributor: office@media-enterprise.de
http://www.media-enterprise.de

Education 97

Stamp

Tool for adapting text from one dialect to another.
Systems supported: MS-DOS, Macintosh, UNIX
Developer/Distributor: SIL.
gopher://gopher.sil.org/11/gopher_root/computing/
software/linguistics/cada/stamp/

SYNTACTICA

A program for exploring grammars (phrase structure and lexicons) and
the structures they generate. It generates syntactic trees using phrase-
structure rules and lexicon.
Systems supported: NeXT
Developer/Distributor: Richard Larson.
rlarson@semlab1.sbs.sunysb.edu

SysPro

Simulates network models of language using systemic theory. SysPro
simulates system network models of language, permitting the user to
enter, store, recall, and display networks graphically in standard notation
and derive from them linguistic expressions that represent each of the
logical states implied by the networks.
Systems supported: MS-DOS
Developer/Distributor: M.Cummings, English Dept., Glendon College,
York Univ., Toronto, Ontario, M4N 3M6, Canada.
GL250004@yuvenus

Tarski’s World

A program teaching modern logic. Allows students to build three-
dimensional worlds and to describe them in first-order logic.
Systems supported: Macintosh, Windows, NeXT
Developer/Distributor: Jon Barwise and John Etchemendy, Cambridge
University Press
http://kanpai.Stanford.edu:80/hp/Logic-software.html#Tarski

UCLA phonetics lab programs

Group of instructional programs that treat articulatory-acoustic relations:
drawing parameter controlled diagrams of vocal tract configurations,
calculating formant structure of vowel articulations, data plotting, and
displaying vocal tract shapes required for given formant frequencies.

98 Henry Rogers

Systems supported: Macintosh
Developer/Distributor: Phonetics Laboratory, Dept. of Linguistics, UCLA,
405 Highland Ave., Los Angeles, CA, 90024–1543, USA.

UMICH phonetics training tools

An ensemble of HyperCard stacks to assist beginning students of
phonetics in associating symbols, sounds, and production. Includes
sound files, animated vocal tracts, and X-ray movies for each speech
sound. Can be accessed through an IPA-table interface or by
manipulating a vocal tract on screen. Also, an IPA training game and a
testing module, in which students are tested on their ability to associate
IPA symbols, static vocal tract shapes, and physiological descriptions.
Systems supported: Macintosh
Developer/Distributor: UM-PTT@umich.edu
demo version at http://www.tmo.umich.edu/ling.html

UPSID (UCLA Phonological Segment Inventory Database)

Contains inventories of segments found in 450 languages. The inventories
are designed to enable matters such as the relative frequency of occurrence
of segments, the structure of segment inventories, and segment
cooccurrence patterns to be studied using an unbiased language sample.
The sounds are coded using an extensive set of phonetic features and can
be accessed and sorted by use of these features. A version named
PHONEME is available without an editing facility for use in the classroom.
Systems supported: MS-DOS
Developer/Distributor: Phonetics Laboratory, Dept. of Linguistics, UCLA,
405 Highland Ave., Los Angeles, CA, 90024–1543, USA.

WinSAL-V

A speech analysis program allowing recording, segmenting and playing
of audio and video files in multiple windows. Includes FFT, LPC,
cepstrum, and pitch analysis.
Systems supported: Windows (95, NT)
Developer/Distributor: office@media-enterprise.de
http://www.media-enterprise.de

WORDSURV

Analyzes word lists using lexicostatistics, phonostatistics, and
comparative reconstruction. The program can be used in helping
students to identify tentative comparative series for further testing.

Education 99

Systems supported: MS-DOS
Developer/Distributor: SIL

A World of Words

Eight stacks about how Indo-European languages have changed over
time. Topics include Grimm’s law, Greek and Latin sounds. Maps and
trees, Root and branch, a close transcription of a Frost poem, a hypertext
version of the Proöemium of Horner’s Iliad. HyperCard. Systems
supported: Macintosh (requires MacInTalk; System 6 recommended)
Developer/Distributor: John Lawler, University of Michigan.
john.lawler@umich.edu

YOUPIE

Attempts to learn stress system of any language using parametric
approach. Sample words with stress indicated are input; they are first
parsed into syllable and then sent to a stress-learner. The learner
attempts to set the value of stress parameters. If successful, YOUPIE
produces a prose description of the stress pattern of the language.
Systems supported: MS-DOS
Developer/Distributor: Elan Dresher, Dept. of Linguistics, Univ. of
Toronto, Toronto, Ont. M6J 2X8, Canada.
dresher@epas.utoronto.ca

PART II NETWORK RESOURCES

http://www.umich.edu/~archive/linguistics/
The best general source for educational software in linguistics.

http://www.sil.org/computing/
SIL has produced a large number of programs over the years useful in
teaching linguistics.

http://babel.uoregon.edu/yamada/guides.html
The best source for information on the net about language.

http://babel.uoregon.edu/Yamada/fonts.html
An excellent source for finding fonts useful in linguistics.

http://www.umich.edu/~archive/linguistics/jml.795.htm
A large collection of useful links, with a special section on Teaching
Resources.

100 Henry Rogers

http://www.arts.gla.ac.uk/IPA/ipa.html
The homepage of the International Phonetic Alphabet.

http://fonsg3.1et.uva.nl/Other_pages.html
Links to many sites on phonetics and speech.

There is an unmoderated discussion group TEACH-LING devoted to
teaching linguistics. To subscribe, send a one-line message to
listproc@lists.nyu.edu
saying:

subscribe teach-ling YOURADDRESS YOURFIRSTNAME
YOURLASTNAME

e.g.

subscribe teach-ling smith@uplonk.ca Jean Smith

101

Chapter 4

Textual databases

Susan Hockey

Textual databases are becoming major resources for research in language
and linguistics. By “textual database” we mean continuous text, either written
or transcribed from speech. It may be a complete text or texts, in the literary
sense, or samples of text. This chapter discusses important issues in the
acquisition and use of these databases. An overview of existing resources is
given, followed by an examination of markup schemes and software tools.
The emphasis is on tools for the ordinary working linguist and the chapter
concludes with a brief assessment of what he or she can expect to achieve
using these techniques.

4.1 ACQUIRING AND CREATING
ELECTRONIC TEXTS

Acquiring or creating an electronic text is of course the first stage of a project.
Unfortunately there is as yet no single source which identifies all or even
most existing texts. Until very recently almost all electronic texts were created
either by individuals for their own specific research projects (for example,
study of style of an author or comparison of vocabulary in specific genres)
or by research institutes such as the Istituto Linguistica Computazionale Pisa
or the Institut National de la Langue Française, which were established for
large scale studies of their own language. At the time of writing it is estimated
that about 25 per cent of texts are in the hands of individuals and about 70
per cent in research institutes. It is not known how many of these texts are
available for other scholars to use, but very few of them were created
originally for multi-purpose use by different scholars. The remaining 5 per
cent form the growing number of texts which libraries are beginning to
acquire and make available for general use.

4.1.1 Sources of texts

Here we can only note some long-standing sources of electronic text which
can claim some reliability. The Web sites listed in the Appendix provide an
obvious starting point for further exploration.

102 Susan Hockey

The Oxford Text Archive (OTA) at Oxford University Computing
Services has a collection of more than 1000 texts in some 30 different
languages, which it makes available to researchers at low cost. The OTA was
established in 1976 to provide long-term storage for electronic texts which
are of interest in literary and linguistic scholarship. It accepts any text which
is offered and undertakes to ensure that the electronic copy is not lost. The
texts are in many different formats, and the level of accuracy and encoding
varies greatly. The OTA includes several corpora and collections of text which
are of interest to linguists as well as electronic dictionaries and thesauri. Some
OTA texts are available for widespread distribution; others need the
permission of the original compiler before copies can be made. The OTA
catalog also includes a number of texts which have been purchased for use
by Oxford University and cannot be distributed further. It also gives a note
of the source or depositor of the text and an indication of its size.

The Humanities Computing Yearbook, published by Oxford University Press,
is a compendium of information about humanities computing, containing
extensive bibliography and information about software and text resources.
Volume 1, edited by Ian Lancashire and Willard McCarty, appeared in late
1989. Volume 2 edited by Lancashire alone, appeared in mid-1991 and
contains much new material as well as updating significant Volume 1 entries.
The editors have done their best to verify that the information is comprehensive
and reliable, certainly at the time of publication. The major focus is on the
humanities, and some areas of linguistics are not covered.

The Georgetown Catalog of Projects in Electronic Text is a database
of information on electronic text projects throughout the world. It compiled
well over 300 entries during 1989–92 concentrating on machine-readable
versions of primary text. It is a useful compilation of organizations and
institutions that are working on electronic text files, but it does not give much
information about the availability of the texts and does not list very many
individual texts.

More recent information can be obtained from various electronic
discussion lists and newsletters. This information may or may not have been
verified. In particular, it has become common practice to announce new
projects on discussion lists before those projects have achieved very much,
and in some instances before they have begun. It is therefore advisable to
check whether a project which has been announced electronically is in fact
more than what has come to be called “vaporware.”

Besides The LINGUIST List <linguist@linguistlist.org>, useful
discussion lists are

humanist@lists.princeton.edu

and

corpora@hd.uib.no

Textual databases 103

The Humanist list began in 1987 as a forum for humanities computing
specialists. Under the editorship of Willard McCarty it has become a major
international forum for discussion of intellectual, scholarly, pedagogical, and social
issues, as well as for exchange of information, including the availability of electronic
texts. The Corpora list is moderated by the Norwegian Computing Centre for the
Humanities and also has many queries about the availability of corpora.

Institutions which hold electronic text are too numerous to mention
here, but a few are worthy of note. Many have substantial collections of
text in one natural language which, although not initially created for this
purpose, can be used as a basis for linguistic research. The International
Computer Archive of Modern and Medieval English, administered
at the Norwegian Computing Centre for the Humanities, collects and
distributes information on English language material available for
computer processing and on linguistic research completed or in progress
on the material. The whole of Ancient Greek literature up to 600AD is
available on CD-ROM from the Thesaurus Linguae Graecae and a
companion CD-ROM of Classical Latin is distributed by the Packard
Humanities Institute. Also available for individual use are the complete
corpus of Old English, which forms the basis of the material for the Old
English Dictionary being compiled in Toronto, several versions of the
Bible in Hebrew, Greek and other languages, and a miscellaneous
collection of mostly modern American newspapers and technical
documents assembled by the Association for Computational
Linguistics (ACL). In summer 1994 the European Corpus Initiative
(ECI) released its first CD-ROM, which has a collection of corpora (texts,
word lists, and dictionaries) in twenty-five languages including some
multilingual parallel texts. The Linguistic Data Consortium (LDC)
at the University of Pennsylvania has been funded by ARPA to collect
and disseminate large amounts of language data for research in natural
language analysis, speech processing and other language technology
applications. There is a subscription fee for membership but some texts
can also be purchased by non-members.

The Brown and LOB (Lancaster-Oslo-Bergen) Corpora are the two
most widely known and used language corpora, and various other corpus-
building projects have been modeled on them. Each contains one million
words first published in 1961. The Brown Corpus is American English and
the LOB Corpus is British English. Each consists of 500 samples of
approximately 2000 words taken from a variety of genre. Samples from
the newspaper and humor sections of the Brown Corpus have been used
for the concordance examples in this chapter (see Section 4.3). The British
National Corpus (BNC), a much larger enterprise consisting of 100
million words of British English, was completed in 1994. About ten per
cent of the material is transcriptions of conversations. The compilation and

104 Susan Hockey

usage of these corpora and others have led to discussions and some
empirical research on what constitutes a representative corpus.

In general, compiling information about electronic texts is not an easy
task. Apart from a few well-known collections and corpora, information is
scarce and is in many different formats. Compilers who created electronic
texts for their own specific projects often embedded information about the
texts in their own purpose-built software. Others developed their own ad
hoc procedures for documenting the texts, resulting in different
methodologies which are not easy to merge. Recent experiments using the
rigor of bibliographic records to catalogue electronic texts have shown that
these provide very well for some details that users of electronic texts need
to know, but not well for markup and other information needed by
processing programs. The TEI header (see Section 4.2.1) was developed
as a solution to these problems.

4.1.2 Raw text or package?

A very large majority of existing electronic texts, and all those created newly
by scholars, are what is called here plain ASCII text; that is, they are
sequential files which can be displayed or printed by, for example, the DOS
command type, or the Unix command cat. Software to use these texts
must be acquired from another party or written by the user. Most of the
texts which are becoming available on CD-ROM are accompanied by
searching software and are not accessible in any other way. The user is
constrained to the facilities which the developer of the software has chosen
to include.

Nevertheless some of these resources provide a simple introduction to
what computers can do for the linguist. The ICAME CD-ROM contains
the texts of some of the ICAME corpora together with two retrieval
programs, TACT and WordCruncher, both of which are widely used in the
humanities. The CETEDOC CD-ROM, which contains major works of
the early Christian Fathers, must be used via its own software interface,
and other software interfaces come with the CD-ROMs of the New
Oxford English Dictionary and the Global Jewish Database (Responsa
material). The TLG, PHI, ACL, and ECI CD-ROMS do not come with
any software and the texts are not indexed in any way. The user thus has
complete flexibility in potential application functions on these CD-ROMs,
but also needs to write or acquire software to use them.

At the time of writing there are only two large well-known collections
of humanities-related material generally accessible by on-line searches over
the Internet. ARTFL (American Research on the Treasury of the French
Language) is based at the University of Chicago. It contains over 2000
texts of French language and literary material mostly from the eighteenth,
nineteenth and twentieth centuries, with a smaller group of seventeenth-

Textual databases 105

century texts as well as some medieval and Renaissance texts. Genres
include novels, verse, journalism, essays, correspondence, and treatises. The
Dartmouth Dante Project contains the Divine Comedy and over sixty
commentaries in Latin, Italian, and English and is accessible free of charge
over the Internet from Dartmouth College Library. In late 1996 Chadwyck-
Healey began an on-line subscription service Lion (Literature Online) for
their full-text English literature databases, where the focus appears to be
on looking up words for reference.

4.1.3 Copyright issues

Finding out about electronic texts is not easy for other reasons. Copyright
issues are a cause for concern in many quarters. When electronic versions
of printed texts first began to be created over forty years ago, the full
implications were not known. Many scholars created electronic versions
of texts without getting appropriate copyright permissions, either because
they did not know how or where to ask, or because publishers did not know
how to answer. The copyright permission of many existing texts is unclear
and, with the advent of networking, is further compounded by different
laws in different countries. Neither do we have a clear definition of what
constitutes a new edition of an electronic text, since it is so easy to make
changes on a continuing basis. Whether or not the present copyright laws
are adequate to deal with all possible situations that may arise in the use
of this new medium is not clear, but those who have most to gain by
protecting copyrights tend to be those who distribute text in a fixed form,
only accessible via software provided with the text. While this makes a
medium which is easier for publishers and librarians to handle, it does not
provide as well for the innovative ideas and uses which electronic texts can
stimulate. Other researchers have sought to avoid getting embroiled in
copyright issues and deliberately chosen to work with texts which are out
of copyright, but which may not necessarily be the best data from a
scholarly perspective. Given the rate of technological change, it seems
unlikely that a general-purpose solution to the copyright issue will be found
in the near future.

4.1.4 Optical character recognition and scanning

If no suitable text is available from any of these sources, the prospective
user must then create his or her own electronic version. By the beginning
of the 1980s optical character recognition (OCR) was possible for some
texts. This permits a conversion of a text to electronic form without the
need for keyboarding. The most usual OCR configuration now consists of
a flatbed scanner attached to a PC or Macintosh, which has software to
convert the scanner’s bit-mapped image into ASCII text. Some have output

106 Susan Hockey

options to convert the text into a format used by common wordprocessing
programs.

Texts which are of interest to the linguist are likely to be suitable only
for the more sophisticated scanners, most notably those which can be
trained to read a specific character set. Handwriting and old printed
books, where the baseline is uneven, are not usually suitable; neither are
texts which contain a lot of italic or bold face material. These latter include
dictionaries, which have many type face changes. The poor quality of the
paper and uneven inking makes newspapers difficult, but magazines can
be much better. Some scanners are able to read non-standard characters,
but any script where the letters are joined together is almost certainly not
possible. There may also be difficulties with accented characters,
particularly those which are not very common.

The best way to determine whether a text is suitable for scanning is to
try it out, being aware first that a scanner will rarely produce an entirely
accurate text. Variations in the ink or paper can lead to misreads such as
the confusion of c and e, or h and b, even in what appears to be a clearly
printed original. Some scanning software includes a dictionary to confirm
doubtful readings, but this will not be of any use if the text is in an
uncommon language. An advertised accuracy rate of 99.9 per cent means
approximately one character error every ten lines, so it is necessary to
proofread scanned text carefully for errors. Often a pattern can be detected
in errors and some special software or macros can be written to correct a
good percentage of them.

Optical character recognition sees only the typographic features on the
page, and additional information is needed to create a usable text. Encoding
needs to be added to identify such features as author, title, page number,
and speaker, or whatever are the appropriate units of division within the
document. It may be possible to provide automatic conversion of some of
these from a scanned document, but some manual editing is very often
necessary, since these structural divisions do not always map automatically
on to typographic features, which are all the scanner can see. (For a detailed
discussion of text encoding and markup see Section 4.2.)

The choice between scanning and keyboarding depends very much on
the nature of the text, on the circumstances of the scholar, and the
resources available. However, it is essential to remember that the scanning
on its own is not sufficient to produce an accurate text and may take only
perhaps a quarter of the time that is needed to create a usable text.
Proofreading and adding markup to make the text useful for computer
processing are much more time-consuming. In general, scanning rarely
turns out to be as successful as many people expect, and it is worth knowing
that most large text database entry projects such as the Thesaurus Linguae
Graecae and the New Oxford English Dictionary have found it more
convenient to have data keyboarded professionally. A much better accuracy

Textual databases 107

rate can be achieved and structural encoding can be inserted at the same
time.

The term “scanning” is often used now for the creation of digitized
images, where a picture of the page, not a transcription of the text itself,
is stored in the computer. While this provides an effective means of
delivering text for reading, the text itself in such an image cannot be
processed in any way by the computer. The potential of image delivery of
texts is strongest in the library environment, particularly for providing wider
access to fragile manuscripts, but also to reduce duplicate purchases of
the same material. In the longer term both image and text representation
together will begin to show the real potential of the electronic library. In
the meantime, linguists will find texts rather than digitized images to be
more useful for their research.

4.1.5 Typesetting tapes

Typesetting tapes have sometimes been used as a source of electronic
text. These are more appropriate when a substantial amount of text will
be received from the same source, possibly on a continuing basis.
Typesetting tapes often contain an idiosyncratic markup scheme which
is typographic and needs substantial effort to decode. Corrections at proof
stage are often typeset separately and not inserted into the main text so
that the original tape is not a completely faithful rendering of the printed
version. Publishers also find it cheaper in many instances to throw away
their typesetting tapes and disks rather than incur costs in keeping them.
As more publishers move to more standard markup formats these
problems will diminish, but it is as well to be aware of them at this point.
Using a typesetting tape seems most feasible if a standard encoding
scheme is employed.

4.2 MARKUP SCHEMES

Electronic texts become much more useful when additional information
called markup or encoding is inserted into the text. Markup makes explicit
for computer processing those features which are implicit for the human
reader of a text. In the case of wordprocessing and text formatting, markup
serves to identify words to be printed in italic or bold, or to make a new
page and center a heading. For text analysis applications, markup can serve
two major purposes. One is to identify specific areas of text to be analyzed.
The other is to locate words which have been retrieved from the text. For
example, if a corpus is divided into subsections denoting different genres,
words which are retrieved can be identified by their genres, thus showing
their pattern of usage among genres. The types of analyses that can be
performed on a text without markup are somewhat limited. Markup can be

108 Susan Hockey

used to encode many different features within a text. In general the more
markup there is in a text, the more useful that text can be, and the more
expensive it is to create.

Markup can be used to encode both structural and analytic features.
Structural features may include paragraphs, lists, headings, lines (of verse),
stage directions (in drama), quotations, parts, sections, chapters, and
bibliographic citations. Almost anything can be included as analytic
information, but most effort so far has been directed to finding ways of
representing linguistic analyses of various kinds. Very many markup
schemes have evolved over the last forty or so years, most of which are
incompatible with one another. Some have been created for use with
specific programs or as part of larger ongoing research projects. Others
have been ad hoc in nature and created by individual scholars for their own
purposes, and reflect only the needs of one project. Electronic texts which
were created some time ago often have fairly limited markup and some
have only upper case letters.

Figure 4.1, the beginning of Section A of the Brown Corpus, shows one
method of inserting locators. Each line begins with a fixed field identifier.
A01 indicates that this is Section A1 of the Corpus; Section A2 begins
with A02, and so on. The number in character positions 5 to 8 on each
record is a line number. The numbers go up in tens so that additional lines
can be inserted, as for example 0011, 0012 without having to renumber
all the lines. Thus the first eight character positions are an identifier for
each line of text and can be used to give a reference locator for each word
within the line. In this example note also Jr written Jr& in line 10.
Throughout the corpus the ampersand is used to mark an abbreviation in
order to distinguish the full stop in an abbreviation from that at the end
of a sentence. In line 21, #MERGER PROPOSED# is obviously a headline
or subheading within the article.

Placing locators at the beginning of every line as in Figure 4.1 is
repetitive and wasteful of space. It might only be necessary to insert a
section number at the beginning of each new section. This can be done
using the so-called COCOA method of encoding text. COCOA was first
used widely by a concordance program of that name, developed at the
Atlas Computer Laboratory in England in the 1960s. Figure 4.2 shows
the beginning of Shakespeare’s The Merchant of Venice encoded according
to this scheme. The items within <and> serve as locators within the text.
<T Merchant of Venice> indicates that the title is Merchant of Venice.
<A 1> means Act 1 and <S 1> means Scene 1. Within the COCOA
scheme a different letter category is used to denote each type of reference.
Here C is used for speaker within the play, as S has already been used
for scene. A C locator has been inserted in the text every time the speaker
changes. The scope or value of a locator thus holds true until the next

Textual databases 109

instance of the same locator. If the word caught in the third line of Antonio’s
speech here was retrieved it would have the locators T Merchant of Venice,
A 1, S 1 and C Antonio. The actual letters used for each category are
chosen by the encoder of the text and they are case sensitive, thus allowing
up to 52 different categories.

The COCOA scheme assumes that whatever program is processing the
text can keep track of line numbers automatically. Non-sequential numbers
can be handled by inserting an explicit line number reference within the
text. In Figure 4.2, stage directions are enclosed within double round
brackets. This allows a program to ignore these if desired, so that
occurrences of enter, exit etc. within the stage directions are not included
within counts of these words throughout the text. A linguist may want to
use this mechanism for notes about the source of the text, or for comments
on speakers if the text is a transcription of a conversation.

Figure 4.1 The beginning of Section A of the Brown Corpus showing the fixed
format locators

A01 0010 The Fulton County Grand Jury said Friday an investigation

A01 0020 of Atlanta’s recent primary election produced ”no evidence” that

A01 0030 any irregularities took place. The jury further said in term-end

A01 0040 presentments that the City Executive Committee, which had over-all

A01 0050 charge of the election, ”deserves the praise and thanks of the

A01 0060 City of Atlanta” for the manner in which the election was conducted.

A01 0070 The September-October term jury had been charged by Fulton

A01 0080 Superior Court Judge Durwood Pye to investigate reports of possible

A01 0090 ”irregularities” in the hard-fought primary which was won by

A01 0100 Mayor-nominate Ivan Allen Jr&. ”Only a relative handful

A01 0110 of such reports was received”, the jury said, ”considering the

A01 0120 widespread interest in the election, the number of voters and the size

A01 0130 of this city”. The jury said it did find that many of Georgia’s

A01 0140 registration and election laws ”are outmoded or inadequate

A01 0150 and often ambiguous”. It recommended that Fulton legislators

A01 0160 act “to have these laws studied and revised to the end of modernizing

A01 0170 and improving them”. The grand jury commented on a number

A01 0180 of other topics, among them the Atlanta and Fulton County purchasing

A01 0190 departments which it said ”are well operated and follow generally

A01 0200 accepted practices which inure to the best interest of both governments”.

A01 0210 #MERGER PROPOSED# However, the jury said it believes ”these

A01 0220 two offices should be combined to achieve greater efficiency and reduce

A01 0230 the cost of administration”. The City Purchasing Department,

A01 0240 the jury said, ”is lacking in experienced clerical personnel

A01 0250 as a result of city personnel policies”. It urged that the city ”take

A01 0260 steps to remedy” this problem. Implementation of Georgia’s

A01 0270 automobile title law was also recommended by the outgoing jury.

110 Susan Hockey

<T Merchant of Venice>

<A 1>

<S 1>

((Enter Antonio, Salerio, and Solanio))

<C Antonio>

In sooth, it know not why I am so sad.

It wearies me, you say it wearies you,

But how I caught it, found it, or came by it,

What stuff ’tis made of, whereof it is born,

I am to learn;

And such a want-wit sadness makes of me

That I have much ado to know myself.

<C Salerio>

Your mind is tossing on the ocean,

There where your agosies with portly sail,

Like signiors and rich burghers on the flood,

Or as it were the pageants of the sea.

Do overpeer the petty traffickers

That curtsey to them, do them reverence,

As they fly by them with their woven wings.

<C Solanio> ((to Antonio))

Believe me, sir, had I such venture forth

The better part of my affections would

Be with my hopes abroad.

I should be still

Plucking the grass to know where sits the wind,

Peering in maps for ports and piers and roads,

And every object that might make me fear

Misfortune to my ventures out of doubt

Would make me sad.

Figure 4.2 The beginning of The Merchant of Venice showing COCOA-format
markup

Many existing texts use either the COCOA encoding scheme or the
method of locators shown in the Brown Corpus examples, but experience
has highlighted problems. One syntax is used for encoding locators.
Another is used for other kinds of information. It is sometimes not clear
which is best for information such as foreign language words. The locator
method can be used for substantial amounts of text in a different language.
For example, using F for foreign language,

Textual databases 111

<F French>

lines of text in French
<F English>

lines of text in English

but single words or very short sections of text might better be treated in
the same way as the stage directions as follows:

John exhibited a certain ((joie de vivre)).

or by adding specific markers at the beginning of each word, for example:

John exhibited a certain $joie $de $vivre.

where a search for all words beginning with $ retrieves the French words,
a method which has been widely used. The same text may often contain
different markers with different functions. Regrettably, documentation
explaining what the markers indicate is less often provided.

4.2.1 SGML and the Text Encoding Initiative (TEI)

Two encoding schemes (with variants of them) have been illustrated above
but many others exist. By 1987, as scholars interchanged texts more and
more, it became clear that this plethora of encoding schemes was
hampering progress. It was also recognized that most existing schemes
were deficient in one way or another. Some were designed for one
software program and were thus machine-specific. Others reflected only
the views of their originators and could not readily be applied to other
projects. Almost all were very poorly documented and none was rich
enough to cope with the variety of applications and purposes for which
an electronic text might be created. At the end of 1987, a major
international project, called the Text Encoding Initiative (TEI), began
under the sponsorship of the Association for Computers and the
Humanities, the Association for Computational Linguistics, and the
Association for Literary and Linguistic Computing. It produced its
Guidelines for Electronic Text Encoding and Interchange in May 1994. The
TEI Guidelines, as they are usually called, are the result of six years of
work by volunteers in over twenty countries, coordinated and written up
by two editors. The Guidelines consist of almost 1300 pages of
specifications of encoding tags for many different discipline areas and
provide a much sounder basis for encoding electronic texts.

The Guidelines use the Standard Generalized Markup Language
(SGML) which became an international standard in 1986. SGML is a
metalanguage for defining markup schemes. It is built on the assumption

112 Susan Hockey

that a text can be broken down into components (paragraphs, lists, names,
chapters, titles, etc.) which can nest within each other. The principle of
SGML is “descriptive,” rather than “prescriptive.” The encoder indicates
what a textual object is, rather than what the computer is supposed to do
with that object. This means that different application programs can operate
on the same text. For example, if titles embedded in the text are encoded
as such, a retrieval program can search all the titles, an indexing program
can index them, and a printing program can print them in italic, all
without making any changes to the text.

The creator of an SGML application, as it is called, defines those
features of a text which may need to be encoded as objects and gives
specific element names to them. All the elements which may occur in a
text are defined in an SGML Document Type Declaration (DTD) which
also specifies the relationship between them. This means that a computer
program can use the DTD to validate the encoding in a text. For example,
an error is detected if the DTD specifies that the text must have at least
one title element, but no title element is given. Non-standard characters
are denoted by entity references in SGML, for example, “—” for
an emdash or “é” for é as in état for état. This mechanism
can also be used for boilerplate text, but is hardly feasible for large sections
of text where other methods of defining writing systems are needed.

The SGML element names are embedded in the text in the form of
encoding tags. Each element has a start and an end tag, although in many
cases it is possible to omit the end tag. Elements can also have attributes
which modify them in some way. Figure 4.3 shows the beginning of Walter
Pater, The Child in the House, encoded in TEI-conformant SGML. This
example was prepared by Wendell Piez as one of the TEI pilot projects
produced at the Center for Electronic Texts in the Humanities in 1995–6.
It begins with the front matter consisting of the title and a publication note.
Only the first paragraph of the body of the text is shown. The paragraph
tag <p> has an identifier attribute giving the chapter and paragraph
number. In the <date> element an attribute gives a date value more suitable
for computer processing than “Aug. 1878” which would be treated as two
words “Aug.” and “1878.”

The TEI has attempted to define a comprehensive list of over 400
features which linguists and humanities scholars might want to use. The
Guidelines describe each of these features and give examples of their use.
However, since no list can be truly comprehensive, the Guidelines provide
for extension and modification when needed. Very few tags are absolutely
required. It is up to the encoder of a text to determine what he or she
wishes to tag. The encoding process is seen as incremental, so another
researcher may take that text and add encoding for a different set of
features. SGML provides for different and possibly conflicting views to be

Textual databases 113

<text id=”ch”>
<pb id=”MS.172” ed=”MS” n=”172”>
<front><head><title rend=”Capitals”>The Child in the
House</title>
<note>Published in <title rend=”Italic” level=”J”>Macmillan’s
Magazine</title>,
<date value=”18780900”>Aug. 1878</date>.</note></head>/front>
<body><p id=”chl.01”>
As Florian Deleal walked, one hot afternoon, he overtook by
the wayside a poor aged man, and, as he seemed weary with the
road, helped him on with the burden which he carried, a
certain distance. And as the man told his story, it chanced
that he named the place, a little place in the neighbourhood
of a great city, where Florian had passed his earliest years,
but which he had never since seen, and, like a reward for his
pity, a dream of that place came to Florian, a dream which did
for him the office of the finer sort of memory, bringing its
object to mind with a great clearness, yet, as sometimes
happens in dreams, raised a little above itself, and above
ordinary retrospect. The true aspect of the place, especially
of the house there in which he had lived as a child, the
fashion of its doors, its hearths, its windows, the very scent
upon the air of it, was with him in sleep for a season; only,
with tints more musically blent on wall <pb id=”MS.173”
ed=”MS” n=”173”>and floor, and some finer light and shadow
running and out along its curves and angles, and with all its
little carvings daintier. He awoke with a sigh at the thought
of almost thirty years which lay between him and that place,
yet with a flutter of pleasure still within him as the fair
light, as if it were a smile, upon it. And it happened that
this accident of his dream was just the thing needed for the
beginning of a certain design he then had in view, the noting,
namely, of some things in the story of his spirit— in
that process of brain‐ building by which we are, each one
of us, what we are. With the image of the place so clear and
favourable upon him, he fell to thinking of himself therein,
and how his thoughts had grown up to him. In that
half‐spiritualised house he could watch the better, over
again, the gradual expansion of the soul which had come to be
there—of which indeed, through the law which makes the
material objects about them so large an element in children’s
lives, it had actually become a part; inward and outward being
woven through and through each other into one inextricable
texture—half, tint and trace and accident of homely
colour and form, from the wood; and the bricks; half, mere
soul‐stuff, floated thither from who knows how far. In the
house and garden of his dream he saw a child moving, and could
divide the main streams at least of the winds that had played
on <pb id=”MS.174” ed=”MS” n=”174”>him, and study so the first
stage in that mental journey.</p>

Figure 4.3 Part of Walter Pater, The Child in the House, encoded in TEI SGML
by Wendell Piez

114 Susan Hockey

embedded in the same text and a researcher who works on that text may
choose to ignore some of the encoding.

HTML is also an SGML application, but it consists only of elements
intended to be interpreted by Web browsers for display. They are not
suitable as locators in a retrieval system.

The TEI Guidelines are built on the principle that all texts share some
common core of features, to which may be added tags for specific
disciplines or theoretical orientations. The common core consists of a
header, which provides a bibliographic and encoding description of the
text, and some sixty elements such as title, list, name, date, abbreviation,
quotation, note, and the like. Because of the very wide variety of structural
divisions possible in the texts which the TEI is addressing, a general
purpose structural element <div> is used with an attribute for the type of
division (chapter, part, volume, stanza, book, quatrain, etc.). Together, the
header, core, and structural tags form a base tag set. Specialized base tag
sets exist for verse, drama, transcriptions of speech, dictionaries, and
terminological data. The base may be supplemented by any of the following
additional tag sets: linking, segmentation and alignment, simple analytic
mechanisms, feature structures, certainty and responsibility, transcription
of primary sources, critical apparatus, names and dates, graphs, networks
and trees, tables, formulae and graphics, and language corpora. The
construction of a TEI DTD has thus been likened to the preparation of a
pizza where the base and then the toppings (in the form of additional tag
sets) are chosen.

SGML is used for many different applications and the market for SGML
software is growing, although much is still expensive for the academic user.
Putting the tags into the text can be aided by SGML-aware programs like
Author/Editor or the latest versions of WordPerfect which ensure that the
document is valid as it is being tagged. Of the SGML-aware retrieval
programs or browsers, only SoftQuad’s Panorama is within the financial
reach of the individual researcher. The Opentext search engine is used by
many libraries which provide network access to SGML-encoded electronic
texts. Electronic Book Technologies’ Dynatext and SoftQuad’s Explorer
provide more of a browsing capability with hypertext linking. For those
who have access to it, the SARA program written to search the British
National Corpus is a good example of what can be done with an SGML-
aware retrieval program.

More tools exist for those who are comfortable with Unix. These include
a public domain parser sgmls and some corpus handling routines. (See
Chapter 5.)

It is expected that more SGML software will become available and that
some will be specific to the TEI DTDs. Researchers who are beginning a
project should not consider the current lack of cheap software as a reason
for choosing not to use the TEI and SGML. Experience has shown that

Textual databases 115

the TEI remedies almost all the defects in pre-TEI encoding schemes. It
addresses the scholarly needs in much greater depth and can be treated
as an archival format of the text from which other formats can be derived.
However, since we do not yet have any general-purpose SGML-aware
desktop text analysis software, the examples in the next section were created
with the Oxford Concordance Program (OCP), which predates the TEI.
In most cases it is easy to convert an SGML-encoded text to the format
required by OCP and similar programs.

4.3 BASIC ANALYSES

The computer’s basic functions of counting, searching, and sorting
(alphabetizing) have been applied to textual data ever since 1949 when
Father Busa began the first humanities computing project, his concordance
to the works of St Thomas Aquinas and related authors. These functions
are used to create concordances and word lists which serve as the
underlying tools for many linguistic computing projects. Packaged
concordance programs are especially suited for the ordinary working
linguist who does not have large-scale computing facilities and assistance.
When applied judiciously they can be used for many different purposes in
both research and teaching.

4.3.1 Word lists and concordances

A word list is a list of words where each word is accompanied by a number
indicating how many times that word occurs. In an index, each word is
accompanied by a list of references indicating where that word occurs in
the text. A word list in alphabetical order is shown in Figure 4.4. This
example uses Section A of the Brown Corpus, a sample of newspapers. As
in almost all other examples, only a portion of the results is illustrated.
The words are given in alphabetical order, beginning with the word a which
occurs 2122 times, out of a total of 88912 words in this text. In this version
of the Brown Corpus “~” and “&” represent abbreviations. Because of the
way that words were defined when this list was created, ~A, A&, A&A&U&
and A&A&U&s appear at the top. Note that a occurs many more times
than the other high frequency words shown here, e.g. about. The hyphen
at the end of abstaining- has also appeared because in this case it represents
an em-rule which appears without a space before it in the text. A word
list like this shows up misspellings very quickly as can be seen with the
entry accomodations. It also immediately shows that the words are individual
forms. The verb achieve appears in three different forms and the noun
achievement in two. Note also Achaeans and Achaeans’ as two separate
entries.

116 Susan Hockey

a 2122 absent 2 accommodated 1

~A 2 absolute 1 accommodations 2

a& 39 absolutely 1 accomodations 1

Aaron 1 absorb 1 accompanied 4

A&A&U& 1 absorbed 4 accompanying 1

A&A&U&’S 1 abstaining- 1 accomplish 2

abandoned 3 abstention 1 accomplished 4

abandonment 1 abuse 1 accomplishment 1

Abatuno 1 abuses 2 accord 2

Abbey 1 acacia 3 according 23

Abe 1 academic 10 accordion 1

Abel 1 academics 1 accosted 2

Abell 1 Academy 4 account 10

abide 1 Accardo 1 accounted 2

abilities 1 accelerated 1 Accounting 1

ability 9 accent 1 accounts 2

ablaze 1 accented 1 accredited 1

able 24 accept 8 accumulation 1

Abner 1 acceptable 3 accurate 1

aboard 3 acceptance 4 accuse 1

abolish 2 accepted 5 accused 8

Abolition 1 accepting 2 Ace 3

abortive 2 access 3 Achaeans 1

about 147 accessories 1 Achaeans’ 1

above 16 accessors 1 achieve 6

Abra 1 accident 7 achieved 3

Abraham 1 accidentally 1 achievement 15

abroad 4 acclaim 1 achievements 1

abrupt 1 acclaimed 2 achieves 1

absence 1 acclimatized 1 aching 1

Figure 4.4 Word list in alphabetical order

The words in the same text can also be sorted into frequency order as
in Figure 4.5 where the most frequent word appears first. The word the is
easily the top with over twice as many occurrences as the next word of.
There is also a big gap between the top six words the, of, and, to, a and in
and the next word for. Figure 4.6 shows part of a concordance of the word
I in the humor section (R) of the Brown Corpus. Here each occurrence is
identified by a reference consisting of the sample number and line number
within the sample.

Textual databases 117

the 6383 have 265 home 131

of 2859 not 256 also 129

and 2184 Mrs& 253 her 121

to 2143 were 252 no 119

a 2122 would 246 over 119

in 2020 which 245 into 115

for 968 new 241 some 113

that 826 their 231 only 111

is 733 been 212 made 107

was 716 one 212 we 107

on 690 There 189 if 103

He 642 more 184 time 102

at 636 all 180 years 102

with 567 its 178 three 100

be 526 I 177 House 96

as 517 last 177 them 96

by 503 or 175 any 95

It 477 two 174 what 95

his 428 Mrs 170 can 94

said 406 when 169 week 94

will 389 up 168 before 93

from 353 other 164 him 93

are 329 out 162 may 93

This 319 first 158 City 91

an 311 state 153 under 91

has 301 After 151 could 87

but 283 about 147 now 87

had 280 president 142 school 87

who 268 year 142 four 82

They 267 than 138 Most 81

Figure 4.5 Word list in frequency order

4.3.2 Defining words

As we look at some other examples, the first question to consider is what
constitutes a word. Some software packages include a built-in definition
of a word. This is usually something surrounded by spaces, which is also
almost always inadequate. The “words” in the Brown Corpus are relatively
straightforward, but, as we saw in Figure 4.4, they include hyphens and
apostrophes as well as numerals, percent and dollar signs, as well as
additional symbols like “&” for an abbreviation in Mr& and A&. The
user needs to decide whether these are in fact parts of words, and if so
how they will be treated in the alphabetization process.

Fi
gu

re
 4

.6
 C

on
co

rd
an

ce
 o

f w
or

d/
in

 S
ec

tio
n

R
 o

f t
he

 B
ro

w
n

C
or

pu
s

Textual databases 119

Non-alphabetic characters which have more than one meaning include

1 period (full stop), indicating the end of a sentence, an abbreviation, or

a decimal point
2 apostrophe surrounding a quotation or direct speech, indicating the

genitive or appearing in forms like don’t and can’t
3 hyphen, indicating a compound word or a typographic feature when a

word is broken at the end of a line, or used as an em-rule

If a text is being keyboarded some of these problematic characters can be
encoded at this stage. For example typographic hyphens can be eliminated
and the entire word reconstituted, or periods which are abbreviations can
be encoded as a different character.

At the simplest level, the text or other linguistic data is seen as a
sequence of characters, most often corresponding directly to those
characters on the keyboard or screen. These characters are almost always
stored as 8-bit bytes giving, for example, a possible total of 256 characters,
of which only 96 are easily accessible directly from the keyboard. These
characters form a specific order within the computer, often called the
internal collating sequence. In it upper and lower case letters appear
different so that for example upper case A is different from lower case a.
This fixed order is used by some software packages for sorting words, but
even if upper and lower case letters can be made equivalent, it is inadequate
to handle all but the simplest of texts.

In most applications for humanities research and teaching, much more
flexibility is needed in the definition of an orthographic word. The user needs
to be able to define the make-up of a word and the alphabetical sequence
used for sorting words. OCP permits up to eight keyboard characters to
represent one letter. This means that ch, ll, and rr in Spanish can be sorted
as separate letters. In fact OCP has four major types of letter which are
described below.

4.3.2.1 Alphabet: primary sorting

“Alphabet” letters make up the primary sorting key for alphabetizing
words. They are defined in the order in which they are to be sorted with
the possibility of declaring letters to be equal for sorting purposes, as is
normally needed for upper and lower case letters. Figure 4.7 shows a word
list of a short Spanish poem, where chapotean comes after cuatro, and llega
after Los. It would be just as possible to define an alphabet where z is first
and a is last, causing all beginning with z to appear first, followed by all
beginning with y, x, w, etc. The numerals 0 1 2 3 4 5 6 7 8 9 are best
treated as part of the alphabet since they occur frequently enough as

120 Susan Hockey

numbers, dates, currency symbols and weights and measures, all of which
look like “words.”

This mechanism for sorting words is adequate for most languages which
use the Roman alphabet, but it is unable to place, for example, Old English
thorn in the alphabetical position of th, that is in the middle of the ts.
Neither can it easily handle Welsh and other languages which exhibit
mutation. It is possible to define the correct alphabetical order for Greek,
Hebrew, Russian, or other languages which do not use the Roman alphabet.
In this case the display of a character on the screen or the printing of it
must be treated as separate operations, independent of the functions of
another application program.

Various utilities exist for screen display or printing of non-standard
characters. In choosing suitable software, it is all too easy to be seduced
by the ability to display or print certain characters, rather than to examine

A 3 escaleras 1 números 1

abandonados 1 esperanza 1 palomas 1

aguas 1 fruto 1 paraíso 1

al 1 furiosos 1 podridas 1

allí 1 gime 1 por 1

amores 1 habrá 1 porque 1

angustia 1 hay 1 posible 1

aristas 1 huesos 1 primeros 1

arte 1 huracán 1 que 4

aurora 3 inmensas 1 recibe 1

boca 1 juegos 1 saben 1

buscando 1 la 4 salen 1

cieno 2 las 4 sin 2

columnas 1 leyes 1 su 1

comprenden 1 Los 2 sudores 1

con 1 llega 1 sus 1

cuatro 1 mañana 1 taladran 1

chapotean 1 monedas 1 tiene 1

de 6 nadie 1 un 1

deshojados 1 nardos 1 van 1

devoran 1 negras 1 veces 1

dibujada 1 ni 2 y 4

en 2 niños 1 York 2

enjambres 1 no 2

entre 1 Nueva 2

Figure 4.7 Word list showing alphabetization of Spanish

Textual databases 121

the functionality of the software to determine whether it is capable of
performing the desired analyses.

4.3.2.2 Diacritics: secondary sorting

Some letters are better treated as diacritics, that is, as a secondary sorting
key for alphabetizing words. Hyphen and apostrophe are good examples
in English. If the words can’t and cant and I’ll and ill occur, one might
expect all the instances of can’t to come immediately after all those of cant
and all those of I’ll immediately after all those of ill. These results cannot
be achieved by placing the apostrophe anywhere in the alphabet. Figure
4.8 shows an example of ill and I’ll followed by other entries beginning
ill-. Note also that “&” used for abbreviations is also treated this way as
is shown in Ill& for Illinois.

Accented characters are usually best treated in this way. Many existing
electronic texts were created when only the 96 or so characters accessible
directly from the keyboard were available. A common way of representing
an acute or grave accent was to use / or \ immediately after the letter to
which it belongs. For example élève would appear as e/le\ve. Other characters
might be chosen for circumflex, cedilla, etc. Defining/ and\to be diacritics
causes words which include these accented letters to appear in the
alphabetical order in which they are normally found in a dictionary. For
example élève would appear as a separate entry from élevé. OCP also
provides a means for correctly sorting the accented characters on the PC’s
character set.

4.3.2.3 Padding: non-sorting letters

“Padding” letters have no effect on the way a word is sorted. Words
containing them are sorted together with the same sequence of letters
without them. Figure 4.9 shows the effect of this on ill and I’ll which is
now only one headword. If “&” was also defined as a padding letter, Ill&
would also appear as the same headword as ill. Note also the effect on its
where it’s appears in entry A03 031.

4.3.2.4 Punctuation: word separators

Punctuation or word separators normally include all the regular
punctuation characters, plus any other additional symbols which separate
words, including space. Although in most situations it is better to treat a
hyphen in English as a diacritic, Figure 4.10 shows what happens when it
is defined as a word separator. The entries for long include long-term, long-
time, long-life, and long-bodied. These entries would also appear under term,
time, life, and bodied.

Fi
gu

re
 4

.8
 C

on
co

rd
an

ce
 s

ho
w

in
g

ap
os

tro
ph

e
an

d
&

as
 d

ia
cr

iti
cs

Fi
gu

re
 4

.9
 C

on
co

rd
an

ce
 s

ho
w

in
g

ap
os

tro
ph

e
as

 p
ad

di
ng

 le
tte

r

124 Susan Hockey

4.3.2.5 Using the letter definitions

A “word” can then be defined as something which consists of a
combination of letters of alphabet, diacritic and, possibly, padding status.
Punctuation letters separate words. The word is most often the basic search
unit, and, with a little ingenuity, the letter definitions can be manipulated
to search for words when they occur only under certain conditions. For
example, if the normal end-of-sentence punctuation is given alphabet
status, it is possible to look for words only when they occur at the ends of
sentences by including the punctuation as part of the word.

4.3.3 Sorting words

Words can be sorted by their endings, a process normally called reverse
alphabetical. This is illustrated in Figure 4.11, part of an index of words
ending in ed. Note that glanced comes before financed since, working
backwards from the end of the word, the first letter that is different is l in
glanced and n in financed. Denounced, announced, and pronounced are all close
together. See Chapter 5 for more on reverse alphabetization.

As we have already seen, words can also be sorted by their frequency,
starting with the most frequent word, or least frequent, or even by their
length where the longest or the shortest word comes first.

4.3.4 Selecting words

The concordance may include every word or only selected words. Words
can be selected in several ways. Wild card characters denoting any number
of letters including none, or any single letter can be specified. It is also
possible to look for words occurring a certain number of times, or for
sequences of words (phrases) possibly also containing wild card characters.

Here are some simple examples:

*ing all words ending in ing
*as *as all places where there are two consecutive words which end in

as
in * of all places where the word in is followed by of with one word

intervening

Figure 4.12 shows the result of a search for all words ending in ing. As
can be seen, it can be used in a fairly crude way to find all present
participles. Although some unwanted words such as anything also appear,
they can be deleted or ignored when the results are being studied. In many
cases for the ordinary working linguist, this simple approach can be much
more productive than attempting to use morphological or syntactic analysis
programs, which are never completely accurate.

Fi
gu

re
 4

.1
0

C
on

co
rd

an
ce

 s
ho

w
in

g
hy

ph
en

 tr
ea

te
d

as
 a

 w
or

d
se

pa
ra

to
r

126 Susan Hockey

Figure 4.13 shows the results of a search for in * of where the three
words together form a special kind of headword.

4.3.5 Sorting contexts

Normally all the occurrences of a specific headword in a concordance
appear in the order in which they occur in the text, but it may also be
interesting to look for patterns before or after these occurrences. In a right-
sorted concordance the entries for each headword are given according to
the alphabetical order of what comes after the headword. This has the effect
of bringing together all the places where the headword introduces or forms
part of the same phrase. Figure 4.14 shows a right-sorted concordance of
the occurrences of that in Section R of the

Figure 4.11 Index showing words sorted by their endings

Textual databases 127

Brown Corpus. An examination of the references (R02 101, R06 151, R06
089, etc.) shows that these entries are not in the order in which they occur
in the text. They begin with all the places where that is followed by the.
We see three occurrences of that the girls and three of that there was. The
entries can also be given according to what comes to the left of the
headword. In Figure 4.15 we can see all the places where, for example said

Figure 4.12 Concordance of words ending in ing

Fi
gu

re
 4

.1
3

C
on

co
rd

an
ce

 o
f p

hr
as

e
in

 <
an

yw
or

d>
 o

f

Textual databases 129

that, say that, so that, etc. occur. In either case the user can choose whether
punctuation should be examined as the concordance entries are sorted.

4.3.6 Word frequency distributions

Besides the simple word frequency lists, OCP and other programs can
produce more sophisticated distributions. A frequency profile, as shown
in Figure 4.16, shows the number of words which occur once, twice, three
times, etc. up to the most frequent word. Cumulative and percentage
totals are also given. The type/token ratio is a measure of the spread or
richness of the vocabulary. Types are different words, and tokens are
instances of each type. For example, if the word and occurs 100 times
number between 0 and 1. The closer it is to 1, the richer the vocabulary.

Figure 4.14 Concordance showing occurrences of that sorted by right context

130 Susan Hockey

Figure 4.15 Concordance showing occurrences of that sorted by left context

The type/token ratio can be used for comparisons between texts, but is
dependent on the length of the texts and is therefore only effective when
the texts are approximately the same length.

4.3.7 Concordances and interactive retrieval

Interactive retrieval programs provide some of the same facilities, but
they work by querying an index which has previously been built by a
special ancillary program. The retrieval of words is much faster, especially
when the text is large. However, for this approach the word definitions
must be made when the index is built, and cannot be redefined for each
query. This can mean less flexibility overall. Some interactive retrieval
programs do not allow a search on word endings, for example for *ing.
If they do allow it, they may take a long time because there is no reverse
index to search and so they must do a sequential search on the word
list. For the individual scholar, TACT is probably the most widely-used
text retrieval program.

Textual databases 131

Figure 4.16 Part of a word frequency distribution

132 Susan Hockey

4.3.8 Limitation

It is important to understand these two limitations:

1 Homographs (words which are spelled the same but have different

meanings) are not separated. In a word list or index, only the headword
is given and there is no way to determine whether several meanings are
present for a homographic word. It is only when the contexts given in a
concordance are inspected that the different meanings of (for example)
lead as a verb “to lead” and two meanings of the noun lead (as “leash”
and “a metal”) can be seen. These need to be separated manually if further
analyses of word counts are to be performed. Some concordances omit
common words, but this can also lead to problems with homographs; for
example will as an auxiliary verb, as well as two meanings of the noun:
“wish” and “testament”.

2 Lemmatization, that is, bringing together different forms of the same
lemma, is not normally carried out. Depending on the nature of the
research, it may be necessary to lemmatize manually or at least not to be
dependent on counts which have been performed on unlemmatized forms.
In some languages most forms of the same lemma appear close together
in an alphabetical list, e.g. bring, brought, bringing, brings, but for other
lemmas, forms may need to be brought together from different parts of
the list.

4.4 CONCLUSION

Much computer-aided text-based research in the humanities is carried out
using the tools and techniques described in this chapter. Applications include
lexical research, stylistic analysis, lexicography, and almost any other task
based on finding specific instances or repeated patterns of words or “pseudo-
words.” It is important to be aware of the limitations outlined in Section
4.3.8, but it is also true that judicious use of wild card characters in specifying
search terms can often yield useful results very quickly. Certain types of
clauses or constructions can be identified by words which introduce them.
Inflections can be studied by specifying words that end in certain sequences
of characters. Punctuation or other special characters can also be used to
find specific sequences of words. It is now generally accepted that common
words or function words, those words which are not dependent on the
content of a text, can be used in many circumstances to discriminate style
and genre. Vocabulary frequencies can then be subjected to further statistical
analyses. Numerical studies of style and vocabulary are not especially new,
but with the advent of computers much larger quantities of texts can be

Textual databases 133

analyzed, giving an overall picture that would be impractical to find by any
other means.

If suitable electronic text is already available, progress in a text database
project can be rapid. The linguist may find that he or she has too many results
to digest easily. If the text needs to be created first, a project may not appear
to produce visible results for a long time. A little experimentation with the
chosen software on a small amount of text can be very encouraging to
someone faced with a lot of proofreading and editing of data. Much time
can be spent in reformatting data, from an OCR scanner, or for a particular
program, and here it is sometimes worth investing time in learning a macro
language or other tool which can speed this up rather than working through
the text line by line with a wordprocessor or editor. The advice given in
this chapter should help linguists determine how useful textual databases
and the tools that work with them can be. Many examples now exist of
successful projects and we can expect these tools to become part of the
everyday working life of many linguists. With a clear understanding of the
limitations, much can be accomplished with little investment of time.

134

Appendix

PART I PRINT RESOURCES

Biber, Douglas. 1998. Variation Across Speech and Writing. Cambridge:
Cambridge University Press. Uses computational techniques to analyse
the linguistic characteristics of different spoken and written genres. A
useful place to start for topics more advanced than those discussed in
this paper.

Johansson, Stig. 1994–5. Quo vadis? Reflections on the Use of Computer
Corpora in Linguistics, Computers and the Humanities, 28:243–52. A survey
up to 1994 with special attention given to the pitfalls. Also has a good
bibliography.

Lancashire, Ian (ed.). 1991. The Humanities Computing Yearbook 1989–90.
Oxford: Oxford University Press. Compendium of bibliography, software
and electronic resources for humanities computing, all verified by the
editor.

Lancashire, Ian, in collaboration with John Bradley, Willard McCarty,
Michael Stairs, and T.R.Wooldridge. 1996. Using TACT with Electronic
Texts. New York, Modern Language Association. Detailed description of
the TACT programs, concentrating on their use for literature.
Accompanying CD-ROM contains over 2500 texts.

Literary and Linguistic Computing. 1986– . Journal of the Association for
Literary and Linguistic Computing. Published by Oxford University Press.
See especially Volume 8, Number 4 (1993) and Volume 9, Number 1
(1994) for papers from the Pisa Workshop on Corpora, 1992.

Nijmegen Institute for Cognition and Information. 1993. Optical Character
Recognition in the Historical Discipline: Proceedings of an International
Workgroup. Netherlands Historical Data Archive, Nijmegen Institute for
Cognition and Information. Papers assessing the value of OCR for the
humanities. “Historical” is interpreted broadly.

Oxford University Computing Service. 1988. Micro-OCP Manual. Oxford:
Oxford University Press. 1993] rprt. Author: Susan Hockey. Contains

Textual databases 135

description of COCOA markup format as well as functions of OCP
program.

Sinclair, John M. 1991. Corpus, Concordance, Collocation. Oxford: Oxford
University Press. Good introduction from the Editor-in-chief of Cobuild.

Sperberg-McQueen, C.M and Lou Burnard (eds). 1994. Guidelines for the
Encoding and Interchange of Electronic Texts. 2 vols. Chicago and Oxford:
Association for Computers and the Humanities, Association for
Computational Linguistics, Association for Literary and Linguistic
Computing. Also available in various electronic formats from the TEI
Web site http://www.uic.edu/orgs/tei. Complete specification of the TEI
Encoding Guidelines. Chapter 2, “A Gentle Introduction to SGML,”
is highly recommended.

PART II SOFTWARE

MicroConcord: Concordance program for DOS developed by Mike Scott
and Tim Johns. Produces various kinds of concordances and collocations.
Designed specifically for intermediate and advanced students of English
as a foreign language. Published by Oxford University Press. See
MicroConcord and the MicroConcord Corpus Collections. Overview
at http://www1.oup.co.uk/oup/elt/software/mc? Monoconc for Windows:
Concordance program for Windows developed by Michael Barlow.
Designed for use by linguists, language teachers, and students. Published
by Athelstan. See http://www.nol.net/~athel/ mono.html

Oxford Concordance Program (OCP) and MicroOCP: Powerful
concordance program developed at Oxford University Computing
Service by Susan Hockey and Jeremy Martin. OCP runs on several
mainframe platforms including Unix. MicroOCP is implemented for
DOS and is available from Order Department, Oxford University Press,
2001 Evans Road, Gary, NC, 27513, USA. E-mail: orders@oup-usa.org;
http: //www.oup-usa.org

TACT: Text Analysis Computing Tools developed by a team at the
University of Toronto. Suite of programs for interactive text analysis.
Available via ftp from ftp.chass.utoronto.ca/pub/cch/tact/. See also
Lancashire et al. (1996).

PART III NETWORK RESOURCES

British National Corpus (BNC): A 100 million word collection of samples
of written and spoken language from a wide range of sources, designed
to represent a wide cross-section of current British English, both spoken
and written. The corpus is encoded in SGML and searchable via the
SARA retrieval program. Access is restricted to within Europe.
http://info.ox.ac.uk/bnc

136 Susan Hockey

Catalog of Projects in Electronic Text (CPET): A catalog of projects that
create and analyze electronic text in the humanities, compiled at
Georgetown University. It includes more than 300 projects working on
primary materials such as literary works, historical documents, and
linguistic data available from commercial vendors and scholarly sources.
Although it has not been updated since early 1993, CPET is a very useful
source of information.
gopher://guvax.georgetown.edu

Cobuild: A department of HarperCollins Publishers, specializing in the
preparation of reference works for language. Based within the School
of English at the University of Birmingham, UK, Cobuild has developed
a very large corpus of English known as the Bank of English.
CobuildDirect, a 50-million word corpus, is available on-line as a
subscription service. A free demo can be sampled,
http://titania.cobuild.collins.co.uk

Corpus Linguistics Web site: Maintained by Michael Barlow, Rice
University. Contains pointers to corpora in many languages, software,
courses and bibliography. A useful starting point.
http://www.ruf.rice.edu/~barlow/corpus.html

European Corpus Initiative (ECI/MCI): Founded to oversee the acquisition
and preparation of a large multilingual corpus. It has produced
Multilingual Corpus I (ECI/MCI), a CD-ROM containing over 98
million words, covering most of the major European languages, as well
as Turkish, Japanese, Russian, Chinese, Malay, and more. It is available
to researchers for a modest fee.
http://www.elsnet.org/resources/eciCorpus.html

International Computer Archive of Modern and Medieval English (ICAME):
An international organization of linguists and information scientists
working with English machine-readable texts. It has compiled an archive
of English text corpora in machine-readable form, which resides at the
Norwegian Computing Centre for the Humanities (NCCH) in Bergen,
Norway. The ICAME CD-ROM contains several well-known corpora
including Brown and its British English equivalent (LOB). The ICAME
Web site also holds the archive of the corpora list.
http://www.hd.uib.no/icame.html

International Corpus of English (ICE): ICE began in 1990 with the primary
aim of providing material for comparative studies of varieties of English
throughout the world. A related aim is to provide resources for research
into English as an international language. Each of the twenty participating
countries is collecting, computerizing, and analyzing a corpus of one
million words of their own national or regional variety of English, spoken
or written between 1990 and 1996.
http://www.ucl.ac.uk/english-usage/ice.htm

Textual databases 137

Linguistic Data Consortium (LDC): An open consortium of universities,
companies, and government research laboratories. Hosted at the
University of Pennsylvania, it creates, collects, and distributes speech and
text databases, lexicons, and other resources for research and development
purposes. Includes ACL/DCI CD-ROM. Some of the LDC material can
be purchased by non-members.
http://www.ldc.upenn.edu

Oxford Text Archive (OTA): Contains electronic versions of literary works
by many major authors in Greek, Latin, English and a dozen or more
other languages, including collections, and corpora of unpublished
materials prepared by field workers in linguistics and electronic versions
of some standard reference works. The total size exceeds a gigabyte and
there are over 2000 titles in its catalogue.
http://info.ox.ac.uk/ota

SGML Web site: Maintained by Robin Cover of Academic Computing,
Summer Institute for Linguistics, this Web site contains everything possible
about SGML and its applications. There are many pointers to academic
applications.
http://www.sil.org/sgml/sgml.html

Text Encoding Initiative (TEI): Contains information about the TEI, how
to obtain copies of the TEI Guidelines in print or electronic form, archives
of technical discussions and pointers to projects that are using the TEI.
http://www.uic.edu/orgs/tei

Tutorial: Concordances and Corpora: Catherine Ball’s excellent tutorial
derived from her Corpus Linguistics course at Georgetown University.
Includes examples prepared on a Macintosh computer.
http://www.georgetown.edu/cball/corpora/tutorial.html

138

Chapter 5

The Unix™ language family

John M.Lawler

5.1 GENERAL

The Unix™1 operating system is used on a wide variety of computers
(including but not limited to most workstation-class machines made by
Sun, Hewlett-Packard, MIPS, NeXT, DEC, IBM2, and many others), in
one or another version. If one is around computers almost anywhere, one
is within reach of a computer running Unix. Indeed, more often than not
Unix is the only choice available for many computing tasks like e-mail,
number-crunching, or running file servers and Web sites. One of the reasons
for the ubiquity of Unix is that it is the most influential operating system
in history; it has strongly affected, and contributed features and
development philosophy to, almost all other operating systems.

Understanding any kind of computing without knowing anything about
Unix is not unlike trying to understand how English works without
knowing anything about the Indo-European family: that is, it’s not
impossible, but it’s far more difficult than it ought to be, because there
appears to be too much unexplainable arbitrariness.

In this chapter I provide a linguistic sketch3 of the Unix operating
system and its family of “languages”. I use the word language here in its
usual sense in computing contexts; since computer languages are not at
all the same kind of thing as natural human languages, clearly this is a
metaphorical usage. However, modern linguistic theory, strongly
influenced as it is by computer science, is capable of describing the Unix
language family rather well, because these “languages” possess some of
the ideal characteristics posited by linguistic theories: they are completely
regular, they exist in a homogeneous community, they are unambiguous,
they are context-free, they are modular in design and structure, they are
acquired (by computers, if not by humans) instantaneously and
identically, they are universally interpretable in an identical fashion
(barring performance details), and there is in principle no difference
between one user and any other. Consequently the metaphor has
considerable utility here for anyone familiar with linguistics. This situation

The Unix language family 139

is not in fact coincidental, since Unix was designed in the first place by
people familiar with modern syntactic theory and its computer science
analogs, and it shows. As a result, linguists will find much here they can
recognize, though perhaps in unfamiliar surroundings. To that extent this
chapter is simply applied linguistics. But Unix is also useful for applying
linguistics, as I attempt to demonstrate.

5.2 HISTORY AND ETHNOGRAPHY OF COMPUTING

Unix is an operating system (OS). This is a special type of computer
program that is, in a very important sense, a syntactic theory that
completely constrains (i.e., defines, enables, and limits) all the programs
that can run on a particular computer. In effect, the computer per se runs
only the OS, and the OS runs everything else. Up until the 1970s, and for
some time thereafter, it was normal in the computer industry for an
operating system to be proprietary; that is, it was typically developed and
sold by the makers of a particular computer along with the computer, and
was limited to running on that computer alone. Any program that was to
be run on that computer would have to be compatible with its OS, which
varied markedly from computer to computer, limiting the possibility of
widespread use of any program. Apple’s Macintosh-OS has been a
proprietary operating system for most of its existence, for instance, and
the same is true of DEC’s VMS; thus a program that runs on a Macintosh
will not run on any other machine4. MS-DOS, on the other hand (which
has been influenced significantly by Unix), is an example of a non-
proprietary (or open) OS. Unix was the first successful open operating
system.

Unix began in 1969 at Bell Laboratories in New Jersey. Ken Thompson,
a member of the technical staff, put together a small operating system, and
over the next several years, modified and developed it in collaboration with
his colleagues, notably Dennis Ritchie and Brian Kernighan. This group5

was also instrumental in developing at the same time two programming
phenomena that have become totally integrated into Unix, and vice versa:
the Software Tools movement, often called a “philosophy”6, and the C
programming language.7 They produced a number of enormously
influential books8 still to be found almost three decades later on the desks
of most serious programmers and system designers. This is a signal
accomplishment in a publishing era where one year’s computer books are
inevitably the next year’s landfill.

The Software Tools “philosophy” gives an idea of why Unix is the way
it is. The metaphoric image is that of a matched set of hand- or machine-
tools that are capable of being snapped together ad lib into any number of
super-tools for specialized work on individual problems. If you had to make
table legs, for instance, you might, with this set of tools, in this virtual

140 John M.Lawler

reality, hook up your saw to your plane, and then to your lathe, and finally
to your sander, just so, feed in sticks of wood at one end of this ad hoc
assemblage, and receive the finished table legs at the other end. Real tools
don’t work that way, alas, but software tools can, if they’re designed right.
The basic principle is to make available a number of small, well-crafted,
bug-free programs (tools) that:

� do only one well-defined task
� do it intelligently and well
� do it in a standard and well-documented way
� do it flexibly, with appropriate user-chosen options available take input

from or send output to other program tools from the same toolbox
� do something safe, and if possible useful, when unanticipated events

occur.

Linguists are familiar with at least the spirit of this concept as the principle
of modularity in syntactic theory. Modular design is a watchword in
computer science as well as syntax, however, since it allows easy construction
of ad hoc assemblages of tools for individual tasks, just as English syntax
allows easy construction of ad hoc assemblages of ideas for individual
purposes, i.e., the proverbial infinite number of sentences.

For example, consider the task of preparing a lexical speculum. This is
simply a wordlist in reverse alphabetic order, so that bring and string
might be adjacent, for instance; in a suffixing language like English, such
lists have obvious utility for linguists. (See Chapter 4 for more discussion
of wordlists.) They are immensely difficult to prepare by hand, however,
and they can be tedious to program even on a computer. Below I present
the Unix solution to this problem in the form of a linguistic data analysis
problem; the answer follows. First, some preliminary information: word.big
is an old wordlist from the University of Michigan’s MTS mainframe
system, salvaged from its demise. It was used by faculty and students for
20 years to spellcheck their e-mail and papers, so it’s full of unusual words,
in all their paradigmatic forms. To be precise as to the quantity, if not the
quality, wc reports that it contains 70,189 words on 70,189 lines, for a total
of 681,980 bytes (including 70,188 newline characters):

% ls -l word.big ↵
-rw-r–r– 1 jlawler 681980 Mar 17 1995 word.big

% we word.big ↵
70189 70189 681980 word.big

And now the problem. The numbering is added for reference; the rest is
verbatim. If you type A–D at the “%” Unix prompt, you get back 1–10.
Describe the syntax and semantics of A–D. Are there any generalizations?

The Unix language family 141

Using software tools (specifically the Unix programs sort and rev, and
the Unix conventions of input-output (I/O) redirection), and given a
wordlist file (with one word to a line, easy enough to prepare from any
text via other Unix tools9) named word.big, the following command will
produce a file named speculum:

% rev word.big|sort|rev>speculum

A parse of this command line shows it to be very straightforward, and this
is given in Figure 5.2. The command is executed by sending the line to
csh, which interprets and executes it. This in turn is accomplished by
pressing RETURN at the end of the line, which may be considered a
performance detail.

The programs sort and rev are both filters10; i.e., they belong to a class
of programs that read a file and do things sequentially to what they find,
sending their output to a standard output.11 This in turn can become

Figure 5.1a Data analysis problem (A–B)

142 John M.Lawler

the standard input to the next program in the pipeline. This is not unlike
the kind of processing that linguistic theories posit for various components
of a derivation, and is directly related to the modularity inherent in the
Software Tools design philosophy, rev simply reverses the characters on
each line it encounters, while sort sorts files alphabetically by line.

The first part of the command above tells the OS to use rev on the file
word.big, producing a stream of individually reversed lines. In Figure 5.1,
the stream was limited to ten lines by using the head program, which simply
shows the first few lines of a text file, defaulting to ten; in this command,
however, the full word.big file would be the stream.

This stream is piped as input to sort, and sort’s output is repiped to
another copy of rev, this time re-reversing the (now sorted) strings. Finally,
the resultant stream is parked in a file called speculum; the original file
word.big is not affected by this operation, since it is only read, not written.
In a test on a Sun workstation, with a word.big of 79,189 words,
production of a speculum file by this method took less than one second.

Figure 5.1b Data analysis problem (C–D)

The Unix language family 143

The success of this combination of Unix, Software Tools, and C is
evident from the facts:

� that C is the programming language in which Unix, the most widely-

used operating system in the world, is written;
� that all the Software Tools programs are available, in C, on Unix, which

is designed for their use and fits them best (though they are also available
elsewhere, and in other languages);

� that C is the most widely used professional programming language in
the world; any popular microcomputer program, for example, was almost
certainly written in C.

Many of the software tools on Unix had their origin in the Tools movement,
all were written in C, and all shared a common interface language, differing
only occasionally in details of semantics and grammar. In addition, many
of these tool programs (e.g. awk, sed, perl; see Section 5.6 below) evolved
sublanguages of their own with a common core of structure, and these in
turn came to influence Unix. A well-thought-out set of tools, and ways of
combining them into useful programs, has many similarities to a well-
thought-out set of phrases, and ways of combining them into useful speech.
And, while their complexity does not approach that of a real natural

Figure 5.2 Parse of command line: rev word.big\sort\rev>speculum

144 John M.Lawler

language, the structure can be apprehended in similar ways, and this fact
was not lost on the developers: Unix has been oriented from the start
toward the written word, with numbers only incidental. Indeed, its first
user was Bell Labs’ wordprocessing department.

Gradually, the fame of Unix spread outside the lab. AT&T, Bell Labs’
parent company, was at that time enjoined as a regulated monopoly from
engaging in the software business, and thus the unlooked-for advent of
a popular software product with its attendant demand was something
of an embarrassment to the company. Their solution to this problem
was almost as remarkable as its origin: AT&T essentially gave away
Unix. For educational institutions, AT&T granted inexpensive licenses
to run Unix on appropriate machines (originally PDP, later Digital’s
VAX line, and eventually machines designed especially for Unix), with
full source code (in C) included. This meant that not only were the
universities (in the personae of the students and staff of computing
centers and computer science departments, and interested others) able
to run Unix, but they were also able to modify it by changing its source
code. Development proceeded rapidly at a number of sites, most
importantly at the University of California at Berkeley, resulting
eventually in the various releases of the Berkeley Standard Distribution
of Unix (BSD), which was also free, and rapidly became the standard
operating system for many computers.

This was particularly significant for American academic computing,
since the late 1970s and early 80s was the period in which most
universities switched over from large mainframe centralized computing
services to distributed departmental minicomputers, frequently running
Unix. Many of the design decisions in BSD Unix and its successors were
thus made by academics, not businessmen, and this strongly influenced
subsequent developments. Perhaps more importantly, the on-line culture
that grew up around Unix, and proliferated into Usenet and then the
World Wide Web, was an academic culture, not a business culture, with
significant differences that were to become far more evident and
important.

By the time 4.2BSD was released in 1983, AT&T had become free under
the law to do something commercial with the rights it still held to the Unix
operating system. However, the commercial, business-oriented System V
version of Unix (SysV) released by AT&T that year to take advantage of
this opportunity had serious incompatibilities with the BSD Unix that had
grown up in academe in the previous decade, and an anxious diglossia
ensued. Decreolization of these and other Unix versions in the form of
eventual standardization of the competing versions is now being pursued
and in many cases has been effectively achieved; but to this day, every
version of Unix has its idioms, its gaps, its own minor examples of
Traduttore, traditore. In this survey I do not treat dialectal variations, but

The Unix language family 145

rather concentrate on the many mutually-intelligible characteristics found
in every version of Unix.

There are many fuller accounts available of the diachronic and dialectal
development of Unix. The best and most thorough is Salus (1994), which
has the additional virtue (for the purposes of this chapter) of having been
written by a historical linguist who was personally involved with the
development of Unix. For synchronic analyses, the best source is Raymond
(1996), the printed version of an ongoing electronic lexicography project
of impressive linguistic sophistication.

5.3 BITS AND ASCII: PHONETICS AND
PHONOLOGY

Unix, like all computing systems, makes use of the concept of the bit, or
binary digit12. This is what linguists know as the concept of binary
opposition, e.g, voiced/voiceless. Computing exploits binary oppositions in
electronic data to form its infrastructure, just as language exploits binary
oppositions in perceived phonation. Unix also exploits several important
elaborations of the bit: the byte, the line, and the byte stream. These
etic units, which are literally built into the hardware, are structured by an
emic system of byte interpretation called ASCII.13

In computing, just as in distinctive-feature theories, all oppositions are
binary: “plus” and “minus” are the only choices for any feature. In
computing, these are represented by “1” and “0”. Since these are also
digits, and the only digits needed in the representation of Binary (base
2) integers, the possibility arises of combining these feature specifications
in a fixed order to form sequences of digits, or numbers. The fixed order
is set by the manufacturer and may vary considerably, but virtually all Unix
machines assemble bits into convenient groups of eight, which are called
bytes. These are convenient because they are sufficient to define a useful-
sized set.

All linguists learn that in Turkish, eight phonologically distinct vowels
are possible, because there are three significant binary features, and 23=
8; that is, there are eight different ways to combine all possible values of
the three features. With bytes, the relevant equation is 28=256; that is, there
are 256 different ways to combine the eight binary digits in a byte. 256 is
an order of magnitude larger than the size of the English alphabet, and
indeed the English alphabet is quite useful, even at that size. In fact, of
course, the English alphabet (upper- and lower-case, separately coded),
punctuation marks, diacritics, and a number of other symbols are all
commonly coded in bytes, and that is by far the most common use of the
byte, so much so that it is useful mnemonically to think of one byte as
one English letter.14

146 John M.Lawler

Figure 5.3 ASCII chart

The Unix language family 147

Here is a byte: 01101010. This is the binary number that corresponds
to the decimal15 number 106. It represents, in a textual context, the
(lower-case) letter “j”, which is number 106 in ASCII. In a different
context, this byte might represent the decimal integer 106 itself, or
memory address 106, or instruction 106, or part of a more complex
number, address, or instruction. Computers use binary notation; writing
numbers graphically is for humans, and computers will write numbers
any way they are told. This byte is therefore likely to exist, as such, not
as one of a series of marks on paper, but rather as a series of magnetic
charges in ferrite or silicon, or as a series of microdots on a compact disk
(CD, or CD-ROM).

All Unix systems are built on ASCII, and all Unix files (or streams) are
byte files which can be interpreted in ASCII, whether they are intended
to be or not. The history of ASCII will not be treated here, but it would
not be unfair to stress the fact that the “A” in the acronym ASCII stands
for American, with all that that entails from a linguistic viewpoint. That is,
ASCII represents just about everything that an early twentieth-century
American engineer might have thought would be useful in a character code.
This includes the upper- and lower-case English alphabet (coded cleverly
to facilitate alphabetization), the Arabic numerals, ordinary punctuation
marks, a potpourri of non-printing control characters (like Line Feed),
and virtually no “foreign” letters or symbols.

There is provision for representing some diacritics, as separate letters:
thus Spanish, French, German, Italian, and other languages which use
diacritics that have rough ASCII equivalents (circumflex [caretˆ], umlaut
[quote mark"], acute [apostrophe'], grave [backquote`], tilde [~]) can be
represented, though with some difficulty, and not always completely (there
is no ASCII character except comma that can function as a cedilla, for
instance). Languages like Turkish, Hungarian, Polish, or Czech, which use
letters or diacritics that have no ASCII equivalents, are very difficult to
represent properly. Languages with completely different alphabets, like
Russian, Arabic, or Hebrew, require heroic measures. And non-alphabetic
writing systems like Chinese are out of the question; they require a
completely different approach. Which is not to say that ASCII romanization
is impossible, of course.

Within its limitations, however, ASCII is very well-designed; a number
of structural characteristics are worth pointing out. There are, to begin with,
two parts of ASCII: Low ASCII, represented in the chart in Figure 5.3,
from Decimal, Hex, and Binary 0 through 127 (=27–1: Hex 7F, Binary
01111111); and High ASCII, from Decimal 128 (=27: Hex 80, Binary
10000000) through 255 (28–1: Hex FF, Binary 11111111). Only the Low
ASCII characters are completely standard; High ASCII characters vary
from machine to machine.

148 John M.Lawler

For instance, many of the same additional characters are included in
both DOS/Windows and Macintosh text files, but not all; and they appear
in different orders, with different numbers. This is one reason why DOS
and Mac text files are different. Unix cuts this Gordian knot by not using
High ASCII at all to represent characters; only Low ASCII, the first 128
characters, are meaningful in Unix, and we will restrict our attention
henceforth to these.

The most recognizable characters in ASCII are the alphanumerics,
that is, the letters of the (English) Latin alphabet plus the (English)
Arabic numerals. Since the upper-case letters and the lower-case letters
are etically different, they are coded separately; since they are emically
related, they are coded analogously. The upper-case letters begin with A
at Hex 41 (Decimal 65, Binary 01000001) and proceed alphabetically
through z at Hex 5A (Binary 01011010), while the lower-case letters go
from a at Hex 61 (Decimal 97, Binary 01100001) through z at Hex 7A
(Binary 01111010). It can easily be seen that the difference between any
given upper- and lower-case letter is always exactly 32; in Binary terms,
it’s even simpler: an upper-case letter has “0” in the third-highest bit,
while a lower-case letter has “1” there. Otherwise, they are identical; this
fact makes it simple to design software to be case-sensitive, or case-
insensitive, as desired.

One of the important facts about Unix, which often disconcerts
novices, is that it is case-sensitive by default, since it uses Low ASCII
fully. Individual programs may (and often do) ignore case, but unless told
otherwise, Unix does not. This means that a directory named News is
not the same as one named news, and will not be found or referenced
by that name. And since sort order is determined by ASCII order, and
uppercase letters precede lowercase, this also means that zygote will
appear in a sorted list before aardvark, unless the sorting software is
told to ignore case. One convention that results from this fact is that the
unmarked case for Unix commands, filenames, directories, and other
special words is lower-case. Capitalized and ALL-CAP terms are normally
reserved, by convention, for special situations and system software, though
there is no absolute prohibition imposed. For instance, most Usenet
newsreaders (like rn or trn) expect to use (and will create if they don’t
find one) a directory named News. (A further behavioral modification
produced by this convention is the decided predilection of some Unix
users to eschew upper case in ordinary written communication, even
when not modulated by Unix.)

Another feature of ASCII worthy of note are the Control Characters,
which are non-printing, and represent an action of some sort; these may
be considered supra-segmental analogs. Control characters have their own
official names, taken from their original purpose (usually on teletype
machines), which are normally acronymic or mnemonic in English. For

The Unix language family 149

instance, character no. 7, BEL (ˆG or Bell), originally rang the bell on a
teletype, and now it often produces a noise of some sort on a computer,
while no. 8, BS (ˆH or Back Space), originally moved the print head on a
teletype back one space; now it is the code produced by the “Backspace”
key on most16 keyboards.

The control characters occupy the first two columns17 of ASCII; thus
their most significant bits are “0000” or “0001”. Their least significant bits
are the source of their more common names, however. Just as the last four
bits of “J” and “j” are identical (“1010”), so are the last four bits of no.
10, LF (ˆJ or Line Feed), which originally moved the teletype print head
down one line, and is now found as the newline character in Unix, among
other uses18. Since, like all Control characters, this can be produced on a
keyboard by pressing the “Ctrl” or “Control” shift key simultaneously with
another key—in this case the “J” key—LF is often called simply “Control-
J”, or “Ctrl-J”, and frequently abbreviated, like all control characters, with
a caret as “ˆJ”.

All computer media, like writing or speech, imply a serial order. In print,
we are used to the convention of lines of serially-ordered characters
arranged horizontally on the page. For readers, a line is a more or less
natural phenomenon, governed by paper and type size. In a computer,
however, there is no physical page, nor any type to have a physical size.
So lines, if they are to be defined at all, must be defined, like everything
else, by bytes. Text files are line files; they consist of strings of bytes with
newline characters inserted wherever a text line should be displayed. An
ASCII text file with 1000 lines of 60 characters each would thus have
61,000 bytes:19 60,000 letter bytes plus 1000 newline characters. Many of
the tools in Unix, like rev, work at the line level; others, like sort, work on
whole files (though with reference to lines).20

Files are often called streams in Unix. Since a text file (and Unix is
almost entirely composed of text files) is simply a string of bytes (some of
which are probably newline characters), it is often convenient to view the
file itself as a single string, and this is always the case whenever anything
like reading, writing, or modification has to be done to a file. In a computer,
since there is no question of moving the perceptor, conceptually it must
be the bytes that are streaming past.

This metaphor is quite different from the static concept implied by file:
a stream is in motion, can be used for power, provides a continuous supply
of vital resources, is all of the same kind, and is one-dimensional. A file,
on the other hand, just sits there and waits for you to do something with
it, offers little help, is entirely passive, may consist of many parts of different
kinds, and is at least two-dimensional. This distinction between the
metaphors of stream and file is not unlike Whorf’s presentation (1956:210)
of the distinction between the two Hopi words for “water”. It turns out
that the stream concept lends itself to convenient programming.

150 John M.Lawler

The result is that many Unix resources are designed around the concept
of manipulating, measuring, analyzing, abstracting, modifying, sampling,
linking, comparing, and otherwise fooling around with streams of text data,
and since they share a common structure of conventions, they can be used
together in surprisingly powerful ways. This is inherent in the way the
simple speculum example above works; further examples may be found in
Section 5.6 below.

5.4 GRAMMAR

The Unix language family is inflected. This is not common (though not
unknown,21 either) in computing languages. There is, for instance, complex
clausal syntax, including clitics, marked lexical classes, a case system, and
a very powerful morphological system for paradigmatic matching called
regular expressions.

Regular expressions permeate Unix. Originally developed by the logician
Stephen Kleene (1956), they found their place as Type 3, the lowest, on
the Chomsky Hierarchy (Chomsky, 1963), where they are equivalent to
finite-state (“right-linear”) grammars, or finite automata. The most
common type of regular expression morphology is the use of “*” (the
Kleene closure) to indicate “any string” in such contexts as *.doc,
meaning (in context) all files with names ending in the string “.doc”; this
is the shell regular expression dialect, the simplest but not the only one.
The Unix program egrep, for instance, uses an elaborated version of
regular expressions to search text files for lines containing strings matching
an expression.

Suppose, for instance, one has a World Wide Web server, which stores
a record of each “hit” (i.e., file request) on a separate line in a logfile with
a long and unmnemonic name. Suppose further that one has decided to
think of this file as weblog for convenience. Then one creates a shell
variable, stores the name in it, and then uses weblog to refer to that file
thereafter. This could be done by putting a line like the following in one’s
.cshrc file:

weblog=/usr/etc/bin/httpd/log

Once set, this variable is available, and may be referred to, in any command.
Unix makes a philosophically nice use/mention distinction here between
the variable itself and the value of the variable. That is, weblog is the
variable, while $weblog is its content, namely the string

/usr/etc/bin/httpd/log

To return to our example: this web log file, however it is named, or
referenced, is filled with automatically-generated information from the Web

The Unix language family 151

server program, which runs in the background.22 The format of each line
is invariable, since it’s generated automatically, and begins with the date
in a particular format (e.g., 01/3/96), followed by other information,
terminating in the name of the file requested and the number of bytes
served. Then the command:

egrep umich $weblog

will find and display every line in the file web.log containing the string
“umich”.23 There may be very many of these, and one may only want to
know how many, so the output of egrep may be piped to wc-l24:

egrep umich $weblog|wc-l

which simply provides the number of lines found, instead of a listing of
all of them. This works for more complex strings, too, though one is well-
advised to use quotation marks to delimit the search string. If, for example,
one wanted to count how many requests were made for a given file, say
”FAQ”, on a given day; the command would be:

egrep ‘01/23/98.*FAQ’ $weblog|wc-l 25

Since “.” matches any character and “*” matches any number of the
preceding character, “.*” comprises a regular expression idiom that
matches any string at all, and “01/23/98.*FAQ” thus matches any string26

containing the date and the file name, in that order.
We alluded above to the analogs to the ablative (source) and dative (goal)

cases, with reference to the input or output of a command on the
command line, i.e., whatever the user types after the Unix prompt.27 It
is worth looking at the command line in some detail, since it is the principal
linguistic structure of Unix, analogous to the Sentence level in natural
language. The basic syntactic structure is

command [-switches][arguments]

That is, verb, plus optional (marked) adverbials, plus optional noun
phrases; some command verbs are intransitive, some are transitive, some
are bitransitive, and some vary in the number of arguments they take. These
linguistic analogies are reasonably straightforward: virtually every Unix
command is, as the name suggests, an imperative verb, directing some
action to be taken; the arguments, like nouns, refer to a person, place or
thing, generally a user, a path or directory, or a string or file, respectively;
and the switches, like adverbials, specify optional modes and manners in
which the action is to be performed.

Commands are not always simplex; they may be conjoined or embedded,
and there can be quite intricate flow of information from one to another,

152 John M.Lawler

as wc have seen. Concatenation of commands is straightforward: to instruct
Unix to perform several commands, one merely separates them with
semicolons; when the RETURN key is pressed, each is performed in order.

cd ~/News; trn; cd

changes the current directory to one’s own News directory (which is used
by news readers like rn, trn, or tin), invokes trn, and returns to the
home directory28 when trn exits. These are coordinately conjoined
clauses, unlike the subordinate complement clauses29 produced by input/
output redirection, where each successive command depends on a
previous one.

Or, using the backquote convention, whole commands may function
as nouns, like complement clauses30, with the output of the complement
command functioning as the argument of the matrix command. Quoting
a command inside backquotes “`” runs that command in the background
and then uses its output as the argument for the main command, so that:

finger `whoami`

first runs the whoami program, which returns the current user’s login name,
then uses that string as the argument for finger, which provides information
about a user from their name.

Unix is a multi-user, multi-processing system. This means that
several (on larger systems, several hundred) people can simultaneously use
the same machine, and each of them can, in theory, run several processes
simultaneously.31 With such complexity, it is obvious that there are a lot
of people, places, and things to refer to, and Unix has a file and directory
system that accommodates this. The basic unit in Unix, as in most
computer systems, is the file, which is by default a text file. Each file resides
in some directory, and every user has their own home directory, usually
named for their login ID.

Thus, if my login is jlawler, my home directory on a given Unix system
might be /usr/jlawler, while hdry’s home directory would be /usr/hdry,
A file named wordlist in my home directory has a full pathname of /usr/
jlawler/wordlist, and it would be accessible from anywhere on the system
with that name. Most Unix systems use a special referential convention to
the effect that “~jlawler” means “jlawler’s home directory”, while
“$HOME” is an indexical, referring to the current user’s (first person singular)
home directory. Finally, one always has a current directory, which is thought
of (and referred to) in locative terms: i.e., one is “in” /usr/hdry and “goes
to” it with the cd command: cd /usr/hdry. Files referred to without a
pathname, i.e., by the name of the file alone (e.g, wordlist) are interpreted as
being in the current directory by default. Thus, for anyone who is in my home
directory, “wordlist” is sufficient; for someone in /usr/hdry, “~jlawler/

The Unix language family 153

wordlist” is necessary; and I can always refer to it as $HOME/wordlist,
no matter what directory I’m in.

Directories may contain other directories, and references to them are
simply concatenated with the directory separator slash “/”. A file wordlist
that was in a subdirectory lists under a subdirectory English under my
home directory would have a fully-specified pathname of /usr/ jlawler/
English/lists/wordlist, and other users could reference it this way, or
as ~jlawler/English/lists/wordlist. The concept of hierarchical
directories originated in Unix, but it has spread to most modern systems.
Users of DOS will be familiar with this convention, although DOS uses
backslash “\” instead of slash as a directory separator; in Macintosh usage,
directories are called “folders”, and colon “:” is used in pathnames.

Unix filenames are normal ASCII strings of varying lengths32, and may
contain any alpha-numeric character, and a number of non-alphanumerics.
They may (but need not, except for special purposes) end with an extension
of a period followed by a short string denoting the file type. Thus, C program
code files end in .c, HTML files accessed by Web browsers end in .html,
and compressed tar archive files end in .tar.z. Some programs require
special extensions on filenames, but most Unix tools do not, though they
are often defaults.

In natural languages, imperative forms are almost always regular,
frequently based on simple verb roots unless elaborated by a politeness
system. In dealing with machines politeness is not an issue, hence the lack
of verbal inflection per se in Unix. There is, however, an elaborate clitic
system, called switches.33 By way of example, let us examine the common
Unix command ls, which displays file names and information, like the
DIR command in DOS. The online manual entry for ls (the Unix
command to display it is man ls) starts this way:

The heading shows that the ls command is in part 1 of the Manual (most
ordinary commands are there); the next part gives its name (in lower case)
and its purpose. The “synopsis” then gives all the possible switches, each a
single character, that it may take. The square brackets signal that they are
optional; the hyphen character precedes any switch markers, which may be
concatenated, in any order. The rest of the man page then details the

Figure 5.4 Top of man page for ls command: man ls|head

154 John M.Lawler

operation of ls; in particular, the operation of ls with each switch is discussed
separately.

For instance, here is what it says about the -t, -s, and -r switches:

This means that ls -rst34 will present the names of the files in the
directory name35, with their sizes, sorted by time, most recently modified
files last. Each of the other letter switches listed in the Synopsis does
something different; further, what each does is context sensitive, in that
it may vary if used with some other switch, like the combination of -r
with -t, which changes the sort order from reverse alphabetic to reverse
temporal.

ls has 18 switches in this dialect, which is a larger degree of modification
than most Unix commands have. Each command has a unique set of
switches, however, most of which are only infrequently needed. The syntax
ranges from extremely simple to rather complex. Below are some syntactic
synopses of other Unix commands. Underlining indicates variables to be
supplied by the user, and square brackets optional elements—switches
separately bracketed require separate “-” prefixes. Vertical bar “|”, like
linguists’ curly brackets, requires a choice among elements.

In each of these, the switches may be expected to have a different
meaning. All this might seem a large burden to place on the user, and it
would indeed be excessive, were it not for the facts that:

� a complete list with glosses is always available via the man command
� some, at least, of the switches are mnemonic (in English): -time, -

reverse, -size

� one need never learn any switch more than once, since any useful
configuration can be made into an alias or script with a name chosen
by (and presumably significant to) the user; thus ls -rts can be
renamed, say, reversedate with the command

alias reversedate ls -rts

Any command, or sequence of commands, can be given a name, thus
making it into an idiom, or a little program. This facility is provided by
the Unix shell, the tool that coordinates the other tools by interpreting
commands. There are two principal shells, and each provides a different

Figure 5.5 From man page for ls command: effects of -t, -s, and -r switches

The Unix language family 155

facility for command formation, csh, the “C-shell”,36 provides aliases; it
is principally used interactively, where it identifies itself with a “%” prompt,
sh, the “Bourne shell”,37 is used mostly to interpret files containing shell
scripts; it has fewer interactive features, but when it is being used
interactively, it identifies itself with a “$” prompt.38

The command reversedate could be either an alias (as in the example
above), or a shell script. Generally, simple commands like this are more
likely to be made into aliases, since the process is easier, and doesn’t
involve creating and activating a file. Of course, to make an alias
permanent, it is necessary to record it; each csh user has a file called
.cshrc39 that may be customized in a number of ways, including a list of
their aliases. One of the first aliases some users put in .cshrc is something
like the following:

alias define ‘edit $HOME/aliases;unalias *;alias -r
$HOME/aliases40

which allows them to define new aliases on the fly.41 A good rule to follow
is that any command one notices oneself typing more than a few times
should become an alias with a mnemonic name; and to keep track of these,
it is also useful to have a few aliases whose purpose is to remind oneself
of one’s previous aliases. The Unix tool which is helpful here; which
define, for instance, will return the following information:42

define—aliased to: edit $HOME/aliases;unalias *;source
$HOME/aliases

Figure 5.6 Synopses and syntax of selected Unix commands

156 John M.Lawler

egrep can be used to advantage as well, to refresh one’s memory about
previous lexicography. Suppose you have several aliases for ls with various
switches, but you don’t recall all of them; Figure 5.7 shows how to print
each line in .cshrc containing the string “ls”.43 by means of the following
alias:

alias definitions “egrep\!*$HOME/aliases”

“\!*” is the C-shell code for a command parameter, i.e., whatever appears
on the command line after the alias; in this example, it is translated by
the shell into the string “ls” (note the space), and passed on to egrep,
which dutifully searches $HOME/aliases44 for lines containing this string
and prints the result.

Of the various aliases in Figure 5.7, dates shows multi-column output
sorted by time, oldest last, and pipes the output to a file viewer that shows
only a screen at a time; this is useful for directories with a large number
of files. ll and lc both produce a “long directory”, with all details of each
file printed on a separate line; lc is sorted by time of last edit, most recent
first. The last alias, whichls, uses the backquote convention; which finds
executable programs, scripts, or aliases anywhere in the user’s path, but it
returns only the name and location, and not the size, date, or any other
information. If one wants more information, one can then use ls to find
it; but it’s often convenient to combine the steps, as here.

By contrast with an alias, a shell script:

� is interpreted by the Bourne shell sh (aliases are interpreted by csh, the

C-shell; this means that aliases and scripts use somewhat different
conventions)

� consists of a file and resides on disk, like other Unix programs (aliases
are loaded from a file when csh starts at login and are thus in-memory
commands)

� is generally longer and more complex than an alias, which is usually a
short sequence of commands or a mere synonym for a single command

Figure 5.7 Operation of the definitions alias

The Unix language family 157

As an example of a shell script, consider a problem one often
encounters: making a simple change in multiple files. This could be done
individually with an editor, making the change by hand in one file,
loading the next file and making it by hand again, etc. But this is not
only wasteful of time but also prone to error, and Unix provides better
facilities for such tasks. Suppose the files in question are all HTML files
in a single directory on a Web server, and that what needs to be done is
to change a URL link that may occur several times in each file (or may
not occur at all) to a new address, because the server that the URL points
to has been renamed (this particular task is likely to be with us for some
time).

A two-step process will serve best here: first, a shell script (call it
loopedit) to loop over the files and edit each one with the same editing
commands, and a separate file (call it editcmds) of editing commands.
This has the benefit of being reusable, since subsequent editing changes
can be made with the same script merely by changing the contents of
editcmds. The Unix cat45 tool will print any file on the screen, so we can
see the files:

The first line invokes the sh shell to interpret the script (one gets to

specify the language and dialect). The next line (a “for” statement) instructs
the shell to carry out the line(s)46 between the following “do” and “done”
markers once for each file ending in “.html”,47 just as if it were typed at
the keyboard. At each successive iteration of the command, the shell
variable “i” is to be set to the name of each successive file in the set of
those ending in “.html”. The fourth line is the command itself; it runs
the ex line editor (using ex’s silent switch “-” that tells ex not to print its
usual messages on the standard output for each file, unnecessary with
multiple files), and the name of each file (referenced as the value of i, or
$i) as its argument, ex is further instructed by the input redirection
(ablative) marker “<” following the argument to take its next input—the
commands themselves—from the file editcmds.

Figure 5.8a The loopedit script, with commands in editcmds file (Figure 5.8b)

158 John M.Lawler

The contents of editcmds can be similarly displayed:

There are only two lines necessary; the first makes the changes, and

the second saves (“writes”) the file and quits. The second line is trivial,
but the first is fairly complex.48 There are several technical wrinkles, due
to peculiarities of ex commands and of URL syntax, that render it more
complex than usual; this makes it a good example of a number of things,
and worth our while parsing out character by character below.

First, let us examine the precise change to be made. URLs begin with
the address of the server to be contacted; in the case of the University of
Michigan, there are several, all beginning with “www.”. As the Web has
grown, it has become necessary for some Web pages to be moved to
different servers to equalize the load. In particular, at the University of
Michigan, personal Web home pages, which are named using a tilde
convention similar to the Unix home directory convention, have had to
be moved from the server having the address “www.umich.edu” to a special
server for such pages only, with the address “www-personal.umich.edu”.
Thus Eric Rabkin’s home page, which used to have the
URL“www.umich.edu/~esrabkin/”, can now be found at the URL “www-
personal.umich.edu/~esrabkin/”, and this change must be made for
thousands of URLs in many Web pages. The change should only be made
to personal pages, however; other (e.g., departmental) pages, which are
not named with the tilde convention, remain on the original server and
retain the “www.umich.edu” address.

We therefore need to search for all lines in a file that contain the URL
address string “www.umich.edu/~”, and to change each occurrence of this
string on each of these lines to “www-personal.umich.edu/~”. That is
what the first line does. The “s” (for “substitute”) command in ex has
the syntax s/re1/re2/, where re1 and re2 are regular expressions; it
substitutes re2 for re1, and is thus a variant of the Structural Description :
Structural Change transformation notation that generative linguists put up
with for over a decade. s//re/ is a zero pronominal reference, and
substitutes re for whatever the last search string has been; in this case, that
has already been specified by the preceding search (the slash-delimited
regular expression beginning the line). In the event of a search failure, the

Figure 5.8b The editcmds file, input to ex on the loopedit script (Figure 5.8a)

The Unix language family 159

“s” command will not execute. However, this particular command has a
special twist: slash “/” and tilde “~” are themselves both meaningful
characters to ex, and thus cannot be searched for directly.

Slash is used to delimit search strings,49 and in order to search for slash
itself in a string, or for strings containing it, it must be escaped with a
backslash “\” literal prefix. I.e., “\” quotes the next character literally, so
that the string “\/” means “the character ‘/’ ”; the slash will not be
interpreted by ex as a string delimiter. Similarly, unescaped tilde implicitly
refers to the last replacement string (re2) used in a previous “s”
command (just as unescaped ampersand “&” refers to the search string
(re1) of the current “s” command), and to the empty string if there have
been no previous “s” commands, which will be the case in this script.
So the actual str ing we must instruct ex to search for is

Figure 5.8c Parse of the edit command in editcmds file (Figure 5.8b) interpreted
by ex in the loopedit script (Figure 5.8a)

160 John M.Lawler

“www.umich.edu\/\~”, with both slash and tilde escaped,50 and the
replacement string is “www-personal.umich.edu\/\~”.

The two “g”, for “general”, commands, one at the beginning and one
at the end, refer to two different contexts. The initial “g” instructs ex to
find all lines in the file with an occurrence of the following search string,
and to execute the command following on those lines where it is found,
while the final “g” refers only to the (line-oriented) “s” command, and
instructs ex to perform all possible substitutions on the indicated line; this
covers the case where there is more than one occurrence of the string on
the line. Without the suffixal “g”, the “s” command could only be executed
once on any line.

With these files in place, the only thing remaining is to activate loopedit
as an executable (i.e., program) file with the chmod51 command. From
then on it works the same as any Unix program. One need hardly add that,
with several hundred Unix tools available to be used, singly or together,
plus dozens of specialized sublanguages for instructing them, shell scripts
offer unlimited possibilities for automated text processing to every Unix
user. For instance, the LINGUIST List is edited, distributed, archived,
abstracted, and put on the Web via a large suite of Unix scripts that depend
on tools like the ones discussed in this chapter.

5.5 EDITING AND FORMATTING

The Unix toolbox always includes an editor, actually several editors, of
several different kinds. Editors are programs that create and change the
contents of ASCII files. They may do many other things as well, and some,
for instance emacs, can become an entire environment. An editor is a
significant part—the part that connects keyboard, screen, and disk—of
the usual microcomputer wordprocessing programs; the usual metaphor
is a typewriter, without paper, but with a memory. A wordprocessor is a
large complex program with many capabilities; the usual metaphor is a
typewriter that not only has paper, but also a print shop, an art studio, a
type foundry, and a reference library. Wordprocessors are used to produce
actual printed pages, while an editor need only fool around with bits and
bytes, not fonts and footnotes. An editor is thus usually much smaller
and faster, because it is a tool that only does one thing and doesn’t try
to do others.

They are also especially useful in Unix, because Unix was originally
invented by programmers for programmers, and its editors, though mostly
used for ordinary writing, are designed to be especially useful for
programmers. In order to make a shell script or save an alias, for instance,
one must use an editor. Which one? That is a semi-religious matter for
many. The choices include:

The Unix language family 161

� pico, the screen editor that is a part of the pine e-mail package. Many
people have found it easy to use, and the editor is available separately
from e-mail. Furthermore, pico’s key commands are a subset of the
standard key commands for:

� emacs, the most powerful and flexible editor in the computer world. It
can be found on most Unix systems in academia, though not always in
business. It is the product of the Free Software Foundation and must
be given away free. Though it is not simple to install, nor to learn
completely, it is thoroughly programmable (in Lisp) and can do almost
anything with ASCII text, emacs’ main competitor is:

� vi, universally pronounced /viyáy/, which, growing out of a short
tradition of line editing, was the first screen editor available on Unix,
and, as part of the standard Unix distribution, may be found on every
Unix system, along with its relatives:

� ex and edit, essentially command-line versions of vi (they become vi
with the “v” command); and ed, the first Unix line editor, still a
functional tool within its limitations.

All of them work, but they all work differently. In this chapter, I use the
ex line editor, both as a least common denominator, and because it is the
editor I use myself by choice for most simple file editing tasks like adding
or modifying aliases, mail names, text Web pages, and writing small scripts.
It is fast and convenient for these tasks, and can easily be automated. Thus
the details of the editing in the transcriptions here are independent of the
rest, in that the editing could have been done visually.

But it’s irrelevant, from the standpoint of the Software Tools philosophy,
or of Unix, which tools you use, as long as they work, because all of the
tools work together. There is thus a wide choice of programs available for
virtually any task, and editors are no exception. Indeed, editors are so
important to programmers that they are constantly improving them, often
on their own time, for glory; and since programming glory involves
efficiency and power, among other things, this leads to some very
interesting tools.

There is an important class of wordprocessing tool program, called a
text formatter, which is also usually part of a wordprocessor, but may be
used as a separate tool in combination with an editor. Examples are TeX
and LaTeX, programs used by many scientists to produce technical text,
and the Unix programs roff (for “run off”) and troff (for “typesetter
runoff”), all of which implement special printing instructions from special
tags or commands embedded in a text file. Formatters and embedded
commands are common with file structures that follow SGML or HTML,
or some equivalent markup scheme, like Web browsers (see Chapters 1,
4, and 6 in this book for further discussion of markup, TeX, and SGML).
In all of these, the “stream and pipe” metaphors of information flow control

162 John M.Lawler

via tool programs can easily be discerned. Separate formatter programs
are not as widely used in ordinary writing as previously, since the locus of
most text construction has moved to microcomputers with full-featured
wordprocessing programs with built-in formatting; but they are still a
common type of program, one of the larger class called filters.

5.6 FILTERS

As mentioned above, a filter program is one that takes input (proto-typically
textual input) from some source, performs some regular transformation on
it, and sends the resulting output to some terminus. This may be sequential,
like the speculum example, or interactive, like a Web browser interpreting
HTML code; but frequently enough filters employ regular expressions, used
in special filter languages, to specify their transformation.

Regular expressions are far more powerful than simple string search
examples would suggest. Besides “.” and “*”, there are a host of other special
inflections with special senses, as in any synthetic morphology:

Special characters intended to be used literally, rather than interpreted
like this,52 are preceded by “\”, thus “\.”matches a period with two spaces
afterward, and “\\” matches a single (literal) backslash.

Figure 5.9a Simple examples of regular expressions and the strings they match

The Unix language family 163

Some other examples of regular expressions, all working with egrep (and
all delimited with quotes):

Besides egrep, many other Unix tools can use these regular expressions.

The text editors ed, ex, vi, and emacs, for example, can perform very
complex string manipulations based on regular expressions. In addition,
the text filter languages sed,53 awk54, and perl55 make extensive use of
regular expressions, sed, from “stream editor”, is the simplest filter tool.
It can do the same things as ex, but operates on the entire text stream
with predetermined instructions. It is useful for repetitive editing tasks;
since these are character-based editors, sed is best at character-level
manipulations, awk is a more complex language, based on the concept
of the word instead of the character, but still oriented toward sequential
operation on each line in a filter operation, awk is somewhat more like a
conventional programming language, and one can write quite complex
programs in it, but is simple enough for useful short programs to be
written on the fly. It works best for formatting repetitive and relatively
predictable text data. perl is a general-purpose programming language

Figure 5.9b Complex examples of regular expressions and the strings they match

164 John M.Lawler

oriented toward text handling, which is very widely used on the Internet,
especially the Web. It is very powerful and efficient, and, though relatively
easy to learn, is more complex than awk, and does not presuppose the
filter metaphor so literally.

5.7 UNIX RESOURCES FOR USERS

There are hundreds, probably thousands, of books on Unix in press. Since
it has not changed in its basics since the 1970s, even books published a
long time ago can still be useful. Rather than attempt to survey this vast
and variable market, I will point to a few standard references (many of
which can be found in used book stores).

I have already mentioned the various books by Brian Kernighan and
assorted co-authors; they remain standard, even though their examples
show signs of aging in some environments. The single best source of printed
information (both on Unix, and on regular expressions and their use in
filters as well) for sophisticated beginners remains the first four chapters
of Kernighan and Pike’s classic (1984) The UNIX Programming
Environment, which treat much the same topics as this chapter. This is pretty
condensed stuff, but admirably clear; Kernighan is not only the k in awk,
and one of the creators of Unix, but also one of the best writers in
information science.

For those curious about how software is designed and developed, Brooks
(1995) explains a great deal about the mistakes that can be made and the
lessons that have been learned. For the historically-inclined, Salus (1994)
covers the territory very well. Raymond (1996) is the latest installment of
an online lexicographic project called the Jargon File; it contains a lot of
good linguistics and ethnography, and some wonderful metaphors. Other
books of historic and ethnographic interest include Kidder (1981), Levy
(1984), Libes (1989), and Stoll (1989).

Regular expressions are covered in every book on Unix. They are
especially well treated in books on filter languages. A good source for all
of these is the set of books from O’Reilly and Associates (the ones with
the strange beasts on the cover); they publish good manuals on sed and
awk, regular expressions, Perl, and many other topics, centered on Unix
and the Internet.

When evaluating a Unix book for reference purposes, look for a thick
book with a good index and multiple appendices. Like good linguistics,
it should give copious examples of everything, and say what each is an
example of. A good check for the index (a vital part to any reference
grammar) is to see if it’s easy to find out how to refer to command-line
arguments in a C-shell alias—you should be able to find the arcane
formula (\!* or \\!*) without looking hard. Check the index also for
mentions of useful commands like sed, ls, head, sort, uniq, rev, and

The Unix language family 165

awk. Check the table of contents for a separate section on regular
expressions near the beginning of the book; there should also be
discussions (ideally, entire sections) on aliases and customization, as well
as shell programming in both the Bourne shell and the C-shell. Both vi
and emacs should be treated in detail, with examples, and commands
for both should be listed in detail.

Marketing hype about how the book makes Unix easy, even for those
unwilling to attend to details, is extremely suspect, just as it would be if it
were encountered on a linguistics book; one needs reference grammars as
well as phrasebooks.

For technical reference, the official source is the Unix edition of the Bell
System Technical Journal (1979, 1987), and Bell Laboratories’ Unix
Programmer’s Manual (1979), which is largely a collection of standard man
pages. (The online man system always provides the most up-to-date and
deictically-anchored—and terse—Unix information available.) Stallman
(1993) is the standard reference on the editor emacs, by its designer and
author; the result is comprehensive, though as always the author of a program
is not necessarily the best possible author of its manual. There are a vast
number of Web and Usenet resources—see the online appendix at

http://www.lsa.umich.edu/ling/jlawler/routledge/

NOTES

1 Unix (or UNIX) is a registered trademark (at press time, it was a trademark
of the Open Group) whose provenance and ownership, along with the
traditions and variations of its use, is part of its history as a language, in much
the same ways that, say, Indo-Germanic is a term with roots in the history of
linguistics, and of the study of the Indo-European language family. This point
having been made, we do not hereinafter use the ™ symbol with the word Unix.
For the etymology of Unix, see Salus (1994).

2 All of these proper names are also registered trademarks; hereinafter we do
not distinguish trademarks from ordinary proper nouns.

3 My models in this sketch, to the extent practicable, are the excellent language
sketches in Comrie (1987).

4 This has recently changed with the licensing of the Mac OS to other
manufacturers.

5 This team did not rest on its Unix laurels. They have been working on a
successor, and it is now being released under the whimsical name Plan 9.

6 Technically, this is a pervasive metaphor theme, with accompanying social
movement, rather than a philosophy per se. Software Tools and Unix predate
modern metaphor research and terminology by about a decade.

7 So-called because it was the successor of the B programming language.
8 Kernighan and Plauger: The Elements of Programming Style and Software Tools

(both 1976), and Software Tools in Pascal (1981); Kernighan and Ritchie: The
C Programming Language (1978); Kernighan and Pike: The Unix Programming
Environment (1984).

9 See Section 5.6 of this chapter on filters for example.

166 John M.Lawler

10 See Section 5.3 of this chapter for further discussion of the stream metaphor.
Note that pipe and filter are usefully coherent with it.

11 The standard input (and output) are abstract streams that are associated
with every Unix program by the OS. They are the ablative source (and dative
goal) of any filter program. The unmarked (default) standard input is the
keyboard (and the unmarked standard output is the screen) unless they are
redirected; i.e., unless overtly referenced with a pipe “|”, as in

egrep umich.edu’ $web.log wc-l

or a case marker (<,>), as in

mail jim@somewhere.edu<job.talk

12 Besides being a genuine acronym, bit is also a remarkably apposite English
name for the smallest possible unit of information.

13 /’æski/ in American English; an acronym of American Standard Code for
Information Interchange.

14 This is certainly as true (and mnemonically as useful) as the rough
equivalences of one meter with one English yard or of one liter with one
English quart.

15 This byte is also expressible as number “6A” in hexadecimal (base 16)
notation. “A” is a digit in Hexadecimal notation, representing the number after
“9”, which is called ten in Decimal notation. The capital letters “A–F” are
single Hexadecimal digits representing Decimal “10” through “15”,
respectively; Decimal “16” is written “10” in Hexadecimal. It is customary
to add “H” after writing a Hexadecimal number (e.g., “6AH”) to indicate
the base; but there are other conventions as well, such as “$6A”, with sources
in a number of languages.

16 But not all. This is the source of much frustration (see note 17), and explains
why communication programs like telnet include provisions to use either BS
or DEL as the destructive backspace character.

17 With one exception. No. 127, DEL, is at the very end of the chart. This is
binary “1111111” and represents an original convention in (7-hole) paper tape,
an early input medium. If one made a mistake in punching the tape, one simply
punched everything out and it was skipped. This later became a standard in
the early Unix community for keyboarding; thus the Back Space key on many
workstation keyboards produces no. 127, DEL (ˆ? or Delete). This has not
been completely integrated with the other early convention of using no. 8, BS
(ˆH or Back Space), that persists in most microcomputer applications.

18 Again, early conventions have resulted in variation. In DOS and Windows
ASCII files, each text line is terminated by a cluster consisting of no. 13, CR
(ˆM, or Carriage Return, which originally returned the teletype print head to
the left margin without advancing a line), immediately followed by no. 10,
LF. In Mac ASCII files, the standard newline character that terminates lines
is CR alone, and in Unix it is LF alone.

19 Or roughly 60 Kilobytes (KB). The kilo- prefix, normally denoting 1000, refers
in computing context to 1024, which is 210. Similarly, mega- is 1,048,576 (220),
rather than 1,000,000. While this is not standard metric, it rarely causes
confusion.

20 One important qualification must be made here. Text files in word-processing
programs (Unix or elsewhere) are not Standard ASCII files, and rarely mark
individual lines with anything; on the contrary, most use newline to end
paragraphs only, preferring to reformat lines on the fly. In fact, each

The Unix language family 167

wordprocessor has its own proprietary file format, in which control characters
and High ASCII characters are used to code information peculiar to the
particular program that writes (and expects to read) the file. In general, one
may assume that any two wordprocessors’ files are incompatible unless special
steps, like format translation or translation to a common interlanguage, such
as Rich Text Format (RTF), have been taken. Virtually all wordprocessors,
however, have the capability to save text as a standard ASCII file, in some
cases with or without line breaks specified, and this format is universally
compatible.

21 The apl programming language is an example of a polysynthetic computer
language, for instance.

22 The usual metaphor is that programs like those that serve files on the Web
(httpd), respond with personal information on the finger command (fingerd),
or make ftp connections (ftpd), etc, are d(a)emons, whence the suffixal -d
in their names. Daemons are invisible slavery programs that run only in the
background, checking every so often to see if what they’re looking for has come
in, responding to it if it has, and going back to sleep. This metaphor refers to
Selfridge’s (1958) “Pandemonium” model of perception, which is fairly close
to the way many net programs work.

23 Note that the argument immediately after egrep on the command line is
interpreted as a regular expression, while the one following that is interpreted
as a file name; we have here a system of subcategorization that specifies the
lexical class and morphological properties of verbal case roles. The string to
be matched by egrep need not be quoted (though it may be). However, one
is well advised to “single-quote” complex search strings containing space and
other special characters, to avoid unexpected misinterpretations.

24 From “word count”; we counts lines, words, and characters; the optional -l,
-w, and -c switches say which.

25 It is also possible to have Unix supply the current data in the appropriate
format as the string (thus making the command indexical), by means of the
backquote convention (see below):

egrep ‘date+%d/%h/19%y‘$weblogwe-l

26 As a matter of fact, it will match the longest such string in the line, if there is
any ambiguity in the match.

27 The prompt is usually “%” (possibly with other information, like the name of
the machine), and sometimes “$”.

28 cd (from “change directory”) changes the directory location to the one
specified; when issued without an argument, it defaults to the user’s home
directory.

29 With the usual Western “narrative presupposition” to the effect that the
conjuncts occur in the order they are mentioned. In this case, of course, it is
not so much a presupposition as a performative.

30 In particular, they are very reminiscent of conjunctive embedded questions
of the form

I know who Bill invited

where in fact what I know is the answer to the question “Who did Bill invite?”
31 Any Unix command, for instance, can be run “in the background”, i.e.,

simultaneously, by suffixing “&” to it.
32 The length of filenames was one of the major differences between BSD Unix

168 John M.Lawler

and System V; Berkeley filenames could generally be longer, and this caused
problems in adapting programs.

33 Sometimes called options. These are generally adverbial in nature.
34 Or the commands ls -r -st, or ls -rs -t, or ls -t -r -s, etc. Switches

need not be concatenated.
35 In case name is not specified (as it isn’t in the command in the previous line),

ls assumes the current directory is intended. This is an example of the Software
Tools philosophy in action: instead of requiring literal compliance with the
syntax, make the defaults useful.

36 So called because it incorporates many features of the C programming
language.

37 Named after its inventor. sh was an earlier shell, superseded for interactive
use by csh: however, its simplicity has made it the default choice for shell
programming.

38 Others include ksh, the “Korn Shell”, which combines features of sh and csh,
and tcsh, an improved csh.

39 The period prefix is obligatory; most Unix programs use such dot files
containing customizations of preferences. The ls command does not display
dot files unless instructed to with the -a switch.

40 The three successive commands separated by semicolons respectively: (a) edit
the user’s aliases file, presumably to insert a new alias; (b) remove all current
aliases; (c) reload the presumably modified aliases.

41 Provided this is where their aliases are: the following command should be the
last line in the dot file .cshrc:

alias -r $HOME/aliases

This will load the alias file when the shell starts, e.g., at login.
42 Besides aliases, which will also locate any executable files (shell scripts or

programs) matching a name that are in the user’s path. As such, a command
like which foobar answers the question: “If I type foobar, will anything
happen?”

43 Note the final space, to restrict the match to commands. Quotes are used to
disambiguate strings whenever necessary, as with spaces and special characters,
but they are not necessary with simple strings. There is a principled pragmatic
difference between single and double quotes in Unix.

44 Each user’s dot and customization files are located in their home directory,
to which cd returns when invoked without arguments, and which is contained
in the system variable $HOME.

45 From “catenate”, since the tool will concatenate multiple files named as
arguments.

46 There can be many lines between do and done, but we need only one for
such a simple task.

47 Thus, by default, lying in the current directory; this also applies to editcmds.
This means that editcmds should be in the same directory as the files to be
edited, and that that should be the current directory, loopedit, however, need
not be there, since as an executable script it can be located anywhere in the
user’s path (the series of directories searched by the shell to find programs
to be executed), ex itself resides in a system directory, where it is accessible
to (but not modifiable by) ordinary users.

48 And in fact took a couple of tries to get right. However, once debugged it
can be saved and reused indefinitely, a major feature of the Software Tools
philosophy.

The Unix language family 169

49 As in this command. Although any character may function as a string delimiter
in an “s” command, slash is most common. Using a different character for
the “s” command would eliminate one pair of backslashes in this command.
However, slash is the canonical delimiter for searching and may not be changed
in that sense.

50 Actually, we could do without the escaped slash in the search string. Since
any string containing “www.umich.edu” followed by a tilde is acceptable, we
could simply use a period, which will match any character, instead of an
escaped slash in the search string: “www.umich.edu.\~”. Indeed, the periods
in “www.umich.edu” will match any character, too; the fact that they are
intended to match literal periods is entirely coincidental. However, in the
replacement string, period is not interpreted, while slash is, so the escaped
slash is necessary there.

51 From “change modifiers”, a reference to the executability of the file. The
command that activates loopedit as a program is chmod u+x loopedit, which
means that the user adds executability to the file’s properties. If this seems
difficult to remember (and it is hardly intuitive), an alias renders it more
memorable: alias activate chmod u+x.

52 There are other possible interpretations; for instance, the ex editor has a special
meaning for slash “/”. See above for examples.

53 From “stream editor”, sed can do the same things as ed, but operates on the
entire text stream with predetermined instructions, instead of interactively. It
is useful for repetitive editing tasks.

54 An acronym of “Aho, Weinberg, Kernighan”, the authors of the program, awk
is more powerful than sed, and is designed specifically for use as a text filter,
especially for repetitively-formulated files.

55 An acronym of “Practical Extraction and Report Language”. Perl is a full
programming language, oriented towards manipulating large texts. It is widely
used on the Web for CGI scripts; a very simple example is the Chomskybot,
whose URL is: http://stick.us.itd.umich.edu/cri-bin/chomsky.pl; the
URL of its Perl script is: http://www/lsa.umich.edu/ling/jlawler/
fogcode.html. I do not consider Perl much further here, except to point out
ways of learning it easily, by automatic translation.

170

Chapter 6

Software for doing field linguistics

Evan L.Antworth and J.Randolph Valentine

In his introduction to Bloomfield’s posthumous grammar of Menomini
(Bloomfield, 1962), Charles Hockett recounts Bloomfield’s stratagem for
the documentation of the endangered languages of North America: as
linguists each of us should take a vow of celibacy, not teach, and dedicate
the entirety of our summers to fieldwork, and our winters to collating and
filing our data, year after year. With such dedication, Bloomfield speculated,
we could each hope to do an adequate job of documenting three languages
over the course of our professional lives. Upon being reminded of this
anecdote not too long ago, a frustrated Algonquianist remarked, “Yes, and
now that we have computers, it’s down to two languages apiece!”
Computers certainly present a mixed blessing: at the same time that they
allow us to perform tasks such as querying and sorting the reams of data
that we typically gather in extended periods of fieldwork, they also structure
the ways in which we address these data, and often become petulant
intermediaries that distance us from the very languages which we seek to
describe. The amount of time required to learn the intricacies of software
can have a significant impact on our time. Yet, properly used, computers
can provide us with the means of documenting languages at a level of detail
and sophistication that would have made Boas swoon.

Most linguists use computers mainly for general academic use such as
preparing manuscripts with a word processor or communicating with
colleagues via e-mail. In recent years, however, we have begun to see software
that is intended for specifically linguistic tasks: speech analysis, corpus
management, grammatical parsing, text analysis, and language comparison.
This chapter is a survey of such linguistic software that is suitable for doing
field linguistics. The focus will be on readily available, low cost software
products that run on personal computers, especially portable computers.

6.1 HARDWARE AND OPERATING SYSTEMS

A perennial problem facing anyone wanting to use a computer is, “which

Software for doing field linguistics 171

kind of computer should I choose?” The bad news is that we still must
live with competing computing platforms, such as DOS, Windows,
Macintosh, NeXT, and Unix. The good news is that there is a conceptual
convergence among these platforms in favor of a graphical user interface
driven with a mouse. This at least makes it possible for a program to run
on more than one platform and still have a very similar look and feel. In
choosing which computer to use, here are some considerations.

� First choose the software that best meets your needs, and then choose

the computer that runs it. No matter how powerful or popular or
expensive a particular computer is, if it doesn’t run the software you
need to do your work then it is of limited usefulness to you. Let software
drive your decision as to which computer to use, not ideological
arguments about the best hardware architecture and operating system
design.

� Buy the power that you need for the software you are going to run today,
rather than buying expensive features for the future. Research on price
versus performance trends in personal computers has shown that today’s
top-of-the-line computer costs only half as much two years later. Rather
than buying a $4000 computer today (when you need only half its
power), you can buy a $2000 computer today and buy the $4000
computer in two years for $2000 when you really do need the power.
The net result is that you have spent $4000, but have two machines
instead of one. (For substantiation of this recommendation, see Simons,
1992 and Rettig, 1992.)

� If you work with languages other than English, and particularly
languages that use non-Roman scripts, choose a computer that has
adequate multilingual capability. Computers with operating systems
that are graphics-based (GUIs), such as the Macintosh, have offered
better multilingual support than computers that are character-based,
such as the IBM PC. However, with the advent of Windows (which is
graphics-based) for IBM compatibles, the gap is narrowing. Because the
whole area of multilingual support is changing so rapidly, you should
carefully investigate what is currently available before making a major
purchase.

� Consider your local computing community. If most of your colleagues
use computer X, and you use computer Y, then it will be more difficult
to share your work and expertise with them and vice-versa.

� Choose a computer for which you can most readily obtain local repair
and technical support. This is particularly important if you work in third

172 Evan L.Antworth & J.Randolph Valentine

world countries. If you must use a computer in a country where no
reliable local service is available, then establish a service contract with
a company in your home country that will repair your computer and
ship it back to you. If you are going to be doing time-bound research it
is probably best to stick with name-brand, reliable machines, because a
single repair cycle from a remote location could leave you without a
computer for much of your fieldwork.

� Purchase a portable or laptop computer only if you genuinely need it.
Compared to desktop computers, laptop computers are more expensive,
less expandable, and have poorer screens and keyboards. If you travel a
lot, work in more than one place, or intend to do fieldwork, a portable
computer is invaluable. But if you generally work in just one place, a
desktop computer will provide a superior working environment. Some
portables allow the attachment of external monitors and keyboards. If
you work with more than one computer, you will have to give some
attention to file management, to avoid a proliferation of versions of the
same file on your different computers.

6.2 GENERAL-PURPOSE VERSUS
DOMAIN-SPECIFIC SOFTWARE

Traditionally linguists used notebooks and index cards to record and
organize their field observations. Today, most field linguists use a portable
computer and the electronic analogs of the notebook and index cards: a
word processor and a database management system. While these software
tools are in many ways superior to their predecessors, most general purpose
word processors and database programs are not well-suited to the special
needs of linguistic work. For instance, word processing in English is
reasonably well-supported, but multilingual word processing remains a
challenge. Most database programs require that all data fit into fixed length
fields, but lexicographic and textual data have no easily fixed length. Sorting
data in languages other than English often requires a sorting sequence
different from that of English—a capability not provided by most general
purpose software. Worse yet, general-purpose software offers no direct way
to represent linguistic entities such as multilinear phonetic and
phonological representations, syntactic trees, semantic networks, and
discourse structures. For these reasons it is usually better to use software
that is domain-specific: software specifically developed with linguistic
applications in mind. The major part of this chapter is devoted to such
domain-specific linguistic software. Unfortunately, though, adequate
linguistic software still does not exist for many tasks, thereby forcing the
field linguist to use general-purpose software. The next section lists a
number of criteria to consider when you are evaluating a given piece of

Software for doing field linguistics 173

software, particularly general-purpose software, though the same criteria
apply also to domain-specific software.

6.3 CRITERIA FOR EVALUATING SOFTWARE

The discussion in this section is organized around three major tasks (or
categories of tasks) performed by field linguists: data collection and
management, analysis, and description (or presentation). The nature of each
task is described and criteria for evaluating software relevant to that task
are itemized.

6.3.1 Data collection and management

A field linguist’s first task is data collection. Each day of fieldwork brings
the linguist a veritable flood of new sounds, words, sentences, and texts.
To manage this data, the field linguist needs a linguistic database system.
Like general database systems, a linguistic database system must provide
facilities for entering new data, editing existing data, sorting and searching
the database, and retrieving data. But the unique requirement of a linguistic
database system is that each type of linguistic structure should have a
means of representation that is appropriate to its intrinsic nature. For
instance, phonetic and phonological data should be representable as
phones, phonemes, suprasegmentals, and so on; morphological data should
be representable as words, morphemes, roots, affixes, and so on; syntactic
data should be representable as sentences, phrase structure trees,
grammatical relations, and so on. Unfortunately, most of our present
software does not go very far beyond representing all data structures as
linear strings of characters. We must look to the next generation of software
to provide a comprehensive solution to the problem of linguistic
representation (see Chapter 1).

Here are some desirable features to check for when evaluating a database
management system.

� Variable length fields—The vast majority of database systems require

fixed length fields which can eat up substantial amounts of storage
space. For example, if one wishes to include example sentences with
some entries in a lexical database, each entry in the lexicon will have
to include a field containing as much space as the longest sentence
likely to be used in the corpus, regardless of whether or not the entry
actually contains an example sentence. If one dedicates 100 characters
to such an example sentence field, every 10 entries will collectively
require a kilobyte of storage, and every 10,000 entries, collectively a
megabyte.

174 Evan L.Antworth & J.Randolph Valentine

� Multilingual support—Can the database program handle fields in
different languages? Can it switch languages within a field? Can it handle
non-Roman scripts, and if so, can you mix scripts within a single field?

� User-defined alphabet and sorting sequence—Can the user fully
define which characters are alphabetic? Can the user define a sorting
sequence? (see Chapter 4).

� Domain-specific data types—Does the database program permit only
character strings and numeric data or can the user define complex data
types such as multilinear phonological representations and syntactic trees?

� Programmable—Can the user write scripts to manipulate the
database?

� Reliability—How safe is the database from internal corruption, and
can corrupted databases be salvaged?

� Ease of use—Can the database be used by nonexperts who may wish
to use your materials derivatively to address local needs, such as the
development of vernacular educational materials?

6.3.2 Analysis

The second major task of field linguistics is analysis (which of course is
not limited to field linguistics). No computer software will do linguistic
analysis for you, but it can help you to formulate and test your analysis in
two ways. First, you can use software to explore and manipulate the data
in your database. This helps in quickly finding data that supports or refutes
a hypothesis. Here are some of the typical tasks done to explore and
manipulate data.

� Sorting—Sorting a data set according to a particular criterion groups

all the bits of data that go together, thereby allowing a pattern to emerge.
As noted above in connection with database programs, a sorting program
for linguistic use must permit the user complete control over definition
of the alphabet and sorting sequence. Ideally, sorting operations should
be sensitive to data types; phonological representations may be sorted
quite differently from syntactic representations.

� Searching—Often one has a particular hypothesis in mind and wants
to search a data set for specific data items that will confirm or disconfirm
the hypothesis. Searching software must permit abstract pattern
matching, not just finding literal forms. For instance, most word
processors permit you to search for a literal string such as “phoneme”;
but very few word processors permit you to search for a pattern such
as “any word containing only sonorants.” Searching and pattern
matching must also be sensitive to data types; for instance, one might
want to search analyzed sentences by looking for those that contain more
than one overt noun phrase.

Software for doing field linguistics 175

� Concordancing—Producing a concordance of a text requires a
combination of sorting and searching; thus concordance software is
subject to the criteria mentioned above. A good concordance program
should also be able to handle the type-token problem; for instance, if
you want to concord lexemes, then you need to be able to consider
inflected forms such as saw and seen as instances (tokens) of the lexeme
(type) see. You also need to distinguish saw as an instance of the verb
see from saw as an instance of the noun saw.

� Counting—Retrieval software should be able to produce various types
of statistical analysis of the data such as frequency lists (of both types
and tokens).

The second way that you can use software to aid the analysis process is to
test or model the analysis by applying it to a corpus of data. Using the
computer to model and test analyses could lead to a new era of empirical
accountability! Since computer software tends to lag behind theoretical
developments in linguistics, you should not expect to find software that
fully models the latest theoretical advance in phonology, morphology, or
syntax. Be prepared to make some theoretical compromises for the benefit
of having the computer automatically test your analysis against data. Here
are some of the typical tasks done to test and model (note that they are
all domain-specific rather than general-purpose).

� Testing phonological rules—A program that applies phonological

rules to a corpus of data is very useful for developing a basic
phonological analysis.

� Morphological parsing—A program to parse words into their
component morphemes is invaluable for languages with complex
morphological structure, both to model and test a morphological
analysis and to provide inflectional information required for syntactic
analysis.

� Syntactic parsing—A syntactic parser can be used not only to model
and test an analysis but to do practical tasks such as syntactically tagging
a text.

� Interlinear analysis of text—Possible interlinear annotations include
phonological representations, morpheme glosses, word glosses, and
syntactic categories. The process of providing explicit annotations for a
text forces the linguist to consistently apply his or her analysis of the
phonological, morphological, and syntactic systems of the language.

6.3.3 Description

The third major task of field linguistics is description, or presentation, of
the data and analysis for others to review and use. Good software will make

176 Evan L.Antworth & J.Randolph Valentine

it easy for you to transfer examples from your database and analysis files
to your word processor for inclusion in a research paper. For instance, if
you plan to use both a word processor and a database program together,
consider these points when making your choice.

� Choose software that supports transfer of data. If you already use a

certain word processor and now want a database program, choose one
that supports exporting the data in a format the word processor can
import. For modest amounts of data in the Windows and Macintosh
environments, this often can be achieved simply by copying to and
pasting from the system clipboard. In a DOS environment, it might
require explicit export and import of the data via an interchange format.
In many cases, though, if you want fine control over the formatting of
text output from a database program, you will have to know how to write
programs to embed the word processor’s formatting codes in the output
from the database.

� If you are using a system that supports fonts and scripts (such as
Windows and the Macintosh), check to see if the word processor and
database program can use the same fonts or scripts and that the data
are displayed and printed identically. Many database programs have
comparatively poor font and script capabilities, though they often make
claims otherwise.

� Check to see if you can directly “copy and paste” data from one program
into another, or whether you have to export data from one program to
a file and then import that file into the other program. Can you transfer
both text and graphics?

When choosing a word processor or other document processing system
for producing manuscripts, consider these points:

� Does it handle multilingual documents? Does it support fonts for

languages other than English? Does it support non-Roman scripts,
including right-to-left text editing if required? Does it allow you to mark
text for exemption from English spelling checking, so that it isn’t applied
to your non-English example sentences? Can you define which
characters are alphabetic and which are not?

� Does it support style sheets? Rather than directly formatting each
paragraph (font, line spacing, indents, tabs, and so on), many word
processors keep style and formatting information separate from the text
itself. This permits the writer to change the style of the document for
various publishers by simply choosing a different document style sheet,
rather than reformatting every paragraph of the document.

� Does it support character styles, that is, can you assign styles to formatting
strategies for such things as citation and emphasis, so that when a

Software for doing field linguistics 177

publisher requires a different format for these items, you can make the
required changes by simply changing the formatting specification of the
style rather than having to make the changes individually?

� Is it a batch formatting system or a WYSIWYG (What You See Is What
You Get) system? Virtually all common commercial word processors are
WYSIWYG systems, where the document appears on the screen just
as it will look when printed (or as closely as possible). A system of
document preparation on laptop computers using Microsoft Word (a
WYSIWYG word processor with style sheets) is described in Kew and
Simons (1989). While such systems are adequate for most purposes, very
complex documents are better handled by batch formatting systems. In
such systems, formatting is done by placing codes directly into the
stream of text; the final appearance of the document cannot be seen
until it is printed (see Coombs, Renear and DeRose, 1987). One widely
used batch formatting system specifically designed for academic writing
is called LaTeX (Lamport, 1986); it is based on a typesetting system
called TeX (Knuth, 1986). The power of TeX can also be harnessed to
do very domain-specific tasks; for example, Kew and McConnel (1990)
describe a system for typesetting interlinear text based on TeX.

In the future, we look for systems that will seamlessly integrate a language
corpus with a descriptive grammar. In a visionary article, Weber (1986)
describes the “reference grammar of the future” which will be an “online,
interactive, information management system, built around a corpus” (p.
30). These same concerns are taken up by the CELLAR system described
by Simons in chapter 1 of this book. One experimental program, called
Rook, is available now (see Section 6.4.4 below). It enables the linguist to
incrementally and interactively build up a descriptive grammar while
annotating texts.

6.4 A CATALOG OF LINGUISTIC SOFTWARE

This section contains the major part of this chapter: a catalog of specific
pieces of software for doing field linguistics. Most, though not all, of the
software is domain-specific rather than general-purpose software. The section
is divided into subsections corresponding to subdomains within linguistics:

� data management
� speech analysis and phonetics
� phonology and morphology
� syntax and grammar description
� lexicon
� text analysis
� language survey and comparison

178 Evan L.Antworth & J.Randolph Valentine

For specific information on each program described below (including name
of developer and vendor, price, reviews, and so on), see the online appendix
at http://www.lsa.umich.edu/lig/jlawler/routledge/

6.4.1 Data management

This section describes four pieces of software that fall into the category of
general data management tools: Shoebox, askSam, HyperCard, and Xbase
systems. The first three would mainly be used for managing lexicon, texts,
and grammar, but are general enough to also be used for other types of
information such as anthropological notes. Xbase systems are not well suited
to textual manipulation, but arguably offer more power than any of the other
software for lexical work. Of these three pieces of software, the first is domain-
specific and the other three are commercial, general-purpose software.

6.4.1.1 Shoebox

Shoebox is a database program designed for field linguists to manage their
lexicon and to interlinearize text. While Shoebox can be used to manage
nearly any kind of textual data, its most common use for field linguists is
in managing a lexicon and text corpus. The metaphor of index cards in a
shoebox is translated as a database file composed of records. Records are
displayed on the screen and can be modified with a built-in editor. The
content of a record can either be free-form text or data in fields or a
combination; Shoebox does not force uniformity among the records of a
database. The database can be sorted on any field. The sorting order can
be defined by the user and supports multigraphs. By referring to its primary
sort field, any record can be located and displayed nearly instantly. A filter
function permits the user to select only records that match specified criteria.
For example, in a lexical database you could choose to look at only verbs
or only transitive verbs, assuming you have coded that information.
Shoebox permits the user to have multiple database files open at once in
a multidocument window. For example, you could have your lexicon, texts,
syntactic examples, anthropological notes, and bibliography all available
at once.

Shoebox also has a built-in function for producing interlinear text. It uses
a lexicon file to semiautomatically gloss words and morphemes in a text.

Shoebox supports TrueType fonts. Its output capabilities include draft
printing of any part of a database and exporting to an RTF file which can
be read by word processors such as Microsoft Word.

6.4.1.2 askSam

askSam is a free-form textbase program for DOS and Windows. It can be

Software for doing field linguistics 179

used for data management, word processing, and text retrieval. An askSam
file is comprised of records. A record can contain unstructured text,
structured fields, or a combination of both. A number of powerful text and
data retrieval tools are available including wild-card operators, Boolean
expressions, and proximity searching. Data in fields can be sorted,
formatted, and output in reports. askSam also supports multiple file access,
thus providing relational capabilities. askSam for Windows has impressive
text-formatting capabilities, and is very easy to use. The program supports
graphics. Its comprehensive text formatting capabilities and retrieval
capabilities make it ideal for researchers whose data consist primarily of
prose. The program also has hypertext capabilities, making it useful for
presenting data. There is an electronic publisher version which can be used
to build hypertext presentations that can be distributed royalty free. Thus
it should be given serious consideration in the development of materials
for classroom use.

6.4.1.3 HyperCard

HyperCard has been described by its author as an “electronic constructor
kit.” It is fundamentally a programmable database system that can handle
text, numerical data, sound, and graphics. Its basic metaphor is a stack of
cards which contain fields of data. The user interface relies on buttons and
menu commands. Underlying HyperCard is a scripting language called
HyperTalk. Numerous books about HyperCard and HyperTalk
programming are available; for example, Goodman (1990) and Winkler and

Figure 6.1 A record in Shoebox

180 Evan L.Antworth & J.Randolph Valentine

Kamins (1990). Many existing HyperCard applications are available at low
or no cost (see for example Rook, described below in Section 6.4.4.2). But
the user who learns to control cards, fields, buttons, and scripts has the
capability to build nearly any computer application he or she desires. For
the field of linguistics, where relatively little off-the-shelf software exists,
this is a powerful asset.

6.4.1.4 Xbase database systems

Provided one is willing to devote some time to learning their idiosyncrasies,
Xbase database management systems such as dBase IV and FoxPro
represent powerful general purpose applications that can be used to great
advantage in some kinds of linguistic work, particularly list-oriented tasks
such as the compilation of simple lexicons. These programs have elaborate
indexing capabilities far beyond those offered by Shoebox or HyperCard,
and rich programming languages with well-developed command sets for
working with text strings. Their multilingual capacities are, however, very
modest, and the way in which they deal with freeform text is controversial,
involving the storage of such text in a file separate from the main database
file, which can be overlooked when files are copied. One problem with
much DOS-based software is that there is a tendency to use some character
slots for program-internal functions, which can cause problems if you use
a font that happens to have characters defined in the same positions, since
they will either be filtered out on import, or misinterpreted as commands
to be carried out rather than text. Also, the learning curve for mastering
these programs to a degree to really exploit their power is precipitous, and

Figure 6.2 Lexicon record in askSam (MS-DOS version)

Software for doing field linguistics 181

unless one stays with it, this arcane knowledge is easily forgotten. Many
linguists hire Xbase experts to produce simple systems for data entry and
formatting. The fact that these databases are commonly used in the
business world also weighs in their favor, in that they tend to be priced
well, be updated often, and have good data integrity.

Figure 6.3 Dynamic dialectological map produced in HyperCard

182 Evan L.Antworth & J.Randolph Valentine

6.4.1.5 LinguaLinks

LinguaLinks is an electronic performance support system designed to
help field language workers. The full product has two parts: data
management tools and a library of reference materials. The data
management tools (which are based on CELLAR; see Chapter 1) include
tools for lexical database management, interlinear text analysis,
phonological analysis, and ethnographic database management. The
reference materials include books on linguistics, language learning,
anthropology, literacy, and sociolinguistics. The entire package requires
a Windows system, a Pentium processor, and 32 megabytes of memory.
A second product, LinguaLinks Library, contains only the reference
materials and will run on any Windows or Macintosh system.

6.4.2 Speech analysis and phonetics

One of the basic tasks of field linguistics is phonetic transcription. A
number of phonetic or IPA fonts are now available, including the SIL
Encore fonts.

Figure 6.4 A sample lexical database in LinguaLinks

Software for doing field linguistics 183

Three programs related to speech analysis and phonetics are also
described here: CECIL, Signalyze, and FindPhone. The CECIL program
is intended for field use. Signalyze is an excellent, if pricey, speech analysis
tool, which can also be immensely useful in the field. FindPhone is useful
for doing basic distributional analysis of phonetic forms.

6.4.2.1 SIL Encore fonts and Encore IPA fonts

The SIL Encore fonts are available in two packages: the full Encore fonts
(commercial) and the Encore IPA fonts (freeware).

� The SIL Encore fonts are a complete package of over 1300 phonetic

characters and linguistic symbols that can be used to create
customized, scalable fonts in either PostScript Type 1 or TrueType
formats. The SIL Encore glyph library has a complete Roman-based
glyph set for linguistic applications in three font families (SIL Doulos,
SIL Sophia, and SIL Manuscript) in four type styles (regular, bold,
italic, and bold italic) available in Macintosh or Windows platforms.
A free Windows TrueType font compiler is included with the Windows
TrueType package. With Mac or PostScript you will need a third party
font manipulation package, such as FontMonger or Fontographer to
build your customized font.

� The SIL Encore IPA Fonts are a set of scalable IPA fonts containing
the full International Phonetic Alphabet with 1990 Kiel revisions. Three
typefaces are included: SIL Doulos (similar to Times), SIL Sophia
(similar to Helvetica), and SIL Manuscript (monowidth). Each font
contains all the standard IPA discrete characters and nonspacing
diacritics as well as some suprasegmental and punctuation marks. Each
font comes in both PostScript Type 1 and TrueType formats and is
available in Macintosh or Windows platforms.

6.4.2.2 Keyboard remapping programs

To facilitate typing text using nonstandard fonts such as IPA fonts, consider
using a utility program that modifies the behavior of the keyboard. With
such a utility it is possible to remap keys (make them generate characters
other than the standard ones), to combine sequences of keystrokes into
single characters, and to generate multiple characters from a single
keystroke. Two such keyboard remapping programs are KeyMan (for
Windows) and SILKey (for Macintosh).

6.4.2.5 CECIL

CECIL (which stands for Computerized Extraction of Components of

184 Evan L.Antworth & J.Randolph Valentine

Intonation in Language) is a system for doing acoustic speech analysis,
mainly tone and stress analysis (see Hunt, 1988). It is intended for use in
a field situation using a DOS or Windows portable computer. The DOS
version uses a battery-powered speech box (sound digitizer) is used for
recording and playback, while the Windows version uses a standard
Windows sound card. The software performs graphical displays of
waveform, fundamental frequency (pitch), and amplitude (stress), as well
as spectrograms and spectra. It also supports a language learner’s mode
in which traces of the learner’s attempt to mimic a recorded utterance are
superimposed on the traces of the original recording. Utterance length is
limited to 3.3 seconds at a 19,500 Hz sampling rate.

6.4.2.4 Signalyze

Signalyze is an interactive program for the analysis of speech, and can work
with 8- or 16-bit sound. It contains a large set of signal editing, analysis
and manipulation tools. With Signalyze, you can measure duration,
amplitude, and frequency, make beautiful 250 color or greyscale
spectrograms, extract pitch, slow down or speed up speech. You can easily
obtains numeric measurements pertaining to the duration of a speech
sound, the frequency from a spectral peak, the amplitude differences
between two vowels, and so on. Signalyze has extensive labeling facilities,
coded for up to nine levels (segment, syllable, etc.); labels can apply to
points or segments of text, and may be saved as tab-delimited text files.
Signalyze thus represents an invaluable tool for field research, aiding in
transcription and analysis. You can listen to a given sample over and over,

Figure 6.5 Display of an utterance in CECIL

Software for doing field linguistics 185

slowing it down to hear difficult material better; you can easily compare
two samples to determine their relative phonetic properties; the ease of
pitch tracking invites analysis of important aspects of prosody often
overlooked in phonological analyses; different portions of discourse of can
easily be queued up to observe varying patterns of cadence and amplitude.
The sound samples Signalyze produces can easily be saved as sound files
and used in derivative presentations by importing them into programs
capable of playing sounds, such as HyperCard or Microsoft Word. While
Signalyze is a little expensive for individuals, there are excellent
departmental and institutional rates.

6.4.2.5 FindPhone

FindPhone is an interactive, menu-driven program for DOS that performs
distributional analysis of phonetic data transcribed in IPA (see Hunt, 1992
and Bevan, 1993). A built-in editor facilitates maintenance of a phonetic

Figure 6.6 Display of an utterance in Signalyze

186 Evan L.Antworth & J.Randolph Valentine

database in which each transcribed utterance is represented as a record.
An utterance record can also contain any number of other fields such as
gloss, grammatical category, reference number, and so on. The database
can then be searched according to patterns defined by the user; for
example, the pattern #pV will return all utterances containing an utterance-
initial [p] followed by any vowel. Phonetic class symbols such as C (for
consonants) and V (for vowels) can be defined by the user. Features such
as stress, pitch, and syllable boundaries can be included in search patterns
or can be ignored. The results of a search can be viewed on the screen,
formatted and saved to a file, or printed.

6.4.3 Phonology and morphology

Although syntactic parsing of English and other economically important
European languages has received great attention in recent years,
morphological parsing has largely been left to those working in agglutinative
languages who cannot sidestep morphological analysis. This is borne out
by the heritages of the programs described below: AMPLE was initially
developed for Quechua and PC-KIMMO is an implementation of a system
first applied to Finnish.

Figure 6.7 Results of a search in FindPhone

Software for doing field linguistics 187

6.4.3.1 AMPLE and STAMP

AMPLE and STAMP are components of a practical system for doing
machine translation of texts between closely related languages or dialects.
AMPLE does the morphological analysis (parsing) of an input text and
STAMP does transfer and synthesis of the text into a target language.
AMPLE can also be used by itself for purely linguistic purposes, namely,
to model and verify a morphological analysis of a language. An AMPLE
description consists of a lexicon which lists all stems and affixes and a set
of rules that specify morphotactic structure. AMPLE has a strong item-
and-arrangement view of morphology, but is able to handle phenomena
such as reduplication and infixation. AMPLE works strictly at the
phonological surface level. Rather than modeling phonological rules, all
allomorphs of a lexical item must be explicitly listed in the lexicon. A
preprocessor called PHONRULE applies phonological rules to underlying
lexical forms and generates all the allomorphs to be inserted into the
lexicon.

6.4.3.2 PC-KIMMO

PC-KIMMO is a new implementation for microcomputers of a program
named after its inventor Kimmo Koskenniemi, a Finnish computational
linguist (see Koskenniemi, 1983 and Karttunen, 1983). Its main practical
use is to build morphological parsers for natural language processing
systems, but it can also be used to model and test a phonological and
morphological analysis of a language. PC-KIMMO is based on
Koskenniemi’s two-level model of morphology, where “two-level” refers
to the underlying (lexical) and surface levels of phonological representation.
In this model phonological rules apply simultaneously and can refer to both
underlying and surface environments. The result is that there need be no
rule ordering, no intermediate levels of derivation (just two levels), and
rules can be run in either direction: underlying to surface or surface to
underlying. In addition to a set of phonological rules, a PC-KIMMO
description includes a lexicon of all stems and affixes. The structure of the
lexicon enforces a simple system of morphotactic constraints. Version 2 of
PC-KIMMO added an optional word grammar component that can return
full parse trees and feature structures.

PC-KIMMO can also be applied to other tasks, such as analyzing and
tagging texts. See Antworth (1993) for a description of using PC-KIMMO
to produce morphologically tagged interlinear text.

6.4.4 Syntax and grammar description

Most software applicable to syntax comes from the field of natural language

188 Evan L.Antworth & J.Randolph Valentine

processing where the main concern is syntactic parsing (see Chapters 7
and 8). However some software is available that is intended for modeling
syntactic analysis, namely PC-PATR. For the field linguist developing a
syntactic corpus and grammar description, there is Rook for the Macintosh
and Shoebox’s grammar outline for DOS.

6.4.4.1 PC-PATR

PC-PATR is a syntactic parser for DOS, Windows, Macintosh, and Unix.
It is based on the PATR-II formalism (see Shieber, 1986). A PC-PATR
grammar consists of a set of rules and a lexicon. Each rule consist of a

Figure 6.8 Sample word parse in PC-KIMMO version 2

Software for doing field linguistics 189

context-free phrase structure rule and a set of feature constraints, that is,
unifications on the feature structures associated with the constituents of
the phrase structure rules. The lexicon provides the items that can replace
the terminal symbols of the phrase structure rules, that is, the words of
the language together with their relevant features. PC-PATR is especially
good for modeling basic syntactic analysis.

6.4.4.2 Rook

Rook is a system for authoring descriptive grammars in HyperCard for
the Macintosh. Rook is a tool for interactively and incrementally developing

Figure 6.9 Sample sentence parse in PC-PATR

190 Evan L.Antworth & J.Randolph Valentine

a grammar description based on an interlinear text corpus (see also IT,
Section 6.4.6.1). The resulting on-line descriptive grammar exploits the
capacity of the computer to provide instant access to cross-referenced
topics, text examples, explanations of morpheme glosses, and so on.

6.4.5 Lexicon

For field linguists developing a lexicon or bilingual dictionary of a language,
data management programs such as Shoebox, askSam, HyperCard, and
Xbase database systems are suitable (see Section 6.4.1). Multi-Dictionary
Formatter and MacLex are two programs specifically designed for lexical
work.

6.4.5.1 Multi-Dictionary Formatter

Multi-Dictionary Formatter for DOS is a set of programs that work
together with Shoebox and a word processor such as Microsoft Word to
structure, manipulate, format, and print dictionaries.

6.4.5.2 MacLex

MacLex is a Macintosh program for managing dictionary files in SIL’s
“Standard Format” (used also by Shoebox). It provides a full-screen editor

Figure 6.10 Sample grammar card in Rook

Software for doing field linguistics 191

for lexical entries as well as find and replace functions. Lexical files can
be sorted according to a user-defined sorting order (including multigraph
handling). MacLex also has a facility for reversing entries.

6.4.6 Text analysis

Under the general rubric of text analysis falls several types of programs.
IT and Shoebox are tools for producing annotated interlinear text. Many
programs for searching text and producing concordances and word lists
are available, such as TA, Micro-OCP, MonoConc and TACT for DOS
and Conc for Macintosh. For more on text analysis, see also Chapter 4 of
this book.

6.4.6.1 IT (Interlinear Text processor)

IT (pronounced “eye-tee”) is a software package for producing annotated
interlinear texts. It performs two main tasks: (1) it maintains the vertical
alignment of the interlinear annotations, and (2) it stores all word and
morpheme annotations in a lexical database thus enabling semi-automatic
glossing. IT supports up to 14 levels of aligning text annotations and up
to 8 different freeform (nonaligning) annotations. The interlinear text file
produced by IT is a plain ASCII text file that is accessible to other text-
processing software. It is also portable between the DOS and Macintosh
versions of the program. Here is the text file for one sentence from a text
glossed with IT:

Unuunua sulia tee wane si kada ‘e
unu-unu -a suli -a tee wane si kada ‘e
RDP-tell.a.story -NMZR about-3s.O one man PARTV time 3s.G

kasia tee baru.
kasi -a tee baru
build-3s.O one canoe

The story about when a man built a canoe.

The first line is the original text. The second line is the morphemic
representation which breaks the words into morphemes. The third line
glosses each morpheme. The line below the interlinear text provides a free
translation.

Interlinear text files produced by IT can be searched and concorded
using other text analysis software including Conc (for Macintosh). An
interlinear text corpus can be formated and prepared for professional
typesetting using ITF, the Interlinear Text Formatter (see below).

192 Evan L.Antworth & J.Randolph Valentine

6.4.6.2 ITF (Interlinear Text Formatter)

ITF (Interlinear Text Formatter) is a software package that formats
interlinear texts for publication (as for producing a monograph of annotated
texts). It is based on the TeX typesetting language (Knuth, 1986). ITF
works with interlinear text produced by IT and Shoebox. A program is also
provided that converts output from AMPLE (a morphological parser) into
the format required by ITF. ITF can format an arbitrary number of aligning
annotations with up to two freeform annotations. A number of page layout
options are available, including placing a free translation at the bottom of
the page or in a column down the side of the page. The ITF TeX macros
can be used with either TeX 2.9 or TeX 3.0. A LaTeX (Lamport, 1986)
style is provided as well as the plain TeX formatting definitions.

Figure 6.11 Annotation window in Macintosh IT

Software for doing field linguistics 193

6.4.6.3 Shoebox

Shoebox (see Section 6.4.1) has a built-in text interlinearizer which is very
similar to IT. It has the advantage over IT that its lexicon is readily available
to the user. However, IT is more flexible and robust than Shoebox’s
interlinearizer.

6.4.6.4 TA

TA (for Text Analysis) is a set of DOS programs that perform basic text
manipulation tasks including generate word lists from text, automate word
segmenting in texts, generate concordances of texts, sort, filter, and
format lexical files, and make reversals of lexical files. Some of these
functions expect the data to be encoded in SIL’s “Standard Format” (also
used by Shoebox). The TA package is especially suitable for those with
limited computing resources.

6.4.6.5 Micro-OCP

Micro-OCP is a batch-oriented concordance program for DOS. It is based
on the mainframe version of the Oxford Concordance Program (OCP).
Micro-OCP produces word lists (list of words with frequency of
occurrence), indexes (list of words with references), concordances (KWIC,
or keyword-in-context, style), and vocabulary statistics. A number of sorting
options are supported, including sorting by frequency, word length, and
word ending. Subsets of text can be selected for processing or marked for
omission. Alphabets for several languages are included and other alphabets
can be defined by the user. Multigraphs of up to eight characters can be
used. Words can be retrieved that match a pattern containing wildcard
characters. The execution of the program is controlled by a file that contains
a script of commands. The output of the program can be sent to the screen,
printer, or disk file.

6.4.6.6 MonoConc

MonoConc is an interactive concordance program for Windows. It supports
loading multiple files, word and phrase searching with wildcard characters,
and frequency counts.

6.4.6.7 TACT

TACT is an interactive DOS program for doing full-text retrieval,
concordancing, and content analysis. A text is first prepared by marking
reference units in it and then is converted into a TACT database. TACT

194 Evan L.Antworth & J.Randolph Valentine

offer several views of the database, including a word list with frequencies,
a one-line KWIC concordance (which TACT calls an index), a KWIC
concordance that shows several lines, distribution graphs, and collocations.
The entire text can also be viewed. Specific words can be collected into a
named category or theme; for instance, inflected forms of a word or a set
of synonyms can form a category which is then referred to in more complex
searches.

6.4.6.8 Conc

Conc is a concordance program for the Macintosh. Whereas most
concordance programs are mainly intended for literary analysis, Conc has
been specially designed for linguistic analysis. It exploits the Macintosh
interface and is fully interactive. Conc produces keyword-in-context
(KWIC) concordances of texts. A KWIC concordance consists of a list of
the words in the text with a short section of the preceding and following
context of each word. The sorting order is defined by the user. Conc also
produces an index of the text, which consists of a list of the distinct word
forms in the text, each with the number of times it occurs and a list of the
places where it occurs. Conc displays the original text, the concordance,
and the index each in its own window. If the user clicks on a word or entry
in any of the three windows, the other two windows automatically scroll
to display the corresponding word or entry. Concordances can be saved,
printed, or exported to plain text files.

The user can restrict which words will be included in or excluded from
a concordance. The user can choose to omit words of more/less than n
letters, omit words occurring more/less than x number of times, or omit
words explicitly listed. The user can choose to include all words, include
words explicitly listed, or include words that match a pattern. A pattern
can include devices to match any character, match zero or more characters,
match one or more characters, match classes of characters, match at the
start of a word, match at the end of a word, and so on (this is essentially a
grep pattern, or regular expression).

In addition to flat text files, Conc also does concordances of multiple-
line interlinear texts produced by the IT program. It can produce either a
word concordance or a morpheme concordance (if the interlinear lines
include morpheme decomposition). An interlinear concordance can be
limited to selected lines (fields). By designating a primary and secondary
field, Conc can produce a concordance of the correspondences between
these two fields (for instance, morpheme and gloss).

In addition to word (and morpheme) concording, Conc can also
produce a concordance of each letter in a text or body of phonological
data. Pattern-matching facilities are also available in letter concordances,

Software for doing field linguistics 195

so the user can specify search patterns that will have the effect of retrieving,
say, words containing intervocalic obstruents.

6.4.7 Language survey and comparison

While various general purpose database management programs and
statistical analysis programs could be used for tasks associated with
language survey and comparison, there is at least one domain-specific
program, namely WORDSURV.

WORDSURV is a menu-driven program for DOS that was developed
to aid in the management and analysis of language survey word lists.
Typically a language surveyor collects a word list (such as the Swadesh

Figure 6.12 Text and concordance windows in Conc

196 Evan L.Antworth & J.Randolph Valentine

word list) in several dialects in an area. The word lists are then compared
to determine the amount of shared vocabulary and the genetic relationships
among the dialects. WORDSURV assists this labor-intensive process in
several ways. First, it provides a printed copy of the word list that includes
all of the linguistic forms that have previously been collected for each gloss.
This makes it easier for the surveyor to elicit possible cognates on the spot.
Second, WORDSURV automates the process of comparing several word
lists to determine shared vocabulary. Third, WORDSURV supports more
rigorous types of analysis: a phonostatistic analysis measures phonological
divergence between dialects, and the COMPASS analysis (Frantz, 1970)
measures the strength of phoneme correspondences in proposed cognates.
Lastly, WORDSURV can output data in a format suitable for printed
reports. WORDSURV is useful not only for doing language surveys in the
field, but also for doing comparative reconstruction.

Figure 6.13 A record in WORDSURV

197

Chapter 7

Language understanding and the
emerging alignment of linguistics
and natural language processing

James E.Hoard

7.1 OVERVIEW

The potential impact of natural language processing (NLP) has been
widely recognized since the earliest days of computers. Indeed, even as
the first electronic computers were becoming a reality, Alan Turing
imagined a symbolic processing system—one with true artificial
intelligence—that could converse with a person in a way that could not
be distinguished from a conversation one might have with a real person.
Turing, in his famous article (1950), called his thought experiment the
Imitation Game. Nowadays, it is called the Turing Test. While no
computer program has so far come even remotely close to passing the
Turing Test for intelligence, and none will be able to do so at any date
in the future that we can reasonably predict, NLP programs that do
“understand” language—albeit to a far lesser degree than Turing
imagined—will be able to perform many useful and valuable tasks for
the foreseeable future. Among them are these:

1 Grammar and style checking—Providing editorial critiques of

vocabulary usage, grammar, and style—improving the quality of all sorts
of writing—especially the readability of complex technical documents.

2 Machine translation—Translating texts, especially business and
technical texts, from one natural language to another.

3 Information extraction—Analyzing the meaning of texts in detail,
answering specific questions about text content. For many kinds of text
(e.g., medical case histories) that are in a well-bounded domain, systems
will extract information and put it into databases for statistical analyses.

4 Natural language interfaces—Understanding natural language
commands and taking appropriate actions, providing a much freer
interchange between people and computers.

5 Programming in English—Enabling the use of carefully controlled,
yet ordinary, human language to program computers, largely eliminating

198 James E.Hoard

much of the need for highly-specialized and arcane computer
“languages”.

6 Modeling and simulation—Enabling computer modeling and
simulation of all manner of real-world activities and scenarios where
symbolic information and symbolic reasoning are essential to success.

This informal overview of language understanding and NLP is divided into
four sections. Section 7.2 examines the changing relationship between NLP
and linguistics and advances the thesis that the need for language
understanding to meet the goals of NLP will have a profound effect on
the objectives of linguistics itself and on what qualifies as good linguistic
theory and practice. To illustrate this thesis, Section 7.3 discusses the scope
of language understanding, outlines some fundamental criteria that must
be satisfied before any adequate language understanding semantics can be
achieved, and offers some suggestions about how one might go about
satisfying them. The essential point is that the semantics of natural language
has a logic of its own, which must be dealt with on its own terms, as part
of linguistics proper. Section 7.4 outlines some considerations about
approaches to and components for constructing working NLP systems.
Section 7.5 discusses the design and implementation of a grammar and
style checker that can determine the senses in which words are being used.
(Space limitations preclude taking up any of the other application areas
listed above.) The promise of NLP technology is just beginning to be felt
in the commercial marketplace. As its commercial impact grows, the effect
of NLP on academic linguistics will produce a profound enlargement in
its scope and objectives and greatly influence the work of its practitioners.
The shift will be, in brief, one that places the present focus on language
description, including the concern for language acquisition and linguistic
universals, within the much larger (and to my mind, much more
interesting) context of language understanding.

7.2 THE CHANGING RELATIONSHIP
BETWEEN LINGUISTICS AND NATURAL LANGUAGE
PROCESSING

Traditionally, work in NLP has been viewed as quite peripheral to
linguistics. The relationship was one where NLP received the benefits of
linguistic theories and methods, and, at best, imposed perhaps a few
requirements on linguistics. Before 1990, commercial and industrial NLP
systems were, indeed, few and far between. The entire spectrum consisted
of a few machine translation (MT) systems and the odd natural language
database query system. Everything else was too primitive or too
experimental to have any noticeable impact. The MT systems were non-
general and essentially atheoretic, having been built up over a number

Linguistics and natural language processing 199

of years by an accretion of specialized lexicons and procedural code. (See
Kay, Gowron, and Norvig, 1994, for an overview of MT systems, of
approaches to MT, and for a refreshing discussion of translation as a
process of negotiation across languages and cultures.) The database query
systems had to be tailored to particular databases and had very limited
utility. In this period, NLP did, of course, draw on other disciplines
extensively. These areas included computer science, mathematics, and the
cognitive sciences. Computational linguistics also played a large role here,
since it was the principal source of parsing algorithms and of symbolic
processing strategies.

In the mid-1980s, however, a change in the NLP-linguistics relationship
started to accelerate. The change came about as NLP practitioners
attempted to develop fieldable systems with sufficient coverage to address
real-world problems in an acceptable fashion (one which adds value to the
users). Constructing robust NLP systems both for grammar and style
checking and for information extraction exposed linguistic theories and
methods to testing and validation of unprecedented complexity and
comprehensiveness. In both areas it quickly became clear that a premier
problem is ambiguity resolution (or disambiguation). Systems like these,
which are intended to cover a very wide range of inputs, must have
comprehensive lexicons and grammars. Yet, the broader the lexical and
grammatical coverage, the larger is the potential ambiguity of language
analyses produced by the system. That is, in analyzing input text, a robust
NLP system must arrive at a preferred interpretation (syntactic, semantic,
and/or pragmatic) before any useful action can be taken. The feedback to
linguistics was now not just of requirements expressed from a distance,
but reports of results (or the lack thereof), and NLP now came to the fore
as the arena where linguistic theories and methods are to be tested and
validated.

There is now a growing tendency to ensure that linguistic theories are
computationally effective. Three examples will serve to illustrate the changing
situation: (1) Fraser and Hudson’s work on inheritance in word grammar
(Fraser and Hudson, 1992) is indicative of the trend to add computational
and NLP support to theoretical work already well underway (Hudson, 1984;
1990). (2) Similarly, Harrison (1988) supplies a full parsing algorithm for
generalized phrase structure grammar [GPSG] (Gazdar, Klein, Pullum, and
Sag, 1985). (3) In contrast, for head-driven phrase structure grammar
[HPSG] (Pollard and Sag, 1987; Pollard and Sag, 1994), now perhaps the
most common theoretical framework used in NLP, the development of
computational methods was a concern from the beginning. As is the case
for HPSG, we can expect in future that linguistic theory and computational
algorithms will be developed in tandem and that testing and validation over
large-scale problems will be not just “in scope” but, indeed, both customary
and mandatory from the outset.

200 James E.Hoard

Clearly, testing and validating a (putative) comprehensive set of
linguistic rules formulated within some given theory, over a representative
domain, is a very difficult task. Success criteria need to be agreed on;
and there is no obvious way these can be independently established to
everyone’s satisfaction. Moreover, different acceptance criteria will be
needed depending on the particular language component the rules
address and on whether the rules are being evaluated as a stand-alone
system or as part of some larger system with which they interact.
Evaluating results within a single framework is difficult enough. The
evaluation problem is compounded when cross-theory comparisons are
attempted. This is a most difficult area, since even agreeing on
terminology equivalents that can serve, in part, to bridge theoretical
differences, is arduous. (See Neal and Walter, 1991; Harrison, et al., 1991;
and Neal, Feit, Funke, and Montgomery, 1992, for some initial
contributions to this topic.) The evaluation of comparative system
performance is likely to remain both ad hoc and not very satisfactory for
many years. What can be said now for both within-a-theory comparisons
and for cross-theory comparisons is this: While coverage per se is the
paramount issue (what is correctly analyzed and what is not), so is
robustness (the ability of a system to deal with unexpected input), space
and time complexity (the resources required for the coverage obtained),
extensibility, adaptability, and maintainability.

The trend toward software implementation and large-scale testing and
validation in linguistics, driven by NLP application development, ensures
that the very objectives of linguistic research will be broadened and
deepened. The objectives of linguistic theory before the 1980s were aimed
largely at accounting for language structure, not language understanding.
The efforts centered on syntax and phonology, with emphasis on language
descriptions (synchronic and diachronic), structural universals, language
acquisition, and sociolinguistics. Work on semantics, pragmatics, and
discourse analysis was a secondary concern. Considering language as a
functional system of communication was on the periphery. Given the
ambiguity of linguistic expression generally and the fact that people
normally interpret verbal and written communication correctly (they “get
it right”), this is surprising. It’s not that linguists were unaware of
ambiguity. Rather, the inclusion of such examples as “time flies like an
arrow” and “the shooting of the hunters” in the linguistic literature seemed
to be motivated by a requirement to illustrate that one’s theory provided
a distinct structure (a representation) for each interpretation. That is, the
motivation served the needs of descriptive linguistics, and the real issue—
how pervasive ambiguity is resolved in everyday language use—was not
addressed. And ambiguity is pervasive, arising at all linguistic levels
(phonetic, phonological, morphological, lexical, syntactic, semantic,
pragmatic), and all of these occur in concert, as it were, in ordinary

Linguistics and natural language processing 201

discourse. The NLP and computational linguistics literature, in contrast,
is chock-full of articles on resolving ambiguity—with numerous approaches
and methods proposed for disambiguation, both statistically based and
knowledge (rule) based. This situation will not hold. Traditional academic
linguistics will indeed need to “get with the program” and broaden its
objectives. The change is inevitable and will take place quite quickly, since
the people who contribute to linguistics research will be, more often than
not in coming years, the very same people who also do work in
computational linguistics and NLP.

The development of computational linguistics and the emergence of
NLP enables linguists to develop and test theories using large amounts of
data. Indeed, it demands and compels them to do so. In brief, linguistics
must expand its horizons, augmenting a traditional agenda that is largely
limited to descriptive linguistics and representation issues to the much
larger—and vastly more difficult—objective of language understanding.

7.3 UNDERSTANDING LANGUAGE

7.3.1 Meaning, interpretation, and speakers’ intentions

The overall goal of natural language processing is to get computers to
understand our language, where “our language” is, of course, any language
we happen to speak. To anyone who has attempted to design and
implement a natural language processing system (or even to anyone who,
as a thought experiment, has contemplated doing so), it is obvious that
the sheer complexity of language dictates that the goal is at once
audaciously difficult and necessarily long-term. No one could hope to get
computers to “understand our language” without grounding the enterprise
in linguistics, both theory and practice, for that is where the inner workings
of language are investigated and described. Many other disciplines have
much to contribute to the enterprise. Among them are computer science,
mathematics, psychology, philosophy, and cognitive science. Of these,
computer science has been the most important, because that is where the
methods and limits of computability have been extensively explored and
where software engineering methods have been developed. At the
intersection of these two disciplines, computational linguistics has
flourished and has taken on a vigor of its own. From the 1960s into the
1990s, computational linguistics developed primarily through the work of
computer scientists interested in string manipulation, information retrieval,
symbolic processing, knowledge representation and reasoning, and natural
language processing. Only from the mid-1980s has the linguistic
community begun to interact and participate in the development of
computational linguistics in a significant way.

202 James E.Hoard

The NLP community has been especially interested in analyzing text-
based inputs and outputs, primarily because computers readily accept text
inputs in standard orthographies, not inputs in a phonetic alphabet (without
special provision). Nor, of course, do computers readily accept voice inputs.
Using text inputs is also standard practice in linguistics among those who
study syntax, semantics, pragmatics, and discourse theory. NLP is
complementary to and has much to contribute to the success of speech
recognition, speech synthesis, and pen (handwriting) recognition
technologies, but, from the NLP point of view, these are extended
capabilities.

What do we mean by “understanding” when we talk of language
understanding? What would it take to convince us that our computer
understands language? It is hard to say precisely, since there is no exact
formulation of what we mean by ordinary human understanding of language.
The gap between what people do with language in their “native” state—as
a matter of course—and what computers can do is profound. In their
“native” state, computers accept strings of characters as inputs. These
character strings have absolutely no meaning or significance to the computer.
Any understanding of character strings as natural language is external to
the computer and is done at present only by the people who enter the strings,
manipulate them (with one sort of application program or another), view
them on screen, and print them out.

Now, as a first approximation to language understanding, we would say
that a computer understands language if it could represent the meaning of a
text (which could be as short as a single sentence) in such a way that it could
draw the same conclusions that people do. The kinds of inferences that we
would expect our computer to make would include at least the immediate, or
shallow, kind. For example, suppose we learn that Max died on Tuesday. We
can immediately conclude that: Max died. Max is dead. Max is no longer living.
Something happened to Max. Something happened. Someone died. Max used to be
alive. Max is not alive now. Max lived up to Tuesday. Max was alive last Monday.
There was a death.—and so forth. Such inferences are shallow in the sense that
we draw them immediately from the content of the input text sentence, and
we use no information to form our conclusions of the sort that ranges beyond
the text we are given. Deeper inferences depend on the extensive knowledge
we all have about our culture in general and on any particular knowledge we
might have about Max. For instance, we could reasonably conclude, on the
basis of cultural expectations, that there will be, in all likelihood, a funeral or
memorial service for Max and that the time and place will be announced in
the local newspaper. Suppose we also know that Max was the president of
the town bank. Then we can conclude that the bank is now without a president,
at least temporarily. If we know that Max was married to Abigail, we know
that Abigail has been widowed. Given everything people know about the world
and what goes on in it, deep reasoning about events and situations that arise

Linguistics and natural language processing 203

can be carried out at will and for as long as one wishes. The number of
conclusions we can draw and their significance is open ended.

It seems highly unlikely that one can make a principled distinction
between shallow and deep reasoning, claiming that the first is characteristic
of and intrinsic to language (and to language understanding) while the
second involves general reasoning that goes far beyond language (and far
beyond language understanding). Certainly, inferences that apparently follow
directly from the meaning of words and their actual use in sentences and
discourse seem more basic, even different, from those that follow from
broader knowledge of the world. The problem is that it is difficult to see
where one sort of reasoning ends and the other begins, for knowledge of
the meaning of words is, so far as we know, of the same kind as any other
sort of knowledge.

However it is that meaning is represented and that inferences are drawn,
for people or for computers, one essential point to keep in mind is that
meaning and interpretation are not at all the same thing. In the words of
Barwise and Perry (1983:37) “meaning underdetermines interpretation”
(see also Barwise, 1989:61ff). Sperber and Wilson (1988:141) go even
further, proclaiming that “the linguistic structure of an utterance grossly
underdetermines its interpretation.”

Consider the following sentences, which, clearly, do not have the same
meaning:

1) Dan turned on the power.
2) Dan threw the switch.

They could easily, however, have the same interpretation, for one possible
interpretation for 1)—and also for 2)—is this:

3) Dan pushed upward a lever that is inside the electrical power box on

the outside of his house, thereby completing the circuit that supplies
his house with electrical power.

Now suppose, however, Dan works for the power company and that the
intended interpretation of 1)—and also for 2)—is:

4) Dan reset a large circuit breaker at a substation.

Just as easily, the speaker who uttered 2) could have intended the
interpretation to be:

5) Dan physically threw a switch, say, an electrical switch, across the room.

There is clearly a semantic difference in the meaning of “throw” that
contributes significantly to the interpretation of 2), in some actual context
of use, as 3) or 4), on the one hand, and as 5), on the other. Suppose, though,

204 James E.Hoard

that the intended interpretation of 2) is 3). Even so, we have underdetermined
the situation, since the utterance does not describe the kind of switch nor
exactly what Dan did. The actual situation, which we might know through
observing Dan, could be this: Dan reached out with his right arm and moved
the lever on the main switch upward, using the thumb and index finger of
his right hand, thereby completing the electrical circuit and turning on the
power to his house. The point is that whatever we take the semantic
representation of a sentence to be (or its several semantic representations if
it is ambiguous), we have only accounted for its meaning (or its several
meanings), not for its actual interpretation in the context in which it is used.
In sum, the overt and essentially explicit (or public) meanings of utterances
serve as the input to interpretation (a further cognitive endeavor). Any factual
correspondence between an interpretation (a mental representation) and the
real world (a real-semantic interpretation) is necessarily indirect.

For Barwise and Perry, “Reality consists of situations-individuals having
properties and standing in relations at various spatiotemporal locations”
(1983:7). That is, situations are states of affairs that are grounded in space
and time. Following Pollard and Sag, we will refer to states of affairs as
circumstances, where “roughly speaking, circumstances are possible ways
the world might be; they are the kinds of things that obtain or do not obtain,
depending on how the world is” (1987:86). The circumstance of “Dan’s
turning on the power” becomes a situation when it is grounded as in
utterance 1) at some past time and at some unspecified location. Clearly, to
account for situations and circumstances adequately a language
understanding system must implement a theory of pragmatics, discourse,
and verbal communication. Such a theory must account for a host of
phenomena, including those of reference, dialogues, narratives, and discourse
relations. The problem of reference is twofold. First, within language, the
rules of anaphoric reference must be delineated. Second, the formulation
of an adequate theory of reference that holds between language descriptions
of things, circumstances, and situations and the actual objects and states of
affairs in the real world is also very much at issue. A theory of reference in
the second sense stands outside the theory of linguistic semantics, although
it very much depends on it.

By and large, the rules of anaphora are not well understood. In particular,
the rules for referring to circumstances are not adequately formulated. For
example, what is the precise description of that in the following pair of
sentences?

6) John broke his leg last year.
7) I sure hope that doesn’t happen to me.

Evidently, the anaphoric interpretation of that requires a procedure that
extracts “break” and its complement structure from the situation,

Linguistics and natural language processing 205

generalizes it to a circumstance, namely, “X breaking X’s leg”, and
substitutes “my” for X. The interpretation of that is, then, the circumstance
“my breaking my leg” (which is embedded in the circumstance of “that
not happening to me”, which is embedded in the situation that is the
complement of “hope”).

While Barwise and Perry’s theory of Situation Semantics provides a
principled way of describing the information that language communicates—
through situations (and situation types), circumstances (and circumstance
types), and the relations among situations and circumstances—it does not
provide a theory of communication. And, hence, there is no way within
the theory of Situation Semantics to constrain the determination of
speaker’s intention, which is the goal of language understanding. For a
theory of communication we turn to Relevance Theory, as presented by
Sperber and Wilson (1986).

Sperber and Wilson’s basic thesis is that a “principle of relevance” governs
“ostensive-inferential” communication. The relevance principle is: “Every
act of ostensive communication communicates the presumption of its own
optimal relevance” (1986:158). Ostensive-inferential communication occurs
when: “The communicator produces a stimulus which makes it mutually
manifest to communicator and audience that the communicator intends, by
means of this stimulus, to make manifest or more manifest to the audience
a set of assumptions {I} (1986:155). The presumption of optimal relevance
has two pans:

1 The set of assumptions {I} which the communicator intends to make

manifest to the addressee is relevant enough to make it worth the
addressee’s while to process the ostensive stimulus.

2 The ostensive stimulus is the most relevant one the communicator could
have used to communicate {I}” (1986:158).

For Sperber and Wilson, the language understanding task:

…is to construct possible interpretive hypotheses about the contents of
{I} and to choose the right one. In different circumstances and different
cognitive domains, the task…may be carried out in different ways. In some
cases, it is best carried out by listing all the possible hypotheses, comparing
them, and choosing the best one. In others, it is better carried out by
searching for an initial hypothesis, testing it to see if it meets some
criterion, accepting it and stopping there if it does, and otherwise repeating
the process searching for a second hypothesis, and so on. (1986:165).

Kempson (1988b:12ff.) briefly discusses some of the similarities and
differences between Situation Semantics and Relevance Theory, pointing out
that apparent conflicts about the nature of cognitive representations may

206 James E.Hoard

not be as deep as they seem. Kempson concludes that “the theory of
situations does not preclude a system of mental representations” (1988:14).
This being so, we are free to use the constructs of Situation Semantics as
part of the cognitive language of thought that is at the core of determining
speakers’ intentions and of language understanding. As Kempson says: “It
is the language of thought that is semantically interpreted, not the natural
language expressions. Put crudely, it is our beliefs which are directly about
the world we live in, not the sentences of our language” (ibid:10). In short,
the interpretation task for language understanding requires determining first
the meaning of utterances and then the (apparent) intended interpretation
of the utterances. Now, it might be the case that the representation of
utterance meaning (linguistic semantics expressions) is quite different in kind
than the representation of internal cognitive interpretations (prepositional
semantics expressions). It is a thesis of Section 7.3.2 that this is not so and
that a single representation system will suffice for expressing semantic
meanings and interpretations.

7.3.2 Basic linguistic elements of language understanding
systems

There are a number of basic linguistic elements and capabilities which any
model of language understanding must provide, whether we view it as
linguistic theory per se or as a basis for language understanding systems. To
the extent that a given language model fails to satisfy these requirements
(in principle or in practice), it is to that extent inherently insufficient for
one or another NLP task. It is convenient to separate the capabilities into
three categories, one for phonology, morphology, and syntax, one for
semantics, and one for pragmatics and discourse. Within all three, there are
manifold opportunities for alternative approaches. Since ambiguity is the
norm for natural language, and it is the norm at all levels, a fundamental
challenge for any language understanding system is to confront ambiguity
and resolve it.

Figure 7.1 shows the conceptual architecture of an information
extraction system, suitable for extracting information from (online) texts,
that contains a language understanding system as its principal subsystem.
(The modules of the Sentence and Discourse Analyzers constitute the
language understanding subsystem.) The Preprocessor handles such chores
as separating out formatting codes and the like from the basic text stream
and segmenting longer texts into pieces appropriate for analysis and
information extraction. The Data Extractor contains a set of queries and
the rules for applying them. Information extraction is useful whenever there
are large numbers of relatively short texts in some domain, the things that
go on in that domain share a number of attributes, and it is desirable to
“reduce” the goings on to standardized database records. For example,

Linguistics and natural language processing 207

newswire articles on product offerings and sales (in some industry),
financial takeovers and mergers, and stock market trends are suitable
domains. Other uses for information extraction include tracking
maintenance and repair reports, quality assurance reports, and military
tactical messages. (Nicolino (1994) describes a Boeing prototype message
processing system which extracts information from military tactical
messages, then uses the information to drive a “situation awareness”
display. With such a system, a field commander could monitor an entire
military operation in near-real time as reports of it arrived and were
processed. See also Chinchor, Hirschman, and Lewis (1993) and Chinchor
and Sundheim (1993) for a description and evaluation of a number of
message processing systems.)

7.3.2.1 Phonology, morphology, syntax

Phonology, morphology, and syntax are concerned with the form of
language, i.e., with all the tokens of language and with all their permissible
concatenations (groupings and arrangements as constituents). Getting a
computer to recognize natural language tokens is not as easy as one might
suppose, even for a language like English for which the morphology is
sparse and all the occurring forms can either be listed or can be easily
computed. First, groups of characters and the spaces between them, as
they are ordinarily represented in the standard orthography, are only loosely
correlated with the morphemes and other lexical units. (The English
orthography seems to be typical in this respect). The roots and affixes of
inflections, derivations, and compounds must be recognized by some
combination of rules and lists. Then, too, multi-word combinations bound.

Figure 7.1 Overall information extraction architecture

208 James E.Hoard

Here are some typical examples: Las Vegas, Las Cruces, Ingmar Bergman,
Ingrid Bergman, De Witt Clinton, Bill Clinton, Vannevar Bush, George Bush,
roll back, roll bar, roll call, landing gear, landing strip, bevel gear, pinion gear,
slow motion effects, personal effects, liquid assets, liquid crystal display. Moreover,
the list of single-word and multi-word lexical items is unbounded. New
proper nouns and multi-word lexical items are constantly added to
languages and are regularly encountered in language use. A language
understanding system must be prepared to deal with new tokens and
combinations of tokens on demand. It is also worth noting that, when
punctuation is taken into account, tokenization must be considered on
more than one level. For example, one cannot be sure, a priori and in
isolation, whether fig. is an abbreviation for figure, whether it represents
the word fig followed by a sentence-ending period, or whether, indeed, it
represents an abbreviation for figure at the end of a sentence, where, by
convention, only a single period is used. Ambiguity is clearly the norm at
the lexical level.

For languages like Arabic, Hebrew, Turkish, and Finnish, which have
very complex morphologies, tokenization is a major problem. Some number
of (morpho)phonological rules may apply to any given form, and analyzing
(i.e., tokenizing) surface forms can lead to an exceptionally large search
space as the rules that have been applied are “undone” to determine the
underlying base forms. Because until quite recently the vast majority of
the work in computational linguistics has been done on English and
similarly “isolating” European languages, computational phonology is an
underdeveloped field. It is now receiving much more attention. See
especially Koskenniemmi, 1984; Kaplan and Kay, 1994; Maxwell, 1994;
Bird, 1995, and Kiraz, 1996.

If one’s language understanding system can map character strings into
possible tokens, then, given syntactic information about the tokens (part-
of-speech and constituent membership possibilities, in particular) we would
expect that a comprehensive grammar and a parser could together produce
syntactic analyses of sequences of tokens into constituent phrases, clauses,
and sentences. (A syntactic parser is an algorithm for applying a grammar
to a sequence of tokens. More generically, a parser applies a set of pattern-
matching rules to a set of concatenated symbols. A syntactic parser is, then,
a particular sort of parser, as is a morphological parser.) When a token
sequence is sanctioned by the grammar, a parse, i.e., a description of the
sequence, is produced by the parser. There is no guarantee, of course, that
the sequences the parser and grammar sanction are actually grammatical.
Grammaticality judgments are external to the parser-grammar. Here again
the inherent ambiguity of natural language asserts itself. A sentence of
twenty words can have dozens, even many dozens, of parses when the
analysis is based on syntactic (part-of-speech and constituency) information
alone. From this perspective, it does not much matter what syntax

Linguistics and natural language processing 209

formalism one chooses for the grammar. It could be one based on GPSG,
HPSG, categorial grammar, tree-adjoining grammar, or some other
coherent formalism. The important thing is that the grammar produces
(surface) syntactic parses for the actually occurring sequences of tokens.
In short, the parser and grammar must together recognize and provide an
analysis of the actually occurring sequences of lexical items that speakers
of the language agree are acceptable. If the language understanding system
is robust, its parser and grammar must handle lexical sequences that, while
not completely acceptable, are nonetheless interpretable by speakers of the
language. (For example, in the new era of word processing software, writers
frequently produce “sentences” with double articles when rewriting and
editing text. Readers are obliged to ignore one of the extra tokens to
interpret them successfully.)

7.3.2.2 Semantics

The semantic interpretation capabilities of any language understanding
system depend ultimately on the semantic theory that it implements
(however imperfectly). We judge the adequacy of a semantic theory
according to at least the following criteria (see Hoard and Kohn, 1994):
(1) Partial intentionality, (2) Real-world validity, (3) Multi-valued logic,
(4) Inferencing rules, (5) Semantic operators, (6) Coherence conditions,
(7) Connectivity, (8) Generalized quantification, (9) Non-arbitrary relation
to syntax, (10) Intentionality, (11) Higher-order constructs, and (12)
“Amalgamation”. Each of these attributes has its functional counterpart
in the actual language understanding systems of real language users. They
must eventually find functional expression and implementation in one
fashion or another in computer-based language understanding systems.

1 Partial intentionality—A language understanding system must achieve

its understanding of a verbal or text input in finite time and with finite
resources. Real-time understanding is a highly desirable goal for a
computer-based language understanding system. It is, after all, what
people are very good at. To meet a real-time objective a language
understanding system must provide semantic representations of
sentences (actually, of connected discourses) in no worse than linear time
as a function of sentence length, and it must do so with a well-bounded
amount of memory (“calculation space”). This is not to say that people
are computers or use a computer program to understand language. The
criterion merely states that any simulation of language understanding
using computers must model human capabilities at least to this extent.

2 Real-world validity—Semantic representations must have an overt
and explicit character that describes the real world and is consistent
with it. The representations must fix (or determine) the semantic

210 James E.Hoard

interpretations and provide one (and only one) possible meaning for
any given semantic representation.

3 Multi-valued logic—To describe the real world of language use, a
semantic theory (and a language understanding system) needs at least
three truth values, namely, yes (true), no (false), and don’t know
(indeterminate). These three truth values are required for both open-
world and closed-world universe-of-discourse assumptions.

4 Inferencing rules—Being able to draw conclusions that are compatible
with the real world and with the knowledge at one’s disposal is
fundamental to how people use language, and to both semantic theory
and to language understanding systems. The conclusions one can draw
are of at least two different kinds. The first can be called the means
relationship and is the basis for being able to conclude that X means Y.
On p. 202, for example, we concluded that Max died implies that Max
is no longer living. We did this in part on the basis of the means
relationship, since, informally, X dies means that X stops living. The second
relationship can be termed is covered by and is the basis for concluding
that, say, Sam built a dory entails that Sam built a boat, for a dory is a
kind of boat (i.e. dory is covered by boat). Note that we need at least these
two kinds of relationships, since we cannot claim either that dory means
boat or that boat means dory.

5 Semantic operators—The operators (or relations) that a semantic
theory provides are the basis for deciding how the morphemes in any
given sentence are joined to form semantic structures. For instance, in
the simple sentence John loves Mary we can ask what John’s relationship
and Mary’s relationship is to loves. Possible answers are that John is the
“cognizer” of loves, the one who has a particular cognitive attitude, and
that Mary is in the “range” of his cognitive attitude. Neither the exact
nature of the semantic operators (“cases”, “valences”, and/or “thematic
roles”) that a theory may provide, nor their number, is at issue here. We
do, however, postulate a closed set of primitive semantic operators over
which semantic structures can be formed. A semantic theory must make
substantive claims about how language combines morphemes into
semantic structures, admitting some relationships among morphemes
and disallowing others, or we cannot construct accounts of situations
and circumstances whose real-world validity can, even in principle, be
verified.

6 Coherence conditions—To distinguish possible from impossible
semantic representations requires, in addition to semantic operators, a
set of well-formedness conditions. The set of constraints on combinations
of semantic relations provides for the incoherence of such putative
sentences as: John smiled Mary a watch (too many complements for
smiled), On Wednesday John loved Mary on Tuesday (two conflicting
temporal expressions), In New York Bob read the book in Boston (two

Linguistics and natural language processing 211

conflicting locative expressions), and Mary knows John swiftly (manner
expression incompatible with a cognitive verb).

7 Connectivity—All the morphemes in a sentence contribute to its
meaning and must be accounted for in the semantic representation of
the sentence. There are no “sentences” like John read the book the, which
have “stray” elements (in this example an extra the) not integrated into
the whole. In those cases when the meaning of a sentence does not result
by composition from the meaning of its semantic constituents, we invoke
the notion of an idiom to explain the anomaly.

8 Generalized quantification—While the semantics of mathematical
proofs can make do with just a universal quantifier and an existential
quantifier, human language has an unlimited number of quantifiers.
These encompass such variable value quantifiers as few, many, and some,
as well as fixed-value quantifiers like two, between three and five, and half.
Then, too, natural language quantifiers also include temporal expressions
such as frequently, once, occasionally, and always.

9 Non-arbitrary relation to syntax—The relation between syntax and
semantics is not arbitrary, but systematic. Any viable semantic theory
will have to provide a consistent and effective means to map a syntactic
structure to a corresponding semantic representation and from a
semantic representation to a corresponding syntactic structure. Because
semantic and syntactic structures are of different kinds, there can be
no isomorphism.

10 Relativistic intentionality—Not only are semantic representations but
partial descriptions of reality, they are also relative. Total and neutral
descriptions of the world using language are impossible, in principle.
Any use of language always reflects someone’s viewpoint and emphasizes
some aspects of a situation to the neglect of others. Different languages
use different constructs and devices to describe reality; what is obligatory
in the sentences of one language can be absent in another. Furthermore,
there is no clear delineation between literal and metaphoric expression.
While a semantic theory can provide representations of coherent and
meaningful structures, both utterances and the intended interpretations
of these utterances, it cannot provide a neutral representation, for the
intended interpretation is inevitably a cognitive, mental structure that
is determinable only in the context of actual use within a particular
language community.

11 Higher-order constructs—Any adequate model of semantics must be
able to make higher-order generalizations about language constructs. For
instance, verbs that have a cause complement, can have a manner
modifier, i.e., if The fish swam off is coherent, so is The fish swam off quickly.

12 Amalgamation—A semantic theory must be self contained—a notion
for which the term “amalgamation” suggests itself. There cannot be any
“meta-language” statements of some sort or other that somehow stand

212 James E.Hoard

outside the semantic theory and “interpret” it. Statements about
semantic theory, if they are meaningful, will necessarily be adequately
represented by semantic structures that are expressible within the
semantic theory itself. Otherwise, they would themselves need
interpretation, and that would require yet another (incomplete) theory
of semantics, and so on, endlessly. It follows that pragmatic
interpretations and the representation of discourse relations can also be
expressed in the same semantic theory used for representing the meaning
of individual sentences.

While detailed discussion of these twelve baseline attributes is beyond the
scope of this paper, we need to introduce some of the fundamental notions
of Cognitive Grammar (Langacker, 1987) and the Relational Logic model
of semantics (Hoard and Kohn, 1994) as background to the discussion of a
grammar and style checking system.

One of the most salient distinctions in natural language is that between
complements and modifiers. The distinction is due to the essential asymmetry
among meaningful elements as they are actually used in linguistic
constructions. In Langacker’s terminology (1987:298ff.), the elements of a
sentence are dependent (D) or autonomous (A). The autonomous elements
are those that are cognitively (and semantically) complete, requiring no
obligatory elaboration by other elements. The autonomous elements are
things (and syntactically, nominals). Dependent elements are cognitively
incomplete and cannot stand alone in ordinary language use. They require
elaboration and appear in construction with at least one other linguistic
element. The dependent elements are relational (and form such syntactic
classes as verbs, adverbs, adjectives, articles, conjunctions, and prepositions).
Further, a profile is defined as the entity designated by a semantic structure,
and the profile determinant is the component in a construction whose profile
is inherited by the composite structure. For example, girl is the profile and
the profile determinant in the clever girl. That is, girl is an autonomous element
in the clever girl, and both the and clever are dependent elements. The modifier
relation is defined as follows: In a construction with autonomous element
A and dependent element D, if A is the profile determinant, then A is the
head of the construction, and D modifies (is a modifier of) A. Consider now
the prepositional phrase with the clever girl. In this case, D is the profile
determinant. The complement relation is defined as follows: In a construction
with autonomous element A and dependent element D, if D is the profile
determinant, the head of the construction is D, and A complements (is a
complement of) D. Similarly, there are other relationship types where one
dependent element modifies another dependent element (as in walk fast and
very tall), one autonomous element modifies another autonomous element
(as in customer service and shake roof), and one dependent element

Linguistics and natural language processing 213

complements another dependent element (a circumstance complements a
situation).

In Relational Logic (RL), semantic structures are represented by directed,
acyclic semantic graphs. Relational operators are the edge labels, and
morphemes are the nodes. We show the modifier relationship, as in 8a), with
a semantic graph that displays D above and to the right of A. The
complement relationship is shown, as in 8b), with A displayed below and to
the right of D. Diagrams 8c), 8d), and 8e) show schematically relationships
where both elements are of the same kind, with one of them being the profile
determinant in the construction. As indicated in the semantic graphs, some
operator (given here as op) always sanctions the relationship between the
elements in a construction.

Examples of semantic components are given in 9). The operators sanction
(in part) the linking of linguistic elements to form components. The operator
names suggested in 9), and elsewhere in this paper, are plausible, but in no
sense definitive. They are ag(ent), att(ribute), man(ner), kind, and id(em). The
idem operator links situations to circumstances. In 9), it links the situation node,
denoted by S, with love.

214 James E.Hoard

The semantic graph for the sentence John loves Mary is given in 10a) and
10b). The root of a semantic structure is denoted by the situation node, S
(which is indexed in a multi-situation discourse). Here, S is linked to the
circumstance “John’s loving Mary”, which is headed by love.

The two complements of love—John and Mary—are linked to it by the
cog(nizer) and r(ange) operators, respectively. The present tense morpheme
is linked with the d(elimiter) operator to S and is displayed above and to the
right of the S-node as a situational modifier. For convenience, and without
loss of generality, in depicting semantic graphs, we use the abbreviations for
the operator labels and superimpose the common portions of independent
edges (as shown explicitly in 10a)), drawing them as shown in 10b).

The semantic graph in 11) gives the semantic representation for Mary
kissed John on the cheek in the park, showing how the semantic representation
accounts for the circumstance of “Mary’s kissing John on the cheek” (with
its internal locative modifier) and situates it in the past and “in the park”
(an external modifier). The operators introduced in 11) are loc(ation) and
u(ndergoer). Note that the delimiter operator sanctions the situating of
nominals with determiners (just as it sanctions the situating of verbs with
tenses).

Linguistics and natural language processing 215

The completeness and closedness of semantic representations in RL
guarantees a path between any two morphemes in a sentence. For instance,
in example 11) the path from Mary to cheek goes through kiss and on; the
path between Mary and John goes just through kiss; and the path from
park to John goes through in, S, and kiss. Note that the explicit (and initial)
semantic representation of the sentence does not indicate whose cheek was
kissed. It is, in fact, part of the meaning of kiss that the agent does it with
the lips, that the default location for the undergoer is also the lips, and
that an explicit internal modifier location is that of the undergoer. In short,
we infer that it is John’s cheek that was kissed.

Example 12) gives the semantic representation for Jill—this will amaze
you—managed to solve the problem, a sentence which illustrates both a
situation embedded in a situation and a circumstance embedded in a
circumstance. (The operators introduced in this example are dis(junct),
m(odal), and asp(ect).) The disjunct is a modifier of the matrix sentence,
while the “solving” circumstance is a complement of the “managing”
circumstance. The “solving” circumstance has an understood agent
(indicated with �) that we infer is Jill.

The incorporation into RL semantic representations of such basic
cognitive distinctions as that between dependent and autonomous elements
and between modifier and complement is a step toward a linguistic
semantics with real-world validity. RL semantic representations require
semantic operators—one for every edge—to sanction semantic components,
with no morpheme appearing in any semantic graph without explicit
sanction, and with no morpheme being left out of account. Hence, on the
presumption that every morpheme makes some contribution to the
meaning of the sentences in which it appears, RL provides a principled

216 James E.Hoard

approach to explaining the cognitive basis of semantic coherence and
connectedness. Indeed, RL offers some hope of accounting for why a
sentence is traditionally described as a “complete thought” and of
illuminating such concepts as “the language of thought”, for we will use
RL semantic graphs both for what is explicitly stated and for everything
inferred from what is stated. Among the inferences will be, whenever the
inferencing is successful, a representation of the speaker’s intentions. In
any case, representing all semantic structures with the very same RL
semantic graphs is, clearly, a large step toward amalgamation.

Natural language inferencing is not at all like that for mathematical logic.
In propositional logic and predicate logic, a set of logical operators permit
joining components into well-formed formulas, and inferencing proceeds
from the (given) truth values of components to the (derived) truth values
for whole statements. That is, in mathematical logic, inferencing proceeds
from the bottom up. In natural language it is the other way around.
Inferences are made from the top down, from the presumed truth value
of the whole to the derived truth values of both explicit components and
of inferred semantic structures. The fundamental reason is that the function
of language is to communicate. Recall Sperber and Wilson’s presumption
of optimal relevance: the speaker intends to make something manifest that
is both optimally relevant and worth the addressee’s while to process. It
follows that the basic assumption we have as we process language is that
what we hear or read is justified. Sperber and Wilson (1988:139) phrase
this basic assumption in terms of “faithfulness”, asserting that “every
utterance comes with a guarantee of faithfulness, not of truth. The speaker
guarantees that her utterance is a faithful enough interpretation of the
thought she wants to communicate”.

Relational Logic uses the value t (“true”) to indicate that the speaker’s
utterances are guaranteed to be justified (or faithful). For example, if
someone states that “Max is tall and wears a mustache”, we assign the
entire statement the value t and deduce a) that “Max is tall”, and b) that
“he wears a mustache” also have the value t. The truth values in RL are t
(“true” or “yes”), f (“false“ or “no”), and t/f (“indeterminate” or
“unknown” or “don’t know”). The necessity for at least three values is
simply illustrated by the problem posed in answering such questions as:
“Do they grow a lot of coffee in Venezuela?” to which a truthful answer,
based on all the knowledge at one’s disposal, could be “yes”, “no”, or “I
don’t know”. RL has general, relational mechanisms for inferring logical
and structural relationships among sentences and sentence components,
for inferring valid, meaningful sentences and semantic components from
speakers’ utterances, and for inferring valid conclusions from a posed query
relative to a knowledge base of natural language messages. In the next
several paragraphs we examine some of these inference mechanisms.

Linguistics and natural language processing 217

To illustrate how natural language deduction works, we consider first
the implicative and negative implicative verbs (Karttunen, 1971). For
implicative verbs (like manage), if the whole sentence is true, then so is
the complement of the verb. The truth of John managed to let out the cat
implies that John let out the cat. On the other hand, if it is false that John
managed to let out the cat, then it is false that John let out the cat. Finally, if
we do not know whether or not John managed to let out the cat, then we do
not know whether John let out the cat. For negative implicative verbs (like
forget), if the whole sentence is true, then the complement of the verb is
false; if the whole sentence is false, then the complement is true; and, if
the whole sentence is indeterminate, then the truth of the complement is
unknown. For example, if it is true that John forgot to phone his mother on
her birthday, then it is false that John phoned his mother on her birthday; if it
is false that John forgot to phone his mother on her birthday, then it is true
that John phoned his mother on her birthday; and, if we do not know whether
John forgot to phone his mother on her birthday, then we do not know whether
or not John phoned his mother on her birthday. Truth tables for implicative
and non-implicative verbs and their complements are given in 13) and 14).
The truth table for a negative element (like not) and what it modifies is
given in 15). This table is just like that for the negative implicatives (hence,
the “negative” label).

The semantic graph in 16) of Jill managed to solve the problem shows the
application of the truth table in 13) for implicative verbs. The truth value
of the situation, indicated by t on the id-operator edge, is inferred to be
true for the circumstance headed by solve.

218 James E.Hoard

A circumstance inherits the situators of the situation in which it is
embedded. This circumstance inherits, therefore, the past tense situator
of manage, and we infer the truth of the sentence Jill solved the problem,
whose semantic graph is given in 17).

Truth values propagate through complex semantic structures. Sentences
with a negative and an implicative and those with a negative and a negative
implicative give straightforward inferences. For example, Jill didn’t manage
to solve the problem, whose semantic graph is shown in 18), implies that Jill
didn’t solve the problem. Similarly, John didn’t forget to phone his mother implies
that John phoned his mother.

There are, of course, many verbs (like believe, imagine, and hope) that
are non-implicatives. For non-implicative verbs, the truth value of their
complements is indeterminate (t/f) regardless of the truth value of the
dominating semantic component. For example, whatever the truth value
of Bob believed that Jill managed to solve the problem, we do not know whether
or not Jill managed to solve the problem or whether Jill solved the problem. In

Linguistics and natural language processing 219

fact, once a t/f-value is encountered in any complex semantic structure, at
the topmost situation or anywhere below it, then all truth values from that
point in the structure are indeterminate. That is, neither a t-value nor an
f-value can ever be inferred when the dominant value is a t/f-value.

7.3.2.3 Pragmatics and discourse

From a language understanding perspective, any theory of pragmatics and
any theory of discourse are just subparts of a theory of communication, a
way of accounting for how it is that a speaker’s intentions are formulated,
organized, interpreted, and understood. Grice (1975, 1981) proposed a
theory of cooperation among the participants in a discourse or dialog.
Sperber and Wilson’s theory of relevance encompasses and supersedes
Grice’s pioneering work and attempts an overall framework for
understanding verbal (and other) communication. The task for pragmatics
and discourse analysis is to take the explicit linguistic semantics
representation of utterances and to derive the intended interpretation. Given
our goal of amalgamation, we can think of this as a conceptual or
propositional semantics representation. While pragmatic analysis makes use
of real-world information at every turn, there is, obviously, no guarantee that
the interpretation arrived at actually obtains in the real world.

(1) Pragmatics

Pragmatics is concerned with the use and interpretation of language in
context. Determining the intended interpretation of language requires real-
world knowledge; and, typically, it requires a lot of knowledge. The sorts
of information that language users bring to bear include information about
the basic vocabulary, say, the most commonly used ten to twenty thousand
English words in their most common senses. This knowledge is shared with
the larger English-speaking community. Alongside this general stock of
information, there is a seemingly endless array of domain-specific
vocabularies and of special senses of common words. Jargons include those
associated with occupations (e.g., law, stock trading, military, medicine,
farming, academe), technologies (automobiles and trucks, computing,
airplanes, and economics), individual companies and regions, and sports
and outdoor activities (baseball, tennis, fly fishing, duck hunting, and
mountain climbing). One should not ignore, either, the role of history, since
terminology varies and changes over time, and what is well known and
understood in one era may be virtually unknown to most people in another.
(Even widespread vocabulary of recent vintage can quickly fall into disuse.
For instance, key-punch cards, key-punch machines, and key-punch
operators are no longer evident, and knowledge of this phase of the history

220 James E.Hoard

of computing is rapidly fading.) Knowledge of vocabulary presupposes that
one knows how to use it. That is, it presupposes that one knows how the
vocabulary is used to organize and characterize events into typical scenarios
and topics. It is, in fact, one’s experience and expectations about “goings
on in the world”, including their description, that enable language
interpretation to proceed at all.

How is all this knowledge organized? Certainly, taxonomies and concept
hierarchies play a role. Knowing that X “is covered by” Y is one basic kind
of vocabulary knowledge. So is knowing that X is associated with Y, X is a
part of Y, and X is the opposite or antonym of Y. Concept hierarchies are
“tangled”, since a given term can participate in a number of relationships.
The organization of vocabulary terms in Roget’s Thesaurus, with its relatively
flat and shallow hierarchy of many categories, is very much in accord with
prototype theory (see, for example, Rosch, 1978; Tversky, 1986). Not very
surprisingly, basic-level (English) vocabulary items like dog, bird, chair, tree,
water, dirt, white, red, talk, walk, eat, drink, and sleep, which are eminently
suited for the human scale of experience and interaction with the
environment, are in the middle of the hierarchy. Basic terms like chair
typically have superordinate terms (such as furniture) and subordinate terms
(like rocking chair and recliner). Basic-level terms typically have a best
exemplar, a “cognitive reference point” that forms the basis for inferences
(Rosch, 1983). For example, the robin is about the size of the prototype
bird. Hence, a chickadee is a small bird, and a raven is a large bird. Then,
too, terms can be modified in such a way as to cancel temporarily some
of their prototypical attributes. Thus, there is no contradiction in speaking
of a dead bird, in noting that some birds are flightless, or in using the word
bird to designate the figurine of a bird. Basic-level terms do not necessarily
have a single prototype. The word tree, not in any case a botanical concept,
has three basic prototypes—broadleaf, conifer, and palm. Depending on
one’s life experience, one or two of the three types might be more
cognitively salient than the other two. One recent and important effort to
organize and categorize English vocabulary is WordNet, an on-line lexical
reference system organized in terms of lexical concepts that reflect human
cognition and lexical memory. The overall organization of the WordNet
database is described in G. Miller, et al. (1990); nouns and lexical
inheritance properties in G.Miller (1990); adjectives in Gross and K.Miller
(1990); verbs in Fellbaum (1990); and computer implementation in
Beckwith and G.Miller (1990).

Whatever one knows about words and what goes on in the world, it is
nonetheless true that new words and old words in new uses are constantly
encountered. What language users do to determine the meaning of new
items must be explained by linguistics and functionally duplicated by a
NLP system, which will also be confronted with “unknown words”. At least
in part, we can capitalize on the fact that speakers and writers are sensitive

Linguistics and natural language processing 221

to the expectations of addressees, usually provide implicit definitions of
items that they believe their audience will not be familiar with, and fail to
give descriptive clues about items they believe their intended audience
should be familiar with. For example, given the expectation that virtually
every adult American knows that Canada is the country immediately to
the north of the United States, it is highly unlikely that a news story would
contain “In Canada, the country to the north of the United States, …”
On the other hand, it is quite likely that a news story about Burkina Faso
would identify it as a West African country—on the reasonable assumption
that most Americans do not know what Burkina Faso is, let alone where
it is. Appositives are one of the favorite mechanisms for introducing the
meaning of unknown words: “Abra Cadabra, the Foreign Minister of…,”
“Abra Cadabra, the oil-rich province of…,” “Abra Cadabra, the new
software program from…” The point is that NLP systems, like ordinary
language users, must exploit whatever is available in any discourse to ferret
out the meaning and categorizations of new items.

Much of the recent work in cognitive grammar seeks to explain the
pervasiveness of metaphor and metonymy in language. (See especially
Lakoff and Johnson (1980), Lakoff (1987), Johnson (1987), MacCormac
(1985).) In essence, the view that has emerged is that human thought and
reason have a rich conceptual structure, one that necessarily and
characteristically supports and demands the use of figurative language. As
Lakoff (1987:xiv) puts it:

� Thought is embodied, that is, the structures used to put together our

conceptual systems grow out of bodily experience and make sense in
terms of it; moreover, the core of our conceptual systems is directly
grounded in perception, body movement, and experience of a physical
and social character.

� Thought is imaginative, in that those concepts which are not directly
grounded in experience employ metaphor, metonymy, and mental
imagery—all of which go beyond the literal mirroring, or representation,
of external reality. It is this imaginative capacity that allows for “abstract”
thought and takes the mind beyond what we can see and feel…

� Thought has gestalt properties and is thus not atomistic; concepts have
an overall structure that goes beyond merely putting together conceptual
“building blocks” by general rules.

Basic-level concepts like chairs, birds, and dogs have gestalt properties.
While such concepts clearly have internal structure, the wholes seem to
be altogether more cognitively salient and basic than the parts.

Martin (1992) presents a proposal for implementing a computer-based
capability for understanding metaphors. Martin’s approach provides an
explicit representation of conventional metaphors and a mechanism

222 James E.Hoard

(metaphor maps) for recognizing them. For example, to understand “How
do I kill this [computer] process?”, it is necessary to map “kill” onto
“terminate”. Similarly, “How do I open up this database application?”
requires that “open up” be mapped onto “start”.

Another vexing problem is that of polysemy (related word senses),
which is to be distinguished from homonymy. Homonomy refers to cases
of accidental identity, such as the word pen (writing instrument or
enclosure). Similarly, bank has a number of distinct and homonymous
meanings, as in such noun compounds as river bank and savings bank
and such verb uses as bank money, bank a plane, bank a fire. The various
meanings of bank are not nowadays felt to be systematically related,
although they may have been at an earlier time. For polysemy, where the
various senses of a word do seem to be systematically related, the major
research issue is the establishment of criteria for determining the number
of senses. Two criteria that indicate different senses are (1) the systematic
use of a word in different relational operator configurations and (2) the
systematic co-occurrence of a word with words from different parts of
the concept hierarchy. From a Relational Logic perspective, in the first
case the arc labels are different, while in the second, the nodes
characteristically have different “fills”. For example, two senses of open
are indicated for John opened the door and The door opened, since in the
first use the relational operators are cause and undergoer, with relational
structure open(c:X, u:Y), while, for the second, the single operator is just
the undergoer, and we have open(u:X). Similarly, for teach we note such
examples as Mary taught algebra, with the relational structure teach(c:X,
r:Y), Mary taught Bill, with teach (c:X, u:Y), and Mary taught Bill algebra,
with teach (c:X, u:Y, r:Z). Our pragmatic expectations about what can
fill a given node largely determine ambiguity resolution. In the preceding
example, the knowledge that algebra is a subject and that Bill is a personal
name is the basis for determining which of the two transitive relational
structures is intended. For prepositions, which typically have many senses,
it is often the object of the preposition that enables ambiguity resolution.
For instance, in on Tuesday, and on the table, the temporal and (one of
the) locative senses of on are disambiguated by the choice of object.
Brugman (1981) examined the large range of senses for over, including
its use as a preposition, particle, and adverb. (This work is discussed at
length in Lakoff, 1987:418ff.) The senses of over include “above-across”
(fly over), “above” (hang over), “covering” (cloud over), “reflexive” (turn
over), “excess” (spill over), and various metaphorical senses (oversee,
overlook). Brugman shows that the numerous senses of over are, indeed,
systematically related. Disambiguating the uses of over in these few
examples depends on the category of what over modifies: fly, hang, cloud,
turn, and spill are in different parts of the concept hierarchy.

Linguistics and natural language processing 223

The senses and uses of words are not static. New uses occur with great
frequency and are to be expected. For example, recent new uses of the
word word include word processor (a computer application program for
authoring and editing text), Microsoft Word (a word processing product),
Word Grammar, a theory of grammar, and WordNet, an on-line lexical
database. Evidently, new word senses are easily acquired in context, and
disambiguation depends on noting part of speech, relational semantic
structure, and the co-occurrence of words from different parts of the
concept hierarchy (including specific items, as in these examples). For both
people and for NLP systems, then, learning new vocabulary and new senses
of existing vocabulary items is a major concern. Yet, linguistics has paid
almost no attention to this area.

(2) Discourse

A theory of discourse understanding must encompass interactive dialogs,
short text messages (including memos and letters), narratives, and
extended texts of the sort that typify expository writing. The theory of
discourse structure advanced by Grosz and Sidner (1986) has been
particularly influential. Grosz and Sidner propose that discourse structure
is composed of three distinct, but interrelated, components: linguistic
structure, intentional structure, and attentional state. Viewed as linguistic
structure, a discourse consists of an assemblage of discourse segments.
The segments consist of utterances (written or spoken), which are the
basic linguistic elements. While the organization of discourse segments
is largely linear and hierarchical (since discourses consist for the most
part of topics and subtopics), the discourse model also provides for
segments embedded in other segments, and for asides, interruptions,
flashbacks, digressions, footnotes, and the like. The intentional structure
component accounts for the purposes and aims of a discourse. Each
discourse segment must have a purpose. Further, the originator of a
segment must intend that the recipient(s) recognize the intention. As
Grosz and Sidner say: “It is important to distinguish intentions that are
intended to be recognized from other kinds of intentions that are
associated with discourse. Intentions that are intended to be recognized
achieve their intended effect only if the intention is recognized. For
example, a compliment achieves its intended effect only if the intention
to compliment is recognized…” (1986:178) Although apparently
formulated quite independently, Grosz and Sidner’s insistence that
discourse intentions be manifest agrees wholly with Sperber and Wilson’s
theory of Relevance. Much recent work (e.g., Asher and Lascarides, 1994)
continues to investigate discourse intentions. The attentional state, the
third component of Grosz and Sidner’s discourse model, refers to the

224 James E.Hoard

“focus spaces” that are available to the participants in a discourse as the
discourse unfolds. “[The attentional state] is inherently dynamic,
recording objects, properties, and relations that are salient at each point
in the discourse…changes in attentional state are modeled by a set of
transition rules that specify the conditions for adding and deleting spaces”
(1986:179). The development of a framework for modeling the attentional
state, called centering, has been developed since the mid-1980s by Grosz,
Joshi, and Weinstein (1995). Another important issue is how, in third
person narratives, the reader (or listener) recognizes that the point of view
is shifting from the narrator to one or another of the characters. Wiebe
(1994) discusses at length the mechanisms that underlie understanding
and tracking a narrative’s psychological point of view.

While Grosz and Sidner discuss only linguistic utterances and linguistic
structure as a discourse component, it is obvious that discourses can
contain many other sorts of elements and segments (which may be
linguistic in part). Among them are, in spoken discourse, virtually anything
that can be pointed to as a deictic element. In written texts these elements
and segments include figures, drawings, pictures, graphs, and tables. In
the newer discourse structures that use electronic multimedia, various
graphics, video, and sound elements can be included in a discourse. That
is not to say that everything one might link together on-line and
electronically, no matter how sensibly, forms a discourse. Quite the
contrary. For instance, in preparing an on-line version of a technical
manual, one could provide a link from every mention of every technical
term to its definition in a technical glossary. None of these links or
definitions would be part of the discourse; they would be included as a
convenience, merely for ready reference.

Within a discourse segment, the discourse coherence relations among the
situations are often implicit and involve such notions as cause, consequence,
claim, reason, argument, elaboration, enumeration, before, and after. (See
Sanders, Spooren, and Noordman (1993), for a recent discussion and
proposal.) On the other hand, many transitions within a discourse structure,
especially changes and transitions from one segment to another, are often
made overt through the use of “clue word” or “cue phrase” expressions that
provide information at the discourse level. These expressions include
incidentally, for example, anyway, by the way, furthermore, first, second, then, now,
thus, moreover, therefore, hence, lastly, finally, in summary, and on the other hand.
(See, for example, Reichman (1985) for extended discussion of these
expressions, and Hirschberg and Litman (1993) on cue phrase
disambiguation.) Anaphora resolution has also been the subject of much
work in NLP. Representative treatments are given in Hobbs (1978), Ingria
and Stallard (1989), Lappin and Leass (1994), and Huls, Bos, and Claasen
(1995). In NLP, discourse referents (i.e., discourse anaphora) have
themselves been much studied (see Webber (1988), and Passonneau (1989)).

Linguistics and natural language processing 225

Lastly, ellipsis is yet another topic that is at once a prominent feature of
discourse structure and very important to language understanding. A recent
treatment is found in Kehler (1994).

Needless to say, no language understanding system currently available
(or “on the drawing board”) has anything even remotely close to a complete
implementation of the linguistic elements outlined above. The full range
of linguistic and cognitive phenomena to be covered is so incredibly
complex that it is arguable whether linguistic theory and its near relatives
that treat communication are at all mature enough to support the
development of a semantic representation and inferencing capability
satisfactory for linguistic semantics and for pragmatic interpretation in
context. Nevertheless, the development of NLP capability is proceeding
at a rapid pace, sometimes in reasonable accord with one or another
linguistic theory, but often exploiting representation schemes, analysis
methods, and inferencing techniques developed in computer science for
other purposes.

7.4 LINGUISTICALLY-BASED AND
STATISTICALLY-BASED NLP

The purpose of an NLP system largely determines the approach that
should be taken. Broadly speaking, there are two major approaches one
can take to NLP implementation, namely, linguistically (i.e., knowledge)
based and statistically based. For text analysis, if one’s purpose is to build
a system for very accurate, detailed information extraction, an objective
that requires language understanding, then only a linguistically-based
approach will serve. A comprehensive linguistically-based approach
requires, however, full lexical, morphological, syntactic, semantic,
pragmatic, and discourse components. These are not easy to come by. Less
ambitious goals for text analysis—for instance, finding out what very large
numbers of documents are “about”—can make excellent use of statistical
methods.

Singular value decomposition (SVD), one such statistical method (see
Berry, Dumais, and O’Brien, 1995), is a promising technique for achieving
conceptual indexing. Conceptual indexing, which correlates the
combined occurrence of vocabulary items with individual text objects
(typically a few paragraphs in length), enables querying and retrieval of
texts by topic—in accord with what they are “about”. The objective is not
language understanding; rather, it is to achieve robust text indexing and
information retrieval that does not depend on the presence in a text of
particular vocabulary items.

SVD is, like many other statistical techniques, a practical means for
investigating and analyzing large corpora. The goals for large corpora
analysis are many. In addition to conceptual indexing, they include: finding

226 James E.Hoard

instances (in context) of interesting and/or rare language phenomena;
determining the frequency with which language phenomena occur;
discovering linguistic rules, constraints, and lexical items; and constructing
bilingual dictionaries and/or ascertaining translation quality (by aligning
texts, one a translation of the other). Two special issues of Computational
Linguistics (March, 1993; June, 1993) were devoted to large corpora
analysis. (See especially the introduction by Church and Mercer (1993).)
In sum, from a linguistic point of view, statistical techniques are not ends
in themselves, but are tools to get at knowledge about language or the
world. Large corpora analysis techniques, in particular, give several different
sorts of results of direct interest to linguists. Among them are: (1) using
conceptual indexing of a large number of short texts (or long texts
segmented into suitable “chunks”), to select texts on particular topics for
some linguistic purpose or other, (2) culling example sets of some linguistic
phenomena from very large collections of text, and (3) finding bilingual
equivalents of lexical items in (presumably) equivalent contexts.

For natural language understanding applications per se, statistical
methods can augment—and complement—rule-based systems. For
instance, since any system will, in operational use, repeatedly encounter
new (i.e., “unknown”) lexical items, an automatic part of speech tagger
can be used to make a best guess as to the correct part of speech of the
unknown item. Further, no semantic lexicon will be complete, either; and
an automatic semantic tagger can make a best guess as to the category in
which an unknown term is being used (minimally, “person”, “place”, or
“thing”) or can suggest the sense in which a known word is being used.
For instance, if we encounter, “He introduced that idea several lectures
ago”, a semantic tagger could suggest that “lectures” is being used as a
temporal expression. (The literature on statistical methods for language
analysis is burgeoning. See, for example, Kupiec (1992); Charniak (1993);
Pustejovsky, Bergler, and Anick (1993); Merialdo (1994); Brill (1995);
Roche and Schabes (1995); Mikheev (1996).)

7.5 CONTROLLED LANGUAGE CHECKING

To meet the needs of users of technical documentation, especially those
whose native language is not that in which the materials are written, a
highly desirable goal is to restrict the vocabulary and grammatical
structures to a subset of that which would ordinarily occur. Codifying the
restrictions systematically defines a controlled language standard. One of
the best-known is Simplified English, developed by AECMA (Association
Européenne des Constructeurs de Matériel Aérospatial) (AECMA, 1986;
1989), and mandated by the Air Transport Association as the world-wide
standard for commercial aircraft maintenance manuals. The general English
vocabulary allowed in Simplified English (SE) is about 1500 words, only

Linguistics and natural language processing 227

about 200 of which are verbs. Except for a few common prepositions, each
of these words is to be used in one, and only one, prescribed meaning.
Aerospace manufacturers are to augment this highly restricted core
vocabulary with technical terms. (Boeing adds over 5000.)

SE grammatical and stylistic restrictions are wide ranging. For
example: the progressive verb forms and the perfective aspect are not
allowed; the past participle is allowed only as an adjective; the passive
voice is not allowed in procedures (and is to be avoided in descriptions);
singular count nouns must be preceded by a determiner; noun groups
should not contain more than three nouns in a row (long technical terms
should use a hyphen to join related words); sentences in procedures
should not be longer than 20 words, those in descriptions no longer than
25 words; verbs and nouns should not be omitted to make sentences
shorter; instruction sentences cannot be compounded, unless the actions
are to be done simultaneously; paragraphs should have no more than six
sentences, and the first sentence must be the topic sentence; warnings
should be set off from other text.

While manuals that conform to SE are easy to read, the many restrictions
make writing them extremely difficult. To meet the need of its engineer
writers to produce maintenance manuals in SE, Boeing developed a syntax-
based Simplified English Checker (SEC) (Hoard, Wojcik, and Holzhauser,
1992). Since its introduction in 1990, the Boeing SEC, which contains a
grammar of roughly 350 rules and a vocabulary of over 30,000 words, has
parsed about 4 million sentences. Random sampling shows that the SEC
parses correctly over ninety per cent of the sentences it encounters, detects
about ninety per cent of all syntactic SE violations, and reports critiques
that are about eighty per cent accurate (Wojcik, Harrison, and Bremer,
1993). The critiques suggest alternative word choices for non-SE terms
(e.g., “verb error: result; use: cause”) and note grammatical violations of
the SE standard (e.g., too many nouns in a row). The SEC does not attempt
to rewrite text automatically. Nor should it, since the author’s intentions
are completely unknowable to the SEC (and to any other syntax-only
analysis system).

Even though Boeing’s SEC is the most robust grammar and style
checker of its type, it does not detect any semantic violations of the SE
standard. To do so requires a meaning-based language checker, as depicted
conceptually in Figure 7.2, that adds to the current SEC’s Syntactic
Analyzer and Syntactic Error Detector, an Initial Semantic Interpreter, a
Word Sense Checker, and a Semantic Error Detector.

Currently in prototype, the Boeing meaning-based SEC adds knowledge
of several types to the syntax-based checker. These include word senses
for all the words known to the system (most words have several senses),
semantic hierarchies and categorizations (especially important for technical
terms), a word sense thesaurus which indicates for every word sense

228 James E.Hoard

whether it is sanctioned by the SE standard (and, if not, what alternative
word is available), and semantic selection restrictions (including noun
compound information and preferences that are specific to the application
domain).

While the current SEC permits all the senses of an allowed SE word to
pass unremarked, the meaning-based error detector makes full use of
semantic graphs to find word-sense violations. For example, the verb follow
is allowed in SE in the sense “come after”, but not in the sense “obey”.
The sentence Do the steps that follow, whose semantic graph is shown in
19), uses follow in the “come after” sense (indicated in the graph by
“follow_1”). This is determined during the analysis of the sentence by
noting that the (implied) range complement of follow is steps. On the other
hand, the sentence Follow all the instructions, uses follow in its “obey” sense
(indicated with “follow_2” in the graph). This is determined during
sentence analysis by noting that follow has an (understood) agent
complement. Note that the transitivity of follow does not determine the
sense. The example sentence A reception follows the concert has the “come
after” sense of follow. Here, the semantic structure has follow with range
and source complements, not with agent and range complements, as in
20. It is the difference in complement structures and in our expectations
as to what can fill them that causes us to interpret follow as having one
sense or the other.
Similarly, though the preposition against is restricted in SE to the sense
“in contact with”, the current SEC does not detect the word-sense error
in Obey the precautions against fire. But the meaning-based checker does,
suggesting that against be replaced with the verb prevent. (A possible rewrite
of the sentence is Obey the precautions to prevent fire.) Often, the meaning-

Figure 7.2 Conceptual architecture for a meaning-based language checker

Linguistics and natural language processing 229

based SEC can improve on the critique offered by the syntax-based SEC.
For instance, the word under is not allowed in SE, and the current SEC
suggests “below, in, less than” as alternatives—advice that is only
moderately helpful. The meaning-based SEC is able to do much better by
determining the (apparent) intended sense of under and suggesting the one
most appropriate alternative for consideration as the replacement.

The ability to do true meaning-based checking has far-reaching
consequences for all the application types listed at the beginning of this
chapter. Obviously, being able to determine the sense in which a word is
being used, as in the meaning-based SEC, will enable writers to produce
materials that are far closer to that which is sanctioned by a restricted,
controlled language standard like SE than ever before. But that is not the
only gain. For instance, it is widely maintained that the quality of the inputs
is the single most important variable in determining the quality of machine
translation outputs. And, indeed, it appears that, for the foreseeable future,
fully automatic machine translation will be possible only when the inputs

230 James E.Hoard

are fully constrained by adhering to a restricted, controlled language
standard. Then, too, with semantic interpretation of inputs and the ability
of a system to negotiate intended meaning with users, natural language
interfaces can be integrated with intelligent agent technology to provide
general query capabilities (going well beyond the present ability to query
a single database). Further, the ability to provide declarative knowledge
bases in controlled English, for both modeling and process descriptions,
and to translate the descriptions into machine-sensible underlying
formalisms will greatly expand the speed with which such systems can be
implemented. All of this is just to say that analyzing and controlling the
meaning of the inputs to an NLP application provides a level of ambiguity
resolution that identifies, reduces, and eliminates ambiguity to a degree
that will give high confidence in the functioning of any system of which it
is a component.

While we are clearly only at the beginning of the effort to fashion
computer systems that understand language, it should be obvious that a
linguistics whose objectives are broadened to include language
understanding has a large role to play. Conversely, NLP has much to offer
linguistics, for real-world applications test even the most comprehensive
theories of language understanding to the limit. Boeing’s prototype
meaning-based Simplified English Checker is an early example of such an
application, one whose worth will (or will not) be borne out in actual
production use when the first few million sentences submitted to it are
interpreted and critiqued.

231

Chapter 8

Theoretical and computational
linguistics: toward a mutual
understanding

Samuel Bayer, John Aberdeen, John Burger, Lynette
Hirschman, David Palmer, and Marc Vilain

8.1 INTRODUCTION

The nature of computational linguistics (CL) has changed radically and
repeatedly through the last three decades. From the ATN-based
implementations of transformational grammar in the 1960s, through the
explicitly linguistics-free paradigm of Conceptual Dependencies,1 to the
influence and applications of 1980s-era unification-based frameworks, CL
has alternated between defining itself in terms of and in opposition to
mainstream theoretical linguistics. Since the late 1980s, it seems that a
growing group of CL practitioners has once more turned away from formal
theory. In response to the demands imposed by the analysis of large corpora
of linguistic data, statistical techniques have been adopted in CL which
emphasize shallow, robust accounts of linguistic phenomena at the expense
of the detail and formal complexity of current theory. Nevertheless, we
argue in this chapter that the two disciplines, as currently conceived, are
mutually relevant. While it is indisputable that the granularity of current
linguistic theory is lost in a shift toward shallow analysis, the basic insights
of formal linguistic theory are invaluable in informing the investigations
of computational linguists; and while corpus-based techniques seem rather
far removed from the concerns of current theory, modern statistical
techniques in CL provide very valuable insights about language and
language processing, insights which can inform the practice of mainstream
linguistics.

There are two forces driving the evolution of this brand of CL, which
we will call corpus-based CL, that we hope to emphasize in the sections
to follow. The first is that the complexity and power required to analyze
linguistic data is discontinuous in its distribution. Coarsely put, we have
seen over and over that the simplest tools have the broadest coverage, and
more and more complexity is required to expand the coverage less and
less. Consider the place of natural language as a whole on the Chomsky
hierarchy, for instance. Chomsky (1956) demonstrated that natural
language is at least context-free in its complexity, and after a number of

232 Samuel Bayer, et al.

failed proofs, it is now commonly agreed that natural language is strongly
and weakly trans-context-free (Shieber, 1985; Kac, 1987; Culy, 1985;
Bresnan et al., 1982). Yet what is striking about these results is both the
relative infrequency of constructions which demonstrate this complexity
and the increase in computational power required to account for them.
For example, the constructions which are necessarily at least context-free
(such as center embedding) seem fairly uncommon in comparison with
constructions which could be fairly characterized as finite state; the
constructions which are necessarily trans-context-free are even fewer. In
other words, a large subset of language can be handled with relatively
simple computational tools; a much smaller subset requires a radically more
expensive approach; and an even smaller subset something more expensive
still. This observation has profound effects on the analysis of large corpora:
there is a premium on identifying those linguistic insights which are
simplest, most general, least controversial, and most powerful, in order to
exploit them to gain the broadest coverage for the least effort.

The second force driving the evolution of corpus-based CL is the desire
to measure progress in the field. Around 1985 a four-step paradigm began
to evolve which has motivated a wide range of changes in the field of CL;
among these changes is the reliance on initial broad, shallow analyses
implied by the discontinuous nature of linguistic data. This methodology,
which we describe and exemplify in detail below, is responsible for
introducing quantifiable measures of research progress according to
community-established metrics, and has led to an explosion of new ways
to look at language.

These two forces constitute the first half of our story. First through
history and then through examples, we will illustrate how substantial
advances have been made, and measured, in a paradigm which favors broad
coverage over fine-grained analysis. We will show that the corpus-based CL
commitment to evaluation has led to the insight that simple tools, coupled
with crucial, profound, basic linguistic generalizations, yield substantial
progress. But the story does not end there. It is not simply that linguistics
informs the corpus-based, evaluation-based paradigm; the reverse is also
true. We believe that the demands that large corpora impose on linguistic
analyses reveal many topics for inquiry that have not been well explored
by traditional linguistic methods. Abney (1996) argues that modern
theoretical linguistics poorly accounts for, or fails to account for, a range
of issues including the graded nature of language acquisition, language
change, and language variation, as well as disambiguation, degrees of
grammaticality, judgments of naturalness, error tolerance, and learning
vocabulary and grammar on the fly by mature speakers. Abney further
contends that current corpus-based CL approaches respond to exactly
those considerations which compromise current theoretical techniques. In
many cases, these approaches are born of researchers’ frustration with

Theoretical and computational linguistics 233

faithful implementations of their theories: gaps in coverage and expressiveness,
intolerable ambiguity, an inability to model graded distinctions of
grammaticality or likelihood of use. It is with an interest in these less
commonly asked questions that we invite you to read the following
narrative.

8.2 HISTORY: CORPUS-BASED LINGUISTICS

Corpus-based analysis of language is hardly a new idea. Following de
Saussure, the American structural linguists, from Leonard Bloomfield
(1933) through Zellig Harris (1951), pursued an empirical approach to
linguistic description, applying it to a large variety of languages (including
Amerindian languages, Chinese, Korean, Japanese, and Hebrew) and a
range of linguistic phenomena, predominantly phonology and morphology
but also syntax and even discourse structure. For the structuralists,
linguistic analysis required (1) an inventory of the distinct structural
elements, (2) rules for the observed combinations of these elements, and
(3) a procedure for discovering the units and their combinatorics via
empirical observation based on systematic analysis of a corpus of
utterances. The methods that the structuralists developed—distributional
analysis and the study of co-occurrence data, decomposition of analysis
into multiple layers of phonology, morphology, syntax, and discourse, and
automatable discovery of linguistic descriptions or grammars—underlie
much of the current research on corpus-based methods.2

Reliance on, or reference to, naturally occurring data is also taking hold
in modern theoretical linguistics as well, and becoming more prevalent.
Recent advocates and adherents include Birner (1994), Macfarland (1997),
and Michaelis (1996); in many cases, researchers have relied on corpora
to refute previously-proposed generalizations about linguistic constructions.
We applaud this trend, certainly; but it is only part of the puzzle. When
we talk about corpus-based linguistics today, we don’t simply mean the
consultation of a corpus in the course of linguistic research; we mean the
commitment to robust, automatic analysis of this corpus, in as much depth
as possible.

Given how old the goal of automated grammar discovery is, it is curious
that it has taken approximately fifty years to make real progress in this
area, measured by systems that work and methodologies that can generate
reasonable coverage of linguistic phenomena. The reasons for this are partly
sociological, influenced by the methods in vogue in any particular decade,
but mostly technological; they include

� the ready accessibility of computational resources (fast machines,

sufficient storage) to process large volumes of data
� the growing availability of corpora, especially corpora with linguistic

234 Samuel Bayer, et al.

annotations (part of speech, prosodic intonation, proper names, bilingual
parallel corpora, etc.), and increased ease of access and exchange of
resources via the Internet

� a commercial market for natural language products, based on the
increased maturity of computational linguistics technology

� the development of new tools, including both efficient parsing
techniques (e.g. finite state transducers) and statistical techniques.

For example, the statistical technique of Hidden Markov Models
(HMMs) revolutionized speech recognition technology (Rabiner, 1989),
making it possible to build robust speaker-independent speech recognizers.
This technique, originally adopted by the engineering community for signal
processing applications, has now been widely applied to other linguistic
phenomena as well. An HMM provides a technique for automatically
constructing a recognition system, based on probabilities provided by
training data. An HMM consists of two layers: an observable layer and a
hidden layer which is a Markov model, that is, a finite state machine with
probabilities associated with the state transitions. For speech recognition,
the observable layer might be the sequence of acoustic segments, while
the hidden layer would be finite state models of word pronunciations,
represented as phoneme sequences. Once the HMM is trained by
presenting it with recorded speech segments together with transcriptions,
it can be used as a recognizer for acoustic segments, to generate
transcriptions from speech.3

Consider how this technique might be used in corpus-based CL. One
of the most common tasks performed in corpus-based CL is part-of-
speech tagging, in which lexical categories (that is, part-of-speech tags)
are assigned to words in documents or speech transcriptions. It turns out
that part-of-speech tags can be assigned in English with a very high degree
of accuracy (above ninety-five per cent) without reference to higher-level
linguistic information such as syntactic structure, and the resulting tags
can be used to help derive syntactic structure with a significantly reduced
level of ambiguity. For part-of-speech tagging via HMMs, the observable
layer is the sequence of words, while the hidden layer models the sequence
of part-of-speech tags; the HMM is trained on documents annotated with
part-of-speech tags, and the resulting trained HMM can be used to
generate tags for unannotated documents.4

The success of Hidden Markov Models for speech recognition had a
major effect on corpus-based language processing research. Here was a
technique which produced an astounding improvement in the ability of a
machine to transcribe speech; it was automatically trained by the statistical
processing of huge amounts of data, both spoken transcribed data and
written data, and its performance was evaluated on a never-before-seen
set of blind test data. This success had profound commercial implications,

Theoretical and computational linguistics 235

making it possible, for example, to produce medium-vocabulary speech
recognition systems that required no prior user training.5 This technique
was developed in the late 1960s and early 1970s; it made its way into the
speech recognition community by the mid-1970s, and into commercial
quality speech recognizers by the mid-1980s. In the process, these successes
also created a new paradigm for research in computational linguistics.

8.3 HISTORY: EVALUATION

Before we exemplify the corpus-based methodology and elaborate on its
implications for theoretical linguistics, we want to define some terms and
then trace the impact of evaluation on two communities: researchers in
spoken language understanding and researchers in text understanding.
When we speak of “understanding” in corpus-based CL, we intend a very
limited, task-specific interpretation; roughly, we take a language processing
system to have “understood” if it responds appropriately to utterances
directed to it. For evaluated systems, the notion of an appropriate response
must be defined very clearly in order to measure progress. Much of the
work in this paradigm, then, consists of community-wide efforts to define
the form and content of appropriate responses. Defining the system
responses in this way has the added advantage that the internals of the
language processing systems need not be examined in the process of
evaluation; all that is required is the input data (speech or unanalyzed text)
and the system’s response. This sort of evaluation is known as a “black
box” evaluation, so called because the language processing system can
be treated as an opaque “box” whose inputs and outputs are the only
indications of its performance.

There have been two major efforts aimed at the evaluation of natural
language systems: one in the area of speech recognition and spoken
language systems, the other in the area of text-based language
understanding. The speech recognition evaluations began as part of the
DARPA speech recognition program, and from 1990 to 1995, the speech
recognition evaluations were combined with evaluation of spoken language
understanding (Price, 1996). The focal point for the text-based evaluations
has been the series of Message Understanding Conferences (MUCs)
that have taken place every year or two since 1987 (Grishman and
Sundheim, 1995), with MUC-7 scheduled for early 1998. This section
briefly traces the evolution and history of corpus-based evaluation in these
two research communities.

8.3.1 The Air Travel Information System (ATIS) evaluation

For speech recognition and spoken language, the push for evaluation came
specifically from DARPA, the agency which funded much of the advanced

236 Samuel Bayer, et al.

research in this area. There was already a well-understood need for a
corpus-based methodology, since speech recognizers rely heavily on the
availability of (large amounts of) recorded speech with corresponding
transcriptions and an evaluation function for automated training. Prior to
the effort to evaluate the understanding aspects of spoken language
interfaces, the measurement of speech recognition error had already been
responsible for dramatic progress in the speech community.

To develop an automated approach to evaluating spoken language
understanding, researchers chose the task of making air travel reservations.
This task was chosen because it was familiar to many people, and thus
promised a broad base of potential users who could act as experimental
subjects for data collection to build such a language understanding system.
Researchers limited the problem of language understanding for this task
in some critical ways:

� Scope was limited to evaluation of spoken queries against a static

database of airline information (as opposed to dynamic, unpredictable
data for which the vocabulary might be unknown in advance).

� Interaction style was restricted to human-initiated queries only, since it
was not clear how to automate evaluation of discourses where the
language understanding system asked questions of the user as well.

� The queries were restricted to a well-defined domain of reasonable size,
in order to ensure that the database provided enough coverage to ensure
useful interactions.

� Evaluation was limited to a strict definition of answer correctness, based
on comparison to the set of tuples to be returned from the database.

In the context of this paradigm, users were presented with a task description
(for instance, “You must make reservations to visit your grandmother in
Baltimore, but you must stop in Boston overnight, and due to scheduling
restrictions, you must leave on a Thursday”). The users’ recorded
utterances, along with their transcriptions and the correct database
response, form the basis of the ATIS corpus.

Despite the limitations imposed by this strategy for evaluation of
understanding, this work introduced some useful candidate standards:
transcription as the basis for evaluation of speech recognition (borrowed
from earlier work in the speech community); development of a
methodology to evaluate answer correctness based on the tuples retrieved
from a database; and an annotation method to distinguish context-
independent queries from context-dependent queries for evaluating the
understanding of multi-utterance sequences (the latter required that the
system have some model of the preceding interaction to answer correctly).
In addition, the researchers undertook a highly successful collaborative data
collection effort, which produced a large body (20,000 utterances) of

Theoretical and computational linguistics 237

annotated data, including speech, transcriptions, database output, and
timestamped log files of the interactions (Hirschman et al., 1992). Figure
8.1 shows an excerpt of a sample log file from the ATIS data collection
efforts; it includes timestamped entries for receipt of speech input,
transcription, translation into SQL (a standard database retrieval language),
and system response.

These standardized evaluations resulted in a rapid decrease in the spoken
language understanding error rate, showing that the research community
was moving steadily towards solving the problem of getting machines to
not only transcribe but also respond appropriately to what a user might
say. Figure 8.2 plots error rate (log scale) against successive evaluation dates
for the Spoken Language Program, using figures for the best performing

Figure 8.1 Sample ATIS log file (excerpt)

238 Samuel Bayer, et al.

system in each evaluation, processing context-independent utterances.6 The
top line (highest error rate) is a measure of sentences correctly transcribed
(no understanding): a sentence is incorrect if it contains one or more word
recognition errors. It is clearly much harder to get all the words right in
transcribing a sentence, which is why the sentence transcription error rate
tends to be high; the percentage of words incorrectly transcribed for the
ATIS task had dropped to two per cent by June 1995. The next highest
line in Figure 8.2 represents spoken language understanding error rate,
namely the percentage of sentences that did not receive a correct response
from the database, given the speech input. The lowest error rate is text
understanding error rate—given a perfect transcription as input, this is the
percentage of sentences that did not get a correct database response. Not
surprisingly, the text understanding error is lower than the spoken language
understanding error, since processing the speech input can result in a less
than perfect transcription.

Most significant, and perhaps counterintuitive, is that the understanding
error rate (that is, the percentage of incorrect database responses) is lower,
at every point, for both speech and text, than the sentence transcription
error rate (that is, the percentage of sentences with at least one word
incorrectly transcribed). This means that it is easier for the system to
understand a sentence (given our definition of “understanding”) than to
transcribe it perfectly. In other words, perfect transcription is by no means
a prerequisite for language understanding, and systems which require

Figure 8.2 Rate of progress in the DARPA Spoken Language Program for context-
independent sentences

Theoretical and computational linguistics 239

perfect grammatical input are at a disadvantage in this task compared to
systems which do not.

8.3.2. The Message Understanding Conferences (MUCs)

The Message Understanding Conferences evolved out of the research
community’s need to share results and insights about text-based language
understanding. The six MUC conferences to date have been responsible
for:

� the creation of an automated evaluation methodology for understanding

annotated training and test data sets
� significant progress in building robust systems capable of extracting

database entries from messages
� increasing the technology base in this area (participating groups have

increased from six at the first conference in 1987 to sixteen at MUC-6
in November 1995).

The first three Message Understanding Conferences (1987, 1989, 1991)
avoided component-based evaluation, since there was little agreement on
what components would be involved, and focused on a black box evaluation
methodology. The evaluation was defined at a high level. Given documents
as input, a system’s performance was determined by the extent to which it
could produce the appropriate set of templates describing who did what to
whom in a particular topic area (e.g., terrorist attacks, or joint ventures).

Figure 8.3 Sample document and template fragment from MUC-4

240 Samuel Bayer, et al.

Figure 8.3 shows an excerpt of a sample document from the MUC-4
document set about terrorist activity, along with a simplified template.

Over these three evaluations, the participants defined training and test
corpora, a detailed set of guidelines specifying the content of the templates
for the test domains, and an automated scoring procedure. The MUC
evaluations also introduced some standard terminology into the evaluation
paradigm. Scores were calculated by comparing system hypotheses against
a human-generated key, to produce numerical comparisons in terms of
precision and recall. Precision is a measure of false positives; more
precisely, it is the ratio of correct system answers to total system answers.
Recall is a measure of false negatives; more precisely, it is the ratio of correct
system answers to total answers in the key.

Once this basic methodology was established, the message understanding
community was able to branch out in several directions, including evaluation
of documents in multiple languages. The community has also been successful
in decomposing the message understanding task into coherent subproblems:
identifying proper names in text, identifying coreferring expressions, and
gathering all the described attributes of an object or individual from its
disparate references scattered through a text. Some of these tasks, such as
identifying coreferring expressions, are still under development; nevertheless,
it is clear that this functional decomposition, providing a layered application
of linguistic knowledge, has been highly successful in defining the strengths
and weaknesses of current technology, as well as opening new areas for
research (e.g., tagging for coreference or for parts of speech in multiple
languages).

8.4 METHODOLOGY

With this history in hand, we can now turn to a more detailed description
of these corpus-based approaches to language processing. In the next few
sections, we will outline and exemplify this family of approaches.

We can describe the corpus-based approach in four steps. First, we obtain
and analyze linguistic data in the context of the task we choose (information
extraction, named entity extraction, summarization, translation, etc.).
Second, we hypothesize a procedure for producing the appropriate analyses.
Third, we test this procedure, and finally, we iterate our procedure based
on our evaluation. We will examine each of these steps in turn.

8.4.1 Step 1: analyze the data

Before we analyze data, we need to have data, in some computer-readable
form. With the advent of powerful, inexpensive networked computing, this
has become far more feasible than in the past. We now have corpora which
encompass a wide range of data types (speech, text, multimedia

Theoretical and computational linguistics 241

documents), and increasingly, a range of languages. The community has
also benefited considerably from well-organized efforts in data collection,
exemplified by the multi-site ATIS and MUC efforts and the services and
products provided by the Linguistic Data Consortium.

Our analysis of the data must be guided by the task at hand, whether it
be transcription, translation, search, summarization, database update, or
database query. The data provide us with the input; the structure of the
task provides us with the output. For instance, in the ATIS task, the input
is a speech signal and the output a database query. Our goal is to find a
systematic, robust mapping from input to output. We may need to break
that mapping down into many smaller steps, but we are still analyzing the
input in terms of the desired output. In many cases, the form of the output
is an annotated form of the input (for instance, a document augmented
with the part of speech of each word); these annotations are drawn from a
tag set of all possible tags for a given task.

8.4.2 Step 2: hypothesize the procedure

Based on our analysis of the data, we hypothesize a procedure that allows
us to map from input to output. What matters is that this procedure can
be implemented as a computer program. There are many approaches to
choose among, from neural nets to stochastic models to rule-based systems.
Some of these use explicit rules created by a human, some use machine
learning, some are based on statistical processing. In general, the faster
and more efficient the procedure, the more successful the procedure will
be, because it will provide the opportunity for a greater number of iterations
through the process (see Step 4 below).

8.4.3 Step 3: test the procedure

The corpus-based methodology uses data for two distinct purposes: to
induce the analysis, and to provide a benchmark for testing the analysis.
Our goal is to use this methodology to improve our performance on our
chosen task. Therefore, the corpus-based method requires that there be a
defined evaluation metric that produces a result, so that we can compare
strategies or rule sets. If we cannot make this comparison, we have no
reliable way of making progress, because we do not know which technique
yields the better result.

We must choose our evaluation metric with care. We must believe that
the evaluation metric has relevance to the task we are trying to perform,
so that as our evaluation results improve, the performance of the system
will improve. Furthermore, it is critical that we use new data (that is, data
not used in the hypothesis phase) for evaluation, to ensure that we have
created a system that is robust with respect to the kind of data we expect

242 Samuel Bayer, et al.

the system to have to handle. If we do not, we run the risk of designing
strategies which are overly specific to the data we’ve used for training.

Finally, it is important to understand that the accuracy of our evaluation
depends crucially on our accuracy in determining the “right” output, that
is, our accuracy in creating the key. If any two humans performing the task
in question can only agree on the “right” output 90 per cent of the time,
then it will be impossible for us to develop a system which is 95 per cent
accurate, because humans can’t agree on what that means. So inter-
annotator agreement among humans sets an upper bound on the system
accuracy we can measure.

8.4.4 Step 4: iterate

Once we evaluate our approach, we can use standard techniques to improve
our results, such as a systematic machine learning approach, or iterative
debugging, or regression testing. During the iteration, we can revisit any
one of the previous steps. We may need to refine our tag set, our
procedure—or even our evaluation. Depending on the scope of the
problem, all of these may get revised in the course of research.

In the next two sections, we describe applications of this paradigm in
the domain of text-based language understanding. We will attempt to
emphasize these four steps, showing how progress can be made using this
technique.

8.5 EXAMPLE: SENTENCE SEGMENTATION

While the corpus-based methodology has successfully pushed progress in
many areas traditionally of interest to linguists, it has also revealed many
new problems which are frequently overlooked or idealized away in
theoretical linguistics, yet which are essential steps for large-scale processing
of language. One example of such an area is the segmentation of linguistic
data into sentences, a task which can be surprisingly complex.

Recognizing sentence boundaries in a document is an essential step for
many CL tasks. Speech synthesizers produce output prosody based on a
sentence model, and incorrect identification of boundaries can confuse them.
Parsers, by definition, determine the structure of a sentence, and therefore
depend on knowledge of sentence boundaries. However, dividing a document
into sentences is a processing step which, though it may seem simple on
the surface, presents a wide variety of problems, especially when considering
different languages. For example, written languages with punctuation systems
which are relatively impoverished compared to English present a very difficult
challenge in recognizing sentence boundaries. Thai, for one, does not use a
period (or any other punctuation mark) to mark sentence boundaries. A
space is sometimes used at sentence breaks, but very often there is no

Theoretical and computational linguistics 243

separation between sentences. Detecting sentence breaks in written Thai thus
has a lot in common with segmenting a stream of spoken speech into
sentences and words, in that the input is a continuous stream of characters
(or phonemes) with few cues to indicate segments at any level.

Even languages with relatively rich punctuation systems like English
present surprising problems. Recognizing boundaries in such a written
language involves determining the roles of all punctuation marks which can
denote sentence boundaries: periods, question marks, exclamation points,
and sometimes semicolons, colons, and commas. In large document
collections, each of these punctuation marks can serve several different
purposes in addition to marking sentence boundaries. A period, for example,
can denote a decimal point, an abbreviation, the end of a sentence, or even
an abbreviation at the end of a sentence. Exclamation points and question
marks can occur within quotation marks or parentheses (really!) as well as
at the end of a sentence.7 Disambiguating the various uses of punctuation
is therefore necessary to recognize the sentence boundaries and allow further
processing.

In the case of English, sentence boundary detection is an excellent
example of both the discontinuities discussed previously and of the
application of the corpus-based methodology to solving a practical problem.
Simple techniques can achieve a rather high rate of success, but
incrementally improving this initial rate and recognizing the difficult cases
can require a significant amount of linguistic knowledge and intuition in
addition to a thorough analysis of a large corpus of sentences.

The first step in the corpus-based mediodology, obtaining and analyzing
the data, is quite straightforward for this task; millions of sentences are readily
available in many different languages. And while compiling and analyzing
the data for some CL tasks involves linguistically sophisticated knowledge
about transcribing or translation, the key for the sentence boundary detection
task can be constructed with virtually no linguistic training.

The second step in the methodology, hypothesizing the procedure to
solve the problem, may seem simple at first. When analyzing well-formed
English documents such as works of literature, it is tempting to believe
that sentence boundary detection is simply a matter of finding a period
followed by one or more spaces followed by a word beginning with a capital
letter; in addition, other sentences may begin or end with quotation marks.
We could therefore propose the following simple rule as our entire sentence
segmentation algorithm:

sentence boundary=

period+space+capital letter

OR period+quote+space+capital letter

OR period+space+quote+capital letter

244 Samuel Bayer, et al.

It is only through actually testing this rule on real data (Step 3 of the
methodology), that we become aware of the range of possibilities. In some
corpora (e.g., literary texts) the single pattern above indeed accounts for
almost all sentence boundaries. In The Call of the Wild by Jack London, for
example, which has 1640 periods as sentence boundaries, this single rule
will correctly identify 1608 boundaries (recall of 98.1 per cent) while
introducing just 5 false negatives (precision of 99.7 per cent). It is precisely
these types of results that led many to dismiss sentence boundary
disambiguation as a simple problem. However, the results are different in
journalistic text such as the Wall Street Journal. In a small corpus of the WSJ
which has 16,466 periods as sentence boundaries, the simple rule above
would detect only 14,562 (recall of 88.4 per cent) while producing 2900
false positives (precision of 83.4 per cent).

We can use this knowledge to improve our hypothesis iteratively (Step 4
of the methodology) and attempt to produce a better solution which
addresses the issues raised by the real data. Upon inspection of journalistic
text, we see that our simple rule fails in cases such as “Mr. Rogers”, “St.
Peter”, and “Prof. Thomopoulos.” We therefore modify our rule to include
the case of an abbreviation followed by a capitalized word:

sentence boundary=

period+space+capital letter

OR period+quote+space+capital letter

OR period+space+quote+capital letter

UNLESS abbreviation+period+space+capital

This new rule improves the performance on The Call of the Wild by eliminating
false positives (previously introduced by the phrase “St. Bernard” within a
sentence), and both recall and precision improve (to 98.4 per cent and 100
per cent, respectively). On the WSJ corpus, this new rule also eliminates all
but 283 of the false positives introduced by the first rule. However, this rule
introduces 713 false negatives because many abbreviations can also occur
at the end of a sentence. Nevertheless, precision improves to 95.1 per cent
because this augmentation produces a net reduction in false positives.

This last enhancement shows that recognizing an abbreviation is therefore
not sufficient to disambiguate a period, because we also must determine if
the abbreviation occurs at the end of a sentence. However, this problem
ultimately illustrates the discontinuous nature of data in this area. An
abbreviation like “St.” is lexically ambiguous: it can mean “Saint”, “street”,
or “state”. Each of these interpretations has a different potential for ending
a sentence, and disambiguation of these different interpretations is crucial
for determining sentence boundaries. For instance, the current rule would
correctly handle the use of “St.” for “Saint” in the following example (from
WSJ 11/14/91):

Theoretical and computational linguistics 245

The contemporary viewer may simply ogle the vast wooded

vistas rising up from the Saguenay River and Lac St. Jean,

standing in for the St. Lawrence River.

However, it would not correctly handle this use of “St.” for “street” (from
WSJ 1/2/87):

The firm said it plans to sublease its current headquarters

at 55 Water St. A spokesman declined to elaborate.

The simple techniques we’ve examined so far are not sophisticated enough
to distinguish reliably among cases like these. Furthermore, these simple
techniques rely on orthographic distinctions which are not always present.
For text where case distinctions have been eliminated (as in e-mail, which
is sometimes all lower case, or television closed captions, which is all upper
case), the sentence task is noticeably more challenging. In the following
example (also from the WSJ, 7/28/89), the status of the periods before
“AND” and “IN” is not immediately clear, while in case-sensitive text their
status would be unambiguous:

ALASKA DROPPED ITS INVESTIGATION INTO POSSIBLE CRIMINAL

WRONGDOING BY EXXON CORP. AND ALYESKA PIPELINE SERVICE CO.

IN CONNECTION WITH THE VALDEZ OIL SPILL.

These cases, like the “St.” case, require an analysis of the linguistic text
which is more sophisticated than the simple orthographic rules we’ve seen
so far. Useful information about the document may include part-of-speech
information (Palmer and Hearst, 1997), morphological analysis (Müller
et al., 1980), and abbreviation classes (Riley, 1989).

8.6 EXAMPLE: PARSING

A second example of a practical application of this methodology can be seen
in the recent history of parsing. Progress in corpus-based parsing began with
the release of the Penn Treebank (Marcus et al., 1993), developed at the
University of Pennsylvania between 1989 and 1992. The Treebank consists
of 4.5 million words of American English, tagged for part-of-speech
information; in addition, roughly half of the Treebank is tagged with skeletal
syntactic structure (hence the name “Treebank”).

The annotation of syntactic structure consists of a bracketing of each
sentence into constituents, as well as a non-terminal labeling of each
constituent. The guidelines for bracketing, as well as the choice of non-
terminal syntactic tags, were designed to be theory-neutral. Consequently,
the degree of detail in the bracketing is relatively coarse, as compared to

246 Samuel Bayer, et al.

the analysis one might see in a complete parse. Again, this annotation design
was strongly influenced by a desire for high accuracy and high inter-annotator
reliability. The syntactic tag set consists of fourteen phrasal categories
(including one for constituents of unknown or uncertain category), as well
as four types of null elements.8

Here is an example sentence from Collins (1996), annotated for syntactic
structure as in the Treebank:

[S [NP [NP John Smith]
’
[NP [NP the president]

[PP of IBM]]
,]

[VP announced
[NP his resignation]
[NP yesterday]]

.]

The existence of the Treebank has been essential in enabling the direct
comparison of many CL algorithms, and much recent progress in a number
of areas of CL can be credited directly to the Treebank and similar resources.
This has been particularly true in parsing, a task for which it has been
notoriously difficult to compare systems directly.

Progress in parsing has also been greatly aided by the development of
several evaluation metrics. These measures were developed in a community-
sponsored effort known as PARSEVAL (Black et al., 1991), with the goal of
enabling the comparison of different approaches to syntactic analysis. All of
these measures assume the existence of a reference corpus annotated for
constituent structure with labeled brackets, as in the Treebank example
above. This annotation is assumed to be correct, and is used as the key.

When a parser’s hypothesis is compared to the key, several kinds of
mismatches may occur:

� A bracketed constituent present in the key may not be present in the

hypothesis.
� A constituent may occur in the hypothesis but not correspond to

anything in the key.
� Two constituents from the key and the hypothesis may match in extent

(that is, comprise the same words), but be labeled differently.

The measures defined by PARSEVAL attempt to separate these various
kinds of errors, and include the following:

� Labeled recall is the percentage of constituents in the key that are

realized in the parser’s hypothesis, in both extent and non-terminal label
� Labeled precision is the percentage of constituents in the hypothesis

Theoretical and computational linguistics 247

that are present in the key, in both extent and non-terminal label
Labeled recall accounts for the first type of error above, while labeled
precision accounts for the second. Both of these measures require the
label as well as the extent to be correct; that is, the third error type above
is both a recall and a precision error. There are also versions of these
measures, referred to as unlabeled precision and recall, in which the non-
terminal labels need not match. This weaker definition of correctness
allows the evaluation of a system with a different set of non-terminals
than the key. There is also another PARSEVAL measure that disregards
labels:

� Crossing brackets is the number of constituents in the hypothesis
that have incompatible extent with some constituent in the key, i.e.,
which overlap with some key constituent, but not in a simple
substring/superstring relationship. A typical crossing bracket violation
arises if the key contains the bracketing

[large [animal preserve]]

but the hypothesis brackets the string as

[[large animal] preserve]

Crossing brackets may be expressed as a percentage of the constituents in
the hypothesis, similarly to precision and recall, but is more often a simple
count averaged over all sentences in the test corpus. In particular, zero
crossing brackets is the percentage of sentences with no such extent
incompatibilities.

We can use our Treebank sentence from above to provide examples of
each of these measures. The bracketed sentence is reproduced on p. 248,
followed by a candidate parse hypothesis.9

The hypothesis has one crossing bracket error, due to the boundary
violation between the hypothesis constituent [NP president of IBM]
and the key’s [NP president]. The key has eight constituents, the
hypothesis nine. Six of the hypothesis’ constituents match constituents in
the key exactly, and thus labeled precision is 75 per cent (6/8), while labeled
recall is 67 per cent (6/9).

A recent breakthrough in parsing that relied critically on resources such
as the Penn Treebank and the evaluation mechanisms introduced by
PARSEVAL was the work of David Magerman (1994). Magerman used
probabilistic decision trees, automatically acquired from the Treebank and
other annotated corpora, to model phenomena found in the corpus and
his parser’s accuracy was significantly higher than any previously reported,
using any of the measures described above. Magerman’s algorithm was,

248 Samuel Bayer, et al.

however, very complex and it was difficult to investigate the linguistics of
the technique, since most of the workings were embedded in the decision
tree algorithms.

Key:

[S [NP [NP John Smith]

’

[NP [NP the president]

[PP of IBM]]

,]

[VP announced

[NP his resignation]

yesterday]

.]

Hypothesis:

[S [S [NP [NP John Smith]

’

[NP the

[NP president

[PP of IBM]]]

,]

[VP announced

[NP his resignation]]

yesterday]

.]

Expanding on the surprising success of Magerman, Collins (1996)
developed a corpus-based algorithm that achieved a parsing accuracy
equaling or exceeding Magerman’s results, yet was significantly simpler
and easier to understand. Collins’ approach offers a probabilistic parser
that utilizes essential lexical information to model head-modifier relations
between pairs of words.

Collins’ success extended, in several ways, Magerman’s linguistically-
grounded insights. The crux of the approach is to reduce every parse tree
to a set of (non-recursive) base noun phrases and corresponding dependency
relationships. For these dependencies, all words internal to a base NP can
be ignored, except for the head. Dependencies thus hold between base NP
headwords and words in other kinds of constituents. The headword for each
phrase is determined from a simple manually-constructed table while the
dependency probabilities are estimated from a training corpus. The parsing
algorithm itself is a bottom-up chart parser that uses dynamic programming
to search the space of all dependencies seen in the training data.

In our example sentence, there are five base NPs, as indicated by the
following bracketing:

Theoretical and computational linguistics 249

[NP John Smith], [NP the president] of [NP IBM], announced

[NP his resignation] [NP yesterday].

The Treebank contains enough information to allow an approximation of a
version annotated just with base NPs to be constructed automatically. From
this, a simple statistical model is automatically constructed that is used to
label new material with base NP bracketings. As noted above, each base NP
is then reduced to its head for purposes of determining dependency
probabilities between pairs of words in the sentence (punctuation is also
ignored):

Smith president of IBM announced resignation yesterday

A dependent word may be either a modifier or an argument of the word it
depends on; no distinctions are made among these dependencies here. Each
dependency relationship is typed by the three non-terminal labels of the
constituents involved in the dependency: the head constituent, the
dependent, and the matrix or parent constituent. In our example sentence,
the following six dependencies exist:

Given this syntactic model, which is similar in many ways to dependency
grammars, and link grammar in particular (Lafferty et al., 1992), a parse
is simply a set of such dependencies, as well as a set of base NPs. For each
new sentence to be parsed, the most likely base NP bracketing is first
determined, and then the parser estimates the likelihood of various sets of
dependencies (parses), based on the probabilities gleaned from the training
corpus. The most likely set of dependencies constitutes the parser’s best
guess as to the constituent structure of the sentence. The bracketing due
to the base NPs is placed on the sentence, and then a labeled bracket can
be mapped from each dependency10 (for example, the last dependency
listed above corresponds to the constituent [VP announced his

resignation yesterday]). After this is done for every sentence in a
test corpus, the result can be compared to a key, e.g., the Treebank, and
metrics such as those described above can be computed.

The results reported by Collins show the power of such a simple parsing
approach. On the Wall Street Journal portion of the Treebank, both labeled

250 Samuel Bayer, et al.

recall and precision were consistently greater than 84 per cent, matching
or bettering Magerman’s results in all experiments. The average crossing
brackets per sentence was less than 1.5, while between 55 and 60 per cent
of the test sentences had no crossing brackets at all, i.e., the constituent
structure was completely correct on these sentences (although the labels
on the constituents may have differed from the key). Notably, Collins’
algorithm is significantly faster than Magerman’s; it can parse over 200
sentences per minute, while Magerman’s parsing algorithm could parse
fewer than ten per minute.11

Both Magerman’s and Collins’ algorithms represented significant
breakthroughs in parsing, and it is clear that these breakthroughs could
not have taken place without large, annotated corpora such as the Treebank,
as well as well-defined evaluation metrics. Nonetheless, it is equally clear
that substantial linguistic insight was necessary in order to make good use
of the information contained in the corpora.

8.7 BENEFITS

As we pointed out when we began, the motivation for adopting a good
part of this methodology is that progress can be measured, in very broad
and consistent terms. In this section, we review our two major themes with
progress in mind.

8.7.1 The evaluation metric

One of the stated goals of theoretical linguistics has been to develop a
complete grammar for a given language; the classic transformational
grammar of English compiled by Stockwell, Schachter, and Partee (1973)
was an attempt to approach just this goal. But a number of difficult problems
present themselves almost immediately when we examine such a goal. The
first is that although we may have a sense that progress is being made,
without some stable paradigm of evaluation we cannot measure our progress
toward our goal. No such paradigm has been proposed in theoretical
linguistics, as far as we know.

The other problems manifest themselves as soon as we try to define an
evaluation metric which is consistent with current theory. There is far more
to reaching our goal than simply writing down all the rules a grammar
requires. The reason is that any such reasonably large rule set turns out to
induce massive ambiguity. In this situation, measuring how close we’ve come
to our goal becomes quite complex. For the sake of simplicity, let us consider
only the evaluation of the syntactic component, as outlined in Section 8.6
above. Instead of the strategies described there, let us assume that our goal
is to evaluate any of the many syntactic theories currently being developed
in theoretical linguistics. If this theory permits ambiguity, then we must

Theoretical and computational linguistics 251

address this fact in choosing our evaluation metric. One candidate might
be that the analysis provided by the key must be one of the analyses
permitted by the grammar. But this metric is far too weak; if one assumes a
binary branching structure, as is common in linguistic theories, one’s
grammar could simply generate all possible labelings for all possible binary
branchings of any given input and be judged perfect by the evaluation metric!
This argument shows that the evaluation metric must be far more strict; in
order to have any power, it must demand that the search space of analyses
presented to it be narrowed in some substantial way, perhaps even to a single
analysis. In other words, providing a set of rules is not enough; the means
for choosing between the resulting analyses (that is, a disambiguation
strategy) is required as well. Thus the appropriate evaluation metric for
theoretical linguistics is how close the grammar and disambiguation strategy
come to generating the most appropriate analysis, just as we have shown
for CL.

8.7.2 Confronting the discontinuities

As we’ve seen, picking the right fundamental linguistic insights is crucial to
this paradigm. The part-of-speech tag set used by the Penn Treebank is a
distillation of the crucial lexical syntactic distinctions of English; Magerman
(1994) and Collins (1996) exploit the notion of syntactic head to derive their
syntactic bracketings; Yarowsky (1995) relies on the insight that word senses
do not commonly shift within a single discourse to improve his word sense
disambiguation algorithm; and Berger et al. (1994) identify sublanguages
such as names and numbers, perform morphological analysis, and apply
syntactic transformations in the course of their statistically-driven translation
procedure. But eventually, the benefits of these initial insights are exhausted,
and a noticeable error term still remains. In these cases, more expensive,
less general insights must be brought to bear; these are the points of
discontinuity we’ve emphasized throughout this article.

For instance, we can determine many syntactic bracketings based simply
on part of speech, but additional accuracy can be gained only by referring
to lexical subcategorization or semantic class. A good example is PP
attachment. PP attachment is no less a problem for current CL than it has
been for linguists throughout the ages; in any given sequence of [V N PP],
the syntactic key provides an attachment, and the score assigned to our
analyses (for example, in terms of crossing bracket measures) is dictated by
how closely we conform to the attachments the key provides. This problem
is a classic example, of course, of a situation where syntactic information is
not particularly helpful. Although the subcategorization frame of the V in
question may require a PP and thus provide input to the attachment
algorithm, it provides no help when the PP turns out to be a modifier; that
is, we cannot distinguish strictly on the basis of subcategorization frames or

252 Samuel Bayer, et al.

part-of-speech sequences whether a PP modifier modifies the N or the V. If
we need semantic disambiguation, we need to model semantic information
in our new paradigm.

At this point, one of the crucial differences between the human linguistic
understanding task and the computational task manifests itself. In particular,
the computer does not have access to the same sorts of semantic
generalizations that humans do. In part, what we need to make PP
attachment decisions is a domain model: the knowledge of what objects
there are in the world, how they can interact with each other, and how likely,
prototypical, or frequent these interactions are. Humans acquire this
information through many sources; in some cases, they read or hear the
information, but in most cases (most likely), they acquire this information
through direct experience and through the senses.12 Needless to say,
computers do not have access to these data sources, and as a result are at a
tremendous disadvantage in semantic tasks. In effect, in attempting semantic
analyses in the corpus-based paradigm, we are forced to imagine how a
processor might approach such a task if its only source of information was
what it reads.

It turns out that this problem is actually tractable under certain
circumstances, as shown by Hindle and Rooth (1993). Their account assumes
access to a suitably large set of reasonably correct bracketings, as produced
by an algorithm verified by good performance against a bracketed key. This
bracketing is incomplete; that is, the annotation procedure does not produce
constituent structure annotations which it is not reasonably certain of. In
terms of our evaluation metrics, the algorithm favors bracketing precision
over bracketing recall. Hindle and Rooth take the head relationships
corresponding to known instances of PP attachment and use those statistical
distributions to predict the unknown cases.13 In this approach, Hindle and
Rooth use lexical heads as an approximation for semantic classes. This
approximation is known to be unreliable, because of lexical sense ambiguity;
and so others in the field have tackled this problem as well. Yarowsky (1995),
for instance, provides a corpus-based algorithm for distinguishing between
word senses, based on lists of senses provided from any of a number of
sources, including machine-readable dictionaries and thesauri.

None of these analyses are perfect; in fact, some of them perform quite
unacceptably in absolute terms. Yet at every step, the limits of simpler
approaches are recognized, and the problem is analyzed in terms of
identifying the next least complex, the next most powerful, the next most
general step to take. And in many of the areas we’ve discussed here, the
field has made substantial progress in the relatively short history of the
application of this paradigm. It is safe to say, in fact, that the methodology
reviewed here is the only methodology presented so far in theoretical or
computational linguistics which can claim to provide quantifiable
measurement of progress in the field.

Theoretical and computational linguistics 253

8.8 CONCLUSION

In the preface to a recent influential dissertation, David Magerman wrote,
“I would have liked nothing more than to declare in my dissertation that
linguistics can be completely replaced by statistical analysis of corpora”
(Magerman, 1994:iv). Magerman’s wish hearkens back to other eras of CL
research in which some practitioners in the field hoped to divorce
themselves from theoretical linguistics. However, the difference between
those periods and corpus-based CL today is that this wish is widely
regarded as counterproductive; Magerman himself goes on to conclude that
“linguistic input is crucial to natural language parsing, but in a way much
different than it is currently being used” (ibid:v). We have attempted to
emphasize this point throughout; while the details of current theory may
not be relevant to current corpus-based tasks, the fundamental insights of
the theoretical program are central. However, as we’ve also stressed, the
demands of corpus analysis pose substantial theoretical challenges, some
of which we’ve explored here: the nature of discontinuity among linguistic
phenomena, the requirements of an evaluation metric for grammar
coverage. We have only begun to explore these demands in this article, so
by way of conclusion, we summarize two of the other substantial theoretical
issues which corpus-based CL raises.

Coverage vs. depth: The goal of producing a complete grammar for a given
language in theoretical linguistics has fallen from favor in recent years,
perhaps due to its daunting intractability. In its place, researchers have
focused on narrow, deep analyses of particular phenomena, in the hope that
a range of such studies will elucidate the general nature of language. Whether
or not this process will converge on an unskewed theory of language is an
open question. Consider an analogy with geological research. The exhaustive
examination of a single core sample cannot hope to document the geological
history of the planet; whether the exhaustive examination of a selection of
such samples will produce a fair account of that history depends entirely
on whether these samples are representative, given our knowledge of surface
topology and the general process of geologic change. It is not clear at all to
us that we as linguists possess the knowledge to produce an analogous
linguistic sample in an informed way.

The demands of corpus analysis imply a very different strategy. If a
computational linguist chooses to parse a year’s worth of the Wall Street
Journal, she doesn’t have the luxury of choosing the sentences she wants
to examine; she must analyze all of them, in as much detail as the task
requires and time and computational resources allow. The general strategy
induced by such requirements is broad and shallow, rather than narrow
and deep, with added complexity where required. The details of the corpus-
based approach may not be appealing to theoretical linguists, but its

254 Samuel Bayer, et al.

progress is measurable, and the considerations used to craft these strategies
are informed by the same fundamental linguistic insights as those that
inform theoretical approaches.

The nature of data: Another important consequence of this paradigm is that
we are severely constrained by the form of the data to be analyzed. Our analysis
keys are pairs of raw data and analyses, where “raw” is defined differently for
each problem to be evaluated. So for speech recognition, our keys are speech
waveforms and their linguistic transcriptions; for part-of-speech tagging, our
key is a document and its part-of-speech tags; for the information extraction
tasks, the key is a document and its corresponding database entries. These
tasks can be chained; so speech recognition feeds part-of-speech tagging, which
in turn feeds information extraction.

There are two important observations to make about data constructed
in this way. First, in most cases, the key presented to the system obeys the
“no negative evidence” restriction frequently attributed to human language
acquisition tasks;14 second, the properties of the raw data present problems
frequently overlooked or idealized away in theoretical linguistics. For instance,
the problem of sentence and word segmentation is commonly overlooked,
but is crucially relevant to the comprehension process, as demonstrated in
Section 8.5 above. These two observations converge with statistical
techniques in a recent article in the journal Science, which argues that young
infants use probabilistic information about syllable distributions to determine
word segmentation in speech (Saffran, Aslin, and Newport, 1996).

On one remaining significant issue, however, we are currently silent.
Although we are convinced that the methodology outlined here ought to
have a significant impact on linguistic theory, we do not know what form
that impact might take. For instance, one of the primary motivations for
examining linguistic questions is to test linguistic theories. However, from
the corpus-based point of view, the data thus examined are seriously biased.
Parasitic gap constructions, quantifier scope ambiguities, or any one of
dozens of deeply-studied linguistic phenomena are infrequently represented
in randomly-selected large corpora. Focusing on these examples could well
constitute an examination of an unnatural subset of the data, and the
resulting generalizations might not extend to the corpus as a whole. We are
also aware that while “no negative evidence” is a property of language
acquisition, it seems not to account for strong grammaticality judgments by
adult speakers. Finally, we do not know what a theory which emphasizes
broad coverage over deep analysis might look like. There is no a priori reason
that the corpus-based methodology would not be applicable to fine-grained
linguistic analysis (beyond the significantly larger amount of data which
would be required to tease apart the subtleties in question), but the priorities

Theoretical and computational linguistics 255

dictated by broad-coverage analysis suggest that these concerns would
necessarily be postponed.

In spite of these uncertainties, we believe, as linguists and computational
linguists, that the paradigm we’ve outlined here is fundamental to genuine
progress in language understanding. We also believe that it calls into question
a number of common assumptions in mainstream linguistic theory, as a
consequence of the demands of large corpus analysis. In this article, we’ve
attempted to make the methodology accessible, to motivate its application,
and to highlight its successes, with the hope that more linguists will
incorporate this point of view into their daily work.

NOTES

1 Cf. Schank and Riesbeck 1981, for instance.
2 For a useful short summary of the history of structuralism, see Newmeyer

(1986), chapter 1.
3 For a discussion, see the papers in Waibel and Lee (1990).
4 For a detailed discussion of an HMM-based part-of-speech tagger, see Cutting

et al. (1991). For an application of this technique to higher-level language
analysis, see Pieraccini and Levin (1995).

5 Some current speech-based telephone directory assistance, for example, uses
this technology.

6 Some context-independent utterances were chosen because they represent the
largest number of comparable data points. The error rate decreased steadily
for all of the measures shown, by factors ranging from 4-fold to 9-fold in the
period June 1990 to January 1995.

7 For a thorough discussion of the linguistics of English punctuation, see
Nunberg (1990).

8 For some, the inclusion of null elements in the syntactic annotation may not
qualify as “theory-neutral.”

9 The observant reader will note that “yesterday” is unbracketed in the example
here. This is because the PARSEVAL evaluation metric requires that singleton
brackets be removed before scoring.

10 Note that many dependency grammar formalisms (as well as many syntactic
theories) allow for discontinuous dependencies, while Collins’ approach does
not. Nor does the bracket-based evaluation framework described here allow
for discontinuous constituents.

11 These parse rates were measured on different computer platforms, but it is
clear that Collins’ parser is at least an order of magnitude faster than
Magerman’s. Both approaches are substantially faster than a classical chart
parsing algorithm.

12 In fact, there is a substantial body of recent work, typified by Lakoff (1987),
that claims that a vast segment of human semantic and linguistic competence
is directly inspired by such experiences.

13 Hindle uses this same strategy in an earlier paper (1990) to generate “concept”
clusters and selectional restrictions of verbs.

14 The notable exception is speech recognition, where false starts and other
disfluencies are frequently marked in the annotation.

256

Glossary

alias: A user-designated synonym for a Unix command or sequence of
commands. Differs from a variable in that its value does not change:
e.g., if you designate m to be your alias for mailx, then typing m will
always run this mail program. Differs from a script in that scripts are
normally stored in executable files, while aliases are loaded as part of
the shell environment directly (and are thus simpler and faster). Aliases
are a facility provided by the C-shell (csh) and its successors, like tcsh.

alphanumeric: Of ASCII characters, any string composed of only upper-
or lower-case English letters or Arabic numerals.

anonymous ftp: Downloading files from a public-access Internet machine,
i.e., one which allows a remote user to log in as “anonymous” and
transfer files even if the user does not have an account on the machine.
See ftp.

Archie: An Internet search facility that searches through directory and file
names (and in some instances through file descriptions) in order to
determine whether a particular string is present. If you ask an Archie
server to find the string “phone” it will return the names of files that
include this word, whether it refers to a sound or a telephone.

argument: As in mathematical or logical usage, a value to be operated
on by a function or other command. By default, this is usually
interpreted as a filename. In the command cat message, the argument
is message, which is subcategorized as a file name by cat.

ARPA: See DARPA.
ASCII: The American Standard Code for Information Interchange is a

standard character set that maps character codes 0 through 127 (low
ASCII) onto control functions, punctuation marks, digits, upper case
letters, lower case letters, and other symbols.

ASCII file: A data file, typically a text file with hard line breaks, that
contains only character codes in the range 0 to 127 (low ASCII), and
interprets them according to the ASCII standard.

Glossary 257

ASCII, high: The unstandardized highest half (128–255) of the 256
characters in ASCII. While low ASCII is standard worldwide, high
ASCII characters vary from one hardware platform to another, or even
from one software program to another.

ATIS: The Air Travel Information System evaluations were a series of
evaluations of speech recognition and spoken language understanding
systems sponsored by DARPA. These evaluations began in 1990 and
ended in 1995. They are responsible for the development of a corpus
of approximately 20,000 utterances regarding air travel, grouped by
speaker, session, and data collection site. The ATIS corpus is distributed
by the Linguistic Data Consortium.

attribute: [1] In SGML, a qualifier within the opening tag for an element
which specifies a value for some named property of that element. [2]
In an object-oriented database, a named property of an object which
not only holds information about a particular instance of an object, but
also encapsulates behavior (such as integrity constraints and a default
value) that is true of all instances of the class of objects.

backquote convention: A facility allowing indirect reference in Unix
commands, by using the output of one command, enclosed within
backquote characters (‘,ASCII #96), as an argument to another
command. For instance, in the command finger ‘whoami‘, first the
whoami program is run, returning the login id of the user; this is in turn
used as the argument for the command finger, which returns
information about a user.

base character: A character to which an overstriking diacritic is added.
batch processing: Running a computer program without any interaction

with the process as it goes along. Sometimes called background
processing.

binaries: See executable.
binary, octal, decimal, hexadecimal: Four common arithmetic bases

(2, 8, 10, and 16, respectively) widely used in computing. Computers
use binary numbers internally, and octal and hexadecimal numbers are
easily converted to binary (and vice versa). Decimal numbers are the
norm in text, as usual; binary numbers, consisting of only 0 and 1, are
easily recognized; octal numbers (now obsolete) use only the decimal
digits [0–7]; hexadecimal (also called hex) numbers contain the normal
decimal digits [0–9], and add [A–F] to represent eleven through fifteen
as single “digits”. These “digits” are pronounced as letters, rather than
extending conventional morphology; i.e., hex “A5” is pronounced “A-
five,” not “*eleventy-five.”

binary transfer: A way of sending files by ftp. The files are sent in binary
code, not translated into ASCII, which would risk some information loss.

BinHex: More accurately BinHex 4.0. The standard Macintosh format
used when a binary file must be converted into an ASCII file so that it

258 Glossary

may be safely transferred through a network. Do not confuse BinHex
4.0 with BinHex 5.0, which is not an ASCII format. All BinHex files
should by convention carry the extension .hqx.

bit, byte: Related terms for small units of information. Bit is an acronym
for binary digit, the smallest possible unit of information: i.e., a single
yes or no (1 or 0), in context. A byte is a unit consisting of eight bits,
in order. There are 28 (=256) possible bytes (combinations of 0 and 1),
and thus 256 possible characters in ASCII, each with a unique byte
value. Computer memory is normally specified in kilobytes, megabytes,
and gigabytes.

black box evaluation: The evaluation of a complex system by examining
only inputs to the system and outputs from the system, ignoring
intermediate results and internal states.

browser, or web browser: A piece of software which retrieves and
displays World Wide Web files. It acts as an interface to Internet
protocols like ftp and http. Common browsers include Netscape,
Internet Explorer, and Mosaic.

BSD, SysV: Two competing dialects of Unix. BSD is an acronym for
Berkeley System Distribution, an academic version developed at the
University of California at Berkeley. SysV stands for System V, a
commercial version originally developed by AT&T. The two systems are
incompatible in some ways, though they are converging in the latest
versions.

byte: See bit.
character: The minimal unit of encoding for text files. A character usually
corresponds to a single graphic sign, like a letter of the alphabet or a
punctuation mark.
character code: A numerical code in a data file which represents a

particular character in text.
character set: The full set of character codes used for encoding a

particular language.
client: See server.
COCOA: A method of text encoding used by the Oxford Concordance

Program and other software.
collating sequence: The sorting order for all the characters in a character

set.
command: A linguistic (i.e., written-language-based) interface to a

computer program or operating system; Unix and DOS have
command-line interfaces, in which the user types commands which
are then executed. Command-line systems are the earlier of the two
principal user interfaces (the other is the Graphic User Interface, or
GUI). Command-line systems are powerful but complex; they can be
added to and customized.

Glossary 259

composite character: A single character which is a composite of two
or more other characters. For instance, “à” is a composite of “a” (the
base character) and “`” (a diacritic).

conceptual indexing: The automatic categorization and grouping of a
set of short text objects according to what they are about. Sets of short
text objects consist of items which are by nature just a paragraph or
two in length (e.g., newswire stories and similar message streams) or
which are the result of segmenting lengthy texts into short (presumably
coherent) sets of items. In general, a conceptual indexing process
categorizes (i.e. indexes) each item in the text set over multiple semantic
dimensions and provides a measure of the relative semantic distance of
all the members of the set from each other.

concordance: A list of words, normally in alphabetical order, where each
occurrence of each word is shown with surrounding context and
identified by a reference indicating where it occurs in the text.

control character, control-shift, Ctrl: The most common and most
standard of the ASCII metacharacters. ASCII keyboards contain a
Shift key, which produces upper-case characters (# 41H through 5AH)
when pressed, instead of lower-case (# 61H through 7AH). The Control-
Shift key, by analogy, produces Control characters (# 01H through
2AH). These are non-printing and in principle have standard uses,
though in practice they vary greatly. They are often represented by
prefixing caret (ˆ) to the appropriate alphabetic character; thus ˆM
represents CR or Carriage Return, sent by the Return key on all
keyboards, and by the Enter key on most.

corpus: A body of linguistic data, either text or speech, intended to support
the study of linguistic phenomena. This data may be compiled on a
principled or systematic basis and it may be annotated in some way to
enhance its usefulness. Examples of corpora include the Brown corpus,
the LOB corpus, and the Penn Treebank and the ATIS corpus.

daemon (less commonly demon): A pre-activated program that is always
ready to perform its task (as opposed to one that must be called by the
system activation software in response to a specific need). Web server
programs are usually run as daemons.

DARPA: The Defense Advanced Research Projects Agency, a branch of
the United States Department of Defense responsible for a wide range
of research and applications development, and a long-time funder of
research in language processing. For a number of years, in the late 1980s
and early 1990s, this organization was known as ARPA. Its Web site is
http://www.darpa.mil/

decimal: See binary.
diacritic: A small mark (such as an accent mark) added above, below,

before, or after a base character to modify its pronunciation or
significance.

260 Glossary

digital image: An electronic representation of a page of text or other
material which is a picture of the page, rather than a transcription of
the text.

directory: A collection of files that are notionally “in” the same “place.”
Every Unix user has a home directory, in which one’s files may be
stored; it usually has the same name as the login id of the user, and
may be referenced as $HOME or by the tilde convention (~ is $HOME,
~jlawler is jlawler’s home directory). At any time in a Unix session, a
user has a current directory, which may be changed with the cd
command. Also called folder.

DNS: An Internet machine that knows the names and IP addresses of other
machines in its subnet. When you attempt to connect to the Internet,
your request goes to a Domain Name Server, which translates an address
like emunix.emich.edu into an IP number like 35.1.1.42 and forwards
your connection request to that IP address.

domain model: In computational linguistics and artificial intelligence, a
symbolic representation of the objects and relationships in a particular
segment (domain) of the world.

dot files: In Unix, special ASCII files placed in one’s home directory to
control various programs and set customized parameters. Their names
begin with period (“dot,” ASCII # 46) and are by default not shown
by the ls program. Examples are .cshrc, which contains commands
and definitions for the csh shell; .newsrc, for customizing newsreaders
like trn; and .login, which contains commands executed once at the
beginning of each Unix session.

DTD: Document Type Definition, the definition of the markup rules for
an SGML document.

editor: A program that allows one to create, modify, and save text files.
Virtually all popular editors (pico, emcas, vi) on Unix are screen
editors, like wordprocessors. Early Unix line editors (ed, ex) operate
with commands instead of direct typing; i.e., to correct a mistake like
fase, you might enter the command replace s with t, rather than
just overstriking the s with t.

element: In an SGML file, a single component of a document delimited
by a start tag and an end tag. For instance, a title element might be
delimited by <title> and </title>.

encoding: The manner in which information is represented in computer
data files. Character encoding refers specifically to the codes used to
represent characters. Text encoding refers specifically to the way in which
the structural information in text is represented.

entity: In SGML, a named part of a marked up document. An entity
can be used for a string of characters or a whole file of text. Non-
standard characters (like “Ê”) are normally represented by entities (like
“Ê”) in SGML.

Glossary 261

escape (n): An ASCII control or metacharacter (#27, ˆ]) with its own
key on most keyboards, intended originally to signify escape (v). While
it has been put to a number of different uses over the decades, it is still
often used to pause or terminate a program or process. Frequently called
Meta in some programs, notably emacs, where it is a common command
prefix.

escape (v): [1] To pause a running program and return control temporarily
to the operating system, usually in order to run some other program.
In Unix, the exclamation point (ASCII #33, !, pronounced “bang”) is
an escape character that can be used in most programs to accomplish
this.
[2] To cancel the default (meta-) interpretation of the following character
in a string and interpret it literally instead. Thus, while the unescaped
(meta)expression ‘.’ matches any character, the regular expression ‘\.’
matches a literal period or full stop character only, because it is escaped
by the preceding ‘\’.

executable: A filename that can be used as a command, consisting either
of a script of commands to be executed by typing the name, or of true
compiled binary program code. In the latter sense (also called
binaries), the executable(s) is/are sometimes used to distinguish
compiled binary code from its human-readable programming-language
source: “He gave me the executable, but I needed the source files.”

extension: In a filename, the letters following the last dot. Often used to
indicate type of file, e.g., .doc for Microsoft Word files, .txt for ASCII
files, .c for C programs.

field: In a database, a subdivision of a record which stores information
of a particular type.

file: A collection of information encoded in computer-readable form and
associated with a single name by which the computer’s operating system
stores and retrieves it.

filter: A type of program especially common in Unix in which a file or
other data stream (by default, the standard input) is read serially,
modified in some regular way, and sent (in modified form) to some other
file or stream (by default, the standard output), without any change
to the original data source. There are many languages for creating simple
text filters in Unix, like sed, awk, and perl.

folder: Synonym for directory (metaphorically, a place to put files), used
in Macintosh, NeXT, Windows 95, and some other Graphic User
Interfaces. See GUI.

font: A collection of bitmaps or outlines which supply the graphic
rendering of every character in a character set.

font system: A subcomponent of an operating system which gives all
programs and data files access to multiple fonts for rendering
characters.

262 Glossary

(file) format: The encoding scheme, often proprietary, in which the
information in a file is marked up. Wordprocessing files created by
different software are usually incompatible in format to some extent.
To read one program’s files using a different program requires format
translation, which may be built into a full-featured wordprocessor, but
is often a separate step requiring separate software. Many formats are
in use; a frequent feature of upgrade versions of popular microcomputer
software is a different (and usually incompatible) standard file format,
and there are different standards and versions for different countries and
languages.

frequency profile: In a concordance or similar program, a table showing
how many words occur once, twice, three times, etc. up to the most
frequent word.

ftp: Internet File Transfer Protocol, a way of sending files from one Internet
machine to another.

full path: See path.
generalized markup: The discipline of using markup codes in a text to

describe the function or purpose of the elements in the text, rather than
their formating.

glyph: In character-encoding, the shape or form of a character, as opposed
to a pairing of form and interpretation.

gopher: An Internet search facility, which allows the user to search through
a hierarchically organized set of menus in order to find a particular file.
Gopher menus categorize files according to content (e.g., “libraries,”
“phonebooks”), as determined by a human being, not a computer.

GUI: A Graphic User Interface is one invoking visual rather than linguistic
metaphors, often employing menus, non-text input devices like a mouse
or trackball, and icons employing visual symbolism and metaphor, like
a desktop with paper files on it.

hexadecimal: See binary.
Hidden Markov Model (HMM): A Hidden Markov Model is a statistical

model of the distribution of “hidden” features, such as phonemes or
part-of-speech tags, based on observable features, such as acoustic
segments, or words. The computational models can be automatically
trained from data samples, and then used to recognize the “hidden”
layer, based on the statistical model derived from the training corpus.

high ASCII: See ASCII, high.
homograph: A word which has the same spelling but different meanings,

e.g. “lead” as a verb “to lead” and as two different nouns “a leash” and
the metal.

HTML: Hypertext Markup Language is a method of marking a document
that is to be displayed by a web browser. It consists primarily of
formatting tags, like <i>boldface italic</i> for boldface
italic.

Glossary 263

http: Hypertext Transfer Protocol. A way of sending hypertext documents
over the Internet.

hypertext: A non-linear version of text presentation with embedded links
to other information. The basis of the World Wide Web and of the
Internet protocols employed on the Web.

hypothesis: In corpus-based linguistics, an annotation produced by an
annotation procedure which can be checked against an annotation key.

index: An alphabetical or otherwise ordered list of words which is
structured to facilitate rapid searching by an interactive retrieval
program. Such an index is usually built by a special program module
before any searches can be carried out. Concordance programs such as
OCP may also produce printed indexes where the words are given in
alphabetical order and where each word is accompanied by a list of
references indicating where that word occurs in the text. Sometimes also
called a word index.

information extraction: In computational linguistics, the process by
which information in a form suitable for entry into a database is
generated from documents.

input-output (I/O) redirection: Process (and capability) allowing a
program (typically a filter program) to take its input from some other
program, and/or send its output to another. A characteristic feature of
Unix, much copied in other operating systems. The control structure
implementing this is called a pipe, and the ‘|’ symbol is used in the
Unix command line to represent this.

inter-annotator agreement: The degree of agreement among human
annotators on the tags assigned to a given corpus or for a given task. It
is important because it sets an upper bound on the measurable accuracy
of any automated procedure for performing the same task. A measure
of inter-annotator agreement which is too low might be an indication
that the annotation task being measured is too difficult or poorly defined.

interactive retrieval: The process of searching or querying a text and
getting an instant response. The query is performed on an index which
has been built previously.

IP number: A four-part number which uniquely identifies an Internet
machine, giving the net and subnet to which it belongs. The IP number
35.1.1.42, for example, designates the Domain Name Server of the
University of Michigan and tells us that it is part of net 35 and subnet
1. Part of the Internet Protocol.

key: [1] An individual button on a keyboard; by extension, the character(s)
or command(s) it signals.
[2] In searching, a synonym for search string.
[3] In indexing or database management, the most important field,
in the sense that it uniquely identifies an item (Chapter 4).

264 Glossary

[4] In corpus-based linguistics, a benchmark against which the accuracy
of an annotation procedure can be compared (Chapter 8).

Kleene closure: In regular expressions, the use of asterisk (*, ASCII
30) as a special character to indicate “any number of the preceding
character (including zero, or “none of”). Combined with the use of the
special character dot (i.e., period, ASCII # 34) to represent “any
character,” the regular expression idiom ‘.*’ represents “any string.”
Named after the logician Stephen Kleene.

lemmatization: The process of putting words under their dictionary
headings, for example, “go,” “going,” “gone,” “went,” under “go.”

line: A unit of organization in a text file including all the characters up to
and including the line end character (either carriage return, line feed,
or both, depending on operating system).

Linguistic Data Consortium: The LDC is an open consortium of
universities, companies, and government research laboratories which
creates, collects, and distributes speech and text databases, lexicons, and
other resources for research and development in computational
linguistics. It is hosted at the University of Pennsylvania. Its Web site is
http://www.ldc.upenn.edu

link: Any mediated connection between pieces of information that allows
them to be presented in the same context, for example, an embedded
URL in a hypertext document. Links are created in HTML using the
<a…> “anchor” tag, and are displayed in a browser as emphasized
text (blue and underlined). When one clicks on a link, the browser
requests the file and displays it.

loop: A programmed repetition of a set of instructions, typically with
incrementation of some index value. The instructions will then be
repeated on each member of the indexed set of values. Implemented
by the for, while, or do structures in many computer languages.

low ASCII: See ASCII.
machine learning: In computational linguistics and artificial intelligence,

a set of techniques which allow a computer program to improve its
performance iteratively on a chosen task.

markup: Codes added to the stream of an encoded text to signal
structure, formatting, or processing commands.

metacharacter: A character or (shift-)key to be interpreted as modifying
the value of the character (or key) following it in a string (or produced
simultaneously in typing), either by prefixing a special character (“ˆX–
Q terminates the program”), or by interpreting it literally, thus escaping
the default special interpretation of the following character.

method: See object-oriented.
MIME: Multi-purpose Internet Mail Extensions. A way of sending files

of different types (e.g., graphics, sound, or wordprocessor files) via e-
mail without converting them into ASCII, or plain text. None of the

Glossary 265

original information will be lost, and, if the recipient has a MIME-
compliant mailer program, it will call up the proper program needed
to display or play the files.

Message Understanding Conference: MUC refers to a series of
evaluations of text-based language processing systems sponsored by
DARPA. These conferences are responsible for a series of corpora
covering increasingly difficult information extraction tasks and subtasks.

multi-user, multi-tasking: Two independent characteristics of desirable
operating systems, both found in Unix. A multi-user system is one that
allows several users to run commands simultaneously without having
to take turns. A multi-tasking system is one that allows any user to run
several commands simultaneously without having to wait until each is
done (serial processing). Multi-tasking is also called parallel-
processing.

named entry: in corpus-based linguistics, a unique identifier of an
organization, person, location, time or number.

news: An Internet utility that allows users to download (notionally, “read”)
“articles” posted to “newsgroups” by other users interested in the topic
the newsgroup was formed to discuss. The newsgroup “sci.lang,” for
example, is dedicated to discussing the science of language. To read
news, you need a news client like trn and access to a news server, such
as those established at most universities.

normalization: The process of organizing a database in such a way that
no piece of information occurs more than once in the database.

object: The fundamental unit of information modeling in the object-
oriented paradigm. In principle, there is a one-to-one correspondence
between objects in the data model and the entities in the real world
which are being modeled. (This is not true, in general, of the data
structures of conventional programming languages or database systems,
and is less true in practice than in theory of official object-oriented
languages and databases.) An object stores state information (like the
field values of a database record; notionally nouns) and it stores
behavioral information (called methods; notionally verbs) about what
computations can be performed on an instance of the object. The
information stored in an object is encapsulated in that it is not visible
directly; it can only be seen by sending a message to the object which
asks it to perform one of its methods.

object-oriented: A modern paradigm of programming which models
information in terms of objects. Computation occurs when one object
receives a message from another asking it to perform one of its methods,
i.e., special subroutines subcategorized for each type of object. The
object-oriented approach, in which the data and the program behavior
are encapsulated in the objects, contrasts with the conventional approach
to programming, in which a monolithic program operates on data which

266 Glossary

is completely separate. Object-oriented programming is more amenable
to modeling parallel processing.

object-oriented database: A database system which models entities in
the real world as objects and follows the object-oriented paradigm
of programming.

octal: See binary.
open: Of software, especially an operating system, signifying that it

conforms to a well-known internal architecture and set of standards, or
that it is not restricted to use on a single brand of computer, or that it
is manufactured and maintained by many vendors, or some combination
of these. Contrasts with proprietary.

operating system (OS): The basic software that runs a computer,
managing all other software and apportioning computing resources to
avoid conflicts.

optical character recognition (OCR): A method of creating electronic
text by automatically analyzing a digital image of a page of text and
converting the characters on that page to ASCII text.

option: See switch.
Oxford Concordance Program (OCP): A flexible batch processing

program for generating concordances, word lists, and indexes from
many kinds of texts.

padding letter: A letter or other character that does not affect the sorting
of words.

parallel corpus: A text corpus containing the same text in multiple
languages. Such corpora are used for training corpus-based machine
translation systems, for example. The Rosetta Stone is an example of a
parallel corpus.

part-of-speech tagging: The process of assigning lexical categories (that
is, part-of-speech tags) to words in linguistic data. This process can be
performed automatically with a high degree of accuracy (above 95 per
cent in English) without reference to higher-level linguistic information
such as syntactic structure.

path: [1] A list of directories in which the operating system looks for files.
To put a directory in one’s path is to add the directory’s name to this list;
to put a file in one’s path is to store the file in a directory that is on the
list.
[2] Used also of the full path or pathname of a file, the sequential list
of directories which locates the file on the disk; the reference is parsed
recursively, like a linguistic tree, e.g., in Unix /usr/jlawler/bin/
aliases specifies a file named aliases, which is further specified as being
located in the subdirectory named bin, which is located in the subdirectory
named jlawler, which is located in the subdirectory named usr, which
is located under the top (root) directory (always called simply ‘/’).

Glossary 267

Penn Treebank: A corpus of Wall Street Journal documents annotated with
part-of-speech and bracketing information, distributed by the
Linguistic Data Consortium. Its web site is http://www.cis.
upenn.edu/~treebank.

pipe: A notional conduit for the flow of information between programs in
the stream metaphor. A pipe connects the output of one tool program
as the input to another. Instantiated in Unix by the vertical bar ‘|’, as
in sort | uniq, in which sort sorts lines in a file alphabetically, then
sends the sorted file to uniq, which removes contiguous identical lines.

PPP: Point-to-Point Protocol. A way of accessing the Internet which allows
your home machine to act as if it were, itself, an Internet machine. PPP,
for example, allows you to retrieve and display Internet graphics files. If
you access the Internet through a serial line (formally the most common
type of modem connection), you can not use a graphical browser.

precision: In information retrieval or corpus-based linguistics, the number
of answers in an answer set hypothesis which are also in the answer key,
divided by the size of the answer set hypothesis.

preference: See switch.
proprietary: Of software, especially an operating system, signifying that

it is manufactured and maintained by only one vendor, or that it is the
only type usable on a particular computer, or that it does not conform
to a widely-accepted standard, or that its details are secret, or some
combination of these. Contrasts with open.

protocol: An agreed-upon way of doing things. Internet protocols have
been established for such actions as transmission of information packets
(TCP), file transfer (ftp), and hypertext transfer (http). Any machine
which does things according to these protocols can be a part of the
Internet.

recall: In information retrieval or corpus-based linguistics, the number of
answers in an answer set hypothesis which are also in the answer key,
divided by the size of the answer key.

record (n): In a database, a collection of information about a single entity.
regular expression: A formal syntactic specification widely implemented

in the Unix language family for reference to strings. For example, the
regular expression denoting one or more alphanumerics (i.e., letters
or numbers) is [A–Za–z0–9]*.

rendering: The process of converting a stream of encoded characters
to their correct graphic appearance on a terminal or printer.

reverse alphabetical order: Sorting of words by their endings so that,
for example, a word list in alphabetical order begins with words ending
in -a. A wordlist in reverse alphabetic order is also called a speculum.

router: An Internet machine whose specialized job is finding paths for
information packets. It looks for functional, uncongested paths to
destinations and sends data along them.

268 Glossary

RTF: Rich Text Format is a special interchange file format that can be
created and read by most popular wordprocessors. RTF preserves most
formatting information, and graphics. Since they use only low ASCII,
RTF documents can be usefully transmitted by e-mail.

scanning: The process of creating a digital image of a page of text or
other material. This term is sometimes also used for optical character
recognition.

script: A collection of commands, often Unix commands, structured
together as a program and stored as an executable file. The commands
in a script are interpreted by the shell (normally sh) and treated as if
they were entered in order by the user at the command line.

server: Software that forms part of a server/client pair. Typically, a server
resides on a central machine and, when it is contacted by the client
software on a user’s machine, sends a particular type of information.
Web servers, for example, send hypertext documents; news servers send
articles posted to newsgroups.

SGML: Standard Generalized Markup Language is a method for
generalized markup that has been adopted by ISO (the International
Organization for Standardization) and is consequently gaining
widespread use in the world of computing.

sgmls: A shareware Unix and DOS program for validating SGML
documents.

shell: A kind of tool program that parses, interprets, and executes
commands, either interactively from the keyboard, or as a script. DOS
uses a shell called COMMAND.COM; there are several shells available
in Unix: the most common are the original Bourne shell (sh), used
mostly for interpreting scripts, and the C-shell (csh), the standard for
interactive commands.

SLIP: Serial Line Internet Protocol. This protocol allows a personal
computer to interact across a serial line, i.e., via a modem and a phone
line, as if it were a full Internet machine. Most systems now use PPP
in preference to SLIP, which is an older, less flexible protocol.

special character: A character that is not available in one of the
character sets already supported on a computer system.

speculum: See reverse alphabetical order.
standard input, standard output: The input and output streams for

DOS or Unix tool programs. The operating system associates these
streams with each program as it is run. The standard input defaults to
the keyboard, and the standard output to the screen, though both are
frequently redirected to other programs, or to files. See I/O redirection.

stream: A (long) string of bytes, which may come from any source,
including a file. Streams are operated upon by filters and other
programs. Stream is often used as an alternative, active metaphor for

Glossary 269

file, when considered in terms of sequential (serial) throughput that can
be redirected.

string: A sequence of bytes. Since bytes are used to code text, “string” is
often used as a synonym for “word” or “phrase” in electronic text-
processing environments. Special uses of the term include search string
(the string to be matched in a searching operation) and replacement
string (the string to be substituted for occurrences of the search string
in a replacement operation).

style sheet: A separate file that is used with a document containing
generalized markup to declare how each generalized text element is to
be formated for display.

subdirectory: A directory that is located inside another directory. There
can be long chains of subdirectories in a file’s full path if it is deeply
buried in the file system.

switch: One of a number of parameters that may be set for a program,
each specifying special instructions (e.g., for the Unix sort program, a
switch can specify reverse or numeric sort). Each program has its own
unique array of possible switches, invoked on the command line before
arguments, using a switch prefix (normally minus sign “-”) before the
individual letters indicating the switch settings, thus resembling clitics
on the command verb. May be set by menu or checkbox in a GUI. Also
called options or preferences.

SysV: See BSD.
tag: [1] In SGML, a string of characters inserted into a text file to

represent a markup code. Each text element of a given “type” is
delimited by an opening tag of the form <type> and a closing tag of
the form</type> (Chapter 1).
[2] In computational linguistics, an annotation associated with an
element of a corpus. For instance, a part-of-speech tag is a lexical
syntactic category associated with a word in a corpus; a coreference
tag is an annotation indicating the referential dependency of the tagged
phrase on other tagged phrases in the corpus (Chapter 8).

tag set: [1] In SGML, the set of tags defined for a particular application
of the DTD (Chapter 4).
[2] In computational linguistics, a set of possible tags for a given
annotation task. For example, a part-of-speech tag set is a list of
lexical syntactic categories which may be associated with lexical items
(Chapter 8).

TCP, or Transmission Control Protocol: A way of transmitting
information packets on the Internet so that those belonging to the same
body of data can be identified and reassembled into their original order.

TEI: The Text Encoding Initiative is a joint effort of the Association for
Computers and the Humanities, the Association for Literary and
Linguistic Computing, and the Association for Computational

270 Glossary

Linguistics to develop SGML-based guidelines for the encoding of texts
and the analysis of texts.

telnet: A way of logging in to a remote machine; also, the name of one of
the more common programs that implement this facility.

test corpus: An annotated corpus set aside for evaluation of the
annotation procedure. To ensure the accuracy of the evaluation process,
there should be no overlap between training and test corpora.

tool: One of a generalized type of small useful modular programs, made
to work together in a conceptually unified way so as to provide
maximum flexibility, power, and ease of operation. Part of the Software
Tools philosophy, instantiated most thoroughly in Unix.

training corpus: An annotated corpus whose contents are consulted in
the process of developing a procedure to produce these annotations. To
ensure the accuracy of the evaluation process, there should be no overlap
between training and test corpora.

type/token ratio: A measure of the spread or richness of the vocabulary
in a text, calculated by dividing the number of types (different words)
by the number of tokens (instances of each word).

Unicode: A character set which attempts to include every character from
all the major writing systems of the world. Version 1.0 contained 28,706
characters.

URL: Universal Resource Locator. A World Wide Web address.
uuencode: A file format which originated on Unix machine (though now

commonly found elsewhere), and which is used for converting binary
files to ASCII so that they may be safely transferred through a network.
It is the default ASCII encoding for many mailers. By convention, such
files should have the extension.uu

variable: A special name assigned to substitute for some term that may
vary from user to user (and thus can not be supplied literally in
documentation). For instance, in Unix, $HOME is a first-person indexical
variable that refers to the home directory (see directory) of whatever
user types it, while the variable bookmark might be assigned by one user
to point to the full pathname of a file containing their Web bookmarks,
and by another to a file containing a list of book reviews. $HOME is an
example of a global, or system, variable, part of Unix and available to
all users, while the various uses of bookmark are local, variables
interpretable only in the environment of the particular user.

WAIS: Wide Area Information Service. An Internet search facility that
retrieves filenames labeled with a score based on their probable relevance
to the search criteria. Unlike Gopher, WAIS searches indexes of the
text inside the files rather than an index categorizing files by content.

web browser See browser.
wildcard: A simplified version of the Kleene closure, usually consisting

only of ‘*’ for “any string” and ‘?’ for “any character,” used to allow

Glossary 271

variable pattern specifications. Found in Unix shell dialects, DOS
command syntax, and a large number of search languages based on
regular expressions.

word list: A list of words, normally in alphabetical or frequency order,
where each word is accompanied by a number indicating how many
times that word occurs.

World Script: A subcomponent of the Macintosh operating system
(version 7.1 and later) which gives programs access to script interface
systems for multiple non-Roman writing systems.

WWW, or World Wide Web: The “web” is a metaphor for the multiplicity
of links effected by Web browsers and Web servers, a notional place.
It is not, itself, a piece of software or hardware.

272

Bibliography

Abney, Steven. 1996. Statistical Methods and Linguistics. In Klavans and Resnik,
1–26.

AECMA. 1989. A Guide for the Preparation of Aircraft Maintenance Documentation
in the Aerospace Maintenance Language, AECMA Simplified English. AECMA
Document: PSC-85–16598, Issue 1. Brussels.

Ansel, Bettina and Andreas H. Jucker. 1992. Learning Linguistics with Computers:
Hypertext As A Key to Linguistic Networks. Literary and Linguistic Computing
7:124–31.

Antworth, Evan L. 1993. Glossing Text with the PC-KIMMO Morphological
Parser. Computers and the Humanities 26:475–84.

Apple Computer. 1985. The Font Manager. In Inside Macintosh 1:215–40 (with
updates in 4:27–48, 1986). Reading, MA: Addison Wesley.

——1988. The Script Manager. In Inside Macintosh, 5:293–322. Reading, MA:
Addison Wesley.

Asher, Nicholas and Alex Lascarides. 1994. Intentions and Information in
Discourse. In Proceedings of the 32nd Annual Meeting of the Association for
Computational Linguistics: 34–41. Las Cruces, NM.

Bakker, Dik, Bieke Van der Korst, and Gerjan Van Schaaik. 1988. Building a
Sentence Generator For Teaching Linguistics. In Michael Zock and Gerard
Sabah (eds). Advances in Natural Language Generation: An Interdisciplinary
Perspective. London: Pinter. 159–74.

Bantz, David A. et al. 1989. Reviews of Instructional Software in Scholarly Journals:
A Selected Bibliography. Hanover: Dartmouth College.

Barwise, Jon. 1989. The Situation in Logic. CSLI Lecture Notes no. 17. Stanford:
Center for the Study of Language and Information (distributed by the
University of Chicago Press).

Barwise, Jon and John Perry. 1983. Situations and Attitudes. Cambridge, MA: MIT
Press.

Becker, Joseph D. 1984. Multilingual Word Processing. Scientific American
251(1):96–107.

Beckwith, Richard and George A.Miller. 1990. Implementing a Lexical Network.
International Journal of Lexicography 3(4):302–12.

Bell Laboratories. 1979. Unix Programmer’s Manual Vol. 1. (Reprinted 1983, New
York: Holt, Rinehart, and Winston.)

Bell System Technical Journal 1979. 57(6) part 2. (Reprinted 1987, Englewood Cliffs,
NJ: Prentice-Hall.)

Berger, Adam et al. 1994. The Candide System for Machine Translation. In

Bibliography 273

Proceedings of the Human Language Technology Workshop. March 8–11. Plainsboro,
NJ.

Berry, Michael W., Susan T.Dumais, and Gavin W.O’Brien. 1995. Using Linear
Algebra for Intelligent Information Retrieval. SIAM Review 37(4):573–95.

Bevan, David. 1993. What Can You Do with FindPhone? Notes on Linguistics 61:28–
39.

Binns, Betty. 1989. Better Type. New York: Watson-Guptill.
Bird, Steven. 1995. Computational Phonology: A Constraint-Based Approach.

Cambridge: Cambridge University Press.
Birner, Betty. 1994. Information Status and Word Order: An Analysis of English

Inversion. Language 70:233–59.
Black, E., S.Abney, D.Flickenger, C.Gdaniec, R.Grishman, P.Harrison, D. Hindle,

R.Ingria, F.Jelinek, J.Klavans, M.Liberman, M.Marcus, S.Roukos, B.Santorini,
and T.Strzalkowski. 1991. A Procedure for Quantitatively Comparing the
Syntactic Coverage of English Grammars. In Proceedings of the Fourth DARPA
Workshop on Speech and Natural Language. San Mateo, CA: Morgan Kaufmann.

Bloomfield, Leonard. 1933. Language. Holt, Rinehart and Winston: New York.
——1962. The Menomini Language. Charles F.Hockett (ed.) New Haven: Yale

University Press
Booch, Grady. 1994. Object-oriented Analysis and Design with Applications. 2nd

edition. Redwood City, CA: Benjamin/Cummings Publishing Co.
Borgida, Alexander. 1985. Features of Languages for the Development of

Information Systems at the Conceptual Level. IEEE Software 2(1):63–72.
Bresnan, Joan, Ronald Kaplan, Stanley Peters, and Annie Zaenen. 1982. Cross-

serial Dependencies in Dutch. Linguistic Inquiry 13(4):613–35.
Brill, Eric. 1995. Transformation-Based Error-Driven Learning and Natural

Language Processing: A Case Study in Part-of-Speech Tagging. Computational
Linguistics 21(4):543–65.

Bringhurst, Robert. 1992. The Elements of Typographic Style. Vancouver: Hartley &
Marks.

Brooks, Frederick P. 1995. The Mythical Man-Month. 20th Anniversary Edition.
Reading, MA: Addison Wesley.

Brugman, Claudia. 1981. Story of “Over”. MA thesis. University of California,
Berkeley. (Available from the University of Indiana Linguistics Club.)

Burnard, Lou D. 1991. An Introduction to the Text Encoding Initiative. In Daniel
I.Greenstein (ed.). Modeling Historical Data: Towards a Standard for Encoding and
Exchanging Machine-Readable Texts. (Halbgraue Reihe zur Historischen
Fachinformatik, Serie A, Historische Quellenkunden, Band 1.) Max-Planck-
Institut für Geschichte.

Burns, Hugh, James W.Parlett, and Carol Luckhardt Redfield. 1991. Intelligent
Tutoring Systems: Evaluations in Design. Hillsdale, NJ: Lawrence Erlbaum
Associates.

Butler, Christopher S. 1985. Computers in Linguistics. Oxford: Blackwell.
Charniak, Eugene. 1993. Statistical Language Learning. Cambridge, MA: MIT

Press.
Chinchor, Nancy and Beth Sundheim. 1993. MUC-5 Evaluation Metrics. In

Proceedings of the Fifth Message Understanding Conference (MUC-5), 69–78.
Chinchor, Nancy, Lynette Hirschman, and David. D.Lewis. 1993. Evaluating

Message Understanding Systems: An Analysis of the Third Message
Understanding Conference (MUC-3). Computational Linguistics 19:409–49.

Chomsky, Noam. 1956. Three Models for the Description of Language. IRE
Transactions on Information Theory IT-2:113–34.

274 Bibliography

——1963. Formal Properties of Grammars. In R.Duncan Luce et al. (eds).
Handbook of Mathematical Psychology 2:328–428. New York: Wiley.

Church, Kenneth W. 1988. A Stochastic Parts Program and Noun Phrase Parser
for Unrestricted Text. In Proceedings of the Second Conference on Applied Natural
Language Processing. Austin, TX.

Church, Kenneth W. and Robert L.Mercer. 1993. Introduction to the Special Issue
on Computational Linguistics Using Large Corpora . Computational Linguistics
19(1):1–24.

Coad, Peter, and Edward Yourdon. 1991. Object-oriented analysis. 2nd edition.
Englewood Cliffs, NJ: Prentice-Hall.

Cole, P. (ed.). 1981. Radical Pragmatics. New York: Academic Press.
Cole, P. and J.Morgan (eds). 1975. Syntax and Semantics 3: Speech Acts. New York:

Academic Press.
Collins, Michael. 1996. A New Statistical Parser Based on Bigram Lexical

Dependencies. In Proceedings of the 34th Annual Meeting of the Association for
Computational Linguistics.

Comrie, Bernard (ed.). 1987. The World’s Major Languages. Oxford: Oxford
University Press.

Comrie, Bernard and Norval Smith. 1977. Lingua Descriptive Studies:
Questionnaire. Lingua 42:1.

Coombs, James H., Allen H.Renear, and Steven J.DeRose. 1987. Markup Systems
and the Future of Scholarly Text Processing. Communications of the ACM 30:933–
47.

Cover, Robin. 1992. Standard Generalized Markup Language: Annotated
Bibliography and List of References . <TAG>: The SGML newsletter</> 5(3):4–
12, 5(4):13–24, 5(5):25–36. (See http://www.sil.org/sgml for Cover’s Web site
which features an up-to-date version of this bibliography and a wealth of pointers
to SGML resources.)

Craig, Collette (ed.). 1986. Categorization and Noun Classification. Philadelphia:
Benjamins North America.

Culy, Christopher. 1985. The Complexity of the Vocabulary of Bambara. Linguistics
and Philosophy 8(3):345–51.

Cutting, Doug, Julian Kupiec, Jan Pedersen, and Penelope Sibun. 1991. A Practical
Part-of-Speech Tagger. In Proceedings of the Third Conference on Applied Natural
Language Processing. Trento, Italy.

Davis, Daniel W. and John S.Wimbish. 1993. The Linguist’s Shoebox: An Integrated
Data Management and Analysis Tool (version 2.0). Waxhaw, NC: Summer Institute
of Linguistics.

Davis, Mark E. 1987. The Macintosh Script System. Newsletter for Asian and Middle
Eastern Languages on Computer 2(1&2):9–24.

Dik, Simon C. 1989. The Theory of Functional Grammar, Part I. Dordrecht: Foris.
Dougherty, Dale. 1990. sed & awk. Sebastopol, CA: O’Reilly & Associates.
Dresher, B.Elan and Jonathan D.Kaye. 1990. A Computational Learning Model

for Metrical Phonology. Cognition 34:137–95.
Ephratt, Michal. 1992. Developing and Evaluating Language Courseware.

Computers and the Humanities 26:249–59.
Fellbaum, Christiane. 1990. English Verbs as a Semantic Net. International Journal

of Lexicography 3(4):278–301.
Findler, Nicholas V. 1992. Automatic Rule Discovery for Field Work in

Anthropology. Computing in the Humanities 26:285–92.
Ford, Ric, and Connie Guglielmo. 1992. Apple’s New Technology and Publishing

Strategies. MacWeek (September 28, 1992): 38–40.

Bibliography 275

Frantz, Donald G. 1970. A PL/I Program to Assist the Comparative Linguist.
Communications of the ACM 13(6):353–56.

Fraser, Norman and Richard A.Hudson. 1992. Inheritance in Word Grammar.
Computational Linguistics 18:133–58.

Friedl, Jeffrey. 1997. Mastering Regular Expressions. Sebastopol, CA: O’Reilly &
Associates.

Fuchs, Ira. 1988. Research Networks and Acceptable Use. EDUCOM Bulletin
Summer/Fall: 43–8.

Gazdar, Gerald, Ewan Klein, Geoffrey Pullum, and Ivan Sag. 1985. Generalized Phrase
Structure Grammar. Cambridge, MA: Harvard University Press.

Goldfarb, Charles F. 1990. The SGML Handbook. Oxford: Oxford University Press.
Goodman, Danny. 1990. The Complete HyperCard Handbook. 3rd ed. New York:

Bantam Books.
Grice, H.P. 1975. Logic and Conversation. In Cole and Morgan (eds), 1975: 41–58.
——1981. Presupposition and Conversational Implicature. In Cole (ed.), 1981: 183–

198.
Grishman, Ralph and Beth Sundheim. 1996. Message Understanding Conference

6: A Brief History. In Proceedings of the Sixteenth International Conference on
Computational Linguistics (COLING-96).

Gross, Derek and Katherine J.Miller. 1990. Adjectives in WordNet. International
Journal of Lexicography 3(4):265–77.

Grosz, Barbara J. and Candace Sidner. 1986. Attention, Intentions, and the Structure
of Discourse. Computational Linguistics 12:175–204.

Grosz, Barbara J., Aravind K.Joshi, and Scott Weinstein. 1995. Centering: A
Framework for Modeling the Local Coherence of Discourse. Computational
Linguistics 21:203–25.

Harris, Zellig. 1951. Methods in Structural Linguistics. Chicago: University of Chicago
Press.

Harrison, Philip, Steven Abney, Ezra Black, Dan Flickenger, Claudia Gdaniec,
Ralph Grishman, Donald Hindle, Robert Ingria, Mitch Marcus, Beatrice
Santorini, and Tomek Strzalkowski. 1991. Evaluating Syntax Performance of
Parser/Grammars of English. In Neal and Walter 1991:71–77.

Harrison, Philip. 1988. A New Algorithm for Parsing Generalized Phrase Structure
Grammar. PhD dissertation. University of Washington, Seattle.

Heim, Michael. 1986. Humanistic Discussion and the Online Conference.
Philosophy Today 30:278–88.

Herwijnen, Eric van. 1994. Practical SGML. 2nd ed. Dordrecht: Kluwer Academic
Publishers.

Hindle, Donald and Mats Rooth. 1993. Structural Ambiguity and Lexical Relations.
Computational Linguistics 19(1):103–20.

Hindle, Donald. 1990. Noun Classification from Predicate Argument Structures.
In Proceedings of the 28th Annual Meeting of the Association for Computational
Linguistics: 268–75.

Hirschberg, Julia and Diane Litman. 1993. Empirical Studies on the
Disambiguation of Cue Phrases. Computational Linguistics 19:501–30.

Hirschman, Lynette, Madeleine Bates, Deborah Dahl, William Fisher, John Garofolo,
David Pallett, Kate Hunicke-Smith, Patti Price, Alex Rudnicky, and Christine Pao.
1992. Multi-Site Data Collection for a Spoken Language Corpus. In Proceedings of
the International Conference on Spoken Language Processing. Banff, Canada.

Hoard, James E. and Wolf Kohn. 1994. A Synopsis of a Relational Logic Model of
Natural Language Semantics. Boeing Computer Services Technical Report,
BCSTECH-94–037.

276 Bibliography

Hoard, James E., Richard Wojcik, and Katherina Holzhauser. 1992. An Automated
Grammar and Style Checker for Writers of Simplified English. In Holt and
Williams, 1992:278–96.

Hobbs, Jerry. 1978. Resolving Pronoun References. Lingua 44:311–38.
Hockey, Susan. 1989–92a. Chairman’s Report. Literary and Linguistics Computing

4(4):300–02, 5(4):334–46, 6(4):299, 7(4):244–45.
——1992b. Some Perspectives on Teaching Computers and the Humanities.

Computing in the Humanities 26:261–6.
Hofstadter, Douglas R. and Daniel C.Dennett. 1981. The Mind’s I. New York: Basic

Books.
Holt, Patrick O’Brian and Noel Williams (eds). 1992. Computers and Writing: State

of the Art. Dordrecht: Kluwer.
Hudson, Richard. 1984. Word Grammar. Oxford: Blackwell.
——1990. English Word Grammar. Oxford: Blackwell.
Huls, Carla, Edwin Bos, and Wim Claasen. 1995. Automatic Referent Resolution

of Deictic and Anaphoric Expressions. Computational Linguistics 21:59–79.
Hunt, Geoffrey R. 1988. Tone and Stress Analysis. Notes on Linguistics 41:14–18.
——1992. A Good Phonology Program. Notes on Linguistics 41:14–18.
Ide, Nancy. 1991. Computational Linguistics. In Lancashire, 1991:32–67.
Ingria, Robert J.P. and David Stallard. 1989. A Computational Mechanism for

Pronominal Reference. In Proceedings of the 27th Annual Meeting of the Association
for Computational Linguistics: 262–71. Vancouver, BC.

Irizarry, Estelle. 1992. Courseware in the Humanities: Expanded Horizons.
Computing in the Humanities 26:275–84.

ISO. 1986. Information Processing—Text and Office Systems—Standard Generalized
Markup Language (SGML). ISO 8879–1986 (E). Geneva: International
Organization for Standards, and New York: American National Standards
Institute.

Johnson, Jeff and Richard J.Beach. 1988. Styles in Document Editing Systems.
IEEE Computer 21(1):32–43.

Johnson, Mark. 1987. The Body in the Mind: The Bodily Basis of Meaning,
Imagination, and Reason. Chicago: University of Chicago Press.

Kac, Michael. 1987. Surface Transitivity, Respectively Coordination and Context-
Freeness. Natural Language and Linguistic Theory 5(3):441–52.

Kaliski, Terry. 1992. Computer-Assisted Language Learning (CALL). In Roach,
1992:97–110.

Kaplan, Ronald M. and Martin Kay. 1994. Regular Models of Phonological Rule
Systems. Computational Linguistics 20:331–78.

Karttunen, Lauri. 1971. Implicative Verbs. Language 47:340–58.
——1983. KIMMO: A General Morphological Processor. Texas Linguistic Forum

22:163–86.
Kay, Martin, Jean Mark Gowron, and Peter Norvig. 1994. Verbmobil: A Translation

System for Face-to-Face Dialog. CSLI Lecture Notes no. 33. Stanford, CA: Center
for the Study of Language and Information.

Kehler, Andrew. 1994. Common Topics and Coherent Situations: Interpreting
Ellipsis in the Context of Discourse Inference. In Proceedings of the 32nd Annual
Meeting of the Association for Computational Linguistics: 50–7. Las Cruces, NM.

Kempson, Ruth M. (ed.). 1988a. Mental Representations. Cambridge: Cambridge
University Press.

Kempson, Ruth M. 1988b. The Relation Between Language, Mind, and Reality.
In Kempson, 1988a:3–25.

Bibliography 277

Kernighan, Brian, and Dennis Ritchie. 1978. (Second edition 1988.) The C
Programming Language. Englewood Cliffs, NJ: Prentice-Hall.

Kernighan, Brian and P.J.Plauger. 1976. The Elements of Programming Style.
Englewood Cliffs, NJ: Prentice-Hall.

——1976. Software Tools. New York: Addison Wesley.
——1981. Soft-ware Tools in Pascal. New York: Addison Wesley.
Kernighan, Brian and Rob Pike. 1984. The Unix Programming Environment.

Englewood Cliffs, NJ: Prentice-Hall.
Kerr, Elaine B. 1986. Electronic Leadership: A Guide to Moderating Online

Conferences. IEEE Transactions on Professional Communication 29(1):12–18.
Kew, Jonathan and Stephen McConnel. 1990. Formatting Interlinear Text. Occasional

Publications in Academic Computing 17. Dallas, TX: Summer Institute of
Linguistics.

Kew, Priscilla M. and Gary F.Simons (eds). 1989. Laptop Publishing for the Field
Linguist: An Approach Based on Microsoft Word. Occasional Publications in
Academic Computing 14. Dallas, TX: Summer Institute of Linguistics.

Kidder, Tracy. 1981. The Soul of a New Machine. New York: Little, Brown.
Kiraz, George A. 1996. SEMHE: A Generalized Two-Level System. In Proceedings

of the 34th Annual Meeting of the Association for Computational Linguistics: 159–
66. Santa Cruz, CA.

Klavans, Judith and Martin S.Chodorow. 1991. Using a Morphological Analyzer
to Teach Theoretical Morphology. In Computers and the Humanities 5:281–87.

Klavans, Judith and Philip Resnik. 1996. The Balancing Act. Cambridge, MA: MIT
Press.

Kleene, Stephen C. 1956. Representation of Events in Nerve Nets and Finite
Automata. In Claude Shannon and John McCarthy (eds). Automata Studies.
Princeton, NJ: Princeton University Press. 3–42.

Knowles, Gerald. 1986. The Role of the Computer in the Teaching of Phonetics.
CELTR 133–48.

——1990. The Use of Spoken and Written Corpora in the Teaching of Language
and Linguistics. Literary and Linguistic Computing 5:45–8.

Knuth, Donald E. 1986. The T
e
Xbook. Reading, MA: Addison Wesley.

Koskenniemi, Kimmo. 1983. Two-level Morphology: A General Computational Model
for Word-Form Recognition and Production. Publication No. 11. University of
Helsinki: Department of General Linguistics.

——1984. A General Computational Model for Word-Form Recognition and
Production. In Proceedings of the 10th International Conference on Computational
Linguistics/22nd Annual Meeting of the Association for Computational Linguistics:
178–181. Stanford, CA.

Krol, Ed. 1994. The Whole Internet. Sebastopol, CA: O’Reilly & Associates.
Kucera, Henry and W.Nelson Francis. 1967. Computational Analysis of Present-Day

American English. Providence, RI: Brown University Press.
Kupiec, Julian. 1992. Robust Part-of-Speech Tagging Using a Hidden Markov

Model. Computer Speech and Language 6:226–242.
Ladefoged, Peter. 1992. A Course in Linguistics. New York: Harcourt Brace

Jovanovitch.
Ladefoged, Peter. 1993. A Course in Phonetics. 3rd edition. Fort Worth London:

Harcourt Brace College.
Lafferty, J., D. Sleator, and D.Temperley. 1992. Grammatical Trigrams: A

Probabilistic Model Of Link Grammar. In Probabilistic Approaches to Natural
Language. AAAI Technical Report FS-92–04.

278 Bibliography

Lakoff, George and Mark Johnson. 1980. Metaphors We Live By. Chicago: University
of Chicago Press.

Lakoff, George. 1987. Women, Fire, and Dangerous Things: What Categories Reveal
About the Mind. Chicago: University of Chicago Press.

Lamport, Leslie. 1986. LaT
e
X: a Document Preparation System. Reading, MA:

Addison Wesley.
Lancashire, Ian. 1991. The Humanities Computing Yearbook 1989–90. Oxford:

Clarendon Press.
Lancashire, Ian, John Bradley, Michael Stairs, Willard McCarty, and T.R.

Wooldridge. 1996. Using TACT with Electronic Texts: A Guide to Text-Analysis
Computing Tools. Modern Language Association (Book and CD-ROM).

Langacker, Ronald W. 1987. Foundations of Cognitive Grammar. Vol. 1: Theoretical
Prerequisites. Stanford: Stanford University Press.

Langendoen, D.Terence and Gary F.Simons. 1995. A Rationale for the TEI
Recommendations for Feature Structure Markup. Computers and the Humanities
29:191–209.

Lappin, Shalom and Herbert J.Leass. 1994. An Algorithm for Pronominal
Anaphora Resolution. Computational Linguistics 20:535–61.

Levy, Steven. 1984. Hackers: Heroes of the Computer Revolution. New York:
Doubleday/Anchor.

Libes, Don. 1989. Life With Unix. Englewood Cliffs, NJ: Prentice-Hall.
Liu, Cricket, Jerry Peek, Russ Jones, Bryan Buus, and Adrian Nye. 1994. Managing

Internet Information Services. Sebastopol, CA: O’Reilly & Associates.
London, Jack. The Call of the Wild. Available from Project Gutenberg at ftp://

ftp.cdrom.com/.22/gutenberg/etext95/callw10.txt
MacCormac, Earl R. 1985. A Cognitive Theory of Metaphor. Cambridge, MA:

Bradford Books, MIT Press.
Macfarland, Talke. 1997. Introspection versus Corpus Data: The Case of the

Passive Cognate Object Construction. Paper presented at the 1997 LSA
meeting, Chicago, IL.

Mackay, Wendy E. 1988. Diversity in the Use of Electronic Mail: A Preliminary
Inquiry. ACM Transactions on Office Information Systems 6(4):380–97.

Magerman, David. 1994. Natural Language Parsing As Statistical Pattern Recognition.
PhD dissertation. Department of Computer Science, Stanford University.

Marcus, Mitchell P., Beatrice Santorini, and Mary Ann Marcinkiewicz. 1993.
Building a Large Annotated Corpus of English: the Penn Treebank.
Computational Linguistics 19. Reprinted in Susan Armstrong (ed.) 1994. Using
Large Corpora. Cambridge, MA: MIT Press.

Martin, James H. 1992. Computer Understanding of Conventional Metaphoric
Language. Cognitive Science 16:233–70.

Maxwell, Michael. 1994. Parsing Using Linearly Ordered Phonological Rules. In
Proceedings of the Workshop of the First Meeting of the ACL Special Interest Group
in Computational Phonology: 59–70.

McLean, Ruari. 1980. The Thames and Hudson Manual of Typography. London:
Thames and Hudson.

Merialdo, Bernard. 1994. Tagging English Text with a Probabilistic Model.
Computational Linguistics 20(5):155–171.

Michaelis, Laura. 1996. On the Use and Meaning of “Already”. Linguistics and
Philosophy 19(5):477–502.

Mikheev, Andrei. 1996. Unsupervised Learning of Word-Category Guessing Rules.
In Proceedings of the 34th Annual Meeting of the Association for Computational
Linguistics: 327–33.

Bibliography 279

Miller, George A. 1990. Nouns in WordNet: A Lexical Inheritance System.
International Journal of Lexicography 3(4):245–64.

Miller, George A., Richard Beckwith, Christiane Fellbaum, Derek Gross, and
Katherine A.Miller. 1990. Introduction to WordNet: An On-line Lexical
Database. International Journal of Lexicography 3(4):235–44.

Monmonier, Mark. 1993. Mapping It Out: Expository Cartography for the Humanities
and Social Science. Chicago: University of Chicago Press.

Müller, Hans, V.Amerl, and G.Natalis. 1980. Worterkennungsverfahren als
Grundlage einer Universalmethode zur automatischen Segmentierung von
Texten in Sätze. Ein Verfahren zur maschinellen Satzgrenzenbestimmung im
Englischen. Sprache und Datenverarbeitung 1.

Neal, Jeannette G. and Sharon M.Walter (eds). 1991. Natural Language Processing
Systems Evaluation Workshop. Rome Laboratory, Technical Report, RL-TR-91–
362.

Neal, Jeannette G., Elissa L.Feit, Douglas J.Funke, and Christine A. Montgomery.
1992. An Evaluation Methodology for Natural Language Processing Systems. Rome
Laboratory, Technical Report, RL-TR-92–308.

Newmeyer, Frederick J. 1986. Linguistic Theory in America. 2nd edition. Orlando,
FL: Academic Press.

Nicolino, Thomas A. 1994. A Natural Language Processing Based Situation
Display. In Proceedings of the 1994 Symposium on Command and Control Research
and Decision Aids: 575–80. Monterey, CA: Naval Postgraduate School.

Nunberg, Geoffrey. 1990. The Linguistics of Punctuation. CSLI Lecture Notes, no.
18. Stanford, CA: Center for the Study of Language and Information.

Oflazer, K. 1994. Two-level Description of Turkish Morphology. Literary and
Linguistic Computing 9:137–48.

Palmer, David D. and Marti A.Hearst. 1997. Multilingual Adaptive Sentence
Boundary Disambiguation. Computational Linguistics 23(2):241–67.

Parker, Rogers C. 1988. Looking Good in Print: A Guide to Basic Design for Desktop
Publishing. Chapel Hill, NC: Ventana.

——1989. The Make-Over Book. Chapel Hill, NC: Ventana.
Parunak, H.Van Dyke. 1982. Database Design for Biblical Texts. In Richard

W.Bailey (ed.). Computing in the Humanities. Amsterdam, NY: North Holland
Publishing Company. 149–61.

Passonneau, Rebecca J. 1989. Getting at Discourse Referents. In Proceedings of the
27th Annual Meeting of the Association for Computational Linguistics: 51–9.
Vancouver, BC.

Perfect, Christopher and Jeremy Austin. 1992. The Complete Typographer. Englewood
Cliffs, NJ: Prentice-Hall.

Pieraccini, Roberto and Esther Levin. 1995. Spontaneous-Speech Understanding
System for Database Query Applications. In Proceedings of the ESC A Workshop
on Spoken Dialogue Systems. Vigso, Denmark.

Pollard, Carl and Ivan A.Sag. 1987. Information-based Syntax and Semantics, Volume
1: Fundamentals. CSLI Lecture Notes no. 13. Stanford, CA: Center for the Study
of Language and Information.

——1994. Head-driven Phrase Structure Grammar. CSLI: Stanford, CA. Chicago:
University of Chicago Press.

Price, Patti. 1996. Combining Linguistic with Statistical Methods in Automatic
Speech Understanding. In Klavans and Resnik, 1996:119–34.

Proceedings of the Fifth Message Understanding Conference (MUC-5). 1993. Sponsored
by the Advanced Research Projects Agency (ARPA), Software and Intelligent
Systems Technology Office. San Francisco: Morgan Kaufmann Publishers.

280 Bibliography

Psotka, Joseph, L.Dan Massey, and Sharon A.Mutter. 1988. Intelligent Tutoring
Systems: Lessons Learned. Hillsdale, NJ: Lawrence Erlbaum Associates.

Pullum, Geoffrey K. and William A.Ladusaw. 1996. Phonetic Symbol Guide.
Choicago: University of Chicago Press.

Pustejovsky, James, Sabine Bergler, and Peter Anick. 1993. Lexical Semantic
Techniques for Corpus Analysis. Computational Linguistics 19(2):331–358.

Quarterman, John S. 1995. The Matrix: Computer Networks and Conferencing Systems
Worldwide. Bedford, MA: Digital Press.

Rabiner, Lawrence R. 1989. A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition. In Proceedings of the IEEE, reprinted in
Waibel and Lee, 1990:267–96.

Raymond, Eric S. 1996. The New Hacker’s Dictionary. 3rd edition. Cambridge, MA:
MIT Press.

Reichman, Rachel. 1985. Getting Computers to Talk Like You and Me. Cambridge,
MA: Bradford Books, MIT Press.

Rettig, Marc, Gary F. Simons, and John V. Thomson. 1993. Extended Objects.
Communications of the ACM 36(8):19–24.

Rettig, Marc. 1992. Practical Programmer: A Succotash of Projections and Insights
. Communications of the ACM 35(10):25–30.

Riley, Michael D. 1989. Some Applications of Tree-based Modelling to Speech
and Language Indexing. In Proceedings of the DARPA Speech and Natural
Language Workshop: 339–52. Morgan Kaufmann: San Mateo, CA.

Roach, Peter (ed.). 1992. Computing in Linguistics and Phonetics: Introductory
Readings. London: Academic Press.

Roche, Emmanuel and Yves Schabes. 1995. Deterministic Part-of-Speech Tagging
with Finite-State Transducers. Computational Linguistics 21(2):227–53.

Rosch, Eleanor. 1978. Principles of Categorization. In Rosch and Lloyd, 1978:27–48.
——1983. Prototype Classification and Logical Classification: The Two Systems.

In Scholnick, 1983:73–86.
Rosch, Eleanor and B.B.Lloyd (eds). 1978. Cognition and Categorization. Hillsdale,

NJ: Lawrence Erlaum Associates.
Saffran, Jenny R., Richard N.Aslin, and Elissa L.Newport. 1996. Statistical

Learning by 8-Month-Old Infants. Science 274(5294):1926–8.
Salus, Peter 1994. A Quarter Century of Unix. Reading, MA: Addison Wesley.
Sanders, Ted J.M., Wilbert P.M.Spooren, and Leo G.M.Noordman. 1993.

Coherence Relations in a Cognitive Theory of Discourse Representation.
Cognitive Linguistics 4(2):93–133.

Schank, Roger and Christopher Riesbeck. 1981. Inside Computer Understanding.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Schneiderman, Ben. 1987. Designing the User Interface. Reading, MA: Addison
Wesley.

Scholnick, E. (ed.). 1983. New Trends in Cognitive Representation: Challenges to
Piaget’s Theory. Hillsdale, NJ: Lawrence Erlbaum Associates.

Selfridge, A. 1958. Pandemonium: A Paradigm for Learning. In J.A.Anderson and
E.Rosenfeld (eds). 1989. Neurocomputing: Foundations of Research. Cambridge,
MA: MIT Press.

Sgarbas, K., N.Fakotakis, and G.Kokkinakis. 1995. A PC-KIMMO-based
Morphological Description. Literary and Linguistic Computing 10:189–201.

Shieber, Stuart. 1986. Evidence Against the Context-Freeness of Natural Language.
Linguistics and Philosophy 8(3):333–43.

Simons, Gary F. 1980. The Impact of On-site Computing on Field Linguistics.
Notes on Linguistics 16:7–26.

Bibliography 281

——1987. Multidimensional Text Glossing and Annotation. Notes on Linguistics
39:53–60.

——1989a. The Computational Complexity of Writing Systems. In Ruth M.Brend
and David G.Lockwood (eds) The Fifteenth LACUS Forum: 538–53. Lake Bluff,
IL: Linguistic Association of Canada and the United States.

——1989b. Working with Special Characters. In Priscilla M.Kew and Gary F.
Simons (eds). Laptop Publishing for the Field Linguist: An Approach Based on
Microsoft Word. Occasional Publications in Academic Computing 14. Dallas, TX:
Summer Institute of Linguistics, 109–18.

——1992. What Computer Should I Buy? Notes on Computing 11(5):45–7.
——1997. Conceptual Modeling Versus Visual Modeling: A Technological Key To

Building Consensus. Computers and the Humanities 30(4):303–19.
Simons, Gary F. and John V.Thomson. 1988. How to Use IT: Interlinear Text

Processing on the Macintosh. Edmonds, WA: Linguist’s Software.
——(forthcoming). Multilingual Data Processing in the CELLAR Environment.

To appear in John Nerbonne (ed.). Linguistic Databases. Stanford, CA: Center
for the Study of Language and Information. (The original working paper is
available at http://www.sil.org/cellar/mlingdp/mlingdp.html)

Simons, Gary F. and Larry Versaw. 1987. How to use IT: A Guide to Interlinear Text
Processing. Dallas, TX: Summer Institute of Linguistics. (3rd edition 1992.)

Smith, Henry C. 1985. Database Design: Composing Fully Normalized Tables from
a Rigorous Dependency Diagram. Communications of the ACM 28(8):826–38.

Smith, J.Jerome. 1987. LEXISTAT: A Pascal Program for Creating Lexico-
statistical Exercises. Innovations in Linguistics Education 5:71–83.

Sobin, Nicholas. 1991. An AI Approach to Teaching Linguistics. Innovations in
Linguistics Education 5:21–34.

Sperber, Dan and Dierdre Wilson. 1986. Relevance: Communication and Cognition.
Oxford: Blackwell.

——1988. Representation and Relevance. In Kempson, 1988:133–53.
Sperberg-McQueen, C.M. and Lou Burnard. 1994. Guidelines for the Encoding and

Interchange of Machine-Readable Texts. Chicago and Oxford: Text Encoding
Initiative. (See also http://www.uic.edu/orgs/tei)

Stallman, Richard M. 1993. GNU Emacs Manual. 9th edition, Version 19.
Cambridge, MA: Free Software Foundation.

Stockwell, Robert, Paul Schachter, and Barbara Hall Partee. 1973. The Major
Syntactic Structures of English. New York: Holt, Rinehart and Winston.

Stoll, Cliff. 1989. The Cuckoo’s Egg. New York: Pocket Books.
Stonebraker, Michael, Heidi Stettner, Nadene Lynn, Joseph Kalash, and Antonin

Guttman. 1983. Document Processing in a Relational Database System. ACM
Transactions on Office Information Systems 1(2):143–88.

Tufte, Edward R. 1983. Visual Display of Quantitative Information. Cheshire, CT:
Graphics Press.

——1990. Envisioning Information. Cheshire, CT: Graphics Press.
Turing, A.M. 1950. Computing Machinery and Intelligence. Mind 59(236): 433–

60. Excerpted in Hofstadter and Dennett, 1981:53–67.
Tversky, Barbara. 1986. Components and Categorization. In Craig, 1986:63–76.
Unicode Consortium. 1996. The Unicode Standard: Version 2.0. Reading, MA:

Addison Wesley. (See also http://www.unicode.org)
Updegrove, Daniel. 1990. Electronic Mail and Networks: New Tools for University

Administrators. Cause/Effect 13:41–8.
Waibel, Alex and Kai-Fu Lee. 1990. Readings in Speech Recognition. San Mateo,

CA: Morgan Kaufmann.

282 Bibliography

Webber, Bonnie. 1988. Discourse Deixis: Reference to Discourse Segments. In
Proceedings of the 26th Annual Meeting of the Association for Computational
Linguistics: 113–21. Buffalo, NY.

Weber, David J. 1986. Reference Grammars for the Computational Age. Notes on
Linguistics 33:28–38.

Whorf, Benjamin Lee. 1956. Language, Thought, and Reality: Selected Writings of
Benjamin Lee Whorf. In John B.Carroll (ed.). Cambridge, MA: MIT Press.

Wiebe, Janyce M. 1994. Tracking Point of View in Narrative. Computational
Linguistics 20:233–87.

Williams, Robin. 1990. The Mac Is Not a Typewriter. Berkeley, CA: Peachpit Press.
Winkler, Dan and Scot Kamins. 1990. HyperTalk 2.0: The Book. New York: Bantam

Books.
Wojcik, Richard H., Philip Harrison, and John Bremer. 1993. Using Bracketed

Parses to Evaluate a Grammar Checking Application. In Proceedings of the 31st
Annual Meeting of the Association for Computational Linguistics: 38–45.

Yarowsky, David. 1995. Unsupervised Word Sense Disambiguation Rivaling
Supervised Methods. In Proceedings of the 33rd Annual Meeting of the Association
for Computational Linguistics: 189–96.

Zdonik, Stanley B. and David Maier (eds). 1990. Readings in Object-oriented
Database Systems. San Mateo, CA: Morgan Kaufmann.

283

Index

A World of Words xv, 77, 99
Aberdeen, John xi, xvi, 231
Abney, Steven 232, 270, 271, 272
accents: acute, circumflex, grave 12,

121, 147
acoustic phonetics 71, 72, 87; see also

phonetics
acquisition: of human language 7,

198, 200, 232, 254
acronym 35, 46, 147, 148, 166, 258
address 25, 28–30, 32, 37–39, 41, 43,

47, 51–53, 55–57, 60, 100, 147,
157, 158, 174, 260; e-mail, 32,
37–39, 60; IP, 29, 260; World Wide
Web, 38

Aerospace Maintenance Language 271
agent technology 215, 228, 230
Air Travel Information System (ATIS)

xi, 235, 236, 238, 240, 241, 256, 259
algorithm 199, 208, 243, 246, 248,

250–252; parsing, 199, 248, 250
aliases, macros, and scripts 6, 32, 57,

106, 133, 154–158, 160, 161, 165,
168, 169, 174, 179, 180, 192, 256,
266

alignment: text 114, 191, 192, 226
alphabet 11, 13, 14, 33, 70, 78, 100,

116, 119, 120, 121, 124, 127, 132,
140, 142, 145, 147, 148, 154, 173,
174, 176, 183, 193, 202, 258, 259,
262, 267; Roman (Latin), 12, 33,
34, 120, 148, 183; see also
character; letter

alphabetic order 140, 267; reverse, 40,
65, 81, 124, 132, 140, 142, 154,
191, 193, 232, 267, 268; rev
command, 141, 142, 149, 165

alphanumeric see character:
alphanumeric

ambiguity 13, 89, 199, 200, 204, 206,
208, 222, 230, 233, 234, 244, 250,
252, 254, 274; resolving, 201

American Research on the Treasury of
the French Language (ARTFL)
104

American Standard Code for
Information Interchange (ASCII)
11, 17, 18, 25, 33–36, 40, 104,
106, 145, 147–149, 153, 160–162,
166, 167, 191, 256–260, 263–265;
high, 147, 148, 167, 257; low, 147,
148, 256, 257, 267

Amerl, V. 277
AMPLE 186, 187, 192
Anaphora 46, 224, 277
anchor tags 55, 56, 263
Anderson, J.A. 279
Anick, Peter 226, 278
annotation: of texts 9, 91, 125, 191,

192, 233, 234, 236, 241, 242, 245,
246, 248–250, 252, 259, 262, 263,
266, 268, 269, 277, 279

Ansel, Bettina 64, 66, 271
Answer button (in teaching programs)

81, 82
Antonio, C. 109
Antworth, Evan x, xiii, 6, 8, 10, 92,

170, 188, 271
appendices 4, 9, 85, 165, 177
Apple 14, 15, 139, 271, 273; see also

Macintosh
Arabic xiii, 12–14, 34, 64, 65, 147,

148, 208, 256
Arbourite xv, 75, 80, 85

284 Index

arc labels 222
Archie viii, 42–45, 47, 54, 256
archives xiv, 5, 27, 42, 79, 99, 100,

102, 103, 134, 136, 137, 153, 160
ARCLING 38
argument: of a command 41, 151,

152, 157, 249, 256, 257, 268, 274;
C-shell command-line, 165

Aristar, Anthony iii, iv, vii, xiii, 1, 5, 8,
26

Armstrong, Susan 277
ARPA see DARPA
artificial intelligence (AI) 197, 260,

264
ASCII see American Standard Code

for Information Interchange
Asher, Nicholas 223, 271
AskSam 16, 178–190
Aslin, Richard N. 254, 279
attachment: mail 35, 36; PP, 251, 252
Attardo, Donalee 90
attribute: CELLAR 18, 19, 21, 24, 25;

semantic, 206, 209–213, 220, 240,
257; SGML, 112, 114

Austin, Jeremy 278
Author/Editor 114
awk see programming language: awk

back matter 18
Bailey, Richard 278
Bakker, Dik 76, 271
Bantz, David 64, 271
Barlow, Michael 88, 135, 136
Barwise, Jon 97, 203, 204, 271
batch formatting 176, 177
batch processing 193, 257, 265
Bates, Madeleine 274
Bauer, Christian 90
Bayer, Samuel xi, xvi, 5, 7–9, 188, 231
Beach, Richard 23, 275
Becker, Joseph 13, 271
Beckwith, Richard 220, 271, 277
Berger, Adam 251, 271
Bergler, Sabine 226, 278
Berry, Michael 225, 272
beta-testing 83
Bevan, David 185, 272
Biber, Douglas 134
bibliography xvi, 38, 66, 96, 102, 104,

108, 114, 134, 136, 178, 271 ff
binary number see number: binary
binary code 261

binary transfer 28, 40, 145, 147, 250,
251, 257, 258, 261

BinHex 34, 35, 40, 99, 257
Binns, Betty 272
Bird, Stephen 208, 272
Birner, Betty 233, 272
bit 14, 28, 119, 145, 148, 149, 160,

166, 258
bitmap 106, 261
black box evaluation 235, 239, 258
Black, Ezra 246, 272, 274
Bloomfield, Leonard 62, 170, 233, 272
body: of a text 18, 112
bold type 4, 22, 23, 55, 106, 107, 183,

262
Booch, Grady 24, 272
bookmark 269
Boolean expressions 179
Borgida, Alexander 24, 272
Bos, Edwin 224, 275
bracket 17, 22, 23, 55, 110, 153, 154,

246–249, 251
bracketing 75, 154, 245–249, 251,

252, 266
Bradley, John 134
Bremer, John 227, 281
Brend, Ruth 279
Bresnan, Joan 232, 272
Brill, Eric 226, 272
Bringhurst, Robert 272
British English 88, 103, 135, 136
British National Corpus (BNC) 103,

114, 135
Brooks, Frederick 3, 164, 272
Brown Corpus 103, 108, 110, 116,

117, 127, 266
browser viii, 26, 33, 42, 47–57, 59, 60,

114, 153, 161, 162, 258, 262, 263,
270; graphical, 43, 52, 54, 266;
text, 52; Unicode, 54

Brugman, Claudia 222, 272
Burger, John xi, xvi, 231
Burnard, Lou 19, 135, 272, 280
Burns, Hugh 64, 272
Butler, Christopher 69, 272
Buus, Bryan 58, 277
byte 14, 28, 119, 140, 145, 147, 149,

151, 160, 258, 268

C see programming language: C
C-shell (csh) see operating system:

shell

Index 285

CAPTEX 73, 89
case: of letters 55, 108, 109, 119, 145,

147, 148, 153, 162, 166, 245, 256;
of nouns, xiii, 6, 150, 166, 167

cat(enate) command 104, 157, 158,
168, 217, 256

cd (change directory) command 151,
152, 167, 259

Compact Disk/Read-Only Memory
(CD-ROM) 72, 73, 76, 103, 104,
134, 136, 137, 147, 277

CECIL 183
CELLAR see Computing Environment

for Linguistic, Literary, and
Anthropological Research

Center for Electronic Texts in the
Humanities (CETH), xiv

cepstral analysis 96, 98
CETEDOC 104
character 10–14, 17, 19, 20, 23,

33–36, 40, 45, 52, 54, 59, 60, 89,
105, 106, 108, 112, 119–121, 124,
132, 142, 147–149, 151, 153, 159,
162, 163, 173, 174, 176, 180, 183,
193, 194, 202, 207–209, 221, 224,
243, 256–265, 267–270;
alphanumeric, 140, 153, 154, 162,
173, 176, 256, 259, 267;
ampersand, 108, 159, 168; angle
bracket, 17, 55; apostrophe, 119,
121, 147; asterisk, 263; backquote,
147, 152, 156, 167, 257; backslash,
153, 159, 163, 166; backspace,
148, 149, 166; base, 12, 13, 258,
260; caret, 147, 149, 259; carriage
return, 141, 151, 259; colon, 51,
153, 163, 243; composite, 12, 13,
258; context-sensitive form of, 13,
14; control, 147, 149, 259;
encoding, 11–14, 18, 19, 33–35,
59, 60, 102, 106–108, 111, 112,
114, 115, 147, 256, 258, 260, 261,
269; escape, 41, 260, 261; escaped,
159, 160, 261; inventory, 12, 14;
line feed, 147, 149, 263; newline,
140, 149, 166, 263; non-ASCII, 33,
34, 40; non-Latin, 33; non-
standard, 106, 121; overstrike, 12,
258, 260; padding, 121, 124, 265;
phonetic, 183; punctuation, 11,
121, 124, 129, 132, 145, 147, 163,
183, 208, 242, 243, 249, 256, 258,

277; quotation mark, 147, 151,
152, 243, 244; set, 11, 12, 36, 106,
121, 256, 258, 261, 267, 269; slash,
17, 51, 55, 152, 153, 158–160, 169;
space, 117, 163, 176, 207, 223,
224, 243; special, 11, 132, 263,
264, 267; tilde, 147, 158–160, 259,
284; wild card, 124, 132, 179, 193,
270; see also alphabet; letter

Charniak, Eugene 226, 272
checker 176, 227, 229; spelling, 140;

style or grammar, 7, 197–199, 212,
227, 229, 230, 275

Chinchor, Nancy 207, 272
chmod command 160, 169
Chomsky, Noam 150, 231, 272
Chomskybot xv, 169
Church, Kenneth 226, 273
ClariNet 47
client-server viii, 31, 33, 39, 42–45,

47, 48, 50, 258, 264, 267
Coad, Peter 24, 273
COCOA 108, 109, 110, 134, 258
code 11–14, 23, 34, 177, 260, 262;

character, 11; formatting, 176, 206;
HTML, 162; part-of-speech, 21;
programming, 11, 13, 21, 33, 34,
81, 144, 149, 153, 156, 198, 258,
261, 268

coding 73, 96, 98, 145, 147, 148, 178,
184

Cole, Peter 273, 274
collating sequence 13, 119, 258
Collins, Michael 246, 248–251, 255,

273
collocation 135, 194
command 7, 30, 37, 38, 40–43, 45,

46, 55, 104, 141, 142, 148,
150–161, 165, 167–169, 179, 180,
193, 197, 256–261, 263, 264, 267,
268, 270

command line 42, 141, 151, 156, 161,
165, 258, 263, 267, 268;
arguments, 165

COMPASS 196
compiler 102, 183
computer-aided instuction (CAI) 64,

65, 73, 85
Computing Environment for Linguistic,

Literary, and Anthropological
Research (CELLAR) xv, 4, 24, 25,
177, 182, 280

286 Index

Comrie, Bernard 6, 38, 165, 273
Conc 80, 89, 90, 191, 194
concept hierarchy 220, 222, 223
concordance ix, xiv, 89, 103, 108, 116,

124, 126, 127, 129, 130, 132, 135,
137, 174, 175, 191, 193, 194, 259,
261, 265; keyword in context
(KWIC), 89, 193, 194

connection: ethernet 43, 54, 57;
Internet, 28, 37, 45, 51, 53, 54, 57,
174, 260; IP, 54; modem, 266;
TCP/IP, 41

control character see character: control
conversion 13, 25, 36, 75, 77, 105,

106, 115, 192, 193, 257, 264, 265,
267

Coombs, James 23, 177, 273
copyright ix, 84, 105
corpus, [pl] corpora xiv, 5, 8, 38, 40,

62, 72, 76, 91, 102–104, 107, 108,
114, 116, 134–137, 170, 173, 175,
177, 178, 188, 189, 191, 225, 226,
231–234, 236, 239, 240, 243, 244,
246–250, 253–256, 259, 264–266,
268, 269, 272, 273, 275–277;
bilingual, 226; parallel, 265; test,
247, 249, 269; training, 248, 249

Cover, Robin 17, 137, 273
Craig, Collette 273, 280
crossing bracket violation 247–249,

251
cross-reference 22, 190
Culy, Christopher 91, 232, 273
customization 5, 9, 11, 95, 155, 165,

183, 258, 260
Cutting, Doug 255, 273

daemon 30, 31, 259
Dahl, Deborah 274
data 4, 13, 23, 24; collecting, 5, 173,

236, 240, 256; collections, 5;
discontinuity, xi, 231, 232, 243,
244, 251, 253; entry, 181;
linguistic, vii, xi, 1, 2, 4–6, 8, 10,
11, 13–25, 28–32, 35, 44, 51–53,
62, 63, 64, 67–69, 72, 73, 76–79,
84, 87, 90, 92, 94, 96, 97, 103,
105, 107, 114, 116, 119, 133, 136,
140, 145, 150, 164, 170, 172–179,
181, 182, 185, 190, 193, 194, 196,
201, 231–236, 239–244, 248, 252,
254–262, 264, 265, 267, 268;

management, 177, 178, 182, 190;
processing, vii, xi, 1, 2, 4–6, 8, 10,
11, 13–25, 28–32, 35, 44, 51–53,
62–64, 67–69, 72, 73, 76–79, 84,
87, 90, 92, 94, 96, 97, 103, 105,
107, 114, 116, 119, 133, 136, 140,
145, 150, 164, 170, 172–179, 181,
182, 185, 190, 193, 194, 196, 201,
231–236, 239–244, 248, 252, 254–
262, 264, 265, 267, 268; retrieval,
179; types, 174, 240

data processing: language-dependent
13, 14

database 7, 15, 16, 19–25, 31, 37, 41,
45–47, 60, 72, 73, 90–92, 101, 102,
105, 106, 133, 137, 172–176,
178–182, 186, 190, 193, 195,
197–199, 206, 220, 222, 230,
236–239, 241, 254, 257, 261–266;
fields, 10, 15, 20, 92, 108, 173,
178–180, 182, 194; inconsistencies
in, 22, 69; lexical, 22, 25, 90, 173,
178, 182, 191, 223; normalization,
21, 22, 264, 279; records, 10, 15,
16, 20, 24, 92, 102, 104, 150, 178,
186, 206, 261, 265, 266; relational,
15, 16, 21, 22

Davis, Daniel 20, 273
Davis, Mark 14, 273
decimal number see number: decimal
debugging 242
decision tree 248
Defense Advanced Research Project

Agency (DARPA, previously
ARPA) 103, 235, 237, 256, 259,
264, 272, 278, 279; ARPAnet, 26,
28

delimiter 159, 214
Dennett, Daniel 275, 280
DeRose, Stephen J. 23, 177, 273
desktop 35, 115, 172, 262
diacritic 12, 13, 89, 106, 121, 124,

145, 147, 183, 258, 260; cedilla,
121, 147; umlaut, 147; tilde, see
character: tilde

dictionary: bilingual 11, 18, 190, 226;
electronic, 16, 17, 22, 23, 38, 80,
102, 103, 106, 114, 121, 190, 252,
263; entry in, 16, 17, 22, 23; see
also lexicon

diglossia 144
Dik, Simon 95, 271, 273

Index 287

dir(ectory) command 39, 42, 153,
156; see also ls

directory 31, 37, 39, 42–44, 51, 54,
56, 57, 148, 151, 152, 153, 154,
156, 157, 256, 259, 261, 266, 268;
subdirectory, 51, 56, 57, 152, 266,
268

discourse xiii, xvi, 92, 172, 185, 200–
204, 206, 209, 212, 214, 219, 221,
223–225, 233, 236, 251

disk 31, 40, 45, 48, 70, 72, 73, 84, 92,
107, 147, 156, 160, 193, 266

distributed network 47
distributional analysis 183, 185, 233
document 7, 10, 11, 14, 17–19, 23,

34, 46, 51, 55, 56, 81, 103, 106,
114, 136, 176, 177, 197, 225, 234,
239–245, 253, 254, 260, 262, 266–
268; hypertext, 51, 52, 54, 262,
263, 267

documentation and manual 18, 84,
111, 134, 153, 164, 165, 170, 224,
226, 227, 269, 271, 277, 280; see
also man(ual) command

domain name server (DNS) 29, 260,
263

domain model 7, 10, 18, 24, 197, 200,
205–207, 219, 228, 236, 240, 242,
252

dotted octet notation 28, 29
Dougherty, Dale 273
Dresher, B. 69, 73, 99, 273
Dry, Helen Aristar iii–v, vii, xiii, 1, 5,

8, 26
DTD see Standard General Markup

Language: Document Type
Definition

Dumais, Susan T. 225, 272

editing/editor (program) 15, 18, 19,

22, 32, 60, 90, 94, 96, 98, 106,
114, 133, 155–158, 160, 161, 163,
165, 168, 169, 173, 176, 178, 184,
185, 191, 209, 223, 260, 275;
character shape, 11; character-
based, 163; document, 18; HTML,
60; line, 157, 161, 260; ex, 51,
157–161, 163, 169, 180, 260;
screen, 161, 260; emacs, 160, 161,
163, 165, 260, 280; pico, 161, 260;
vi, 161, 165, 260; stream (sed),
143, 163–165, 169, 261, 273

egrep see grep/egrep command
e-mail viii, 5, 26, 27, 30–39, 41, 42,

50, 51, 54, 58, 60, 89, 92, 99, 135,
138, 140, 161, 170, 245, 256, 264,
267; mailers, 30, 32–36, 50, 264

English xiii, xv, 7, 11, 12, 14, 33, 35,
65, 69, 72, 76, 80–82, 85, 88, 89,
94, 95, 97, 103–105, 107, 111, 120,
121, 124, 135–138, 140, 145, 147,
148, 152–154, 171, 172, 176, 186,
197, 207, 208, 219, 220, 226, 227,
230, 234, 242–245, 250, 251, 256,
265

Ephratt, Michal 273
ethernet 27, 43, 54, 57
Ethnologue 60, 76
Eudora 33, 36
ex see editing/editor: line
executability: of a file 156, 160, 256,

261, 267

Fakotakis, N. 279
feature: phonetic 98; phonological, 2,

5, 8, 16, 19, 25, 46, 54, 62, 63, 65,
67, 69, 73, 77, 91, 94, 98,
106–108, 112, 114, 119, 138, 145,
148, 155, 171, 173, 187–189, 225,
261–263, 277; see also SGML:
feature structures

Feit, Douglas 200, 278
Fellbaum, Christiane 220, 273, 277
fields see database: fields
file: ASCII 17, 18, 25, 40, 160, 256,

257, 260; audio, 35, 98; binhexed,
35; copying, 31, 40, 45, 84, 102,
142, 176, 180, 196, 263; data, 18,
94, 256, 258, 260, 261; dot, 168,
260; downloading, 34, 40, 41, 45,
47, 53–55, 264; encoding, 35, 107;
graphics, 53, 266; name, 36, 40,
44, 45, 51, 55, 56, 148, 153, 256,
261, 269; text, 84, 89, 92, 102,
142, 147–150, 152, 161, 184, 191,
194, 256, 258, 260, 263, 268

file transfer protocol (ftp) viii, 5, 26,
27, 30, 31, 39, 40, 42, 45–47,
50–53, 58, 90, 91, 93, 135, 256,
258, 262, 266; anonymous, 256

filter ix, 6, 48, 141, 162–164, 166,
178, 180, 193, 261, 262, 268

Findler, Nicholas 77, 273
FindPhone 183, 185, 272

288 Index

finger command 82, 152, 204, 257
Finnish 186, 187, 208
Fisher, William 274
Flickenger, Dan 274
folder see directory
font xv, 5, 12, 14, 33–35, 38, 40, 54,

78, 79, 87, 99, 160, 176, 178, 180,
182, 183, 261

Fontographer 183
Ford, Ric 14, 58, 273
formant 70, 88, 97
format vii, ix, 4, 11, 14, 15, 17, 22–25,

34, 35, 55–57, 64, 70, 87, 96, 102,
104, 106, 107, 115, 134, 135, 150,
160, 162, 164, 176, 177, 179, 181,
183, 186, 190–193, 196, 206, 257,
261, 262, 264, 267, 268

formatter 161, 162, 191, 192; multi-
dictionary, 190; troff, 161

formatting: language-specific 13, 14
FrameBuilder 76, 80, 90
Francis, W.Nelson 276
Frantz, Donald 196, 273
Fraser, Norman 199, 274
freeware 84, 183
French 72, 104, 111, 147
frequency ix, 46, 72, 89, 97, 98, 116,

124, 129, 130, 133, 175, 184, 193,
223, 226, 252, 261, 270

Friedl, Jeffrey 274
Fuchs, Ira 274
Funke, J. 200, 278

Garofolo, John 274
Gazdar, Gerald 199, 274
Gdaniec, Claudia 272, 274
genres: markup of 101, 103, 107, 108,

134
Global Jewish Database 104
gloss 21, 92–94, 96, 154, 175, 178,

186, 190, 191, 194, 196
glossary xi, 4, 55, 94, 224, 256 ff
glyph 33, 34, 183, 262
Goldfarb, Charles 17, 274
GOLDVARB 92; see VARBRUL
Goodman, Danny 179, 274
gopher viii, 5, 42, 44–47, 50, 51, 54,

91, 96, 97, 99, 136, 262, 269
Gowron, Mark 199, 275
graph 114, 194, 224; semantic,

213–218, 228

graphic user interface (GUI) 10, 25,
43, 95, 171, 258, 261, 262, 268

graphics 13, 47, 52–54, 78, 88, 93, 97,
114, 147, 176, 179, 183, 224, 264,
266, 267

Greek 11–13, 85, 88, 99, 103, 120,
137

grep/egrep command 38, 150, 151,
155, 156, 163, 167, 194

Grice, H.Paul 219, 274
Grishman, Ralph 235, 272, 274
Gross, Derek 220, 274, 277
Grosz, Barbara 223, 224, 274
Guglielmo, Connie 14, 273
Gutenberg, Martin 87; Project

Gutenberg, 277

Harris, Zellig 233, 274
Harrison, Philip 199, 200, 227, 271,

274, 281
head (tail) program 142, 153, 154,

165
Hearst, Marti A. 245, 278
Hebrew 103, 120, 147, 208, 233
Heim, Michael 274
Herwijnen, Eric 17, 274
hexadecimal see number: hexadecimal
Hidden Markov Model (HMM) 234,

262, 275, 277; training, 234, 236,
239, 241, 243, 248, 249, 262–265,
269

Hindi 34
Hindle, Donald 252, 255, 272, 274
Hirschberg, Julia 224, 274
Hirschman, Lynette xi, xvi, 207, 231,

236, 272, 274
Hoard, James E. x, xiv, 6, 7, 9, 188,

197, 209, 212, 227, 274, 275
Hobbs, Jerry 224, 275
Hockey, Susan ix, xiv, 5, 9, 19, 64,

101, 134, 135, 275
Hofstadter, Douglas 275, 280
Holt, Patrick 271, 272, 275, 280
Holzhauser, Katherina 227, 275
home directory 152, 158, 167, 259,

260, 269
home machine 31, 33, 40, 43, 266
home page 25, 38, 100, 158
homograph 132, 262
homonym 222
host 42, 43, 47, 162, 204
HTML see hypertext markup language

Index 289

Hudson, Richard 199, 274, 275
Huls, Carla 224, 274
Hunicke-Smith, Kate 274
Hunt, Geoffrey 184, 185, 275
HyperCard 16, 65, 81, 84, 88–96, 98,

99, 178–180, 185, 189, 190, 274
hyperlink see link
hypertext 51–55, 65, 66, 81, 99, 114,

179, 262, 263, 266, 267; markup
language (HTML), 54, 55, 57, 60,
114, 153, 157, 161, 162, 262, 263;
reference (href), 56; transfer
protocol (http), xvi, 9, 25, 38, 39,
42, 51, 54–57, 59–61, 88, 90,
93–100, 135–137, 165, 177, 258,
259, 262, 263, 266

hypothesis: in corpus-based linguistics
241, 244, 246–248

ICAME 104, 136
icon 54, 262
id: login 257, 259
Ide, Nancy 69, 275
identifier 101, 108, 112, 154, 155,

230, 263
incompatibility 144, 247; of mailers,

36; of software, 108, 211, 247, 258,
261

index, iv, xi, 42, 44–47, 56, 57, 60, 96,
104, 112, 116, 124, 130, 132, 164,
165, 172, 178, 180, 193, 194, 204,
214, 225, 226, 262, 263, 265, 269,
270, 282 ff

Indo-European 88, 99, 138, 165
Inetd 30
infixation 187
inflection 132, 150, 153, 162, 175,

194, 207
information extraction 7, 197, 199,

206, 207, 225, 240, 254, 262, 264
Ingria, Robert 224, 272, 274, 275
input-output 67, 99, 140, 142, 151,

152, 157, 158, 162, 166, 187, 199,
200, 202, 204, 209, 230, 235,
237–239, 241, 243, 251, 253, 258,
262, 268; standard, 141, 261, 268

inter-annotator agreement 242, 246,
263

interactive retrieval 130, 135
interface 32, 38, 42, 54, 81, 83, 98,

104, 143, 194, 230, 236, 258, 270;
see also GUI, command line

Interlinear Text Formatter (ITF) 191,
192

International Corpus of English (ICE)
136

International Organization for
Standardization (ISO) 17, 267, 275

International Phonetic Alphabet (IPA)
14, 33, 34, 70, 94, 96, 98, 100,
182, 183, 185

internet vii, viii, 3, 5, 9, 25–32, 35, 36,
41, 42, 47, 50–52, 54, 57–60, 78,
104, 105, 164, 234, 256, 258, 260,
262–264, 266–269

internet protocol (IP) vii, 28–31, 54,
260, 263; TCP/IP, 31, 41, 46, 52,
54

Irizarry, Estelle 64, 275
IT 20, 89, 91, 190–194, 280
italics 4, 22, 55, 106, 107, 112, 183,

262
item: and arrangement 85, 187; data,

lexical, or vocabulary item, 22, 55,
68, 70, 73, 81, 84, 92, 96, 108,
174, 176, 187, 189, 208, 209, 220,
221, 223, 225, 226, 263, 268;
menu item, 41, 45, 54; news item,
47, 48, 50

IVARB 77, 91, 92, 93; see VARBRUL

Japanese 14, 72, 136, 233
Johnson, Jeff 23, 275
Johnson, Mark 221, 275, 276
Jones, Daniel 70, 92
Jones, Russ 58, 277
Jonesphones 70, 92
Joshi, Aravind K. 224, 274

Kac, Michael 232, 275
Kalash, Joseph 280
Kaliski, Terry 275
Kaplan, Ronald 208, 272, 275
Karttunnen, Lauri 217, 275
Kay, Martin 198, 208, 275
Kaye, Jonathan 69, 73, 273 Index
Kehler, Andrew 225, 275
Kempson, Ruth 205, 206, 275, 280
Kernighan, Brian 139, 164, 166, 169,

276, 277
Kerr, Elaine 276
Kew, Jonathan 177, 276
Kew, Priscilla 177, 276, 279

290 Index

key: button 12–14, 41, 51, 78, 149,
151, 161, 183, 219, 259, 260, 263,
264; evaluation, 240, 242, 243,
246–252, 254, 259, 260, 262–264,
266; sorting, 119, 121

keyboard 13, 54, 105–107, 119, 121,
149, 157, 160, 172, 183, 259, 260,
263, 267, 268

keyword-in-context (KWIC) see
concordance: KWIC

Kidder, Tracy 164, 276
KIMMO 275; see also Koskenniemi,

Kimmo; PC-KIMMO
Kiraz, George 208, 276
Klavans, Judith 74, 271, 272, 276, 278
Kleene closure 150, 263, 270
Kleene, Stephen 150, 263, 270, 276
Klein, Ewan 199, 274
Klingon 31, 40
Knowles, Gerald 69, 72, 276
Knuth, Donald 177, 192, 276
Kohn, Wolf 209, 212, 274
Kokkinakis, G. 279
Korean 233
Koskenniemi, Kimmo xiii, 187, 276
Krol, Ed 58, 276
KTEXT 92
Kucera, Henry 276
Kupiec, Julian 226, 255, 273, 276

label 22, 43, 74, 75, 184, 213, 214,

217, 222, 245–251, 269
Lafferty, J. 249, 276
Lakoff, George xv, 221, 222, 255, 276
Lakoff, Robin T. xv
Lamport, Leslie 177, 192, 276
Lancashire, Ian 102, 134, 135, 275,

276
Lancaster-Oslo-Bergen (LOB) Corpus

5, 103, 136
Langendoen, D 19, 277
Lappin, Shalom 224, 277
laptop 10, 172, 177
LaTeX 161, 177, 192
Latin: language 79, 88, 99, 103, 105,

137; alphabet, see alphabet: Roman
(Latin)

Lawler, John iii, iv, v, vii, ix, xiv, 1, 4,
5, 9, 99, 138

layout: of keyboard 13; of page, 192
Leass, Herbert J. 224, 277
Lee, Kai-Fu 255, 280

lemmatization 132, 263
letter 11–14, 26, 33, 89, 106, 108,

109, 119, 121, 124, 145, 147–149,
154, 162, 194, 223, 243, 244,
256–258, 265, 266, 268; padding,
121, 124, 265; see also alphabet;
character

Levin, Esther 255, 278
Levy, Steven 164, 277
lexeme 20, 175
lexical entry 10, 21, 22, 191
lexical item 68, 92, 187, 208, 209,

226, 268
lexicography 132, 145, 155, 164, 172
lexicon 16, 21, 93, 96, 97, 137, 173,

177, 178, 180, 187–190, 193, 198,
199, 226, 263

lexicostatistics 98
Liberman, Mark 272
Libes, Don 164, 277
library: electronic 107; of glyphs, 183;

online, 2, 41, 44, 58, 60, 101, 107,
114, 160, 182, 262; using by telnet
, 41

line: serial 52, 266
line break 55, 256
LINGUIST List xiii, 5, 27, 37, 38, 51,

60, 102, 160
Linguistic Data Consortium (LDC)

103, 137, 241, 263
linguistics: computational xiv, xvi, 6–8,

69, 91, 93, 201, 208, 231–235,
242–246, 251–255, 259–264, 268;
corpus-based, xi, 7, 233, 262, 263,
266; fieldwork in, xiii, xv, 1, 6, 10,
21, 25, 26, 70, 137, 170, 172–178,
182–184, 188, 190, 196, 232, 252,
253; historical, xiii, 145; teaching,
viii, xiv, xv, 2, 3, 5, 8, 62–65, 68,
69, 71–73, 76, 78–81, 84–87, 89,
93, 94, 97–100, 116, 119, 135;
theory, viii, xi, xv, xvi, 1, 6–8, 21,
26, 62, 63, 66–69, 73–77, 85, 86,
95, 97, 114, 138–142, 145, 152,
175, 198–206, 209–212, 219–225,
230–233, 235, 242, 250–255, 264;
theory-neutral, 245, 255

link 4, 9, 21, 22, 24, 25, 50–57, 114,
150, 157; in relational logic: 213,
214, 224

list: e-mail 26, 27, 32, 33, 37–39, 50,
60, 102; see also word list

Index 291

listserv 38, 39
Liu, Cricket 28, 58, 277
local area network (LAN) 30
locator: in text 108, 109, 111, 114
log file 150, 236
login: anonymous 27, 39, 45, 46, 52,

53, 256; remote, 30, 31, 39–41, 56,
172, 256, 269

London, Jack 244, 277
loop 157–160, 167, 168, 263
lower case see case: of letters
ls (list directory) command 39, 140,

153–156, 165, 260
LX Problems 65, 73, 92
Lynn, Nadene 280
Lynx 42, 52

MacCormac, Earl R. 277
Macintosh 10, 12, 14, 31, 34, 35, 41,

60, 81, 85, 88–99, 105, 137, 139,
147, 148, 153, 165, 171, 176, 182,
183, 188–191, 194, 221, 257, 261,
271, 273, 280, 281; see also Apple

machine learning 241, 242
Mackay, Wendy E. 277
MACLEX 80, 93, 190, 191
macro see aliases, macros, and scripts
MacVARB 77, 92, 93; see VARBRUL
Magerman, David 248–251, 253, 255,

277
Mail Transport Agent (MTA) 32
Mailbase 39
Mailx 32, 256
Majordomo 39
manual see documentation and

manual
man(ual) command 153, 154, 165
Marcinkiewicz, Mary Ann 277
Marcus, Mitchell P. 245, 272, 274,

277
markup ix, 5, 17, 19, 23, 54, 55, 57,

101, 104, 106–108, 112, 134, 161,
260–262, 264, 267, 268

Martin, James H. 221, 277
Martin, Jeremy 135
Massey, L.Dan 278
matching 17, 21, 43, 60, 65, 69, 139,

150, 162, 163, 174, 178, 193, 194,
246–249, 268

Maxwell, Michael. 208, 277
McCarthy, John 276
McCarty, Willard xiv, 102, 103, 134

McLean, Ruari 277
menu 32, 41, 44–46, 48, 54, 55, 179,

185, 195, 262, 268
Merialdo, Bernard 226, 277
Message Understanding Conference

(MUC) xi, 235, 239, 240, 264,
272, 278

Metamail 36
metaphor xv, 1, 2, 27, 28, 49, 50, 138,

139, 149, 160, 162, 164–167, 178,
179, 211, 221, 222, 261, 262, 268,
270, 276, 277

Michaelis, Laura 233, 277
MicroConcord 135
Microsoft Word 177, 178, 185, 190,

223, 276, 279
Mikheev, Andrei 226, 277
Miller, D. 58
Miller, George 220, 271, 277
Miller, Katherine 220, 274, 277
Mitre Corporation 7
Monmonier, Mark 277
MonoConc 135, 191, 193
Montgomery, Christine A. 200, 278
Morgan, Jerry 273, 274
morphology x, xiii, 65, 69, 73, 74, 76,

85, 88, 92, 93, 124, 150, 162, 173,
175, 177, 186, 187, 192, 200,
206–208, 225, 233, 245, 251, 257;
allomorph, 73, 187; clitic, 150,
153, 268; prefix, 51, 74, 154, 159,
260, 268

Mosaic 42, 47, 52, 54, 258
mouse 43, 48, 51, 54, 81–83, 171, 262
mpack command 36
mput command 40
Müller, Hans 245, 277
Multi-Dictionary Formatter 190
multidimensionality vii, 4, 11, 15, 16,

19, 20, 24
multilingualism vii, 4, 11, 13–15, 23,

24, 103, 136, 171–173, 176, 180,
270

Multi-purpose Internet Mail
Extensions (MIME) 34–37, 264;
non-MIME mailers, 35, 36

multi-user, multi-tasking 152, 264
Mutter, Sharon A. 278

name server 37
naming vii, 17, 18, 24, 25, 29, 36–41,

44, 45, 48, 49, 51, 55, 56, 65, 90,

292 Index

94, 98, 108, 112, 114, 141,
148–158, 161, 172, 177, 187, 194,
213, 222, 233, 240, 245, 251, 256,
257, 259–261, 266, 269

narrative presupposition 167
Natalis, G. 277
natural language xiii, xv, 6–8, 69, 76,

103, 143, 151, 153, 187, 188, 197,
198, 201, 202, 206–208, 211, 212,
216, 217, 226, 230–232, 234, 235,
253

natural language processing (NLP) x,
xiii–xv, 2, 6–9, 11, 69, 76, 81, 103,
138, 143, 149, 151, 153, 187, 188,
197–202, 206–208, 211, 212, 216,
217, 220, 221, 223–226, 230–232,
234, 235, 253, 270–281

Nerbonne, John 280
Netscape 33, 37, 42, 48, 52, 53, 54,

55, 60, 258
Newmeyer, Frederick J. 255, 278
news viii, 44, 47–51, 60, 148, 151,

152, 170, 171, 221, 264, 267
newsgroups 20, 28, 47–50, 145, 174,

207, 227, 239, 264, 267; alt, 49,
50, 61

newsreader 48, 50, 148, 260; tin, 152;
trn, 48, 148, 151, 152, 260, 264

NeXT 95, 97, 138, 171, 261
Nicolino, Thomas A. 207, 278
non-terminal 245–247, 249
normalization see database:

normalization
Noordman, Leo G.M. 224, 279
Norvig, Peter 199, 275
noun 116, 132, 151, 152, 174, 175,

208, 220, 222, 227, 228, 262, 265,
273, 274, 277

noun phrase 246–249; base, 248, 249
number: bases 257; binary, 28, 145,

257, 258; decimal, 34, 119, 166,
243, 257; hexadecimal, 147, 148,
166, 257; octal, 257

Nunberg, Geoffrey 255, 278
Nye, Adrian 58, 277

object-oriented 10, 18, 20, 22, 24, 25,

95, 112, 204, 222, 224, 225, 240,
252, 257, 260, 264, 265

octal number see number: octal
Oflazer, K. 278
Opentext 114

Open Group 165
operating system x, 6, 11, 12, 14, 15,

138, 139, 143, 144, 170, 171, 258,
260–266, 268, 270; DOS, 11, 31,
90–95, 97–99, 104, 135, 139, 147,
153, 171, 176, 178, 180, 184, 185,
188, 190, 191, 193, 195, 258, 267,
268, 270; Macintosh, 139; Plan 9,
165; shells, see shell; UNIX, ix, 5,
6, 32, 34, 41, 46, 48, 55, 92, 93,
97, 104, 114, 135, 138–141,
143–145, 147–158, 160, 161,
163–165, 171, 188, 256–261, 263,
264, 266–270; Windows, 10, 12,
15, 34, 54, 60, 96–98, 135, 171,
176, 178, 179, 182–184, 188, 193,
261

operator: ag(ent) 213
optical character recognition (OCR)

ix, 105, 106, 133, 134, 265, 267
option see switch, option, preference
orthography 72, 81, 95, 119, 207, 245
overdifferentiation 12, 13
Oxford Acoustic Phonetic Database

72
Oxford Concordance Program (OCP)

xiv, 115, 119, 121, 129, 134, 135,
193, 258, 265; Micro-OCP, 134,
135, 191, 193

Oxford Text Archive (OTA) 102, 137

packet 28–31, 266–268
Pallett, David 274
Palmer, David D. xi, xvi, 231, 245,

278
Panglot 34
Panorama 114
Pao, Christine 274
Parker, Rogers C. 278
Parlett, James W. 272
parser 25, 74, 75, 91, 114, 175, 187,

188, 192, 208, 209, 242, 246, 248,
249, 255, 271, 273, 174; chart, 248

PARSEVAL 246–248, 255
parsing xi, 75, 89, 91, 92, 95, 99, 141,

158, 170, 175, 186–189, 199, 208,
209, 227, 234, 245–250, 253, 255,
266, 267

part of speech 18, 21, 22, 208, 223,
226, 233, 234, 241, 245, 251, 254,
262, 265, 266, 268

Partee, Barbara Hall 250, 280

Index 293

Parunak, H.Van Dyke 15, 278
Passonneau, Rebecca J. 224, 278
Pater, Walter 112
path 28, 51, 151–153, 156, 215, 266,

268, 269
PATR 89; PATR-II, 188; PC-PATR,

76, 188, 189
pattern matching, xiii, 89, 98, 127,

132, 174, 185, 186, 194, 208
PC-KIMMO xiii, 74, 92, 93, 186–188,

272, 275, 280
Pedersen, Jan 255, 273
Peek, Jerry 58, 277
Penn Treebank see Treebank
PEPPER 79, 93
Perfect, Christopher 278
performative 167
perl see programming language: perl
Perry, John 203, 204, 271
Peters, Stanley 272
Phonetic Symbol Guide 70, 94
phonetics ix, x, xv, 20, 33, 35, 63,

69–71, 73, 79, 82, 87–89, 91–94,
96–98, 100, 145, 172, 173, 177,
182, 183, 185, 186, 200, 202;
acoustic, 70, 72, 87, 88, 90, 91, 96;
phones, 173; pitch analysis, 96, 98;
vocal tract, 71, 84, 88, 97, 98;
vowel, 13, 70–73, 82, 88, 92, 97,
145, 184, 186; waveform, 71, 88,
90, 184, 254

PHONO 94
phonology ix, x, xiv, 20, 25, 65, 69,

73, 76, 89, 91–93, 96, 98, 145,
172–175, 177, 182, 185–187, 194,
196, 200, 206–208, 233; phoneme,
10, 20, 62, 65, 69, 70, 72, 73, 80–
82, 88, 89, 94, 95, 98, 173, 174,
196, 234, 243, 262; stress, 20, 73,
99, 147, 184, 186; syllable, 20, 99,
184, 186, 254

phonostatistics 196
PHONRULE 187
phrasebooks 165
Phthong xv, 5, 65, 66, 70, 73, 80–83,

84, 94
Pieraccini, Roberto 255, 278
Piez, Wendell 112
Pike, Rob 164, 166, 276
pine 32, 37, 161
pipe 141, 142, 151, 156, 162, 166,

263, 265

Plauger, P.J. 166, 276
point-to-point protocol (PPP) 54, 266
Pollard, Carl 199, 204, 278
portable computer 6, 23, 170, 172,

184, 191
PostScript 183
pragmatics 7, 28, 95, 199, 200, 202,

204, 206, 212, 219, 222, 225
precision 240, 244, 246–249, 252, 266
preference see switch, option,

preference
preposition 74, 212, 222, 227, 229
Price, Patti 278
processing: background 41, 70, 150,

152, 257
ProfGlot 76, 95
programming language 67, 69, 139,

143, 164, 164, 169, 180, 264; apl,
167; awk, 143, 163–165, 169, 261,
273; C, 139, 143, 144, 153, 166,
168, 256, 267, 275; perl, 143, 163,
164, 169, 261, 273; prolog, 69

prompt 5, 32, 36, 39, 47, 48, 140,
151, 154, 155

proprietary 139, 261, 265, 266
prosody 185, 233, 242
protocol 5, 28, 30–32, 35, 39, 42, 51,

52, 54, 258, 262, 263, 266, 268
prototype 4, 81, 207, 220, 227, 230,

252
Psotka, Joseph 64, 278
psycholinguistics 78
Pustejovsky, James 226, 278

quantification 209, 211, 254
Quarterman, John S. 59, 278
query 19, 25, 47, 103, 130, 170, 198,

199, 206, 216, 225, 230, 236, 237,
241, 263

questions, embedded 167

Rabiner, Lawrence R. 234, 278
Rabkin, Eric S. 158
Raskin, Victor 95
Raymond, Eric S. 145, 164, 279
recall 97, 156, 240, 244, 246–249,

252, 266
records see database: records
redirection 141, 152, 157, 262, 268;

pipe, 141, 142, 151, 156, 162, 263
regular expression 6, 150, 151, 158,

162–165, 194, 261, 263, 266, 270

294 Index

Reichman, Rachel 279
relational logic 212, 213, 215, 216,

222, 223, 274
relevance theory 9, 46, 205, 216, 219,

223, 241, 269, 280
rendering 13, 69, 107, 261, 267
Renear, Allen H. 23, 177, 273
Resnik, Philip 271, 276, 278
Rettig, Marc 24, 171, 279
rich text format (RTF) 34, 178, 167, 267
Riesbeck, Christopher 255, 279
Riley, Michael D. 245, 279
Ritchie, Dennis 139, 166, 275
Roach, Peter 69, 275, 279
robustness 8, 86, 193, 199, 200, 209,

225, 227, 231, 233, 234, 239, 241,
276

Roche, Emmanuel 226, 279
Rogers, Henry viii, xv, 5, 8, 9, 62, 95
romanization 147
Rook 177, 179, 188, 189, 190
Rooth, Mats 252, 274
Rosch, Eleanor 220, 279
Rosenfeld, E. 279
Roukos, S. 272
router vii, 28–30, 267
Rudnicky, Alex 274
rule 13, 14, 49, 69, 89, 91, 93–95, 97,

175, 187–189, 200, 204, 206–210,
221, 224, 226, 227, 233, 241, 245,
250, 251, 260

Sabah, Gerard 271
Saffran, Jenny R. 254, 279
Sag, Ivan A. 199, 204, 274, 278
Salus, Peter 145, 164, 166, 279
Sanders, Ted J.M. 224, 279
Santorini, P. 272, 274, 277
SARA 114, 135
Sawers, Martin 94
scanning ix, 105, 106, 107, 133, 267
Schaaik, Gerjan Van 271
Schabes, Yves 226, 279
Schachter, Paul 280
Schank, Roger 255, 279
Schneiderman, Ben 81, 279
Scholnick, E. 279
Scott, Mike 135, 274
Script Manager 14, 271
script: orthographic 14, 15, 34, 35, 59,

78, 106, 173, 176; program, see
aliases, macros, and scripts

searching, 6, 41–46, 60, 90, 104, 116,
135, 156, 159, 163, 173, 174, 179,
186, 191, 193, 194, 205, 208, 248,
251, 256, 263, 268, 269

sed see editor: stream
segmentation xvi, 20, 69, 98, 114,

184, 193, 206, 223, 224, 234, 242,
243, 254, 260, 262

Selfridge, A 167, 279
SEMANTICA 76, 95
semantics xiii, xv, 7, 10, 12, 13, 18,

19, 25, 76, 90, 95, 140, 143, 172,
198–200, 202–206, 209–219,
225–228, 230, 251, 252; polysemy,
222

SEMHE 276
sentence xi, xvi, 14–16, 20, 62, 65, 68,

75, 86, 88, 91, 95, 108, 119, 124,
140, 151, 173, 174, 176, 189, 191,
202–204, 206, 208–212, 214–218,
227–230, 237, 238, 242–250, 253,
254

Serial Line Internet Protocol (SLIP) 54
server see client-server; domain name

server; name server
Sgarbas, K. 279
SGML see Standard General Markup

Language
Shannon, Claude 276
shareware 84, 85, 267
shell 150, 154–157, 160, 165, 256,

260, 267, 269, 270; Bourne shell
(sh), 13, 154, 156, 157, 165, 168,
267; C-shell (csh), 141, 154–156,
165, 168, 256, 260, 267; Korn shell
(ksh), 168; tcsh, 168, 256; see also
operating system

Shieber, Stuart 188, 232, 279
Shoebox 20, 178, 180, 188, 190–193,

273
Sibun, Penelope 255, 273
Sidner, Candace 223, 224, 274
SIGNALYZE 71, 96, 183–185
Simons, Gary F. vii, xv, 4, 8, 10, 11,

13, 19, 20, 24, 25, 91, 93, 171,
173, 177, 182, 276, 277, 279, 280

Simple Mail Transfer Protocol
(SMTP) 32

Simplified English (SE) 226–230, 271,
275

simulation 7, 12, 67, 69, 77, 79, 97,
198, 209

Index 295

Sinclair, J.M. 135
singular value decomposition (SVD)

225
Situation Semantics 204–207, 210,

211, 213–215, 217–219, 224, 271,
275

Sleator, D. 276
Smith, David 93
Smith, Henry C. 22, 280
Smith, J.Jerome 77
Smith, Norval 273
Sobin, Nicholas 68, 69, 280
sociolinguistics 76, 77, 92, 99, 182,

200
Soemarmo, Marmo 89
SoftQuad 114
Software Tools xiv, 2, 3, 6, 8, 10, 16,

25, 63, 73, 98, 101, 114, 116, 132,
133, 135, 139, 140–143, 149, 153,
154, 160, 161, 163, 165–168, 172,
178, 179, 182, 184, 191, 226, 231,
232, 234, 269, 276

sorting ix, 13, 15, 79, 89, 98, 116,
119, 120, 121, 124, 126, 129, 141,
142, 148, 154, 156, 170, 172–174,
178, 179, 191, 193, 194, 258, 265,
267, 268

spectrography xv, 71, 90, 96, 184, 198
speech x, xiv, xv, xvi, 15, 19–21, 72,

76, 79, 88, 90, 93, 96, 98, 100,
101, 103, 109, 114, 119, 134–137,
143, 149, 170, 177, 182–184, 202,
223–226, 234–238, 240–243, 254,
256, 259, 263; recognition, 202,
234–236, 238, 254, 256;

synthesis, 88, 202
speech pathology xv, 79
SPEECHLAB 96
spelling 22, 81, 116, 132, 140, 176,

262
Sperber, Dan 203, 205, 216, 219, 223,

280
Sperberg-McQueen, C.M. 19, 135,

280
Spooren, Wilbert P.M. 224, 280
spreadsheet 16, 19, 73
Stairs, Michael 134
Stallman, Richard M. 165, 280
STAMP 97, 187
Standard General Markup Language

(SGML) ix, 5, 17, 18, 19, 20, 23,
111, 112, 114, 115, 135, 137, 161,

257, 260, 267, 268, 272–274;
attribute, 112, 114; Document
Type Definition (DTD), 18, 19,
112, 114, 260; element, 13, 16–21,
23, 24, 112, 114, 154, 206,
211–213, 215, 217, 223–225, 233,
246, 257, 260, 262, 268; entity, 50,
112, 172, 212, 240, 260, 264–266;
feature structures, 16, 19, 114, 187,
189, 277; IDREF, 19; sgmls, 114,
267

standard input/output see input/
output, standard

statistics 7, 8, 63, 77, 78, 133, 175,
193, 195, 197, 201, 225, 226, 231,
234, 241, 249, 251–254, 262;
probabilistic, 234, 248, 249, 254

Stettner, Heidi 280
Stockwell, Robert 250, 280
Stoll, Cliff 164, 280
Stonebraker, Michael 16, 280
storage iv, 15, 19, 20, 22–24, 54, 70,

73, 75, 76, 84, 93, 97, 102, 107,
119, 150, 164, 173, 180, 191, 233,
256, 259, 261, 264–267

stream 14, 15, 17, 19, 142, 145, 147,
149, 150, 162, 163, 166, 169, 177,
206, 243, 261, 264, 267, 268

string 6, 12, 14, 21, 24, 40, 42, 44,
75, 89, 92, 140, 142, 149–153, 156,
158–160, 162, 163, 167–169, 173,
174, 180, 201, 202, 208, 247, 256,
260–264, 266, 268, 271

structured query language (SQL) 237
style sheet 23, 176, 177, 268
subdirectory see directory
Summer Institute of Linguistics (SIL)

xiii, xv, 4–6, 11, 24, 25, 60, 92, 97,
99, 170, 182, 183, 190, 193, 273,
275, 276, 279, 280

Sun 31, 41, 90, 138, 142
Sundheim, Beth 207, 235, 272, 274
SuperCard 65
supra-segmental 148
switch, option, preference 11, 13,

151–157, 168, 173, 203, 204, 268
SYNTACTICA 76, 97
syntax x, xv, 1, 7, 16, 18, 35, 47, 48,

51, 68, 69, 73–76, 85, 86, 92, 97,
111, 124, 139, 140, 150, 151, 154,
158, 172–175, 177, 178, 186, 188,
189, 199, 200, 202, 206–209, 211,

296 Index

212, 225, 227, 229, 233, 234, 245,
246, 249, 250, 251, 265, 266, 268;
phrase structure, 2, 16, 20, 68, 89,
91, 95, 97, 124, 127, 143, 151,
173, 174, 188, 189, 193, 199, 208,
212, 216, 224, 244, 246, 248, 268;
subcategorization, 8, 251, 256, 265;
transformational, 231, 250

SYSPRO 69, 97

TACT 104, 130, 134, 135, 191, 193,

194
tag 17, 23, 55, 56, 112, 114, 161, 234,

241, 242, 245, 246, 254, 257, 260,
262, 263, 265, 268; part-of-speech,
226, 234, 251, 254, 262, 265, 268;
tag set, 114, 241, 242, 246, 251,
268

tagging 114, 175, 187, 188, 226, 234,
240, 245, 254, 268

Tango 54, 60
tar command 153
TEACH-LING 100
telnet viii, 26, 30, 31, 41, 45, 46, 51,

269
Temperley, D. 276
terminology 77, 94, 200, 212, 219,

240
test corpus see corpus: test
T

e
X 161, 177, 192, 276

text: electronic xiv, 5, 40, 101–105,
107, 111, 112, 114, 121, 133, 136,
137, 259, 265, 268; interlinear, 20,
25, 89, 91, 175, 177, 178, 182,
188–194; readability, 7, 197

Text Encoding Initiative (TEI) ix, xiv,
xv, 5, 19, 104, 111–115, 135, 137,
269, 272, 277, 280

thesaurus 102, 103, 107, 220, 227,
252; Thesaurus Linguae Graecae,
103, 107

Titivillus 86
token 130, 174, 175, 207–209, 269
tokenization of text 208
tool program see Software Tools
training corpus see corpus: training
transmission control protocol (TCP)

31, 54; TCP/IP, 31, 41, 46, 52, 54
Treebank 245–251, 259, 266, 277
TrueType 34, 178, 183
Tufte, Edward R. 280
Turing, A.M. 197, 280

Tversky, Barbara 220, 280
typesetting ix, 23, 107, 177, 191, 192
type/token ratio 174; see also token
typography 106, 107, 119, 272, 277,

278

Unicode 14, 34, 54, 59, 60, 269, 280
unification 189, 231
uniq command 165, 267
universal resource locator (URL) 9,

51, 55–57, 157, 158, 263
Unix ix, 5, 6, 32, 34, 41, 46, 48, 55,

92, 93, 97, 104, 114, 135, 138–141,
143–145, 147–158, 160, 161,
163–165, 171, 188, 256–261, 263,
264, 266–271, 276, 277, 279;
Berkeley Standard Distribution
(BSD)/System V (SysV), 144, 168,
258; etymology, 165; gnu, 279

update anomaly 22, 211
Updegrove, Daniel 280
upper case see case: of letters
UPSID 73, 98
Usenet 47, 48, 144, 148, 165
user interface 10, 179, 258, 261, 262, 278
utility program 14, 33, 34, 37, 38,

45–47, 50, 121, 138, 140, 183, 199,
264

uuencode 34, 40

Valentine, J. Rand x, 6, 8, 72, 73, 91,

170
Van der Korst, Bieke 271
vaporware 85, 102
VARBRUL 92; see also GOLDVARB;

IVARB; MacVARB
variable: indexical 152, 269
VAX 144
Veatch, Tom 92
verb 116, 132, 151, 153, 175, 178,

211, 212, 214, 217, 218, 220, 222,
227–229, 262, 265, 268; tense, 82,
214, 218

Verbmobil 275
Veronica 45
Versaw, Larry 20, 91, 280
vi see editor: vi
Vigso, D.K. 278
vocabulary 7, 55, 101, 130, 133, 193,

195–197, 219, 220, 223, 225–227,
232, 236, 269, 272

Volk, Martin 91

Index 297

Waibel, Alex 255, 278, 280
Walter, Sharon M. 200, 274, 278
Waters, Bruce 93
wc (word count) command 140, 151,

166, 167
Webber, Bonnie 224, 280
Weber, David J. 21, 177, 280
Weinstein, Scott 224, 274
which command 155, 156, 168
Whorf, Benjamin Lee 149, 280
wide area information service (WAIS)

viii, 42, 46, 47, 51, 54, 269
Wiebe, Janyce M. 224, 280
wildcard see character: wild card
Williams, David B. 90
Williams, Noel 275
Williams, Robin 281
Wilson, Dierdre 203, 205, 216, 219,

223, 280
Wimbish, John S. 20, 273
Winkler, Dan 179, 281
Winsock 31, 54
Wojcik, Richard xiv, 227, 275, 281
Wooldridge, T.R. 134
WordCruncher 104
word list 103, 116, 119, 132, 140,

142, 153, 191, 193, 195, 196, 270

WordNet 220, 223, 274, 277
WordPerfect 114
wordprocessing 13, 15–19, 23, 33–36,

40, 57, 85, 106, 107, 144, 160–162,
170, 172, 174–178, 190, 223, 260,
261, 264, 267, 270

WORDSURV 195, 196
World Script 14, 15, 270
World Wide Web (WWW) viii, xvi, 4,

5, 9, 26, 27, 31–33, 38, 42, 46–52,
54–61, 84, 101, 114, 135–138, 144,
150, 151, 153, 157, 158, 160–162,
164, 165, 258, 259, 262, 263, 266,
267, 269, 270, 272

WYSIWYG 23, 176, 177

Xbase 178, 180, 181, 190
X-ray 90, 96, 98

Yarowsky, David 251, 252, 281
YOUPIE 69, 73, 99
Yourdon, Edward 24, 273

Zaenen, Annie 272
Zdonik, Stanley B. 24, 281
Zock, Michael 271

	Book Cover
	Title
	Contents
	List of figures
	List of contributors
	Introduction
	The nature of linguistic data and the requirements of a computing environment for linguistic research
	The Internet: an introduction
	Education
	Textual databases
	The Unix language family
	Software for doing field linguistics
	Language understanding and the emerging alignment of linguistics and natural language processing
	Theoretical and computational linguistics: toward a mutual understanding
	Glossary
	Bibliography
	Index

